

PERGAMON MATERIALS SERIES 14

Self-Diffusion and Impurity Diffusion in Pure Metals

HANDBOOK OF EXPERIMENTAL DATA

Gerhard Neumann and Cornelis Tuijn

SELF-DIFFUSION AND IMPURITY DIFFUSION IN PURE METALS: HANDBOOK OF EXPERIMENTAL DATA

Bу

GERHARD NEUMANN Institut für Physikalische Chemie Freie Universität Berlin

CORNELIS TUIJN Department of Physics Universiteit van Amsterdam

Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Pergamon is an imprint of Elsevier

Pergamon is an imprint of Elsevier Linacre House, Jordan Hill, Oxford OX2 8DP, UK Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands 525 B Street, Suite 1900, San Diego, CA 92101-4495, USA

First edition 2009

Copyright © 2009 Elsevier Ltd. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web site at http://www.elsevier.com/locate/permissions, and selecting *Obtaining permission to use Elsevier material*

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-1-85617-511-1

For information on all Pergamon publications visit our website at books.elsevier.com

Printed and bound in Great Britain

 $09 \ 10 \ 11 \ 12 \ 13 \quad 10 \ 9 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1$

PREFACE

The most recent comprehensive data collection on diffusion in metals was published in 1990 (Landolt-Börnstein NS III 26). In the meantime numerous new results on self-diffusion and impurity diffusion in solid metals have been published. Especially, impurity diffusion coefficients measured by means of electron probe microanalysis (EPMA), Rutherford backscattering (RBS) and heavy ion backscattering (HIRBS) have been reported. Moreover, a number of earlier results had to be reassessed.

The present comprehensive data collection is based on a critical valuation of the hitherto published data and and aims at being the most complete data collection on this subject at this moment.

The authors wish to thank the employees of the libraries of the Hahn-Meitner Institute in Berlin and of the Library of Science of the University of Amsterdam, for the supply of many earlier articles, and in particular Mrs. Marijke Duyvendak, for searching in libraries all over the world.

The authors are also grateful to Professor Denis Ablitzer (Nancy), Professor Dieter Bergner (Freiberg), Professor Yoshiaki Iijima (Sendai) and Professor Jean Philibert (Orsay) for providing reprints and copies of a number of publications.

> Gerhard Neumann Cornelis Tuijn January 2008

CHAPTER ()

Introduction

The first diffusion investigation in metals was that of Au in lead by Roberts-Austen in 1896. Between 1930 and 1935 further impurity and self-diffusion investigations in lead had been performed by Hevesy, Seith and coworkers (for references see Chapter 4). Later on, when the first artificial radioisotopes became available, self-diffusion in gold [00.01, 00.02], copper [00.03, 00.04], silver [00.05] and zinc [00.06] was measured. Systematic investigations on selfdiffusion and impurity diffusion in solid metals started with the availability of numerous artificial radioisotopes after the Second World War. Results of nonradioactive investigations represented a minority in that period. In the last two decades, however, the fraction of non-radioactive measurements has markedly increased.

The last comprehensive data collection in metals and alloys was published in 1990 [00.07], including self-diffusion [00.08] and impurity diffusion [00.09] in metals. Since then numerous further investigations have been performed, especially in aluminum, α - and β -titanium, α -zirconium and α -iron. Moreover, a large number of earlier investigations had to be reassessed.

The present collection contains data of self-diffusion and impurity diffusion in metals. Diffusion in silicon, germanium, selenium and tellurium is not topic of the present collection. Diffusion of C, N and O in metals is also not included in the present data collection. Data of these impurities are compiled in Ref. [00.10].

0.1. EXPERIMENTAL TECHNIQUES

Numerous methods have been developed for the measurement of selfdiffusion and impurity diffusion coefficients in metals. The most reliable experimental data can be obtained with the aid of tracer sectioning techniques by means of radioactive isotopes. Also a number of non-radioactive investigation methods permits the determination of impurity diffusion coefficients. Furthermore, some non-destructive techniques, especially scattering experiments, were used for diffusion investigations. The methods for measuring diffusion coefficients have been described in detail in a number of reviews [01.01–01.04]. In the present chapter the most frequently applied measuring methods are briefly described. Diffusion investigations are performed in a concentration gradient. The temporal and local change of the tracer concentration c(x,y,z,t) is described by Fick's second law

$$\frac{\mathrm{d}c}{\mathrm{d}t} = D\Delta c \tag{01.01}$$

The serial sectioning technique consists of measuring the activity of thin sections removed from the sample parallel to the surface, i.e. normal to the diffusion direction. This simplifies Eq. (01.01) to the one-dimensional form

$$\frac{\mathrm{d}c}{\mathrm{d}t} = D\frac{\mathrm{d}^2c}{\mathrm{d}x^2} \tag{01.02}$$

The solutions of Eqs. (01.01) and (01.02) depend on the initial and boundary conditions, respectively, and are collected in Refs. [01.05, 01.06].

0.1.1 Radiotracer techniques

The experimental details of the measurement of tracer diffusion coefficients are extensively reviewed by Rothman [01.02]: sample preparation, tracer deposition, annealing, temperature measurement, determination of the effective annealing time, sectioning and counting (for further reviews see Refs. [01.07, 01.08]).

In the present chapter the different sectioning techniques and the respective range of measured diffusion coefficients are compared. Especially the penetration plots give informations concerning the accuracy of D. A number of possible sources in the determination of D has to be taken into consideration:

- Falsification of the penetration profile owing to surface diffusion contributions can be avoided by removing a layer of some \sqrt{Dt} thickness from the side faces of the samples.
- Temperature measurements by use of thermocouples (mainly Pt/Pt(Rh), Ni(Cr)/Ni) may lead to errors of ± 1.5 K, which corresponds to an uncertainty of $\pm 3\%$ in *D*. Temperature measurements using optical pyrometry lead to distinctly larger uncertainties. An error of about 30 K in *T* at 3,000 K corresponds to an uncertainty of about 20% in *D*.
- For the determination of the accurate diffusion time a correction for the heating and cooling period has to be performed [01.09].

Macrosectioning techniques

Direct profile measurements. The most accurate methods for the measurement of diffusion coefficients are sectioning techniques using precision lathe and microtome, which permits the removal of sections of only a few microns thick. The section thickness is determined by weighing. Microtome and lathe sectioning is suited for ductile but not too soft materials.

If an infinitesimally thin layer ($\ll \sqrt{Dt}$) of radiotracers is deposited on the flat surface of the sample, the initial and boundary conditions for the semi-infinite

diffusion couple are

$$\lim_{\delta \to 0} c(x,0) = \frac{M}{2\delta} \text{ for } |x| \le \delta, \text{ i.e. } \infty \text{ for } x = 0$$

$$\lim_{\delta \to 0} c(x,0) = 0 \text{ for } |x| > \delta, \text{ i.e. } 0 \text{ for } x \ne 0$$

(01.03)

where *M* is the deposited amount in g/m^2 and δ the layer thickness. The so-called *thin film solution* of Eq. (01.02) yields [01.05]:

$$c(x,t) = \frac{M}{2\sqrt{\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right)$$
(01.04)

which is linear in ln *c* against x^2 (see Figure 01.01). The slope of this plot yields *D*.

Deviations from linearity and the respective error sources are treated in a special section (see below). Diffusion coefficients with an uncertainty of only a few percent can be obtained with the aid of microtome and lathe sectioning.

Grinding or lapping is the standard method of sectioning brittle materials. Emery or abrasive SiC papers as well as diamond paste are used for $3-100 \,\mu\text{m}$ sections. The section thickness is determined by weighing the sample after each section that has been removed. Equation (01.04) describes the penetration plot.

Lathe, microtome and grinder sectioning permit the measurement of diffusion coefficients larger than $10^{-16} \text{ m}^2 \text{ s}^{-1}$ or temperatures higher than about 0.7 $T_{\rm m}$ ($T_{\rm m}$ is melting temperature), grinding with SiC papers diffusion coefficients as small as $10^{-17} \text{ m}^2 \text{ s}^{-1}$.

Residual activity method. An alternative method for the determination of *D* using grinding was proposed by Gruzin [01.11]. Instead of measuring the activity of the sections the residual activity of the sample after removing the sections is measured. Then the activity of the *n*-th section is the difference of the residual activities after removing n-1 and n sections. The solution of Eq. (01.02) yields [01.05]

$$\frac{A_n}{2A_0} = \frac{1}{\sqrt{Dt}} \operatorname{erfc}\left(\frac{x}{2\sqrt{Dt}}\right) \tag{01.05}$$

where A_0 is the initial counting rate and A_n the remaining activity after the removal of *n* sections. erfc(*z*) is the complementary error function

$$\operatorname{erfc}(z) = 1 - \operatorname{erf}(z)$$

see Figure 01.02. D can also be derived from the Gaussian plot

$$\ln \frac{\partial A}{\partial x} = \text{const} - \frac{x^2}{4Dt} \tag{01.06}$$

The plot of the inverse function of $\operatorname{erfc}(z) = A_n/2A_0$, i.e. $\operatorname{erfc}_{(-1)}(A_n/2A_0)$ against *x* is linear if the initial and boundary conditions are properly fulfilled (see Figure 01.02).

The Gruzin method is considered as less precise than the before-mentioned sectioning techniques. Only if the tracer is a hard γ radiator the absorption is

Fig. 01.01 Impurity diffusion of ⁹⁵Nb in α - and γ -iron. Microtome sectioning (2–5 μ m sections) (from Ref. [01.10]).

Fig. 01.02 Impurity diffusion of ⁶⁰Co in niobium. Residual-activity measurement. Profile fitted to Eq. (01.05) (from Ref. [01.12]).

negligible. Otherwise the linear absorption coefficient of the radiation has to be measured accurately. The method is mainly used in grinder sectioning investigations on polycrystalline materials.

Surface activity decrease method. The measurement of the decrease of the surface activity (or simple absorption method) before and after the diffusion anneal can also be used for the determination of D [01.13, 01.14]. This method is based on the surface activity decrease during the anneal which is caused by the absorption of the radiation of the tracer material diffused into the bulk. As in the Gruzin technique the absorption coefficient of the radiation has to be known. The method is regarded as less reliable than the sectioning techniques because it needs assumptions about the concentration profile. Particularly, errors can arise from tracer loss, oxide hold-up and short-circuiting contributions (grain boundary and dislocation contributions).

A variant of the simple absorption method is the Kryukov absorption method [01.15]. The radioactivity from both front face and back face of a very thin sample is counted after the diffusion anneal. So, D can be evaluated without the knowledge of the absorption coefficient.

Autoradiography. Autoradiography has also been used for the measurement of diffusion coefficients [01.16, 01.17]. The tracer penetration is derived from an autoradiograph taken from a flat cut at a small angle to the plane where the tracer was deposited. Although this cannot be considered a highly precise technique, for Sb diffusion in copper at least at high temperatures good agreement with the lathe sectioning data was observed [01.18].

Microsectioning techniques

Diffusion coefficients smaller than $10^{-17} \text{ m}^2 \text{ s}^{-1}$ can be measured with the aid of chemical and electrochemical techniques. Sectioning by chemical dissolution permits the removal of 100 nm thick layers [01.19]. Sections between 10 and 100 nm can be obtained by mechanically stripping of electrochemically anodized layers [01.20]. This enables the measurement of diffusion coefficients as small as $10^{-22} \text{ m}^2 \text{ s}^{-1}$ at temperatures of about 0.5 $T_{\rm m}$ [01.21]. Lundy and coworkers have used this method for the investigation of self-diffusion and impurity diffusion in β -Ti, β -Zr, Nb, Ta and W.

Diffusion coefficients as small as $10^{-23} \text{ m}^2 \text{ s}^{-1}$ at $T \approx 0.4 T_{\text{m}}$ can be obtained by application of sputtering methods. Sections smaller than 1 nm can be removed by ion bombardment (ion-beam sputtering, IBS). A concentration-depth profile can be measured by collecting the sputtered-off radiotracer material [01.22, 01.23] or by selecting and counting the sputtered-off material in a mass spectrometer (secondary-ion mass spectroscopy, SIMS) [01.24]. The depth of the profile (total crater depth) is measured by optical interference methods after sectioning has been completed. The thickness of the sections is determined under the assumption that the material is removed uniformly as a function of time. To avoid short-circuiting contributions single crystals with small dislocation densities have to be

Fig. 01.03 Impurity diffusion of ^{114m}In in silver. Ion-beam sputtering (from Ref. [01.25]).

used. The depth resolution of the sputter sectioning technique is limited which results from roughening and atomic mixing [01.24]. Roughening reduces the depth resolution because atoms are sputtered simultaneously from different depths with different concentrations of tracers. Mixing of atoms from different depths is a consequence of the lattice damage caused by the sputter ions. Roughening increases with depth. The accuracy of diffusion coefficients measured by means of sputtering techniques is within 10–20%.

In Figures 01.03 and 01.04 the penetration profiles for In diffusion in silver [01.25] and Ni diffusion in copper [01.24] are shown. For ^{114m}In in silver Ar⁺ ions with an energy of about 0.5 keV were used for sputtering. The penetration profiles are ranging from about 100–500 nm (see Figure 01.03). For Ni in copper single crystalline samples with inserted thin Ni layers are used. The sputter deposited Ni (monoatomic layer with initial distribution with a half-width of 11 nm) is covered by an epitaxial, almost monocrystalline layer of copper of about 100 nm. O₂⁺ ions of 4 keV were used for sputtering. The penetration plots are smaller than 100 nm (see Figure 01.04).

IBS plus radiotracer counting permits the measurement of self-diffusion as well as impurity diffusion coefficients in the temperature range between about 0.4 and 0.6 $T_{\rm m}$. Especially for self-diffusion in fcc metals the low-temperature

Fig. 01.04 Impurity diffusion of Ni in copper. Ion-beam sputtering and SIMS analysis (initial distribution with a half-width of 11 nm) (from Ref. [01.24]).

data detect the slight curvature of the Arrhenius plot of D and enables the evaluation of D(T) in form of two-exponential fits (see Chapter 0.2). IBS plus SIMS analysis permits the measurement of impurity diffusion coefficients of elements which have no suitable radioisotopes.

Non-Gaussian diffusion profiles

Deviations from linearity of the ln c vs. x^2 plot, i.e. non-Gaussian profiles, are observed if the boundary conditions are not properly fulfilled or if other mechanisms like short-circuiting diffusion overlap the lattice diffusion. Non-Gaussian profiles are obtained, if

- 1) Grain boundaries or dislocations contribute to *D* (this contribution increases with decreasing temperature and decreasing grain diameter).
- 2) Oxide layers at the surface hinder the penetration of the tracer atoms.
- 3) Reduced solubility of impurities changes the boundary conditions.
- 4) Tracer atoms evaporate from the surface, which also changes the boundary conditions.

Short-circuiting contributions lead to an upward deviation from the Gaussian plot at deeper penetrations (see Figure 01.05). Grain-boundary diffusion results in a proportionality between ln *c* and $x^{6/5}$ [01.27, 01.28]. The short-circuiting contribution can be eliminated mathematically if the penetration plot is fitted to [01.29]

$$c(x,t) = \frac{M}{2\sqrt{\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right) + A \exp(-Bx^{6/5})$$
(01.07)

Fig. 01.05 Self-diffusion of ⁵⁹Fe in α -iron. Penetration profile with dislocation tail (from Ref. [01.26]).

where *A* and *B* are fitting parameters. A disregard of the correction term in Eq. (01.07) results in enhanced diffusion coefficients and in a diffusion energy smaller than the vacancy diffusion energy Q_{1V} .

An oxide layer on the sample surface can act as a barrier to the tracer. Depending on the chosen boundary conditions different solutions for c(x,t) result [01.02, 01.06, 01.30, 01.31]. Simply, the profile can be expressed by

$$\frac{d\ln c}{dx^2} = -\frac{A}{x} - \frac{1}{4Dt}$$
(01.08)

where *A* is a fitting parameter which includes the diffusivity in the oxide layer and its thickness. The ln *c* vs. x^2 plot shows an upward curvature near the sample surface (near-surface effect, NSE). With rising *x* the profile approaches a straight line.

Figure 01.06 shows a surface hold-up for Fe diffusion in aluminum owing to a stable Fe_4Al_{13} layer formed at the surface, which decomposes very slowly. Note that the extent of hold-up increases with decreasing temperature. Figure 01.07 shows profiles of Al and Mn diffusion in aluminum at 844 K. The profiles become straight lines at penetrations larger than about 150 µm. While the evaluated D_{Al} is within the range of values obtained by different methods, D_{Mn} , however, is about one order of magnitude larger than that obtained in more recent investigations (see Table 3.4).

The hold-up due to an oxide layer can be avoided if the tracer is implanted by ion bombardment, as for the first time done by Hood [01.33] (for a review of modern implantation techniques see Ref. [01.34]). This type of tracer deposition is particularly applied in the more recent diffusion investigations of transition metals in aluminum (see Table 3.4).

Non-Gaussian profiles can appear in impurity diffusion investigations if the deposited metal has only a small solubility in the host. Only if the surface concentration drops below the solubility limit c_s in a period which is short compared to the total annealing time ($t_s \ll t$), the profile is described by Eq. (01.04).

Fig. 01.06 Impurity diffusion of ⁵⁹Fe in aluminum. Surface hold-up due to slow dissolution of the tracer (from Ref. [01.02]).

Fig. 01.07 Diffusion of ²⁶Al and ⁵⁴Mn in aluminum. Pronounced near-surface effect due to oxide hold-up. (T = 844 K, $D_{Al} = 2.5 \times 10^{-13} \text{ m}^2 \text{ s}^{-1}$, $D_{Mn} = 8.3 \times 10^{-13} \text{ m}^2 \text{ s}^{-1}$, evaluated from deeper penetrations) (from Ref. [01.32]).

However, for $t < t_s$, which corresponds to a constant boundary concentration $c(0,t) = c_s$ during the entire diffusion run, the diffusion profile is described by an error function [01.05]

$$c(x,t) = c_{\rm s} {\rm erfc}\left(\frac{x}{2\sqrt{Dt}}\right) \tag{01.09}$$

where c(x,t) is linear in the inverse complementary error function $\operatorname{erfc}_{(-1)} c$ against x (see e.g. Figure 01.08). The validity ranges of Eqs. (01.04) and (01.09) depend on t_s/t and thus on c_s and δ [01.36]. For $t \ge t_s$ an intermediate solution of Eq. (01.02) was derived by Malkovich [01.37]

$$c(x,t) = c_{\rm s} \frac{2}{\sqrt{\pi}} \int_{z}^{\infty} \exp(-y^2) \operatorname{erfy}\left(\frac{t_{\rm s}}{t-t_{\rm s}}\right)^{1/2} dy \qquad (01.10)$$

with

$$z = x/2(Dt)^{1/2}$$
 and $t_{\rm s} = \pi M^2/4Dc_{\rm s}^2$

For $t < t_s$ the evaluation of c(x,t) according to Eq. (01.04) instead of Eq. (01.09) leads to a value of *D* which is smaller than the correct one (see e.g. Figure 01.09).

Fig. 01.08 Impurity diffusion of ⁶³Ni in silver (\bullet , T = 1,006 K; \blacktriangle , T = 1,081 K). Profile fitted to Eq. (01.09) (from Ref. [01.35]).

Fig. 01.09 Impurity diffusion of ⁵¹Cr in silver. Evaluations according to Eqs. (01.04) (+) and (01.09) (\bigcirc) (from Ref. [01.38]).

Similar results are obtained for Fe diffusion in silver (see Figure 01.10). For T = 797.3 °C, as an example, the evaluation of the penetration profile results in $D(\text{erfc}) = 2.8 \times 10^{-14} \text{ m}^2 \text{ s}^{-1}$, compared to $D(\text{exp}) = 2.25 \times 10^{-14} \text{ m}^2 \text{ s}^{-1}$ as tabulated in Ref. [01.39].

The frequently steep decrease of c(x,t) in $\ln c - x^2$ was sometimes associated with an NSE. Lundy and Padgett [01.40] have proposed to divide the penetration plot into three regions (see Figure 01.11). Region I is the result of an NSE, region II represents lattice diffusion and region III stems from extrinsic

Fig. 01.10 Diffusion of ⁵⁹Fe in silver. Evaluation according to Eq. (01.04) (from Ref. [01.39]).

Fig. 01.11 Schematic penetration plot. Region I: near-surface effect (NSE); Region II: lattice diffusion; Region III: short-circuiting contributions (according to Ref. [01.40]).

Fig. 01.12 Diffusion of Al in nickel. Determination of *D* from region II according to Eq. (01.04) (from Ref. [01.41]).

effects (short-circuiting contributions). In the case of an oxide hold-up the slope of region II could in principle yield the lattice diffusion coefficient, obviously with large uncertainty. For $t < t_s$, however, because of the continuous curvature of the ln $c - x^2$ plot, the averaged slope of region II leads to an erroneous value of *D* (see Figures 01.09 and 01.10). The determination of *D* from region II is highly questionable, as this can lead to erroneous results (see Figure 01.12).

If the deposited metal has a high vapour pressure, the tracer will simultaneously evaporate and diffuse into the bulk. The resulting penetration profile then exhibits a peak near the surface in the ln $c - x^2$ plot (see e.g. Figure 01.13). Solutions of Fick's second law for different boundary conditions are given in the literature [01.02, 01.06, 01.42–01.44].

Fig. 01.13 Impurity diffusion of ⁶⁷Ga in copper. Penetration plot with tracer loss due to evaporation (from Ref. [01.43]).

Further radioactive methods

Out-diffusion of spallation and fission products. Metal foils (Nb, Ta, Mo, W) are irradiated with high-energetic protons [01.45]. This generates spallation and fission products, which are homogeneously distributed in the sample. The out-diffusion of these reaction products is measured by means of γ spectroscopy. Because of the irradiation damage of the samples, short-circuit contributions should dominate the diffusivity.

Fissiography. After the diffusion run of natural uranium in a solvent metal, the sample is irradiated with thermal neutrons [01.46]. The activity of the generated fission products is measured radiographically.

0.1.2 Non-radioactive methods

In addition to SIMS investigations further non-radioactive techniques have been developed, which permit the determination of impurity diffusion coefficients.

Methods with and without profile measurement have to be distinguished. As in the second group of these methods only the integral concentration changes are measured, deviations from Gaussian profiles like surface hold-up or shortcircuiting contributions cannot be detected. If these error sources can be avoided, the resulting diffusion coefficients are close to those obtained by tracer sectioning methods.

Rutherford backscattering

In the Rutherford backscattering method (RBS) or heavy ion RBS (HIRBS), a highenergy ion beam (⁴He or ¹⁹F) bombards the sample along the diffusion direction. From the energy spectrum of the elastically backscattered ions the profile can be determined. Diffusion coefficients between 10^{-16} and 10^{-23} m²s⁻¹ can be measured with an uncertainty of about 20%. RBS and HIRBS are mainly applied to heavy impurities in a light solvent, especially α -Ti (for a review see Ref. [01.47]).

Nuclear reaction analysis

In the nuclear reaction analysis (NRA) the sample is bombarded in the diffusion direction with a proton beam. This leads to reactions like ${}^{27}\text{Al}(p, \gamma){}^{28}\text{Si}$ or ${}^{30}\text{Si}(p, \gamma){}^{31}\text{P}$. The concentration profiles are determined by measuring the broadening of the resonance energy of the nuclear reaction.

Diffusion coefficients between 10^{-16} and 10^{-23} m² s⁻¹ can be measured. The NRA technique was applied to Al and Si diffusion mainly in group IVa metals.

X-ray diffraction investigations

Fogelson [01.48, 01.49] has developed an X-ray diffraction method for the measurement of impurity diffusion coefficients. The principle of this method is similar to the absorption method [01.14], i.e. it is based on the measurement of the surface concentration decrease of the solute. X-ray diffraction measurements of the change in the lattice parameters of the resulting solid solution can be used for the determination of the surface concentration of the surface determined impurity. A polycrystalline foil of the solvent, about 200 µm thick, is covered by a 0.05–1 µm thick film of the solute. The surface concentration after the diffusion anneal is determined by analysing the diffraction line profile. The diffraction profile depends on the lattice parameter of the alloy (assuming that the metals form a solid solution), and consequently on the concentration of the element diffusing in the layer. The shift of the edge line, which changes by about 1–3%, is used to determine the concentration.

Diffusion coefficients between 10^{-11} and 10^{-16} m² s⁻¹ can be measured with an accuracy of about 10–15%. The method is mainly applied to impurity diffusion in noble metals.

Resistometric investigations

Ceresara et al. [01.50] have developed a method for the determination of diffusion coefficients in dilute alloys by measuring the electrical resistivity of a sample as a function of time. A wire, about 1 mm in diameter, is covered with a

layer of the dopant, about $1 \mu m$ thick. The resistivity of the wire is measured during the whole diffusion run. The change of the resistivity, which results from the in-diffusion of the dopant, can be recalculated to a concentration change. The solution of Eq. (01.01), where the Δ -operator is transformed to cylindrical coordinates, is a Bessel function [01.05, 01.50].

As in the X-ray diffraction investigations, diffusion coefficients derived from resistivity mesurements deviate from the most reliable tracer sectioning by not more than 10–15%.

Nuclear methods

Examples for non-destructive nuclear methods are nuclear magnetic resonance (NMR), quasi-elastic Mößbauer spectroscopy (QMS) and quasi-elastic neutron scattering (QNS). Limited availability of suitable isotopes restricts the applicability of these methods to a small number of systems.

Nuclear magnetic resonance

Various methods have been used for the investigation of atomic motion in metals by means of NMR: linewidth measurements, measurement of the spin-lattice relaxation time (SLRT) T_1 and $T_{1\rho}$ (for reviews see Refs. [01.51, 01.52]) or measurement of the SLRT using the more recent β -NMR technique (see e.g. [01.53, 01.54]). Compared to the T_1 -technique, the $T_{1\rho}$ -technique (SLRT in a rotating frame) allows the extension of the measurement to lower temperatures, so that diffusion coefficients as small as $10^{-19} \text{ m}^2 \text{ s}^{-1}$ can be measured (compared to the $10^{-15} \text{ m}^2 \text{ s}^{-1}$ deduced from T_1 measurements). In the β -NMR technique (β -radiation detected NMR) the spin polarization of the β -active nucleus is measured. Special models are required to recalculate the relaxation rates $1/T_1$ and $1/T_{1\rho}$ into diffusivities, which involves the assumption of a definite diffusion mechanism (see e.g. [01.55]).

There are only a few applications of NMR to diffusion, particularly to self-diffusion in metals. Self-diffusion studies have been carried out on Al, Li and Na, Cu and V. In particular for Li and Al NMR is an alternative to tracer studies, as no suitable radioactive isotopes of these metals exist. Self-diffusion coefficients ranging from 10^{-17} to 10^{-10} m² s⁻¹ and from 10^{-17} to 10^{-12} m² s⁻¹ are measured for Li and Al, respectively.

Quasi-elastic Mößbauer spectroscopy and quasi-elastic neutron scattering

The linewidths in QMS as well as in QNS have a contribution which results from the diffusional motion of the atoms (line broadening). Both, jump frequencies and broadening increase exponentially with temperature. From the diffusional broadening the diffusion coefficient can be determined. Furthermore, the jump vector can be obtained, which enables conclusions with respect to the diffusion mechanism. As the line broadening must be comparable to or exceed the natural linewidth in QMS and the energy resolution in QNS, the diffusivities must be larger than $10^{-14} \text{ m}^2 \text{ s}^{-1}$ in QMS and larger than $10^{-13} \text{ m}^2 \text{ s}^{-1}$ in QNS investigations. For reviews on diffusion investigations with QMS see Refs. [01.56, 01.57] and with QNS see Refs. [01.57–01.59].

There is only a small number of nuclei suitable for QMS investigations. The most frequently applied Mößbauer atom is ⁵⁷Fe. This was used for the investigation of self-diffusion in γ - and δ -iron and for impurity diffusion of Fe in Cu, Au, Al, V, β -Sn, β -Ti and β -Zr (see Refs. [01.56, 01.57]). The results of the self-diffusion measurements on iron are in agreement with tracer diffusion data only near to the transition temperature $T_{\gamma\delta}$ [01.60]. For Fe diffusion in copper the *D* values are strongly scattering around the tracer data [01.61]. For Fe in β -Zr [01.62] the measured diffusion coefficients are one order of magnitude smaller than those obtained from tracer measurements. This suggests the existence of a second diffusion mechanism which is too fast to be seen in the time window of the QMS method.

QNS is applicable to a few fast-diffusion elements with a large enough quasielastic scattering cross-section for neutrons. A number of moderate scatterers exists, however, as yet mainly Na, Ti and Co were applied to diffusion investigations with QNS. Self-diffusion investigations on Na and β -Ti led to the conclusion that the monovacancy mechanism dominates. For Co diffusion in β -Zr [01.63] the result is analogous to that of Fe diffusion in β -Zr, using QMS, i.e. the measured diffusion coefficients are one order of magnitude smaller than those obtained from tracer diffusion measurements.

0.1.3 Interdiffusion measurements

The measurement of the concentration profile of a diffusion couple consisting of two pure metals A and B or a pure metal and an alloy, A/A(B), yields the interdiffusion coefficient \tilde{D} .

According to Darken [01.64] D can be expressed by

$$\tilde{D}(c) = D_A X_B + D_B X_A \tag{01.11}$$

where D_A and D_B are the concentration-dependent intrinsic diffusion coefficients of the components A and B in the alloy; X_A and X_B are the respective mole fractions.

 $D_{\rm A}$ and $D_{\rm B}$ are in general not equal which leads to a net flux of atoms across the interface and to a shift of lattice planes with respect to the sample-fixed axes (Kirkendall effect [01.65, 01.66]).

According to Manning [01.67] D can be connected with the tracer diffusion coefficient by

$$\tilde{D}(c) = (D_A^T X_B + D_B^T X_A)\Phi S \tag{01.12}$$

where Φ is the thermodynamic factor and *S* the so-called vacancy-wind factor [01.67]. Φ is

$$\Phi = \frac{d \ln a}{d \ln X} = 1 + \frac{d \ln f}{d \ln X}$$
(01.13)

where *a* is the thermodynamic activity and *f* the activity coefficient.

The extrapolation of \tilde{D} to $X_{\rm B} = 0$ yields the impurity diffusion coefficient $D^{\rm T}$. \tilde{D} can be determined from the concentration profile by means of the Boltzmann–Matano method [01.68, 01.69]. For an A/B or A/A(B) couple \tilde{D} can be

calculated from

$$\tilde{D}(c') = -\int_0^{c'} \frac{(x - x_0)dx}{2t(dc/dx)_{c=c'}}$$
(01.14)

where x_0 is the position of the Matano interface (not identical with that of the welding interface). x_0 describes the position at which the material flux in one direction equals that to the opposite direction. x_0 can be determined from

$$\int_{0}^{c_{\max}} (x - x_0) \mathrm{d}c = 0 \tag{01.15}$$

where c_{max} is the maximum concentration of B in a couple A/A(B).

A method which does not require the knowledge of the Matano interface was developed by Sauer and Freise [01.70], Wagner [01.71] and den Broeder [01.72]. Accordingly, the following expression holds for \tilde{D}

$$\tilde{D}(c') = \frac{1}{2t(dy/dx)_{x'}} \left((1-y') \int_{-\infty}^{x'} y dx + y' \int_{x'}^{\infty} (1-y) dx \right)$$
(01.16)

with

$$y = \frac{c - c_{\min}}{c_{\max} - c_{\min}}$$

where c_{\min} and c_{\max} represent the terminal concentrations of the couple, x' and y' refer to the values of x and y, respectively, when c = c'.

The evaluation according to Eq. (01.16) leads to \tilde{D} values very close to D^{T} if A/A(B) couples with $x_{B} \leq 0.01$ are used.

The evaluation of the concentration profiles according to Refs. [01.70–01.72] yields credible diffusion coefficients \tilde{D} in the middle part of the profile. At the limiting values of c (c = 0 and $c = c_{max}^{B}$ for a A/A(B) couple), the diffusion coefficients calculated in this way are of considerable uncertainty.

Hall [01.73] has developed a method which permits the determination of \tilde{D} at the limiting concentrations. \tilde{D} can be calculated from

$$\tilde{D} = \frac{1}{4h^2} + \frac{k\pi^{1/2}}{2h^2} \exp(u^2) \operatorname{erfc} u \tag{01.17}$$

with

$$\frac{c}{c_{\max}} = \operatorname{erf} u, \ u = h \frac{x}{t^{1/2}} + k$$

where *h* is the slope and *k* the intercept of the linear portion of the concentration ratio curve. c_{max} is the maximum concentration of B in a couple A/A(B). The Hall method permits the determination of \tilde{D} values close to D^{T} .

For concentration-independent interdiffusion coefficients \tilde{D} can be determined according to [01.74]:

$$\frac{c-c_1}{c_2-c_1} = \frac{1}{2} \operatorname{erfc} \frac{x}{2(Dt)^{1/2}}$$
(01.18)

valid for the concentration range between c_2 and c_1 . For concentrationindependent \tilde{D} Eq. (01.18) can be used instead of Eqs. (01.14) and (01.16).

19

Fig. 01.14 EPMA diffusion profile for a Ag/Ag (3.93% Sb) couple at 1,048 K (from Ref. [01.75]).

Electron probe microanalysis (EPMA)

The diffusion profile of a diffusion couple A/B or A/A(B) after annealing can be measured by means of an electron probe microanalyser. A thin electron beam (diameter 1 µm) stimulates the X-ray emission of the elements in the alloy. The profile can be obtained by analysing the characteristic radiation from the sample along the diffusion direction. Figure 01.14 shows a typical EPMA diffusion profile. The interdiffusion coefficient \tilde{D} can be determined by application of the methods described before. The method is restricted to diffusion coefficients larger than $10^{-15} \text{ m}^2 \text{s}^{-1}$ since the depth resolution is limited by the size of the volume excited by the electron beam.

The extrapolation of \tilde{D} to $x_{\rm B} = 0$ yields the impurity diffusion coefficient of B in A (see e.g. Figure 01.15). Impurity diffusion coefficients deduced from EPMA investigation are in acceptable agreement with those obtained from serial sectioning measurements.

0.1.4 Comparison of the experimental methods

In Table 01.01 the different experimental methods for the measurement of diffusion coefficients are compared. The measuring ranges of D are listed as well as a rough estimation of the attainable accuracy. For sectioning techniques the usual section thicknesses are added.

The most reliable methods are the tracer sectioning techniques. The macrosectioning techniques are applicable to temperatures larger than about $0.7 T_{\rm m}$. In combination with microsectioning techniques more than 10 orders of magnitude in *D* can be measured between 0.4 $T_{\rm m}$ and $T_{\rm m}$.

The less accurate non-radiative methods are important especially if no reliable tracer data are available.

Fig. 01.15 Concentration dependence of the interdiffusion coefficient \tilde{D} in copper-titanium alloys (from Ref. [01.76]).

Table 01.01	Comparison	of	the	experimental	techniques	for	the	measurement	of	diffusion
coefficients										

Technique	D-range [m ² s ⁻¹]	Section thickness	Attainable accuracy ^a (uncertainty in %)		
Macrosectioning					
Lathe	$10^{-16} - 10^{-11}$	5–100 μm	<5		
Microtome ^b	$10^{-16} - 10^{-11}$	1–100 µm	<5		
Grinding	$10^{-17} - 10^{-11}$	3–100 μm	5–10		
Residual activity	$10^{-16} - 10^{-12}$	10–100 µm	>10		
Microsectioning					
Chemical	$10^{-18} - 10^{-12}$	50–200 nm	5-10		
Anodizing	$10^{-21} - 10^{-15}$	10–100 nm	5–10		
Sputtering	$10^{-23} - 10^{-15}$	1–20 nm	10-20		
Non-radioactive methods					
RBS, HIRBS, NRA	$10^{-23} - 10^{-16}$		10-20		
X-ray diffraction	$10^{-16} - 10^{-11}$		10–15		
Resistometry	$10^{-14} - 10^{-12}$		10-20		
EPMA	$10^{-16} - 10^{-11}$		10–15		
Nuclear methods					
NMR	$10^{-17} - 10^{-13}$		10–15		
β -NMR	$10^{-17} - 10^{-11}$		10–15		
QMS	10^{-14} -10 ⁻¹¹		-		
QNS	$10^{-13} - 10^{-11}$		_		

^aThe uncertainty arising from the temperature measurement has to be added. For high-temperature measurements using optical pyrometers errors of up to 20% in *D* have to be taken into account at T > 3,000 K. ^bFor impurity diffusion in lead, *D* values up to 10^{-9} m²s⁻¹ were measured by means of microtome sectioning (see Table 4.5).

Nuclear methods are applicable to only a few systems. The results of NMR self-diffusion investigations on Li, Na and particularly Al, where no suited radio isotope exists, are of considerable importance. QMS and QNS investigations are unsuited for the measurement of absolute values of *D*. The value of these methods is the possibility of a direct observation of the atomic jump process.

0.2. INTERPRETATION OF THE DIFFUSION INVESTIGATIONS

The temperature dependence of the diffusivity can be expressed by the diffusion coefficient D

$$D = D^0 \exp\left(\frac{-Q}{kT}\right) \tag{02.01}$$

where D^0 is the pre-exponential factor, Q the diffusion energy, k the Boltzmann constant and T the absolute temperature. Equation (02.01) corresponds to a linear plot of ln D vs. 1/T (Arrhenius plot).

In solid metals self-diffusion is dominated by monovacancy (1V) migration. The diffusion coefficient D_{1V} is given by

$$D_{1V} = ga^2 f_{1V} c_{1V} w_{1V} \tag{02.02}$$

where *g* is a geometrical factor (g = 1 holds for face-centred, fcc, and bodycentred, bcc, cubic metals). *a* is the lattice constant, f_{1V} the correlation factor ($f_{1V} = 0.781$ for fcc metals and $f_{1V} = 0.727$ for bcc metals). c_{1V} is the relative monovacancy concentration and w_{1V} the jump frequency of monovacancies.

 c_{1V} and w_{1V} can be expressed by

$$c_{1\mathrm{V}} = \exp\left(\frac{-G_{1\mathrm{V}}^{\mathrm{F}}}{kT}\right) \tag{02.03}$$

and

$$w_{1V} = v_{1V} \exp\left(\frac{-G_{1V}^{M}}{kT}\right) \tag{02.04}$$

where G_{1V}^F and G_{1V}^M are the free enthalpy of monovacancy formation and migration, respectively. v_{1V} is a lattice frequency associated with the monovacancy jump. Because of G = H - TS it follows for D_{1V}^0 and Q_{1V}

$$D_{1V}^{0} = ga^{2}v_{1V}f_{1V}\exp\left(\frac{S_{1V}^{F} + S_{1V}^{M}}{k}\right)$$
(02.05)

and

$$Q_{1V} = H_{1V}^F + H_{1V}^M \tag{02.06}$$

where H_{1V}^F , H_{1V}^M and S_{1V}^F , S_{1V}^M are the vacancy formation and migration enthalpy and entropy, respectively.

In general ln D-1/T is non-linear. If grain boundary or dislocation contributions to D can be excluded, the non-linearity can be caused by the

contribution of two diffusion mechanisms with different activation energies (two-defect models) or by temperature-dependent enthalpies and entropies (one-defect models), respectively.

In fcc metals the weak curvature of $\ln D-1/T$ can only be verified if lowtemperature measurements down to 0.4 $T_{\rm m}$ ($T_{\rm m}$ is the melting temperature) could be performed. The reason for the curvature of the Arrhenius plot of D is the contribution of divacancies (2V) at higher temperatures [02.01]. D is then given by

$$D(T) = D_{1V}^{0} \exp\left(\frac{-Q_{1V}}{kT}\right) + D_{2}^{0} \exp\left(\frac{-Q_{2}}{kT}\right)$$
(02.07)

with

$$D_2^0 = D_{2V}^0$$
 and $Q_2 = Q_{2V}$

A forced fit to the high-temperature data (0.7 T_m – T_m) leads to averages for D^0 and Q valid for $\bar{T} = 0.85T_m$

$$D(T) = D_{85}^{0} \exp\left(\frac{-Q_{85}}{kT}\right)$$
(02.08)

where $Q_{85}/T_{\rm m}$ is almost constant [02.02] (see Figure 02.01)

$$\frac{Q_{85}}{T_{\rm m}} \approx 1.5 \times 10^{-3} {\rm eV} \,{\rm K}^{-1} \tag{02.09a}$$

whereas the pre-exponential factor varies in the limits

$$0.05 \le D_{85}^0 (10^{-4} \text{m}^2 \text{s}^{-1}) \le 5 \tag{02.09b}$$

The curvature of the Arrhenius plot of self-diffusion in bcc metals is much more pronounced than that of fcc metals (see Figure 02.02). The refractory metals of group V and VI show a more or less "normal" behaviour, whereas the group IVa metals reveal strongly enhanced diffusivity, especially in the lowtemperature range of the bcc phase. The alkaline metals represent an intermediate group. In contrast to the refractory metals the group IVa metals undergo a martensitic phase transition to a close-packed structure at $T_{\alpha\beta} \approx 0.5$ $T_{\rm m}$. At very low temperatures ($\leq 0.15 T_{\rm m}$) also Li and Na exhibit a martensitic phase transition.

There is no doubt that monovacancies also dominate the diffusion in bcc metals. Up to now, however, the operating diffusion mechanisms are controversially discussed. Two-defect as well as one-defect models are considered.

In refractory metals divacancies [02.03], self-interstitials [02.04] or nextnearest neighbour jumps [02.05] are assumed to contribute to *D* at higher temperatures. These two-defect models also obey Eq. (02.07). A fit of the experimental data to Eq. (02.07) leads to the approximation [02.06]

$$Q_{1V}/T_{\rm m} = 1.5 \times 10^{-3} {\rm eVK^{-1}}; \quad Q_{2V}/T_{\rm m} = 2.0 \times 10^{-3} {\rm eVK^{-1}}$$
 (02.10)

The curvature of the Arrhenius plot can also be described by temperaturedependent enthalpies and entropies. The most simple approximation is a linear

23

Fig. 02.01 Self-diffusion in fcc metals.

temperature dependence of the enthalpy [02.01]

$$H(T) = H(T_0) + \alpha k(T - T_0)$$
(02.11)

where α is an empirical constant and T_0 a suitably chosen reference temperature. Based on Eq. (02.11) this results in the following expression for the temperature dependence of D [02.01]:

$$D(T) = D^0_{\alpha}(T_0) \exp\left(-\frac{Q_{\alpha}(T_0)}{kT}\right) \exp\left(2\alpha \left(\ln\frac{T}{T_0} - \frac{T - T_0}{T}\right)\right) \tag{02.12}$$

Self-diffusion in group IVa metals is anomalously high and the Arrhenius plot of *D* is strongly curved (see Figure 02.02). Q_1 and Q_2 do not obey Eq. (02.10). The reason for the enhanced diffusivity is that at the martensitic phase transition at $T = T_{\alpha\beta}$ the elastic constants $c_{11}-c_{12}$ and a consequence H_{1V}^M approach zero [02.07]. The first saddle point for an (unrelaxed) vacancy jump in the bcc structure forms a configuration identical to the basal plane of the trigonally bonded ω phase. In this position the L_3^2 (111) phonon is very soft. The softness of the L_3^2 (111) phonon and the temperature dependence of the $T_1(\frac{1}{2})(110)$ phonon frequency are responsible for the enhanced diffusivity and the temperature dependence of Q[02.08, 02.09].

Fig. 02.02 Self-diffusion in bcc metals.

Sanchez and de Fontaine [02.10] related the Gibbs free energy of ω -embryo formation to that of vacancy migration by

$$G_{\omega} = G_{\rm IV}^M \left(1 - \frac{T_0}{T} \right) \tag{02.13}$$

with $T_0 < T_{\alpha\beta} < T_{\alpha\beta\nu}$ where T_{ω} is the temperature of the $\beta - \omega$ phase transition and $T_{\alpha\beta}$ that of the $\alpha - \beta$ phase transition. With the aid of Eq. (02.13) the temperature dependence of *D* can be expressed by

$$D(T) = D_{\omega}^{0} \exp\left(\frac{-Q_{\omega}}{kT}\right) \exp\left(\Omega \frac{T_{m}^{2}}{T^{2}}\right)$$
(02.14)

where

$$\Omega = \frac{H_{1V}^M T_0}{k T_m^2}$$
(02.14a)

In most cases the experimental D(T) is fitted to Eq. (02.14) (see Chapter 4.1), although there is some doubt that only H_{1V}^{M} decreases with decreasing temperature [02.11]. Köhler and Herzig [02.12] assume that for all bcc metals D can be described by Eq. (02.14).

It may be mentioned that the fits according to Eqs. (02.07), (02.12) and (02.14) in nearly all cases lead to standard deviations σ which do not differ by more than 10% [02.06, 02.13]. The extrapolated values of *D* at $T = T_{\rm m}$, however, can differ by up to > 25% (see e.g. Hf in β -Zr [02.13]).

Diffusion investigations by use of NMR techniques measure the uncorrelated vacancy motion. The resulting D^{NMR} differs from the tracer diffusion coefficient D^{T} by the correlation factor *f*, i.e. [02.03]

$$D^{\mathrm{T}} = f D^{\mathrm{NMR}} \tag{02.15}$$

If more than one diffusion mechanism is operating

$$D^{\rm NMR} = D_1^{\rm NMR} + D_2^{\rm NMR} \tag{02.16}$$

can be recalculated to D^{T} according to

$$D^{\rm T} = f_1 D_1^{\rm NMR} + f_2 D_2^{\rm NMR} \tag{02.17}$$

Presuming that a two-exponential fit of $D_{\text{NMR}}(T)$ to Eq. (02.16) is possible, D^{T} can be calculated if f_1 and f_2 are known. Because of the controversially discussed high-temperature mechanism in bcc metals, the calculated D_2^{T} and thus D^{T} is uncertain.

In cubic metals the diffusivity is isotrope. In non-cubic metals (e.g. hexagonal or body-centred tetragonal, bct) the diffusion coefficients perpendicular and parallel to the *c*-axis, D_{\perp} and $D_{//}$, respectively, differ. The difference between D_{\perp} and $D_{//}$ increases with increasing deviation from the closed-packed lattice structure. For the hexagonal close-packed structure (hcp), e.g., the c/a ratio is $\sqrt{(8/3)} \approx 1.633$.

If no single crystals with orientations exactly parallel to the *c*- and *a*-axis are available, D_{\perp} and $D_{//}$ can be calculated from measurements using crystals with orientations deviating by an angle θ from the crystal axis according to

$$D(\theta) = D_{\perp} \cos^2 \theta + D_{\perp} \sin^2 \theta \qquad (02.18)$$

In ferromagnetic metals the diffusivity below the Curie temperature $T_{\rm C}$ is reduced. For $T < T_{\rm C}$ the diffusivity *D* can be described by [02.14]

$$D(T) = D_{\rm p}^0 \exp(-Q_{\rm p}(1 + \alpha M^2(T))/kT)$$
(02.19)

where D_p^0 and Q_p are the pre-exponential factor and diffusion energy, respectively, for the paramagnetic temperature range for the bcc α_p phase above T_C . M(T) is the ratio of the spontaneous magnetization at T to that at T = 0. For Fe M(T) was experimentally determined [02.15, 02.16] (see Figure 02.03). Theoretical expressions for α could be derived [02.14]. Experimentally, α can be determined according to Eq. (02.19) [02.17], i.e.

$$\alpha = \frac{1}{M^2(T)} \left(\frac{kT}{Q_p} \ln \frac{D_p^0}{D} - 1 \right)$$
(02.20)

or

$$T \ln \frac{D(T)}{D_{\rm p}^0} = -\frac{Q_{\rm p}}{k} - \frac{\alpha Q_{\rm p}}{k} M^2(T)$$
(02.21)

Fig. 02.03 Ratio of the spontaneous magnetization M(T) for α -Fe. $M^2(T)$ in dependence of T (according to Ref. [02.16]).

The plot of $T \ln[D(T)/D_p^0]$ vs. $M^2(T)$ permits the determination of α and Q_p from slope and intercept of the linear function (see Figure 02.04). For self-diffusion in iron α is almost temperature independent [02.14], varies, however, from solute to solute [02.17, 02.18].

Further models for the interpretation of the diffusion anomaly around $T_{\rm C}$ are referred to in Chapter 8.

Self-diffusion in metals is comprehensively treated in numerous textbooks, e.g. [02.19–02.22] and review papers [02.01, 02.03, 02.24, 02.25].

Substitutionally dissolved impurities diffuse via the same mechanisms as the respective host atoms. The difference between the diffusivity of impurities and host atoms can be described by the electrostatic model (E-model) [02.26] and the thermodynamic model ($T_{\rm m}$ -model) [02.27]. In the E-model the difference of the activation energy of impurity diffusion and self-diffusion is proportional to the charge difference ΔZ of the atoms:

$$\Delta Q \sim -\Delta Z$$

whereas in the $T_{\rm m}$ -model ΔQ is described by the proportionality

$$\Delta Q \sim \left(\frac{T_{\rm m2}}{T_{\rm m0}} - 1\right)$$

where T_{m2} and T_{m0} are the melting temperatures of solute and solvent, respectively.

The E-model was applied to noble metals, Fe, Co, Ni, Zn and Cd. The T_m -model was applied to noble metals, Zn, substitutionally dissolved impurities

Fig. 02.04 Plot of $T \ln[D(T)/D_n^0]$ vs. $M^2(T)$ for self-diffusion in α_{f} -iron (from Ref. [02.17]).

in Pb and to refractory bcc metals. Impurity diffusion was comprehensively reviewed in Ref. [02.23].

In a number of host metals part of the impurities is interstitially dissolved. The diffusivity can be described by the "dissociative diffusion mechanism" [02.28], according to which *D* is given by

$$D = q_0 D_{\rm I} + (1 - q_0 D_{\rm 1V}) \tag{02.22}$$

where q_0 is the fraction of interstitially dissolved solute atoms I

$$q_0 = \frac{c_{\rm I}}{c_{\rm I} + c_{\rm I}} \tag{02.23}$$

 c_1 is the concentration of substitutionally dissolved solute atoms. The tendency to interstitial dissolution increases with decreasing radius of the solute atom [02.29] and decreasing solubility [02.30]. Accordingly, q_0 increases with decreasing solubility [02.31].

Interstitially dissolved impurities diffuse via a direct interstitial mechanism, which results in ultrafast diffusivities with small values of D^0 and Q. Especially 3d group solutes in Na, K, In, Tl, Sn, Pb, Sb (sp solvents), but also

in d group metals such as Nb, α -Ti, α -Zr, β -Zr diffuse via the interstitial mechanism.

Pressure and mass dependence of *D*, solubility and diffusion in dilute alloys permit conclusions with respect to the operating diffusion mechanisms.

Neglecting a small correction term, the pressure dependence of *D* is given by

$$\frac{\partial \ln D}{\partial p} \approx -\frac{\Delta V}{kT} \tag{02.24}$$

where ΔV is the activation volume of diffusion (in general expressed in fractions of the molar volume V_0) and p the hydrostatic pressure. In case of two mechanisms contributing to D, $\Delta V(T)$ results in

$$\Delta V(T) = \Delta V_1 \frac{D_1}{D} + \Delta V_2 \frac{D_2}{D}$$
(02.25)

The mass dependence of *D* (isotope effect *E*) is defined by [02.32]

$$E = \frac{(D_{\alpha}/D_{\beta}) - 1}{(m_{\beta}/m_{\alpha})^{1/2} - 1} = f\Delta K$$
(02.26)

 m_{α} and m_{β} are isotope masses and ΔK is the so-called kinetic energy factor. For two contributing diffusion mechanisms, *E* takes the form [02.33]

$$E(T) = f_1 \Delta K_1 \frac{D_1}{D} + f_2 \Delta K_2 \frac{D_2}{D}$$
(02.27)

For fcc metals ΔK is close to unity. $\Delta K_{1V} \approx \Delta K_{2V} \approx 1$ was obtained for noble metals [02.34].

In column 10 of the tables in Chapters 1–10 ("also studied") the results of E, $\Delta V/V_0$ and solubility c_s are mentioned, also diffusion in alloys is referred to.

0.3. INSTRUCTIONS FOR THE USE OF THE TABLES

All credible self-diffusion and impurity diffusion data are listed in the tables, the most reliable of them are shown in figures. If for a special system no credible data are available, the existing data are tabulated with D^0 and Q in brackets.

The specification "most reliable data" differs from host to host. In noble metals diffusion coefficients with uncertainties less than 5% can be obtained by use of macrosectioning techniques. In most of the other metals different reasons lead to less accurate diffusion coefficients. The accuracy of *D* depends on the applied measuring technique (see Chapter 0.1) or on the attainable purity of the host. Oxygen impurities in V or Fe impurities in α -Zr and α -Ti, for example, strongly influence the diffusivity. Temperature measurements with the aid of optical pyrometry can lead to errors in *D* up to 20%. In high-melting refractory bcc metals errors up to a factor of two are observed (see Ref. [63.03]).

To present an almost complete data collection, further results (part of which is frequently cited in the literature and in earlier data collections) are listed in a

reference appendix. If not otherwise stated, radiotracer sectioning techniques were used in these measurements.

Not considered in the data collection are results of QMS (exception Fe in Sn), QNS and thermotransport investigations. QMS and QNS results are mentioned in the reference appendix. Also not considered are results where grain-boundary diffusion dominates nearly the entire temperature range under investigation. Furthermore, not considered are results of EPMA investigations, if *D* strongly depends on the alloy concentration *X*, so that a proper extrapolation to X = 0 is not possible. And, finally, volume diffusion coefficients derived from sintering or creeping investigations are not taken into consideration.

Abbreviations are listed at the end of this chapter.

The contents of the tables

Each table contains 13 columns, numbered 1–12 with column 2 splitted into 2a and 2b. The contents of the columns are as follows:

- (1) Investigated solute X, starting with self-diffusion and followed by impurity diffusion in alphabetic order of the chemical sign of the solutes. If two or more phases of the solvent exist, the tabulated data start with the high-temperature phase, e.g. β -Ti, α -Ti or δ -Fe, γ -Fe, α -Fe
- (2) D^0 in 10^{-4} m² s⁻¹ (a) and Q in eV and kJ (in brackets) (b) Questionable results are put into brackets ⁺recalculated data The evaluation of a curved Arrhenius plot is characterized by ²¹Two-exponential fit according to Eq. (02.07) ²²Ω-fit according to Eq. (02.14), the fitting parameter Ω is listed in column 9 $^{23}\alpha$ -fit according to Eq. (02.12), T_0 and the fitting parameter α are listed in column 9 ²⁴Fit according to Eq. (02.19), the fitting parameter α (value for $T < T_C$) is listed in column 9 $D(T_{\rm m})$ in $10^{-12} \,{\rm m}^2 \,{\rm s}^{-1}$ is extrapolated (3) Note that for the same data set $D(T_m)$ calculated from a two-exponential fit is larger than extrapolated from $D^0(\bar{T})$ and $Q(\bar{T})$ For low-temperature investigations or in the case of pronounced data scatter $D(T_m)$ is not extrapolated Investigated temperature range in K and $\bar{T}/T_{\rm m}$ (in brackets) (4) As the Arrhenius plot is generally curved, in a forced fit D^0 and Q depend on the investigated temperature range, i.e. on $\bar{T}/T_{\rm m}$ (5) The number of measured diffusion coefficients; in brackets the number of
 - investigated temperatures, if more than one measurement per temperature was performed

⁵¹Diffusion coefficients not tabulated

⁵²Diffusion coefficients not tabulated and not shown in a figure

- (6) Material: single crystals (sc), polycrystals (pc), in brackets the average grain diameter if measured Purity: e.g. 4N8 = 99.998%
 ⁶¹Purity not specified
- (7) Measuring method *Radiotracer methods:*

30

- radio isotope (e.g. ⁶⁴Cu)
- method of deposition: electroplated, vapor or sputter deposition, implanted, dried-on from a salt solution, chemical deposition (of noble metals)
- sectioning method: lathe, microtome, grinder, chemical and electrochemical sectioning, anodizing and stripping, ion beam sputtering (IBS), serial sectioning (if not exactly specified)

Further radiotracer methods:

• residual activity (in general grinder sectioning), absorption, autoradiography

Non-radioactive methods:

- deposited natural element
- electron probe microanalysis (EPMA) composition of the sample (e.g. Cu/Cu (X % Al), X % means X at %) method of evaluation, e.g. Boltzmann–Matano
- X-ray diffraction method
- resistometric measurement
- RBS or HIRBS
- SIMS analysis
- NMR, measurement of the relaxation times T_1 , T_2 , $T_{1\rho}$

Note that NMR measurements result in the uncorrelated diffusion coefficients (see Eq. (02.15))

⁷¹Radio isotope not specified

⁷²Method of deposition not specified

⁷³Sandwich samples

(8) As the penetration profiles (pp) permit important conclusions with respect to the quality of the measurements, the presented pp are described in some detail

Number of depicted pp: all, numerous, several, *n* examples, no If not otherwise stated, the pp are Gaussian, i.e. linear in $\ln c - x^2$ Non-Gaussian diffusion profiles and the respective evaluation are characterized in the following manner:

⁸¹erfc-solution according to Eq. (01.09)

 ^{82}D evaluated from the middle part of the pp

⁸³Short-circuit contributions eliminated according to Eq. (01.07)⁸⁴Marked NSE

⁸⁵"negative" NSE (tracer loss due to evaporation)

⁸⁶Malkovich solution
⁸⁷"thick-film" solution

- (9) Remarks on the quality of the measurements, e.g.:
 - The Arrhenius plot exhibits marked scatter
 - · Grain-boundary or dislocation contributions at lower temperatures
 - Erroneous thermal expansion corrections (see below)

Remarks on the evaluation of curved Arrhenius plots:

- two-exponential fit evaluated together with the data of the listed reference numbers
- fitting parameters Ω , α and T_0 , α for the evaluations according to Eqs. (02.14), (02.12) and (02.19) respectively

Further general and individual remarks, e.g.

⁺Present reassessment of measured data

In a number of papers an erroneous expansion correction of *D* has been performed. *D* is proportional to a^2 (see Eq. (02.02)). The lattice constant increases with rising temperature. In the respective papers *D* evaluated at room temperature with *a*(298 K) was recalculated to *a*(*T*). This "correction", however, is erroneous. *D* is proportional to the square of the average diffusion distance <d>

$$D \sim \frac{\langle d \rangle^2}{t} = \frac{\langle n \rangle^2 a^2}{t}$$

In a crystal lattice $\langle d \rangle$ is proportional to the average number $\langle n \rangle$ of nearest neighbour distances r_1 and lattice distances a passed during the annealing. This means that $\langle n(T) \rangle$ is responsible for the amount of D(T). $\langle n(T) \rangle$ is measured at room temperature, where a is a(298 K). Thus, $D(T) \sim \langle n(T) \rangle^2 a^2 (298 \text{ K})/t$ holds for D(T).

The error introduced by this "correction" can be roughly estimated with the aid of the Grüneisen rule [03.01] according to which the volume of a metal increases by about 7% from absolute zero to $T_{\rm m}$. Simply assuming a linear temperature dependence of a, then a^2 is ~3.2% larger then a_0^2 at $T = 0.7 T_{\rm m}$ and about 4.6% at $T = T_{\rm m}$. A recorrection of the erroneously calculated D_{85}^0 and Q_{85} shows that D_{85}^0 must be reduced by about 7% and Q_{85} by about 0.2%.

Note that the individual temperature dependence of *a* for a special solvent can somewhat differ from the rough approximation (see for example self-diffusion in Cu, Ref. [14.14]).

- (10) Results of further investigations in the respective paper
 - diffusion of further solutes in the same or another host metal
 - isotope effect *E* (for a data collection, see Ref. [03.02])
 - pressure dependence of *D* (reported is $\Delta V/V_0$, for a data collection, see Ref. [03.02])
 - solubility *c*_s

Furthermore, it is referred to investigations on:

- diffusion in alloys (for a data collection, see Ref. [03.03])
- grain-boundary diffusion
- electrotransport, if the results are identical with D^0 and Q in columns 2a and 2b
- (11) The most reliable data for the respective host are shown in a figure
- (12) Reference: first author, year of appearance, reference number

LIST OF ABBREVIATIONS

bcc	body-centred cubic
dhcp	double hcp
Ē	isotope effect
EPMA	electron probe micro analysis
fcc	face-centred cubic
fct	face-centred tetragonal
gb	grain boundary
hcp	hexagonal close packed
HIRBS	heavy ion Rutherford backscattering
IBS	ion-beam sputtering
NMR	nuclear magnetic resonance
NRA	nuclear reaction analysis
NSE	near-surface effect
pc	polycrystals
PFG	pulsed magnetic field gradient
рр	penetration profile
QMS	quasi-elastic Mößbauer spectroscopy
QNS	quasi-elastic neutron scattering
RBS	Rutherford backscattering
SC	single crystals
SIMS	secondary-ion mass spectroscopy
SLRT	spin-lattice relaxation time
TEM	transmission electron microscopy
UHV	ultra-high vacuum

REFERENCES

References to Chapter 0

[00.01] A.M. Sagrubskij, Physikal. Z. Sowjetunion 12 (1937) 118.
[00.02] H.A. McKay, Trans. Faraday Soc. 34 (1938) 845.
[00.03] B.V. Rollin, Phys. Rev. 55 (1939) 231.
- [00.04] J. Steigman, W. Shockley, F.C. Nix, Phys. Rev. 56 (1939) 13.
- [00.05] W.A. Johnson, Trans. AIME 143 (1941) 107.
- [00.06] P.H. Miller, R.R. Banks, Phys. Rev. 61 (1942) 648.
- [00.07] Diffusion in Solid Metals and Alloys, Ed. H. Mehrer, Landolt-Börnstein, New Series III, Vol. 26, Springer, Berlin (1990).
- [00.08] H. Mehrer, N. Stolica, N.A. Stolwijk, Chapter 2, p. 32 in Ref. [00.07].
- [00.09] A.D. Le Claire, G. Neumann, Chapter 3, p. 85 in Ref. [00.07].
- [00.10] A.D. Le Claire, Chapter 8, p. 471 in Ref. [00.07].

References to Chapter 0.1

- [01.01] Methods of Experimental Physics 21, Solid State: Nuclear Methods, Eds. J.N. Mundy, S.J. Rothman, M.J. Fluss, L.C. Smedskjaer, Academic Press, Orlando (1983).
- [01.02] S.J. Rothman, in: Diffusion in Crystalline Solids, Eds. G.E. Murch, A.S. Nowick, Academic Press, Orlando (1984), p. 1.
- [01.03] Nontraditional Methods in Diffusion, Eds. G.E. Murch, H.K. Birnbaum, J.R. Cost, The Metallurgical Society of AIME, Warrendale (1984).
- [01.04] H. Mehrer, in: Diffusion in Solid Metals and Alloys, Landolt-Börnstein, New Series III, Vol. 26, Ed. H. Mehrer, Springer, Berlin (1990), Chapter 1, p. 1.
- [01.05] J. Crank, The Mathematics of Diffusion, Oxford University Press (Clarendon), Oxford (1975).
- [01.06] H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, Oxford University Press (Clarendon), Oxford (1959).
- [01.07] C.T. Tomizuka, in: Methods of Experimental Physics, Vol. 6A, Eds. K. Lark-Horovitz, V.A. Johnson, Academic Press, New York (1959), p. 364.
- [01.08] T.S. Lundy, in: Techniques of Metals Research, Vol. 4 (2), Ed. R.A. Rapp, Wiley, New York (1970), p. 379.
- [01.09] P.G. Shewmon, Diffusion in Solids, McGraw-Hill, New York (1963), p. 31.
- [01.10] J. Geise, Ch. Herzig, Z. Metallk. 76 (1985) 622.
- [01.11] P.L. Gruzin, Dokl. Akad. Nauk SSSR 86 (1952) 289.
- [01.12] D. Ablitzer, Phil. Mag. 35 (1977) 1239.
- [01.13] J. Steigman, W. Shockley, F.C. Nix, Phys. Rev. 55 (1939) 605.
- [01.14] A.A. Zhukhovitskii, V.A. Geodyakin, Zh. Fiz. Khim. 29 (1955) 1334.
- [01.15] S.N. Kryukov, A.A. Zhukhovitskii, Dokl. Akad. Nauk SSSR 90 (1953) 379.
- [01.16] H.C. Gatos, A. Azzam, Trans. AIME 191 (1952) 407.
- [01.17] H.C. Gatos, A.D. Kurtz, Trans. AIME 200 (1954) 616; 203 (1955) 698.
- [01.18] T.J. Renouf, Phil. Mag. 9 (1964) 781.
- [01.19] D.L. Styris, C.T. Tomizuka, J. Appl. Phys. 34 (1963) 1001.
- [01.20] R.E. Pawel, Rev. Sci. Instr. 35 (1964) 1066.
- [01.21] R.E. Pawel, T.S. Lundy, J. Appl. Phys. 35 (1964) 435; J. Elektrochem. Soc. 115 (1968) 233.
- [01.22] K. Maier, W. Schüle, Euratom Report EUR 5234d (1974).
- [01.23] H. Mehrer, K. Maier, G. Hettich, H.J. Mayer, G. Rein, J. Nucl. Mater. 69/70 (1978) 545.
- [01.24] M.P. Macht, V. Naundorf, J. Appl. Phys. 53 (1982) 7551.
- [01.25] H. Mehrer, D. Weiler, Z. Metallk. 75 (1984) 203.
- [01.26] M. Lübbehusen, H. Mehrer, Acta Metall. Mater. 38 (1990) 283.
- [01.27] H.S. Levine, C.J. MacCallum, J. Appl. Phys. 31 (1960) 595.
- [01.28] T. Suzuoka, Trans. Jpn. Inst. Met. 2 (1961) 25.
- [01.29] N.Q. Lam, S.J. Rothman, H. Mehrer, J.L. Nowicki, Phys. Stat. Sol. (b) 57 (1973) 225.
- [01.30] R. Hales, J. Phys. Chem. Sol. 32 (1971) 1417.
- [01.31] D.L. Beke, I. Gödény, F.J. Kedves, Z. Metallk. 65 (1974) 382.
- [01.32] T.S. Lundy, J.F. Murdock, J. Appl. Phys. 33 (1962) 1671.
- [01.33] G.M. Hood, Phil. Mag. 21 (1970) 305.
- [01.34] H. Mehrer, Phys. Stat. Sol. (a) 104 (1987) 247.
- [01.35] J. Ladet, J. Bernardini, F. Cabané-Brouty, Scr. Metall. 10 (1976) 195.
- [01.36] G. Neumann, M. Pfundstein, P. Reimers, Z. Phys. Chem. N.F. 106 (1977) 131.

- [01.37] R.Sh. Malkovich, Fiz. Met. Metalloved. 15 (1963) 880.
- [01.38] G. Neumann, M. Pfundstein, P. Reimers, Phys. Stat. Sol. (a) 64 (1981) 225.
- [01.39] J.G. Mullen, Phys. Rev. 121 (1961) 1649.
- [01.40] T.S. Lundy, R.A. Padgett, Trans. AIME 242 (1968) 1897.
- [01.41] C.G. Lee, K.T. Youn, H.H. Cho, Y.I. Lee, D.S. Yoo, T. Shimozaki, Defect and Diffusion Forum 194–199 (2001) 109.
- [01.42] P. Reimers, Phys. Stat. Sol. 22 (1967) K27.
- [01.43] I.Sh. Trakhtenberg, Fiz. Met. Metalloved. 37 (1974) 348.
- [01.44] W.E. Evenson, D.L. Decker, Phys. Rev. B 17 (1978) 583.
- [01.45] G.J. Beyer, W.D. Fromm, A.F. Novgorodov, Nucl. Instrum. Met. 146 (1977) 419.
- [01.46] F. de Keroulas, J. Mory, Y. Quéré, J. Nucl. Mater. 22 (1967) 276.
- [01.47] S.M. Myers, in Ref. [01.03], p. 137.
- [01.48] R.L. Fogelson, Fiz. Met. Metalloved. 25 (1968) 492.
- [01.49] R.L. Fogelson, Ya.A. Ugay, A.V. Pokoyev, Fiz. Tverd. Tela 13 (1971) 1028.
- [01.50] S. Ceresara, T. Federighi, F. Pieragostini, Phys. Stat. Sol. 16 (1966) 439.
- [01.51] O. Kanert, Physics Reports 91 (1982) 183.
- [01.52] H.T. Stokes, in Ref. [01.03], p. 39.
- [01.53] P. Heitjans, A. Körblein, H. Ackermann, D. Dubbers, F. Fujara, H.J. Stöckmann, J. Phys. F: Met. Phys. 15 (1985) 41.
- [01.54] A. Schirmer, P. Heitjans, G. Majer, A. Seeger, Defect and Diffusion Forum 143-147 (1997) 1317.
- [01.55] H. Mehrer, J. Nucl. Mater. 69/70 (1978) 38.
- [01.56] J.G. Mullen, in Ref. [01.03], p. 59.
- [01.57] W. Petry, G. Vogl, Mater. Sci. Forum 15-18 (1987) 323.
- [01.58] T. Springer, Quasi-elastic Neutron Scattering for the Investigation of Diffusive Motions in Solids and Liquids, Springer Tracts of Modern Physics, Vol. 64, Springer, Berlin (1972).
- [01.59] H. Zabel, in Ref. [01.03], p. 1.
- [01.60] A. Heiming, K.H. Steinmetz, G. Vogl, Y. Yoshida, J. Phys. F: Met. Phys. 18 (1988) 1491.
- [01.61] K.H. Steinmetz, G. Vogl, W. Petry, K. Schroeder, Phys. Rev. B 34 (1986) 107.
- [01.62] Y. Yoshida, W. Miekeley, W. Petry, R. Stehr, K.H. Steinmetz, G. Vogl, Mater. Sci. Forum 15–18 (1987) 487.
- [01.63] W. Petry, G. Vogl, A. Heidemann, K.H. Steinmetz, Phil. Mag. A 55 (1987) 183.
- [01.64] L.S. Darken, Trans. AIME 175 (1948) 184.
- [01.65] E.O. Kirkendall, Trans. AIME 147 (1942) 104.
- [01.66] A.D. Smigelskas, E.O. Kirkendall, Trans. AIME 171 (1947) 130.
- [01.67] J.R. Manning, Diffusion Kinetics for Atoms in Crystals, Van Nostrand, Princeton (1968).
- [01.68] L. Boltzmann, Ann. der Physik und Chemie (NF) 53 (1894) 959.
- [01.69] C. Matano, Jpn. J. Phys. 8 (1933) 109.
- [01.70] F. Sauer, V. Freise, Z. Elektrochemie 66 (1962) 353.
- [01.71] C. Wagner, Acta Metall. 17 (1969) 99.
- [01.72] F.J.A. den Broeder, Scr. Metall. 3 (1969) 321.
- [01.73] L.D. Hall, J. Chem. Phys. 21 (1953) 87.
- [01.74] G. Grube, Z. Metallk. 19 (1927) 11, 438.
- [01.75] H. Hagenschulte, Th. Heumann, J. Phys.: Cond. Matter 1 (1989) 3601.
- [01.76] Y. Iijima, K. Hoshino, K. Hirano, Metall. Trans. 8A (1977) 997.

References to Chapter 0.2

- [02.01] A. Seeger, H. Mehrer, in: Vacancies and Interstitials in Metals, Eds. A. Seeger, D. Schumacher, W. Schilling, J. Diehl, North-Holland, Amsterdam (1970), p. 1.
- [02.02] A.D. Le Claire, in: Diffusion in Body-Centred Cubic Metals, Eds. J.A. Wheeler, F.R. Winslow, American Society for Metals, Metals Park (1965), p. 3.
- [02.03] H. Mehrer, J. Nucl. Mater. 69/70 (1978) 38.
- [02.04] R.W. Siegel, J.N. Mundy, L.C. Smedskjaer, Mater. Sci. Forum 15-18 (1987) 451.
- [02.05] G. Neumann, C. Tuijn, G. de Vries, H. Bakker, Phys. Stat. Sol. (b) 149 (1988) 483.

- [02.06] G. Neumann, V. Tölle, Phil. Mag. A 61 (1990) 563.
- [02.07] H.I. Aaronson, P.G. Shewmon, Acta Metall. 15 (1967) 385.
- [02.08] Ch. Herzig, in: DIMETA 82, Diffusion in Metals and Alloys, Eds. F.J. Kedves, D.L. Beke, Trans. Tech. Publ., Aedermannsdorf, Switzerland (1983), p. 23.
- [02.09] W. Petry, A. Heiming, Ch. Herzig, J. Trampenau, Defect and Diffusion Forum 75 (1991) 211.
- [02.10] J.M. Sanchez, D. de Fontaine, Phys. Rev. Lett. 35 (1975) 227.
- [02.11] G. Neumann, V. Tölle, C. Tuijn, Physica B 296 (2001) 334.
- [02.12] U. Köhler, Ch. Herzig, Phil. Mag. A 58 (1988) 769.
- [02.13] G. Neumann, V. Tölle, Z. Metallk. 82 (1991) 741.
- [02.14] L. Ruch, D.R. Sain, H.L. Yeh, L.A. Girifalco, J. Phys. Chem. Sol. 37 (1976) 649.
- [02.15] H.H. Potter, Proc. Roy. Soc. Lond. A 146 (1934) 362.
- [02.16] J. Crangle, G.M. Goodman, Proc. Roy. Soc. Lond. A 321 (1971) 477.
- [02.17] Y. Iijima, J. Phase Equilibria Diffusion 26 (2005) 466.
- [02.18] H. Nitta, Y. Iijima, Phil. Mag. Lett. 85 (2005) 543.
- [02.19] C.P. Flynn, Point Defects and Diffusion, Clarendon, Oxford (1972).
- [02.20] P.G. Shewmon, *Diffusion in Solids*, 2nd ed., The Minerals, Metals and Materials Society, Warrendale (1989).
- [02.21] J. Philibert, Atom Movements, Diffusion and Mass Transport in Solids, Les Editions de Physique North America, Cambridge (1991).
- [02.22] Th. Heumann, H. Mehrer, Diffusion in Metallen, Springer, Berlin (1992).
- [02.23] G. Neumann, C. Tuijn, *Impurity Diffusion in Metals*, Solid State Phenomena, Vol. 88, Scitec Publ. Zürich, Switzerland (2002).
- [02.24] N.L. Peterson, Sol. Stat. Phys. 22 (1968) 409.
- [02.25] N.L. Peterson, J. Nucl. Mater. 69/70 (1978) 3.
- [02.26] A.D. Le Claire, Phil. Mag. 7 (1962) 141; ibid. 10 (1964) 641.
- [02.27] G. Neumann, W. Hirschwald, Phys. Stat. Sol. (b) 55 (1973) 99; Z. Phys. Chem. N.F. 89 (1974) 309.
- [02.28] F.C. Frank, D. Turnbull, Phys. Rev. 104 (1956) 617.
- [02.29] G. Hägg, Z. Phys. Chem. B 6 (1929) 221.
- [02.30] G. Neumann, C. Tuijn, Physica B 315 (2002) 164.
- [02.31] H.B. Vanfleet, Phys. Rev. B 21 (1980) 4340.
- [02.32] J.G. Mullen, Phys. Rev. 121 (1961) 1649.
- [02.33] H. Bakker, Phys. Stat. Sol. 34 (1969) K153.
- [02.34] G. Neumann, V. Tölle, Phil. Mag. A 54 (1986) 619.

References to Chapter 0.3

- [03.01] E. Grüneisen, Ann. Phys. 4. F. 33 (1910); 33, 65.
- [03.02] H. Mehrer, N. Stolica, Chapter 10, p. 574 in Ref. [00.07].
- [03.03] H. Bakker, Chapter 4, p. 213 in Ref. [00.07].

CHAPTER

Self-Diffusion and Impurity Diffusion in Group I Metals

Contents	Tables	
	1.1. Lithium (Li)	38
	1.2. Sodium (Na)	42
	1.3. Potassium (K)	44
	1.4. Copper (Cu)	45
	1.5. Silver (Ag)	54
	1.6. Gold (Au)	60
	Figures	
	Lithium	64
	Sodium	68
	Potassium	71
	Copper	72
	Silver	81
	Gold	87
	References	91

For **cesium** (Cs) and **francium** (Fr) no data are available. For **rubidium** (Rb) only self-diffusion was investigated by use of NMR (see Ref. [11.01]).

NMR measurements yield the *D*-values of uncorrelated diffusion. Because of the uncertainty of the high-temperature mechanism of self-diffusion in alkaline metals, D^0 is not corrected according to Eqs. (02.15) and (02.17).

Li and Na pass a martensitic phase transition at about 70 K, which leads to enhanced diffusivities at low temperatures (see Refs. [11.11, 12.06]).

Natural Li consists of 92.5% 7 Li and 7.5% 6 Li. No suitable radioisotopes are available. Self-diffusion in Li is mainly investigated by use of NMR techniques.

In Table 1.0 lattice structure, lattice constant and melting temperature of the group I metals are listed.

	Li	Na	К	Rb	Cu	Ag	Au
Structure	bcc	bcc	bcc	bcc	fcc	fcc	fcc
a (nm)	0.3510	0.4291	0.5225	0.5585	0.3615	0.4086	0.4078
T _m (K)	454	371	337	312	1,358	1,234	1,336

Table 1.0 Lattice structure, lattice constant a and melting temperature T_m

80
ຕິ
õ
<u>u</u>
a 1
Ψ
a)
õ
22
Ψ
U
÷.
5
Ψ
<u> </u>
e a
ت ب
i)
~
<u>ur</u>
\sim

lithium
.⊆
Diffusion
₽
able
E.

Table	1.1 Diffusi	ion in lithiu	Ę								(Referen	ices, see page 91)
E	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12)
×	D^{0} (10 ⁻⁴ m ² s ⁻¹)	Q(eV) and (kJ mole ⁻¹)	$D(T_m)$ (10^{-12} m ² s ⁻¹)	T-range (K) (\overline{T}/T_m)	No. of datapoints	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Self- Li	diffusion 0.24	0.572 (55.3)	10.6	300-453 (0.83)	52	рс (12 µm)	⁷ Li (stable isotope); NMR (SLRT T_1 and T_2)	I		Na, Rb (NMR), $D^0(Rb) \approx 0.23 \times 10^{-4} m^2 s^{-1}$, $\Omega = 0.41 sV$	I	Holcomb (1955) [11.01]
E	0.39	0.585 (56.5)	12.5	343-443 (0.87)	19 (9T)	pc 2N8	⁶ Li, diffusion couple; microtome (200 µm sections)	1 example ⁸¹ (c–x)			I	Naumov (1959) [11.02]
Li	I	0.519 (50.1)		190–240 (0.47)	24^{51}	pc (30 µm) 3N8	⁷ Li (stable isotope); NMR (SLRT T_{1o})	I			11.01	Ailion (1965) [11.03]
Ľ	0.120*	0.548* (52-9)	9.9	309–451 (0 84)	19	pc ⁶¹	⁷ Li in nearly pure ⁶ Li and ⁶ Li in nearly	4 examples	* ⁷ Li in ⁶ Li ^{0 6} Li in ⁷ Li		11.02	Lodding (1970) [11.04]
	0.123 ⁰	(53.8) (53.8)	8.0	(0.84) (0.84)	12		pure ⁷ Li; microtome, mass spectroscopy		× ⁷ Li in ⁷ Li (calculated)			
i	0.14°	0.558 (53.9)	8.9			1						
E	I	0.489 (47.2)		223–273 (0.56)	14) ³¹	pc (15μm) 3N8	'Li (stable isotope); NMR (SLRT T _{1.0})	I			11.01	Weithase (1973) [11.05]
Li	0.133	0.546 (52.8)	11.4	310–453 (0.84)	26 ⁵¹	pc ⁶¹	⁷ Li (stable isotope); NMR (SLRT T_1)	I			11.01	Messer (1975) [11.06]
	0.038^{21}	0.520^{21} (50.2)	25	190-453	(64)				Two-exponential fit together with			
	9.5^{21}	0.694^{21} (67.0)							the data of [11.03.11.05]			
Ľ	0.06^{21}	0.520^{21}	39	195-450			⁷ Li (stable isotope);	I	See Ref. [11.06]		I	Messer (1976)
	28.8^{21}	(50.2) 0.720 ²¹ (69.5)		(0.71)			NMR (SLKT T_1 and $T_{1\rho}$)					[11.07]

Heitjans (1985) [11.08]	Mali (1988) [11.09]	Messer (1989) [11.10]	Wieland (2001) [11.11]	Ott (1968) [11.12]	Mundy (1973) [11.13]	Ott (1971) [11.14]	
I	1	11.02	1	I	11.03	11.03	
					E(423 K) = 0.26; Na in Li		
	*Average ^(a) 7Li, ^(c) ^f Li in natural Li, ^(b) 7Li, ^(d) ^f Li in Li (95.5% ⁶ Li), ^(e) 7Li in ⁷ Li	*Present fit to the experimental data	Enhanced low- temperature diffusivity, possibly caused by the martensitic phase transition near 70 K	Probably curved In c-x ² plots (see [11.13])		* Au in natural Li *Au in Li (95% ⁶ Li) ⁽¹⁾ Forced fit	branches
I	1	1	No ⁸³	No	2 examples	No	
8 Li, β -NMR, spin- lattice relaxation of polarized 8 Li, using asymmetric β -decay	⁷ Li, ⁶ Li (stable isotopes) in natural Li and enriched ⁷ Li and ⁶ Li; NMR (PFG)	TLi (stable isotope); NMR (PFG)	⁷ Li, ⁶ Li (stable isotopes) in ⁶ Li and ⁷ Li, vapour deposition; elastic recoil detection analysis	¹¹⁰ Ag, vapour deposition of ¹¹⁰ AgCl; microtome	¹¹⁰ Ag, ¹⁰⁵ Ag, electroplated; microtome	¹⁹⁵ Au, vapour deposition; microtome	
pc ⁶¹	3N 3 Dc	pc ⁶¹ (15 µm foil)	pc ⁶¹ (>5 µm)	pc (5 mm)3N8	pc 3N8	pc 3N8	
$\sim 80^{51}$	$\sim 50^{51}$	13 ⁵¹	14 ⁵¹		5 (3T)	29 (20T)	
225–454 (0.75)	350-454 (0.89)	360–450 (0.89)	90–300 (0.43)	340-433 (0.85)	323–423 (0.82)	301–450 ⁽¹⁾ (0.83) 301–441 ⁽¹⁾ (0.82)	(0.02) 301–363 ⁽²⁾ (0.73) 363–450 ⁽²⁾ (0 90)
15 26	9.5 9.9 8.9 9.1	10.2 ⁺ 9.4 ⁺		25	36	97 106	107
0.57 (55) 0.556 ²¹ (53.7) 0.796 ²¹ (76.9)	0.561* (54.2)	$\begin{array}{c} (0.58) \\ (56.0) \\ 0.584^{+} \\ (56.4) \\ (56.4) \\ 0.52^{21} \\ (50.2) \\ 0.67^{21} \\ (64.7) \end{array}$	1	0.556 (53.7)	0.556 (53.7)	0.465* (44.9) 0.448 × (43.2)	(42.8) (42.8) (482* (46.5)
0.32 0.19 ²¹ 95 ²¹	$\begin{array}{c} 0.161^{(a)} \\ 0.168^{(b)} \\ 0.151^{(c)} \\ 0.180^{(d)} \\ 0.154^{(e)} \end{array}$	0.31 0.31^{+} $(0.036)^{21}$ 0.042^{+} 0.648^{21}	1	rity diffusion 0.37	0.54	0.141^{*} 0.100^{\times}	0.085^{*} 0.24^{*}
Li	E	E	E	Impu Ag	Ag	Чи	

		(nan										
(E)	(2a)	(2b)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
×	D^0 (10^{-4} m ² s ⁻¹)	Q(eV) and (kJ mole ⁻¹)	$D(T_m)$ (10^{-12} m ² s ⁻¹)	T-range (K) (\overline{T}/T_m)	No. of datapoints	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Bi	$5.3 \times 10^{14*}$	2.051 (198.0)	0.89	414-450 (0.95)	9	pc 3N5	Bi ⁷¹ , vapour deposition; microtome (100 µm sections)	No (linear in In $c - x^2$)	*Corrected value	Pb, Sb, Sn in Li	11.04	Ott (1969) [11.15]
Cd	(0.62)	(0.650) (62.8)	(3.7)	355–449 (0.89)	12 (11T)	pc 3N8	¹¹⁵ Cd, vapour deposition; microtome	No	Numerous data in the table are erroneous	Ga, Hg, in Li	11.05	Ott (1970) [11.16]
	2.6+	0.702 ⁺ (67.8)	4.2*						⁺ Present fit to the experimental data			
Cu	(0.3) 0.23^+	0.434 (41.9)	350+	363–421 (0.86)	ы С	pc 3N5	⁶⁴ Cu, ⁶⁷ Cu, vapour deposition; microtome	2 examples ⁸⁶	⁺ Present fit to the experimental data	E(420 K) = 0.11; $c_{\text{s}} < 5 \times 10^{-5}$	11.03	Mundy (1973) [11.17]
Ga	(0.21)	(0.560) (54.1)		390-446 (0.92)	Ŋ	pc 3N8	⁷² Ga, vapour deposition;	No	⁺ Present fit to the experimental	Cd, Hg in Li	11.06	Ott (1970) [11.16]
	0.53^{+}	0.593^+ (57.3)	13.8^{+}				microtome		data			
Hg	(1.04)	(0.615) (59.4)		331–447 (0.86)	10	pc 3N8	²⁰³ Hg, vapour deposition;	No	⁺ Present fit to the experimental	Cd, Ga, in Li	11.07	Ott (1970) [11.16]
	1.43+	0.624^{+} (60.2)	16.8^{+}				microtome		data			
IJ	0.39	0.688	0.89	349-445	7	pc	¹¹⁴ In, vapour	No			11.04	Ott (1968)
		(66.4)		(0.87)		3N5	deposition; microtome					[11.18]

Table 1.1 (Continued)

Mundy (1967) [11.19]	Mundy (1973) [11.13]	Ott (1969) [11.15]	Ott (1969) [11.15]	Ott (1969) [11.15]	Mundy (1969) [11.20]
11.07	11.07	11.04	I	11.05	11.06
	E(423K) = 0.19; Ag in Li	Bi, Sb, Sn in Li	Bi, Pb, Sn in Li	Bi, Pb, Sb in Li	
		*Corrected value	*Corrected value	⁺ Present approximation	
No	2 examples	No (linear in $\ln c - x^2$)	No (linear in $\ln c - x^2$)	No (linear in $\ln c - x^2$)	3 examples
²² Na, isotope exchange with ²² NaCl; microtome	²² Na, ²⁴ Na, vapour deposition; microtome	Pb ⁷¹ , vapour deposition; microtome (100 μm sections)	Sb ⁷¹ , vapour deposition; microtome (100μm sections)	¹¹³ Sn, vapour deposition; microtome (100 μm sections)	⁶⁵ Zn, vapour deposition; microtome (20– 100 µm sections)
pc (5 mm) 3N8	pc 3N8	pc 3N5	pc 3N5	pc 3N5	Pc 3N8
г	£	м	4	~	10
326–449 (0.85)	423	402–442 (0.93)	414-449 (0.95)	381–447 (0.91)	331–445 (0.85)
35		1.2	1.7	1.7^{+}	32
0.547 (52.8)	I	1.093 (105.5)	1.80 (173.8)	(0.650) (62.8) 0.694^+ (67.0)	0.563 (54.3)
0.41	I	$1.6 \times 10^{4*}$	$1.6 \times 10^{12*}$	(0.62) 0.85^{+}	0.57
Na	Na	Pb	Sb	Sn	nZ

sodium
.⊆
Diffusion
1.2
ble

page	
see	
ferences,	
(Re	

aDle												
(I)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(LL)	(12)
×	D ⁰ (10 ⁻⁴ m ² s ⁻¹)	Q(eV) and (kJ mole ⁻¹)	$D(T_m)$ (10^{-12} m ² s ⁻¹)	T-range (K) (\overline{T}/T_m)	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Self- Na	diffusion 0.242	0.453 (43.8)	16.8	274–367 (0.86)	6 (5T)	pc ⁶¹	²² Na, isotope exchange with ²² NaCl; microtome (50 µm	2 examples (c-x)	Sharp increase of D close to $T_{\rm m}$		12.01	Nachtrieb (1952) [12.01]
Na	0.20	0.434 (41.9)	25.6	~ 220–370 (0.80)	52	pc (12μm) 3N5	Sections) 23 Na (stable isotope); NMR (SLRT T_1 and T_2)	I		Li, Rb (NMR), D^{0} (Rb) ≈ 0.23 10^{-4} m ² s ⁻¹ O ≈ 0.41 eV	I	Holcomb (1955) [12.02]
Na	0.145^{*} 0.0057^{21} 0.72^{21}	$\begin{array}{c} 0.438^{*} \\ (42.2) \\ 0.370^{21} \\ (35.7) \\ 0.499^{21} \\ (48.1) \end{array}$	16.4* 17.4	273–370* (0.87) 195–370 (0.76)	15 (14T) 29 (27T) 26 ^x	pc 5N5	²² Na, ²⁴ Na isotope exchange with ²² NaCl and ²⁴ Na ₂ CO ₃ ; microtome (100 µm sections)	1 example (3 examples in [12.14])	*Results given in the precursor [12.14] *Number of considered data in the two-	E = 0.39 - 0.24 (248 - 370 K); $\Delta V / V_0 = 0.4 - 0.5$	12.01	Mundy (1971) [12.03]
Na	0.004 ²¹ (2.6 ²¹)	(372^{21}) (35.9) (0.481^{21})	(62)	150–280 (0.60)	22	pc ultrapure	²³ Na (stable isotope); NMR (SLRT T_1 and $T_{1\rho}$)	I	exponential fit		I	Brünger (1980) [12.04]
Na	0.0064^{21} 0.81^{21}	(46.4) 0.372^{21} (35.9) 0.503^{21}	17.5	(195–370)	(26)				Two-exponential fit of the data of [12.03]		12.01	Neumann (1990) [12.05]
Na	0.02 8.4 1.2 × 10^{-15}	(40.0) (37.7) (57.0) (67.0) (8.3) (8.3)	17.5	(0.43)	10	5N5 5N5	²⁴ Na, implanted; IBS	°N	Enhanced low- temperature diffusivity, possibly caused by the martensitic phase transition at 70 K. Three- exponential fit together with the		12.01	Neumann (1997) [12.06]

	Barr (1983) [12.07]		Barr (1969)	[12.08]	Barr (1983) [12.07]	Barr (1983)	[12:07]	Barr (1967) [12.09]		V107017	1704) [12.10]		Barr (1967) [12.09]		Barr (1983)	[12.07]	Barr (1983) [12.07]
	12.02		12.02		12.03	12.04		12.05			CU:21		12.05		12.03		12.04
	Cd, In, Li, Sn, Tl in Na		$c_{\rm s} = 540 \cdot \exp$	(—0.49 eV/ <i>kT</i>)	Ag, In, Li, Sn, Tl in Na	Ag, Cd, Li, Sn, Tl	ın Na	Rb in Na, Na in K		. 19 10 - 11 0	solubuity of LI in Na		K in Na, Na in K		Ag, Cd, In, Li, Tl	in Na	Ag, Cd, In, Li, Sn in Na
	⁺ Present fit to the depicted data	4			⁺ Present fit to the denicted data	⁺ Present fit to the	depicted data								⁺ Present fit to the	experimental data	
	No		1 example ⁸¹	(<i>x</i> - <i>3</i>)	No	No	,	1 example		MT - 81	INO		1 example		No		No
	110 Ag ⁷² ; microtome		¹⁹⁸ Au, vapour	deposition; microtome	¹¹⁵ Cd ⁷² ; microtome	¹¹⁴ In ⁷² ; microtome	ç	**K, isotope exchange with ⁴² KCl:	microtome (100 µm	sections)	LI, enriched to 90%, diffusion couple;	mass spectrometry	⁸⁶ Rb, isotope exchange with ⁸⁶ RbCl;	microtome (100 µm sections)	¹¹³ Sn ⁷² ; microtome		²⁰⁴ Tl ⁷² ; microtome
	pc 3N5		pc	3N5	pc 3N5	pc	CNTC	pc 3N5		61	ы Б		pc 3N5		pc	3N5	pc 3N5
	5 ⁵¹	4	8		6 ⁵¹	8 ⁵¹		9		1 51	`		6		9		л
	297–351 (0.87)	313–351 (0.89)	274-350	(0.84)	273–364 (0.86)	293-362	(00.0)	273–364 (0.86)		010 010	000-167 (0.87)		272–358 (0.85)		316-363	(0.92)	297–356 (0.88)
		$1,600^{+}$	1,670		63^{+}	+ LU C	6	86		ç	3		150		38^+		55
	0.22 (21.2)	0.25^{+} (24.1)	0.096	(9.25)	0.42 (40.6)	0.51	(47.4)	0.366 (35.3)			(49.0)		0.368 (35.5)		0.46	(44.4)	0.44 (42.5)
npurity diffusion	ьд 0.02	0.04^{+}	$10^{-4} \times 10^{-4}$		cd (0.369) 0.32 ⁺	n (1.79) 1.13 ⁺	717	0.08		c 7	0.1		lb 0.15		n (0.54)	0.68^{+}	1 0.52
Ih	A.		A		0	II	i	X		÷	-		Ч		Ś		Г

Table 1.3 Self-diffusion and impurity diffusion in potassium

(References see page 92)

E	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(LL)	(12)
2												
×	$D^{0}(10^{-4} \text{ m}^{2} \text{ s}^{-1})$	Q(eV) and (kJ mole ⁻¹)	$D(T_m)$ (10^{-12} m ² s ⁻¹)	au-range (K) $(\overline{T}/ au_{\mathrm{m}})$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Х	0.31	0.423 (40.8)	14.7	273–333 (0.90)	9	pc 3N5	⁴² K, vapour deposition of ⁴² KCl; microtome (~150μm sections)	3 examples			13.01	Mundy (1967) [13.01]
Ч	0.16	0.406	13.6	221–335 (0 82)	13 (1 2 TT)	pc 3NI7	⁴² K, vapour deposition of ⁴² KCl microtome	3 examples			13.01	Mundy (1971) [13.02]
	0.05^{21}	0.386 ²¹ (37.2)	13.7	(70.0)	(171)		(50–100 µm sections)					[20:01]
	1.0^{21}	(47.0)										
Чu	$1.29 imes 10^{-3}$	0.14 (13.5)	1,040	279–326 (0.90)	5	pc 3N5	¹⁹⁸ Au, vapour deposition;	No (erfc- solutions)		$c_{\rm s} = 22 \cdot \exp(-0.338 \mathrm{eV/kT})$	13.02	Smith (1970) [13.03]
Na	0.058	0.323 (31.2)	85	273–335 (0.90)	~	pc 3N5	mucrotome ²² Na, vapour deposition of ²² NaCl; microtome	1 example		K, Rb in Na	13.02	Barr (1967) [13.04]
Rb	060.0	0.381 (36.8)	18	273–333 (0.90)	9	pc 3N5	(100 µm sections) ⁸⁶ Rb, vapour deposition of ⁸⁶ RbCl; microtome	No			13.02	Smith (1969) [13.05]

(L)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12)
×	D^{0} (10 ⁻⁴ m ² s ⁻¹)	Q(eV) and (k) mole ⁻¹)	$D(T_m)$ (10^{-12} m ² s ⁻¹)	T-range (K) (\overline{T}/T_m)	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
<i>Self-d</i> Cu	liffusion 0.20	2.043 (197.3)	0.52	993–1,336 (0.86)	×	sc 4N	⁶⁴ Cu, electroplated; lathe and grinder	All ⁸⁵ scattering pp for grinder	50		I	Kuper (1954) [14.01]
Cu	0.33	2.090 (201.8)	0.57	1,136–1,330 (0.91)	ę	pc (1–4 mm)	⁶⁴ Cu; lathe (40 µm sections)	sectioning 1 example		Ni in Cu, Cu in Ni; Cu in Cu(Ni)	I	Monma (1964) [14.02]
Си	0.19	2.034 (196.4)	0.53	973–1,263 (0.82)	г	>4N sc ⁶¹	64Cu, vapour deposition; grinder	1 example		Au in Au, Al in Al; $\Delta V/V_0 = 0.91$	I	Beyeler (1968) [14.03]
Cu	0.78	2.190 (211.4)	0.58	971-1,334 (0.85)	18 (14T)	sc 5N	64Cu, 67Cu, electroplated: lathe	Numerous examples		E = 0.68 (1,168-1,334 K)	14.01	Rothman (1969) [14.04]
Cu	0.11	1.966 (190.1) 1.900	0.54	1,003–1,163 (0.80) 1.002 1.123		pc powder	63Cu, ⁶⁵ Cu (stable isotopes) NMR	-			I	El-Hanany (1969) [14.05]
Cu	c1.0 1.31	1.999 (193.0) 2.082 (201.0)	10:0	1,000-1,122 (0.78) 663-833 (0.55)	IJ	(<olum) 5N pc (foil) 5M</olum) 	Cu; void shrinkage	I			I	Bowden (1969)
Сп	0.43	2.103 (203.1)	0.67	(0.33) 1,073-1,313 (0.88)	23 (11T)	pc (2–3 mm) 4N	⁶⁴ Cu, electroplated; residual activity; grinder (abrasive paper)	Some examples $(c/c_{0}-x)$		Cu in Cu(Ni)	1	[14.05] Kučera (1970) [14.07]
Си	0.30	2.095 (202.2)	0.50	1,013–1,318 (0.86)	8	pc 5N	⁶⁷ Cu, electroplated; lathe	Several examples (for alloy		Ni, Zn in Cu; Cu, Ni, Zn in Cu(Ni), Cu(Zn)	I	Anusavice (1972) [14.08]
Си	1	1		614–654 (0.47)	б	sc 5N	⁶⁷ Cu, electroplated; anodizing and	All ⁸³			14.01	Lam (1974) [14.09]

(5) (10) (12)	Further remarks Also studied Figure Reference	*D ⁰ holds for – Weithase uncorrelated (1974) [14.10] diffusion (see	$\begin{array}{c cccc} *D^0 \mbox{ holds for } & - & \mbox{ Weithase } \\ \mbox{ uncorrelated } & & (1974) [14.10] \\ \mbox{ diffusion (see } & & (1972) \\ \mbox{ Eq. (02.15)} & & 14.01 & \mbox{ Maier (1977) } \\ \mbox{ fit together with } & & 14.01 & \mbox{ Maier (1977) } \\ \mbox{ fit together with } & & 14.01 & \mbox{ Maier (1977) } \\ \mbox{ fit together with } & & 14.01 & \mbox{ maier (1977) } \\ \mbox{ maier (1977) } & & 14.01 & \mbox{ maier (1977) } \\ \mbox{ maier (1977) } & & 14.01 & \mbox{ maier (1977) } \\ \mbox{ maier (1977) } & & 14.01 & \mbox{ maier (1977) } \\ \mbox{ maier (1977) } & & 14.01 & \mbox{ maier (1977) } \\ \mbox{ maier (1977) } & & 14.01 & \mbox{ maier (1977) } \\ \mbox{ maier (1977) } & & 14.01 & maier$	* D^0 holds for-Weithaseuncorrelated-Weithaseuncorrelated(1974) [14.10]diffuction (see(1974) [14.11]Eq. (02.15)14.01Maier (1977)fit together with14.01[14.11]fit together with14.01Bair (1977)fit together with14.01Bartdorfffit together with14.01Bartdorfffit together with14.01Bartdorfffit together with14.01Bartdorfffit together with14.01Bartdorfffit together with14.01Bartdorfffit udata of[14.04, 14.09, 14.11]	* D^0 holds for-Weithaseuncorrelated(1974) [14.10]diffuction (seeEq. (02.15))Eq. (02.15)Two-exponentialfit together with14.01fit together with[14.11]the data of[14.11]fit together with14.01fit together with[14.11]the data of[14.11]Two-exponential14.01fit together with14.01fit together with(1978) [14.12]fit together with(1979) [14.12]fit observe thermal-Krautheim-expansion-correction; two-exponential fit-fit observe thermal-fit observe thermal- <t< th=""></t<>
(8) (9)	Remarks on Further remarks the pp	- *D [*] D [*] holds for uncorrelated diffusion (see	- * D^0 holds for uncorrelated diffusion (see Eq. (02.15)) All Two-exponentii fit together w the data of [14.04] (omitt 4 D at $T < 63$	- $*D^0$ holds for uncorrelated diffusion (see Eq. (02.15))AllTwo-exponenti fit together with the data of [14.04] (omit 4 D at $T < 63$ AllTwo-exponenti fit together with the data of [14.04] (14.04), 14.11]	$*D^0$ holds for uncorrelated diffusion (see Eq. (02.15))AllTwo-exponenti fit together with the data of [14.04] (omit
(2)	Experimental method	⁶³ Cu(stable isotope) NMR (SLRT T_{1p}) n)	⁶³ Cu(stable isotope) NMR (SLRT T_{1p}) n) ⁶⁴ Cu, sputter deposition; IBS	⁶³ Cu(stable isotope) NMR (SLRT T_{1p}) 64 Cu, sputter deposition; IBS 64 Cu, electroplated; microtome	^{6.3} Cu(stable isotope) NMR (SLRT $T_{1,p}$) NMR (SLRT $T_{1,p}$) ^{6.4} Cu, sputter deposition; IBS ^{6.4} Cu, electroplated; microtome ^{6.4} Cu, electroplated; microtome
(9)	[:] data Material, purity	pc powder (3–30 µm)	pc powder (3–30 µm) 4N 5N 5N	pc powder (3–30 µm) 4N 5N 5N 4N7	pc powder (3–30 µm) 4.N 5.N 5.N 4.N7 6.C 5.N 5.N 5.N
4) (5)	$r_{\rm range}$ (K) No. of $\overline{T}/T_{\rm m}$) points	45-1,111 11 0.72)	45-1,111 11 0.72) 574-905 19 0.54) 632-1,334) (33)	45-1,111 11 0.72) 19 (.74-905 19 0.54) (33) 632-1,334) (33) 632-1,334) (33) 632-1,332 16 0.87) (9T) 614-1,352) (51)	(45-1,111 11 (.72) 19 (.72) 19 (.54) (.33) (.54) (.33) (.52-1,334) (.33) (.10-1.352 16 (.10-1.352) 16 (.10-1.352) 16 (.10-1.352) 16 (.107-1.348) 15 (.147) 0.89) (.147) 0.89)
(3) (4	$\frac{D(T_{\rm m})}{(10^{-12}{\rm m}^2{\rm s}^{-1})} \frac{T_{\rm c}}{(\overline{T})}$	0.65 84	0.65 84 (0) (0) (0) (0) (0) (6) (6)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(2b)	s ⁻¹) Q(eV) and (k) mole ⁻¹)	2.18 (210.5)	2.18 (210.5) 2.08 2.04 ²¹ (197.0) 2.42 ²¹	$\begin{array}{c} 2.18\\ (2.10.5)\\ (2.10.5)\\ (2.00.8)\\ (2.00.8)\\ (2.00.8)\\ (2.00.8)\\ (2.00.8)\\ (2.00.8)\\ (2.00.8)\\ (1.98.3)\\ (1.98.3)\\ (1.98.3)\\ (2.472^{21})\\ (1.98.3)\\ (2.472^{21})\\ (2.050)\\ (2.$	$\begin{array}{c} 2.18\\ (210.5)\\ (210.5)\\ (200.8)\\ (200.8)\\ (197.0)\\ (197.0)\\ (198.3)\\ (198.3)\\ (198.3)\\ (198.3)\\ (209.5)\\$
l) (2a)	(D ⁰ (10 ⁻⁴ m ² s	u (1.05)* 0.81	.u (1.05)* 0.81 .u - 0.10 ²¹ 2.0 ²¹	$\begin{array}{rrrr} & (1.05)^{*} \\ 0.81 \\ 0.81 \\ - \\ 0.10^{21} \\ 2.0^{21} \\ 2.0^{21} \\ - \\ 0.13^{21} \\ 4.6^{21} \end{array}$	$\begin{array}{rrrr} & (1.05)^{*} \\ 0.81 \\ 0.81 \\ - \\ 0.10^{21} \\ 2.0^{21} \\ 2.0^{21} \\ 2.0^{21} \\ 2.0^{21} \\ 2.0^{21} \\ 0.13^{21} \\ 2.0^{21} \\$
(I)	×	Cu	Cn Cn	Cn Cn	

46

Table 1.4 (Continued)

E = 0.54-0.74 - Ushino (1989) nation (1,351-1,220 K) [14.15]	Ag, Au, Cd, Ga, – Nachtrieb He in Cu (1960) [14.16]	- Barreau (1970) - 111101	Cd, In in Cu 14.02 Gorbachev (1972) [14.18]	thermal 14.02 Krautheim n (1978) [14.19]	n ated to 14.02 Oikawa (1970) [14.20]	14.02 Fogelson (1973) [14.71]	Ag, Au, Cd, Ga, – Nachtrieb Hg in Cu (1960) [14.16]	14.02 Klotsman (1970) [14.22]	14.04 Sippel (1959) [14.23]	Ag, As, Cd, Ga, – Nachtrieb Hg in Cu (1960) [14.16]	Bi, Pb in Cu 14.04 Gorbachev (1977) [14.24]	14.04 Fujikawa (1987) [14.25,	14.26] 14.04 Fujikawa (1982 1988)
veral ⁺ Present examples approxin	0	0	-	veral Erroneous examples expansio	$\begin{array}{c} contectuo\\ \tilde{D} extrapols\\ c_{AI} = 0 \end{array}$		0	-	0	٥	Π	umerous examples	umerous
⁶¹ Cu, ⁶⁴ Cu, ⁶⁷ Cu, Se electroplated; microtome	¹¹⁰ Ag; electroplated; Nv lathe	¹¹⁰ Ag; electroplated; No	resiqual activity ¹¹⁰ Ag; electroplated; Al lathe and residual	activity ¹¹⁰ Ag, electroplated; Se microtome	Al; EPMA Cu/Cu Ni (14.7 at% Al), (Boltzmann- Metroo)	Al; X-ray diffraction – method	⁷⁶ As, electroplated; No lathe	⁷⁶ As, dried-on from Al salt solution; lathe and residual activity	Au, electroplated; RBS No	¹⁹⁸ Au, electroplated; No lathe	¹⁹⁵ Au, dried-on from Al salt solution; lathe	¹⁹⁶ Au, electroplated; Nı microtome	¹⁹⁶ Au, vapour Ni Journition, IPC
sc 6N	sc specpure	pc, sc	4N sc, pc 4N	pc (>2mm)	NC 4N	pc ⁶¹	sc specpure	pc 4N	pc 5N	SC SDECD117E	sc 4N	sc 5N	SC
15	52	17^{51}	13	13	10^{51}	4	52	~	7 (6T)	22	œ	34 (22T)	29 (171)
980-1,351 (0.86)	(1,053–1,353) (0.89)	(823–1,273)	(0.77) 1,049–1,352 (0.88)	1,033–1,355 (0.88)	(986–1,270) (0.83)	973–1,348 (0 85)	(0.00) (1,053-1,353) (0.89)	1,086-1,348 (0.90)	625–776 (0.52)	(1,053–1,353) (0.89)	1,085–1,342	933–1,350 (0.84)	633–982 (0 Ea)
(0.53) ⁺	2.1	2.0	1.8	2.1	1.0	0.86	2.1	3.3		0.55	0.61	0.67	
- (2.08) ⁺ (200.8)	2.016 (194.7)	2.016	(194.7) 2.020 (195.0)	2.095 (202.3)	1.918 (185.2)	1.878	(1.01.) 1.821 (175.8)	1.827 (176.4)	1.984 (191.6)	2.181 (210.6)	2.201	2.13 (205.7)	1.98
- (0.28) ⁺	rity diffusion 0.63	0.61	0.574	1.25	0.131	0.08	0.12	0.202	0.104	0.69	0.897	0.537	0.0803
Си	Impu Ag	Ag	Ag	Ag	AI	Ы	\mathbf{As}	As	Чu	Αu	Αu	Чu	Чu

(I)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(11) (01)	(12)	
×	D^{0} (10^{-4} m ² s ⁻¹)	Q(eV) and (kJ mole ⁻¹)	$D(T_{\rm m})$ (10^{-12} m ² s ⁻¹)	T-range (K) $(\overline{T}/T_{\rm m})$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied Fig	ure Ref	srence
Be Be	0.66 0.28	2.029 (195.9) 1.97	1.9	973-1,348 (0.85) 583-800	9 19	pc ⁶¹ sc	Au; X-ray diffraction method Be, sputter deposition;	- All	Two-exponential	Si in Cu 14. 14.	.04 Fog) .04 Alr	elson (973) [14.28] nazouzi
	0.164^{21} 7.1^{21}	(190.2) 1.94^{21} (187.3) 2.38^{21} (229.8)	2.1	(0.51) (583–1,348)	(18T) (28)	N	sixy analysis		nt together with the data of [14.28]			[62:41] (266)
Bi	0.766	1.844 (178.1)	10.9	1,074-1,349 (0.89)	8	sc 5N	²⁰⁷ Bi, dried-on from salt solution; lathe	All		Au, Pb in Cu 14.	.03 Goi	bachev 1977) [14.24]
Cd	0.935	1.982 (191.3)	4.1	998–1,223 (0.82)	8	sc 3N8	¹¹⁵ Cd ⁷² ; lathe (20 μm sections)	All		14.	.03 Hin I	one (1958) [4.30]
Cd	0.73	1.956 (188.8)	4.0	(1,053–1,353) (0.89)	52	sc specpure	¹¹⁵ Cd; lathe	No		Ag, As, Au, Ga, Hg – in Cu	Na)	chtrieb (960) [14.16]
Cd	1.27	2.016 (194.6)	4.2	1,032–1,346 (0.88)	8	s s 4	¹⁰⁹ Cd, electroplated; lathe	All		Ag, In in Cu 14.	.03 Go	bachev [972) [14.18]
Cd	1.2	2.009 (194)	4.2	983–1,309 (0.84)	œ	pc (2-4 mm) 4N8	¹⁰⁹ Cd, ¹¹⁵ Cd, dried-on from salt solution; grinder	Several examples		E = 0.13 - 0.33 (983 - 14. 1,309 K); Cu in Cu(Cd) at 1,076 K	.03 Ho [shino (1982) [4.31]
Co	1.3^{+} 1.93	2.302 ⁺ (222.3) 2.436 (735 7)	0.37^{+} 0.38	974–1,351 (0.86) 1,177–1,351 (0.93)	8 (7T) 4 3T)	sc 4N8	⁶⁰ Čo, electroplated; lathe	1 example	⁺ Present recalculation	Fe, Ni in Cu, Mn in 14. Cu at $T = 1,342$ K	.05 Ma [ckliet (1958) (4.32]
Co	0.43	2.22 (214.4)		(0.55) (0.55)	17 (15T)	sc 5N	⁶⁰ Co, ⁵⁹ Co, sputter deposition; IBS, γ- counting and SIMS	Several examples		14	.05 Dö	ıl (1984) [4.33]
Co	0.74 ²¹ 736 ²¹	2.250 ²¹ (217.2) 3.240 ²¹ (31.2 8)	0.40	(640–1,351)	(24)				Two-exponential fit of the data of [14.32, 14.33]	14	.05 Ne [.] (ımanıı (988) [14.34]
ų	0.337	(195) (195)	1.1	999–1,338 (0.86)	16 (15T)	pc 4N8	⁵¹ Cr, dried-on from salt solution; residual activity	2 examples, (anomalous pp ⁸²)		Mn, V in Cu 14.	.05 Ho [shino (1977) [4.35]

Table 1.4 (Continued)

Rockosch (1983) [14.36]	Almazouzi (1998) [14.37]	Mackliet (1958) [14.32]	Mullen (1961) [14.38]	Barreau (1971)	Bernardini	(1973) [14.40]	Sen (1978)	[14.41]	Almazouzi	(1996) [14.42]	Nachtrieb (1960) [14.16]	Klotsman (1971) [14.43]	Fogelson	[17 ,17] [14: 11]	Reinke (1970) [14/45]	Klotsman	(1971) [14.43]	Nachtrieb	(1960) $[14.16]$	Gorbachev (1972) [14.18]
14.05	14.05	14.08	14.08	I	I		I		14.08		I	14.06	14.06		14.07	14.07		I		14.07
Mn, Zn in Cu	Mn, Ti in Cu	Co, Ni in Cu, Mn in Cu at T = 1,342K	E = 0.59 - 0.74 (990-1.329 K)	Cr in Cu	Ru in Cu,	Fe, Co in Ag	Ni in Ag		Ni in Cu		Ag, As, Au, Cd, Hg in Cu	Ge in Cu	Ga in Ag			Ga in Cu		Ag, As, Au, Cd,	Ga in Cu	Ag, Cd in Cu
Simultaneous measurement of Cr, Mn, Zn in a multichannel analyzer; D(1,200 K) = $1.4 \times$ $10^{-13} \text{ m}^2 \text{ s}^{-1}$																				
All	All $(\ln c - x)^{81}$	2 examples	All	No	1 example	(slight NSE)	I		All $(\ln c - x)^{81}$		No	All	I		3 examples	АП		No		All
⁵¹ Cr; microtome	Cr, sputter deposition ⁷³ ; IBS, SIMS analysis	⁵⁹ Fe, electroplated; lathe	⁵⁹ Fe, ⁵⁵ Fe, electronlated: lathe	⁵⁹ Fe, electroplated;	⁵⁹ Fe, electroplated;	electrolytical sectioning	Fe, electroplated;	resistometric method	Fe, sputter deposition;	IBS, SIMS analysis	' ² Ga; lathe	⁶⁷ Ga, electroplated; lathe	Ga, vapour deposition;	A-ray unitaction method	⁶⁸ Ge, electroplated;	⁶⁸ Ge, electroplated:	lathe	²⁰³ Hg;	lathe	¹¹⁴ In, sputter deposition; lathe
os Z	sc 5N	sc 4N8	sc 4N8	sc, pc	SC SC	5N	sc	specpure	sc	5N	sc specpure	pc 4N	pc ⁶¹		SC	DC	4N	sc	specpure	sc, pc 4N
4	15 (12T)	8 (6T) 4 (3T)	6 (4T)	6	6^{51}		11		15	(14T)	70	9	5		11	9	I	52		14
1,195-1,202 (0.88)	639–829 (0.54)	992–1,347 1,168–1,347 (0.93)	990–1,329 (0.85)	923–1,343	1,005–1,297	(0.85)	1,063–1,274	(0.86)	651-870	(0.56)	(1,053-1,353) (0.89)	1,153–1,351 (0.92)	973–1,323 (0 85)	(co.u)	975–1,289 (0 82)	1.111–1.326	(06.0)	(1,053-1,353)	(0.89)	1,051–1,351 (0.88)
		0.64	0.63	0.58	0.67		0.66				2.2	2.0	2.0		2.5	2.3		2.9		4.7
I	1.99 (192.1)	- 2.246 (216.9)	2.209 (213.3)	2.255	2.233	(215.6)	2.217	(214.1)	2.04	(197.0)	2.034 (196.4)	1.996 (192.7)	2.008 /102 8/	(0.061)	1.941	1.922	(185.5)	1.908	(184.2)	2.005 (193.6)
1	0.26	- 1.4	1.01	1.36	1.3		1.13		0.10		0.78	0.523	0.58		0.397	0.315		0.35		1.30
ڻ ن	Ç	Fe	Fe	Ге	Fe		Fe		Fe		Ga	Ga	Ga		g	Ge		Hg		ਸ

E	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(II)	(12)
×	D^{0} (10^{-4} m ² s ⁻¹)	Q(eV) and (kJ mole ⁻¹)	$D(T_{\rm m})$ (10^{-12} m ² s ⁻¹)	au-range (K) $(\overline{T}/T_{ m m})$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
ਸ	1.87	2.034 (196.4)	5.3	1,071–1,354 (0.89)	11	pc 5N	¹¹⁴ In, electroplated; microtome	Several examples	Erroneous thermal expansion		14.07	Krautheim (1978) [14/46]
ц	0.31 (0.22)	1.864 (180) (1.844) (178)		602–1,351 (0.72) (602–873)	24 (16T) (9)	sc 5N8	In, vapour deposition; IBS, SIMS analysis (¹¹⁵ In ⁺ signal)	2 examples	Pronounced data scatter	·	1	Gust (1983) [14.47]
Ч	0.29 ²¹ 3,110 ²¹	(179) 1.86 ²¹ (179.6) 3.06^{21} (295.5)	5.0	(602–1,354)	(49)				Two-exponential fit of the data of [14.18, 14.46, 14.471		14.07	Neumann (1988) [14.34]
Ir Mu	10.6 0 74	2.863 (276.4) 2.025	0.025	1,185-1,303 (0.92) 973-1.348	r 0	sc 4N br ⁶¹	¹⁹² Ir, sputter deposition; lathe Mn: X-rav diffraction	All -			14.10 14.08	Klotsman (1978) [14.48] Foorelson
Mn	1.02	2.072 (195.5) 2.072 (200)	2.1	(0.85) 873–1,323 (0.81)	17	Pc 4N5	⁵⁴ Mn, electroplated; residual activity	No (pp as for Cr in Cu)	Marked gb contribution at T<971 K	Cr, V in Cu	14.08	1973) [14:49] (1973) [14:49] Hoshino (1977) [14:35]
Mn	1.42	2.116 (204.3)	2.0	776–976 (0.64)	4 ⁵¹	sc 4N8	⁵⁴ Mn, vapour deposition of MnCl ₂ ; electrochemical sectioning	1 example			14.08	Maier (1979) [14.50]
Mn	I	I		1,195–1,202 (0.88)	4	sc 5N	⁵² Mın, ⁵⁴ Mın, electroplated; microtome	All ⁸⁵	See Cr in Cu; D(1,195 K) = 2.0, D(1,202 K) = 2.3, (in $10^{-13} \text{ m}^2 \text{ s}^{-1}$)	E = 0.31; Cr, Zn in Cu	14.08	Rockosch (1983) [14.36]
Mn	0.43	2.01 (194.1)		582–800 (0.51)	17 (16T)	sc 5N	Mn, sputter deposition; IBS, SIMS analvsis	Numerous examples		Cr, Ti in Cu	14.08	Almazouzi (1998) [14.37]
ЧN	(2.04)	(2.63) (253.9)	(0.036)	1,080–1,179 (0.83)	Ŋ	pc (1–3 mm) 5N	⁹⁵ Nb, dried-or from oxalate solution; residual activity	1 example (flat 15μm pp) ⁸⁴			1	Saxena (1970) [14.51]

Table 1.4 (Continued)

14.09 Mackliet (1958) [14.32]	- Ikushima (1959) [14.52]	14.09 Monma (1964) [14.02]	- Fogelson (1971) [14.53]	14.09 Anusavice (1972) [14.08]	14.09 Almazouzi (1996) [14.42]	14.09	- Spindler (1976)	[14.54]	14.11 Gorbachev	(1977) [14.24] 14.10 Peterson (1963)	[14.55]	14.10 Fogelson (1972) [14.56]	14.10 Neumann	(1982) [14.57]	14.12 Fogelson (1972) [14.58]	14.12 Bernardini	(1973) [14.40]	_
Co, Fe in Cu, Mn in Cu at T = 1,342 K		Cu in Cu, Cu in Ni		Cu, Zn in Cu; Cu, Ni, Zn in Cu(Ni) and Cu(Zn)	Fe in Cu				Au, Bi in Cu	Pd in Ag	I		Pt in Ag	I		Fe in Cu,	Fe, Co in Ag;	$c_{\rm s}({\rm Ku}) = 183 \cdot \exp(-2.04 \text{ eV/kT})$ exp(-2.04 eV/kT)
					Two-exponential fit together with	the data of [14.02, 14.08, 14.32]	⁺ Present	approximation								Dislocation	enhanced	diffusivity at lower T
2 examples	All	1 example	I	Several examples (for alloy diffusion)	Several examples		2 examples	(anomalous pp at lower T)	All	All		I	No		I	3 examples ⁸¹	ſ	
⁶³ Ni, electroplated; lathe	⁶³ Ni, electroplated; lathe	⁶³ Ni; lathe	Ni, vapour deposition; X-ray diffraction method	⁶⁶ Ni, electroplated; lathe	Ni, sputter deposition; IBS. SIMS analysis		³² P, dried-on from	H ₃ PO ₄ ; microtome	²¹⁰ Pb, dried-on from	salt solution; lathe ¹⁰³ Pd, electroplated ⁷³ ;	lathe	Pt, vapour deposition; X-ray diffraction	method ¹⁹¹ Pt, ¹⁹⁵ Pt, ¹⁹⁷ Pt,	vapour deposition; microtome	Rh, vapour deposition; X-ray diffraction method	¹⁰³ Ru, electroplated;	electrolytical	sectioning
sc 4N8	sc 4N	pc (1-4 mm) >4N	pc ⁶¹	pc (1–3 mm) 4N, 5N	sc 5N		SC	5N	sc	5N sc	5N	pc ⁶¹	sc	5N	pc ⁶¹	sc	5N	
7 (6T)	7	5	×	Ŋ	20 (17T)	(38)	19	9	8	16	(8T)	×	6	(7 <u>1</u>)	×	16^{51}	9^{51}	
1,016–1,349 (0.87)	968–1,334 (0.85)	1,172–1,340 (0.92)	973–1,323 (0.85)	1,128–1,328 (0.90)	613–949 (0.58)	(613–1,349)	847-1,319	(0.80) 1,225–1,319 (0.94)	1,007–1,225	(0.82) 1,080–1,329	(0.89)	1,023–1,348 (0.87)	1,149–1,352	(0.92)	1,023–1,348 (0.87)	1,073-1,335	1,221-1,335	(0.94)
0.22	0.27	0.21	0.21	0.22		0.22		$(1.9)^{+}$	8.4	0.30		0.072	0.062		0.15		0.11	
2.450 (236.6)	2.463 (237.8)	2.398 (231.5)	2.437 (235.3)	2.411 (232.8)	2.32 (224.0)	2.32^{21} (224.0) 2.90^{21} (280.0)	(1.41)	(136.1) $(1.65)^+$ (159.3)	1.889	(182.4) 2.358	(227.6)	2.416 (233.3)	2.413	(233)	2.515 (242.8)	I	2.667	(6.762)
2.7	3.8	1.7	2.3	1.94	0.62	0.56^{21} 48^{21}	(3.05×10^{-3})	(0.026) ⁺	0.862	1.71		0.67	0.56		3.3	I	8.5	
ïŻ	Ż	ïŻ	ïŻ	ïŻ	ïŻ		4		Чſ	Pd		Pt	Pt		Rh	Ru		

					2]	3]	(6) [8	τ	0	5	1 E
12)	Reference	Moya (1969) [14.59]	Wang (1970) [14.60]	nman (1960) [14.61]	Gorbachev (1973) [14.6	Krautheim (1979) [14.6	Rummel (198 [14.64] Fogelson (1973) [14.2	Minamino	(1907) (14.0 ijima (1991) [14.66]	Gorbachev (1973) [146	Fogelson (1974) [14.6
) (II)	Figure	1	1	14.13	14.13	14.13	14.14] -]	14.13	14.13]	14.11 0	14.11
(10)	Also studied		S in Ag, Fe, Ni		Sn in Cu	Sn in Cu	Te in Cu, Se in Ag, Te in Au Be in Cu		Cu in Cu(Si)	Sb in Cu	
(6)	Further remarks	$D(1,223 \text{ K}) = 3.5 \times 10^{-12} \text{ m}^2 \text{ s}^{-1}$ agrees with	¹ Present approximation; $D(1,223 \text{ K}) = 3.5 \times 10^{-12} \text{ m}^2 \text{ s}^{-1}$ agrees with	[14.59]		Erroneous thermal expansion correction		X = 6.54; 9.76	X = 6; 8		
(8)	Remarks on the pp	2 examples ⁸¹ (c/c_0-x)	I	1 example	All	Several examples	All -	No	No	All	I
(2)	Experimental method	³⁵ S, H ₂ /H ₂ S gas mixture; electrolytical	sectioning H ₂ /H ₂ S gas mixture; resistivity change	¹²⁴ Sb, vapour deposition: lathe (50 µm sections)	¹²⁴ Sb, vapour deposition; lathe	¹²⁴ Sb, electroplated; microtome	⁷⁵ Se, implanted; microtome Si, sputter deposition; X-ray diffraction	method Si; EPMA Cu/Cu (X%	SI) (Hall) Si; EPMA Cu/Cu (X% Si) (Matano, Darken)	¹¹³ Sn, vapour denosition: lathe	Sn, sputter deposition, X-ray diffraction method
(9)	Material, purity	sc 5N	pc ⁶¹	sc 4N	sc 4N	pc (>2mm) 5N	sc 5N Pc ⁶¹	pc	41N4 pc (2-4 mm) 4NI	sc 4N	pc ⁶¹
(5)	No. of data points	18 (15T) 9	5	18 (9T)	9	8	∞ ∞	8 ⁵¹	7 ⁵¹	6	œ
(4)	\mathcal{T} -range (K) $(\overline{\mathcal{T}}/\mathcal{T}_{m})$	823-1,273 (1,023–1,273)	(0.35) 1,173–1,273 (0.90)	873–1,275 (0.79)	994–1,288 (0.84)	1,049–1,349 (0.88)	878–1,150 (0.75) 973–1,323 (0.85)	998–1,173	(0.80) 900–1,150 (0.75)	1,011–1,321 (0.86)	973–1,348 (0.85)
(3)	$D(T_m)$ (10^{-12} m ² s ⁻¹)	(26)	(16) ⁺	5.9	5.8	6.0	11.4 1.8	1.4	1.1	4.9	5.0
(2b)	Q(eV) and (k) mole ⁻¹)	- (2.14)	(206.6) (1.70) (164.1) (1.64) ⁺ (158.4)	1.812 (175.8)	1.893 (182.7)	1.86 (179.6)	1.87 (180.5) 1.778 (171.7)	1.937	(187) 1.947 (188)	1.949 (188 2)	(187.6)
(2a)	D ⁰ (10 ⁻⁴ m ² s ⁻¹)	- (23)	(0.6) (0.2) ⁺	0.34	0.616	0.48	1.0 0.07	0.21	0.19	0.842	0.82
Ē	×	v	S	Sb	Sb	Sb	Si Si	Si	Si	Sn	Sn

Table 1.4 (Continued)

Krautheim (1979) [14.63]	Rummel (1989) [14.64]	Iijima (1977)	[14.68]			Almazouzi	(1998) [14.37]	Komura (1963)	[14.69]	Hoshino (1977)	[14.35]		Hino (1957)	[14.70]	Peterson (1967)	[14.71]	Klotsman	(1969) [14.72]	Anusavice	(1972) [14.08]	Dutt (1979) [14.73]
14.11	14.15	14.09				14.09		14.15		I			14.14		14.14		14.14		I		I
Sb in Cu	Se in Ag, Se in Cu, Te in Au					Cr, Mn in Cu				Cr, Mn in Cu			Cu, Zn in α-CuZn		E = 0.41; Zn in	CuZn	gb diffusion		Cu, Ni in Cu; Cu,	Ni, Zn in Cu(Ni) and Cu(Zn)	Zn in Ag
Erroneous thermal expansion correction								Marked data	scatter						⁺ Present	calculation					
Several examples	All	1 example				All		All		No (pp as for	Cr in Cu)		No		1 example		Several	examples	Several	examples (for alloy diffusion)	
¹¹³ Sn, electroplated; microtome	¹²¹ Te, implanted; microtome	Ti; EPMA Cu/	Cu(2-3%Ti)	(Boltzmann-	Matano)	Ti, sputter deposition;	IBS; SIMS analysis	²⁰⁴ TI, electroplated;	lathe	⁴⁸ V, dried-on from	VOCl ₂ solution;	residual activity	⁶⁵ Zn, electroplated;	lathe	⁶⁵ Zn, ⁶⁹ Zn,	electroplated; lathe	⁶⁵ Zn, vapour	deposition or electroplated; lathe	⁶⁵ Zn, electroplated;	lathe	Zn, electroplated; resistometric method
pc (>2mm) 5N	sc 6N	sc	4N8			sc	5N	sc	5N	bc	4N5		sc	specpure	sc	5N	bc	5N	bc	4N	pc specpure
12	10	13				15	(14T)	6		13			5		2		5		9		11 ⁵¹
1,018–1,355 (0.87)	822–1,214 (0.75)	973-1,283	(0.83)			621-747	(0.50)	1,058–1,269	(0.86)	995–1,342	(0.86)		878-1,322	(0.81)	1,165, 1,220		1,165–1,348	(0.93)	1,073–1,313	(0.88)	993–1,193 (0.80)
5.5	11	2.0						7.6		1.3			1.6		1.6^{+}		1.6		1.3		1.5
1.91 (184.4)	1.87 (180.5)	2.030	(196)			1.99	(192.1)	1.878	(181.3)	2.227	(215)		1.977	(190.9)	1.997^{+}	(192.8)	2.060	(198.9)	1.956	(188.8)	1.961 (189.3)
0.67	0.97	0.693				0.37		0.71		2.48			0.34		0.41^{+}		0.73		0.24		0.28
Sn	Te	Ë				Ξ		F		\geq			Zn		Zn		Zn		Zn		Zn

Table 1	.5 Diffusic	on in silver									(Referer	ices see page 95)
(L)	(2a)	(2b)	(3)	(4)	(2)	(9)	(2)	(8)	(6)	(IO)	(11)	(12)
×	D ⁰ (10 ⁻⁴ m ² s ⁻¹)	Q(eV) and (k) mole ⁻¹)	$D(T_{\rm m})$ (10 ⁻¹² m ² s ⁻¹)	au-range (K) $(\overline{T}/T_{ m m})$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Self-dij	ffusion											
Αĝ	0.395	1.912 (184.6)	0.61	903–1,208 (0.86)	~	Sc 4N	¹¹⁰ Ag, electroplated; lathe	3 examples			15.01	Tomizuka (1956) [15.01]
Ag	0.278	1.882	0.57	1,039–1,219	8	pc ⁶¹	¹¹⁰ Ag, vapour	Several examples		gb diffusion	I	Kaygorodov
		(181.7)		(0.91)	(6T)	5N	deposition; chemi-					(1968) [15.02]
							cal sectioning and residual activity					
Ag	0.67	1.960	0.66	914-1,228	13	sc	¹¹⁰ Ag, ¹⁰⁵ Ag,	Numerous		E = 0.72 - 0.64	15.01	Rothman
		(189.2)		(0.87)		5N	electroplated; lathe	examples		(914-1,228 K)		(1970) [15.03]
Ag	I	I		946-1,227	6	sc	¹¹⁰ Ag, ¹⁰⁵ Ag,	All		E = 0.72 - 0.58	15.01	Reimers (1972)
				(0.88)		5N	electroplated;			(946-1,227 K)		[15.04]
							microtome					
Ag	0.041	1.76		547-777	13	sc	¹¹⁰ Ag, electroplated;	All ⁸³ (non-linear			15.01	Lam (1973)
		(170.0)		(0.54)		5N	anodizing and	in $\ln c - x^2$)				[15.05]
ν				V30 167	¢,		surppurg 110 A ~ cleatered.		Turn ann an T		15.01	Baalana (1074)
ВA	I	I		631-834 (0.60)	12 (9T)	sc 4N		2 examples	1wo-exponential fit together with		10.61	backus (1974) [15.06]
	0.046^{21}	1.76^{21}	0.72	(00:0)		, i	(iodine in alcohol)		the data of			[00:01]
		(170.0)					к к		[15.03, 15.05]			
	6 ²¹	2.24^{21}										
		(216.3)										
Ag	0.043	1.76 (170.0)		581–835 (0.57)	11	sc 5N5	¹¹⁰ Ag, ¹⁰⁵ Ag, vapour denosition: IBS	Several examples			15.01	Bihr (1978) [15.07]
Aε	I			594-994	5	sc	^{110}Ae , vapour	1 example (several	Two-exponential	$\Delta V/V_0 =$	15.01	Rein (1982)
C				(0.64)		5N	deposition; IBS	examples for	fit together with	0.66-0.86		[15.08]
	0.046^{21}	1.76^{21}	0.46				I	high pressure	the data of	(594–994K),		
	12	(170.0)						measurements)	[15.03, 15.05]	$\Delta V/V_0$ for		
	3.3 ⁻¹	2.28 ²¹ (220.1)								Au in Au		

1.0 .

sition; IBS our deposi-
method method leposited 1 example 0.1 µm); (intensity vs. plot)
plated ⁷³ , Ali plated; 1 example cal No t; lathe
plated; All 0 µm
r Numerous of CdCl ₂ examples lated; ectioning al activity
ried-on For $t = 8$ h the olution; pp was lines ith SiC in ln $c-x^2$
plated; No ⁸¹ al

		e	1	2	1	-	6]	~	[9	Д	2]	1
(12)	Reference	Makuta (1979 [15.20]	Neumann (1981) [15.2	Sawatzky (1957) [15.27	Dorner (1980) [15.23]	Mullen (1961) [15.24]	Bernardini (1973) [15.1'	Bharati (1977) [15.25]	Fogelson (1977) [15.2(Hoffman (1958) [15.2 [.]	Sawatzky (1957) [15.2]	す・シャー へ・シン・トン
(E)	Figure	I	15.04	15.03	I	I	15.04	I	15.05	15.07	15.07	
(10)	Also studied	l Mn, Ti, V in Ag	$c_{\rm s} = 1,620 \cdot \exp(-1.76 + 1.76)$	Hg in Ag		Fe in Cu; $E = 0.62 \pm$ 0.13 (999–	Co in Ag, Fe, Ru in Cu; $c_{\rm s}(900 \text{ K}) = 3 \times 10^{-6}$		Ga in Cu	Tl in Ag: Ag in Ag(Tl), Ag in Ao(Ge)	Cu in Ag	
(6)	Further remarks	Erroneous therma expansion	⁺ Present recalculation			*Erfc-solution, incorrect ln <i>c</i> - <i>x</i> ² evaluation	⁺ Present approximation					
(8)	Remarks on the pp	1 example, non- Gaussian pp	1 example ⁸¹ (see Figure 01.09)	No	2 examples ⁸⁵	All, curved pp* (see Figure 01.10)	No ⁸¹	Several examples ⁸⁴	I	No	No	
(2)	Experimental method	⁵¹ Cr, dried-on from Na ₂ CrO ₄ solution;	⁵¹ Cr, vapour deposition; microtomo	1111C1010111E ⁶⁴ Cu, electroplated ⁷³ ; 1atha	Cu, vapour deposition; IBS, SIMS analysis	⁵⁹ Fe, 55Fe, electroplated; lathe	⁵⁹ Fe, electroplated; electrolytical sectioning	⁵⁹ Fe, electroplated; lathe	Ga, vapour deposi- tion; X-ray diffraction method	⁷¹ Ge, vapour deposition; lathe and residual activity	²⁰³ Hg, electroplated ⁷³ ; lathe	
(9)	Material, purity	pc 5N	sc 6N	SC 4N	4 ²⁸ 4	sc 4N	sc 5N	sc 5N	pc ⁶¹	pc ⁶¹	sc 4N	
5)	Vo. of data points	(4 13T)	[3 [11T]	[б 8Т)	12T)	5T)	28 ⁵¹ [4 ⁵¹	11 9T)	~	151	24 13T)	
(4) (T-range (K) $1(\overline{T}/T_{m}) 1$	1,023–1,215 (0.91)	976–1,231 (0.89)	990–1,218	(0.65) (0.65)	991–1,201 ((0.89) (915–1,205 1,084–1,205 (0.93)	1,062–1,213 (0.92)	873–1,213 8 (0.85)	948–1,124 (0.84)	926–1,221 2 (0.87) (
(3)	$D(T_m)$ ($10^{-12} m^2 s^{-1}$)	0.42	0.81^{+}	0.84		0.50	0.63^{+}	0.34	5.4	2.9	1.4	
(2b)	Q(eV) and (kJ mole ⁻¹)	2.175 (210)	2.00 (193.1)	1.999 (103 ())	(1.700 (164.1)	2.127 (205.3)	- 2.125 (205.2)	2.141 (206.7)	1.687 (162.9)	1.583 (152.8)	1.652 (159.5)	
(2a)	D ⁰ (10 ⁻⁴ m ² s ⁻¹)	3.26	(1.1) 1.2^+	1.23	0.029	2.42	- (2.6) 3.0 ⁺	1.9	0.42	0.084	0.079	

Table 1.5 (Continued)

Kaygorodov (1967) [15.28]	Mehrer (1984) [15.29]		Barclay	(1969)[15.30]	Makuta (1979)	[15.20]	Hirone (1961)	[15.31]	Ladet (1976)	[15.32]		Sen (1978)	[15.33]	:	Hoffman	(1955) [15.34]		Peterson (1963) [15.35]	Eocoleon	(1975) [15.36]	Neumann	(1982) [15.37]		Pierce	(1959)[15.38]	
15.06	15.06	15.06	15.05		I		I		I			I			I			15.08		I	15.08			I		
	Marked data scatter at lower temperatures	Present approximation (forced fit)	⁺ Present	approximation	Erroneous thermal Cr, Ti, V	expansion in Ag correction			$c_{\rm s} = 2.0 \cdot \exp$	(-0.69	eV/kT	Fe in Cu			Ag, Pb in	Ag(X), X = Pb, Al,	cu, Ge	Pd in Cu			Pt in Cu			In $c-x^2$ evaluation	in spite of the	extremely small solubility
Several examples	4 examples (see Figure 01.03)		1 example	(probability plot)	No (non-Gaussian	(dd	All (pronounced	NSE)	2 examples ⁸¹ (see	Figure 01.08)		I			No			All		I	2 examples	(erfc-solution	at lower T)	No (pronounced	NSE)	
 ¹¹⁴ In, vapour deposition; chemi- cal sectioning and residual activity	¹¹⁴ In, vapour deposition; IBS		Mn; EPMA Ag/Ag	(8% Mn) (Grube)	⁵⁴ Mn, electroplated;	residual activity	⁶³ Ni, electroplated;	lathe	⁶³ Ni, electroplated;	electrolytical	sectioning	Ni, electroplated;	resistometric	measurements	²¹⁰ Pb, electroplated;	lathe	000	¹⁰³ Pd, electroplated ⁷³ ; lathe	Dt warour denocition:	Try varpout deposition. X-ray diffraction method	¹⁹¹ Pt, ¹⁹⁵ Pt, ¹⁹⁷ Pt,	vapour deposition;	microtome	¹⁰³ Ru, ¹⁰⁶ Ru,	electroplated; lathe	
5N	sc 5N		pc	5N	pc	5N	sc	4N	sc	5N		pc	specpure	13	pc°1			sc 5N		рс (80 µm)	sc	5N		sc	4N	
11	15		8		16	(15T)	9		16			6		5	331			16 (8T)			8			9		
1,04 4 -1,215 (0.92)	553–838 (0.56)	553-1,234	849-1,206	(0.83)	883-1,212	(0.85)	1,022–1,223	(0.91)	904-1,199	(0.85)		1,023–1,193	(06.0)		948–1,123	(0.84)		1,009–1,212 (0.90)	073-1773	(0.87)	1,094-1,232	(0.94)		1,066-1,219	(0.93)	
2.2		2.2		1.1^{+}	(2.2)		(0.43)		(96.0)			(0.05)			3.9			0.085	0.050	0000	0.026			(0.040)		
1.812 (175.0)	1.75 (169.0)	1.735 (167.5)	1.860	(179.6)	(2.030)	(196)	(2.376)	(229.4)	(2.251)	(217.3)		(2.386)	(230.4)		1.652	(159.5)		2.461 (237.6)	7 467	2. 1 0/ (238.2)	2.413	(235.7)		(2.853)	(275.5)	
0.55	0.36	0.27	(0.18)	0.45^{+}	(4.29)		(21.9)		(15)			(2.8)			0.22			9.57	6.0	0.0	1.9			(180)		
म	ų	ц	Mn		Mn		ïŻ		ïŻ			ïŻ			Pb			Pd	4d	1	Pt			Ru		

(Continued)	
1.5	
Table	

(12)	Reference	Barbouth (1967) [15.39]	Wang (1970) [15.40]	Sonder (1954) [15.41]	Kaygorodov (1967) [15.42]	Hagenschulte (1989) [15.43]	Rummel (1989) [15.44]	Tomizuka (1954) [15 16]	Kaygorodov (1969) [15.45]
(LL)	Figure	I	I	15.09	15.09	15.09	15.09	15.05	15.05
(10)	Also studied		S in Cu, Fe, Ni		gb diffusion		Se, Te in Cu, Te in Au	Cd, In in Ag	gb diffusion; Te in Ag
(6)	Further remarks						*pp linear in ln $c-x^2$ except for $T = 759 \text{ K}^{81}$		
(8)	Remarks on the pp	1 example (c–x)	I	No (4 examples in [15.66])	АЛ	1 example (c–x) (see Figure	All*	All	ША
(2)	Experimental method	³⁵ S, direct coating with Ag ₂ S; residual activity	H ₂ /H ₂ S gas mixture; resistivity change	¹²⁴ Sb, electroplated; lathe	¹²⁴ Sb, vapour deposition; chemi- cal sectioning and	residual activity Sb; EPMA Ag/ Ag(3.9% Sb)	⁷⁵ Se, implanted; microtome	¹¹³ Sn, electroplated; lathe	¹¹³ Sn, ¹¹⁹ Sn, vapour deposition: chemi- cal sectioning and residual activity
(9)	Material, purity	pc 5N	pc ⁶¹	sc, pc (0.1 mm)	5N	pc 5N	sc 5N	sc 4N	pc 5N
(5)	No. of data points	4 ⁵¹	6 ⁵¹	11 (10T)	12 (9T)	ю	œ	9	9 (8T)
(4)	au-range (K) (\overline{T}/T_{m})	873–1,173 (0.83)	(973–1,100) (0.84)	742–1,215 (0.79)	1,051–1,225 (0.92)	914–1,048 (0.82)	759–1,109 (0.76)	865–1,210 (0.84)	1,026–1,227 (0.91)
(3)	$D(T_m)$ (10^{-12} m ² s ⁻¹)	13.5	(13)	2.7	2.8	I	6.3	2.7	2.7
(2b)	Q(eV) and (kJ mole ⁻¹)	1.735 (167.5)	(1.648) (159.1)	1.662 (160.4)	1.694 (163.4)	I	1.63 (157.4)	1.70 4 (164 5)	(171.0) (171.0)
(2a)	D ⁰ (10 ⁻⁴ m ² s ⁻¹)	1.65	(0.7)	0.169	0.234	I	0.285	0.25	0.472
(I)	×	s	S	Sb	Sb	Sb	Se	Sn	Sn

Kaygorodov	(1969) [15.45]	Geise (1987)	[15.46]	Makuta (1979)	[15.20]		Hoffman	(1958) [15.27]		Makuta (1979)	[15.20]		Sawatzky	(1955) [15.47]	Rothman	(1967) [15.48]			
15.06		15.06		15.08			15.10	аd		I			15.10		15.10				
Sn in Ag		gb diffusion		Cr, Mn, V	in Ag		Ge in Ag; Ag	in Ag(Tl), A	in Ag(Ge)	Cr, Mn, Ti in	Ag				E = 0.48 - 0.60	-026)	1,225 K); Ag	in Ag(Zn)	
*Simultaneous	measurement of ¹¹⁹ Sn and ¹²⁵ Te			Erroneous ther-	mal expansion	correction				Erroneous ther-	mal expansion	correction							
No		All (erfc-solution	for 650–793 K)	1 example	(probability	plot)	No			No (non-Gaussian	(dd		All		3 examples				
¹²⁵ Te*, vapour	deposition; chemi- cal sectioning	¹²¹ Te, implanted;	microtome	Ti; EPMA Ag/	Ag(X% Ti), X =	0.23; 0.45 (Grube)	²⁰⁴ Tl, electroplated;	lathe and residual	activity	⁴⁸ V, dried-on from	VOCl ₂ solution;	residual activity	⁶⁵ Zn, electroplated ⁷³ ;	lathe	⁶⁵ Zn, ⁶⁹ Zn,	electroplated; lathe			
pc	5N	sc	5N	pc	(2-7 mm)	5N	pc ⁶¹			pc	5N		sc	4N	sc	5N			
ß		7		14	(12T)		9 ⁵¹			14	(12T)		12	(6T)	7				
1,044-1,214	(0.91)	650-1,169	(0.74)	1,051-1,220	(0.92)		(919–1,072)	(0.81)		1,012-1,218	(06.0)		916-1,197	(0.86)	970-1,225	(0.89)			
6.0		6.0		0.56			2.9			0.39			2.2		2.2				
1.687	(162.9)	1.602	(154.7)	2.051	(198)		1.644	(158.7)		2.165	(209)		1.808	(174.6)	1.808	(174.6)			
0.47		0.21		1.33			0.15			2.72			0.54		0.532				
Te		Te		Ë			F			>			Zn		Zn				

1.6	Diffusion	in gold									(Referen	ces see page 97)
2	(a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(II)	(12)
D	^{,0} (10 ⁻⁴ m ² s ⁻¹)	Q(eV) and (k) mole ⁻¹)	$D(T_m)$ ($10^{-12} m^2 s^{-1}$)	T-range (K) $(\overline{T}/T_{\rm m})$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
fus	ion											
U)	(160)	(1.808)		977–1,321 /0.863	10	pc (1 mm)	¹⁹⁸ Au, electroplated;	1 example	Erroneous ther-		16.01	Makin (1957)
0.	.087*	(1/4.0) 1.806* (174 4)	1.33*	(00.0)		CNIC	lathe		correction			[10.01]
0.	.117	(1/4.4) 1.826	1.5	975-1,172	5	pc (1.5 mm)	¹⁹⁸ Au, electroplated;	All (NSE at lower	Correct data Erroneous ther-	Co, Fe, Ni	16.01	Duhl (1963)
		(176.3)		(0.80)		3N3	residual activity	temperature)	mal expansion correction	in Au		[16.02]
0.	.107	1.833	1.30	1,123–1,323	5^{51}	SC	¹⁹⁵ Au, electroplated;	2 examples			I	Gilder (1965)
0	+ 100	(176.9) 1 010 ⁺		(76.0)	₽51 51	3N7 561 (1 7 mm)	lathe ¹⁹⁵ A.: cloctronlotod.	2 automalac	+Drocout fit to the		16.01	[16.03] Cainatti (1065)
)	-107 -	(174.7)		(0.51)	C)	(3 µm foil)	absorption	$c(t)/c_0 - \sqrt{t}$	depicted data		10.01	[16.04]
0	043+	1.735	1.23^{+}	873-1,263	6	sc ⁶¹	¹⁹⁸ Au, vapour	No	⁺ Present	Cu in Cu, Al	I	Beveler (1968)
		(167.5)		(0.80)			deposition; grinder (abrasive paper)		approximation; dislocation enhanced diffusivity at lower <i>T</i>	in Al; $\Delta V/V_0 = 0.72$		[16.05]
0.	.026	1.73		559–685 (0, 17)	9	SC	¹⁹⁸ Au, electroplated;	All			16.01	Rupp (1969)
		(167.0)		(0.47)	(16)	V I	anouizing and stripping, residual					[00.01]
0	078	1.800	1.26	1,059-1,314	14^{51}	pc (1.5 mm)	acuvity ¹⁹⁵ Au, electroplated;	No (2 examples in		In in Au; Au	16.01	Drever (1972)
		(173.8)		(0.89)		5N	lathe	Ref. [16.25])		in Au(In), Au in Au(Sn)		[16.07]
0.	.084	1.804	1.31	1,031–1,333	17	sc	¹⁹⁵ Au, ¹⁹⁹ Au,	No		Co in Au;	16.01	Herzig (1978)
		(174.2)		(0.88)		SN	electroplated; microtome			E = 0.71- 0.65 (1,041- 1,329K), E(Co in Au)		[16.08]

Rein (1982) [16.09]		Werner (1983) [16.10]	Neumann (1986) [16.11]	Mallard (1963) [16.12]	Klotsman (1965) [16.13]	Herzig (1974) [16.14]	Fogelson (1978) [16.15]	Duhl (1963) [16.02]	Fogelson (1977) [16.16]	Herzig (1978) [16.08]	Richter (1998) [16.17] 19
$\Delta V/V_0 = 0.73, 16.01$ $\Delta V/V_0 \text{ for}$	Ag in Ag	$\Delta V/V_0 = 16.01$ 0.73-0.76	16.01	Au in Ag; Au 16.02 in Ag(Au), Ag in Au(Ag)	gb diffusion 16.02	E = 0.45 - 0.51 16.02	16.03	Au, Fe, Ni in Au	Fe in Au 16.02	Au in Au; 16.02 E = 0.71- 0.62 (1,030- 1,325 K); E (Au in Au)	Fe, Hf, Min, – Ti, V, Zr in Au
ple (seve- $^*D = 6.46 \times$ xamples for $10^{-19} \text{ m}^2 \text{ s}^{-1}$	pressure surements)	ple (seve- xamples for pressure surements)	Two-exponential fit of the data of [16.08, 16.10]		ples ⁸⁵	ples		ples ⁸⁴ Erroneous thermal expansion correction			ples oability plot)
1 exam ral e	high meas	1 exam ral ex high meas		No No	2 exam	4 exam	1	2 exam	ı . p	No	2 exam (prob
¹⁹⁸ Au, vapour deposition; IBS		¹⁹⁸ Au, vapour deposition; IBS		¹¹⁰ Ag, electroplated lathe	¹¹⁰ Ag, vapour deposition ⁷³ ; electrochemical sectioning and residual activity	¹¹⁰ Ag, ¹⁰⁵ Ag, electroplated; microtome	Al, vapour deposit ion; X-ray dif- fraction method	⁶⁰ Co, electroplated; residual activity	Co, vapour deposi- tion; X-ray diffraction methc	⁶⁰ Co, ⁵⁷ Co, electroplated; microtome	Cr; EPMA Au/Au (0.5% Cr) (Hall)
sc		sc 5N		sc 4N	pc 4N	sc 5N	pc ⁶¹	pc (1.5 mm) 3N3	pc ⁶¹	sc	Pc 4N
. *		6 ⁵¹	(23)	ę	9 (5T)	10 (7T)	6	9	×	6	9 (8T)
692		603–823 (0.53)	(603–1,333)	972–1,280 (0.84)	1,046—1,312 (0.88)	1,00 4 –1,323 (0.87)	773-1,223 (0.75)	975–1,221 (0.82)	973–1,323 (0.86)	1,030–1,325 (0.88)	979–1,303 (0.85)
			1.36	1.9	2.0	2.1	12.7	1.1	1.5	1.45	1.7
I		1.71 (165.1)	$\begin{array}{c} 1.703^{21} \\ (164.4) \\ 2.20^{21} \\ (212.4) \end{array}$	1.743 (168.3)	1.752 (169.2)	1.754 (169.3)	1.487 (143.6)	1.804 (174.2)	1.899 (183.4)	1.918 (185.2)	1.982 (191.4)
I		0.072	0.025^{21} 0.83^{21}	ity diffusion 0.072	0.080	0.086	0.052	0.068	0.22	0.25	0.507
Чu		Au	Au	Impur Ag	Ag	Ag	AI	C	C	C	ŗ

Table	1.6 (Continue	q)										
(L)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(01)	(LL)	(12)
×	D ⁰ (10 ⁻⁴ m ² s ⁻¹) Q(eV) and (kJ mole ⁻¹)	$D(T_m)$ (10 ⁻¹² m ² s ⁻¹)	au-range (K) $(\overline{T}/T_{ m m})$	No. of data points	Material, puri	ity Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Cu	(0.105) 0.12 ⁺	1.763 (170.2)	2.7+	973–1,179 (0.81)	~	pc 4N	Cu, vapour deposited thin film (<2 µm); EPMA	All	⁺ Present recalculation		16.04	Vignes (1966) [16.18]
Че	(0.082) 0.089 ⁺	1.804 (174.2)	1.4^{+}	974-1,172 (0.80)	ى	pc (1.5 mm) 3N3	⁵⁹ Fe, electroplated; residual activity	2 examples ⁸⁴	Erroneous thermal expansion correction +Present approximation	Au, Co, Ni in Au	I	Duhl (1963) [16.02]
Fe	0.19	1.787 (172.5)	3.4	973–1,323 (0.86)	8	pc ⁶¹	Fe, vapour deposition; X-ray diffraction method	I		Co in Au	I	Fogelson (1977) [16.16]
Fe	0.0437	1.731 (167.1)	1.3	952–1,308 (0.85)	23 (11T)	pc 4N	Fe; EPMA Au (0.5% Fe)/Au/Au (3% Fe) (Hall)	4 examples (probability plot)	Pronounced data scatter	Cr, Hf, Mn, Ti, V, Zr in Au	I	Richter (1998) [16.17]
Ge	0.073	1.497 (144 5)	16.4	1,010–1,287 (0.86)	IJ	sc, pc	⁶⁸ Ge, electroplated; microtome	All		Zn in Au	16.03	Cardis (1977) [16/19]
Ηf	0.5	(225.8) (225.8)	0.075	973–1,303 (0.85)	10 (8T)	pc 4N	Hf; EPMA Au/Au (1%Hf)/ Au (Hall)	2 examples (probability nlot)	Pronounced data scatter	Cr, Fe, Mn, Ti, V, Zr in Au	I	Richter (1998) [16.17]
Hg	0.116	1.621 (156.5)	8.9	772–1,300 (0.78)	6	sc 4N4	²⁰³ Hg, vapour deposition; lathe (20-30 um soctions)	2 examples ^{81,84}	Pronounced data scatter		I	Mortlock (1965) [16.20]
Ч	0.075	1.592 (153.7)	7.4	971–1,276 (0.84)	16 ⁵¹ (13T)	sc, pc 5N	¹¹⁴ h; lathe; ln, EPMA Au/Au (0.3% ln)	No		Au in Au; Au in Au(In), Au in Au(Sn)	16.04	Dreyer (1971) [16.07]
Mn	0.107	1.752 (169.1)	2.6	981–1,294 (0.85)	г	pc 4N	Mn; EPMA Au/ Au(X% Mn)/Au (Hall)	3 examples (probability plot)	X = 0.5; 2	Cr, Fe, Hf, Ti, V, Zr in Au	I	Richter (1998) [16.17]

Reynolds (1957) [16.21]	Duhl (1963) [16.02]	Fogelson (1976) [16.22]	Fogelson (1978) [16.23]	Fogelson (1978) [16.23]	Herzig (1972) [16.24]	Herzig (1972) [16.25]	Rummel (1989) [16.26]	Richter (1998) [16.17]	Richter (1998) [16.17]	Cardis (1977) [16.19]	Richter (1998) [16.17]
r-16.05	I	16.05	16.06	16.06	16.07	16.08	16.07	16.05	I	16.08	I
Ni in Ni; inte diffusion in Au Ni allov	Au, Co, Fe in Au		Pt in Au	Pd in Au		Sn in AuSn, Au in AuSn	Se, Te in Cu, Se in Ag	Cr, Fe, Hf, Mn, V, Zr in Au; $c_s(Ti) = 7-$ 30 ppma	Cr, Fe, Hf, Mn, Ti, Zr in Au	Ge in Cu	Cr, Fe, Hf, Mn, Ti, V in Au
	Erroneous thermal expansion correction				lot)	(x-	⁺ Present approximation	$\begin{split} X &= (0.5 - \\ 1.3) \times 10^{-3}\% \\ ^{+} \text{Present} \\ \text{approximation} \end{split}$	Pronounced data scatter		Pronounced data scatter
No	2 examples ⁸⁴	I	I	I	1 example (probability pl	2 examples 1 example (c/ c ₀ -	All ⁸¹	1 example (probability plot)	3 examples (probability plot)	All	3 examples (probability plot)
⁶³ Ni, vapour deposition; lathe (20–50 um sections)	⁶³ Ni, electroplated; residual activity	Ni, vapour deposition; X-ray diffraction method	Pd, vapour deposition; X-ray diffraction method	Pt, vapour deposition; X-ray diffraction method	Sb; EPMA Au/Au (0.15–0.4% Sb)/Au	¹¹³ Sn, electroplated; lathe; Sn, EPMA Au/Au (0.3% Sn)/Au (Hall)	¹²¹ Te, implanted; microtome	Ti; EPMA Au/Au (X% Ti)/Au (Hall)	V; EPMA Au (1% V)/Au/Au (3% V) (Hall)	⁶⁵ Zn, electroplated; microtome	Zr; EPMA Au/Au (10 ⁻³ % Zr)/Au (Hall)
pc 3N6	pc (1.5 mm) 3N3	pc ⁶¹ (45 μ)	pc ⁶¹	pc ⁶¹	pc 5N	pc (1.5 mm) 5N	sc 5N	4N	pc 4N	sc, pc 5N	Pc 4N
Ŋ	~	~	2	~	(17) 14 (11T)	7 16 (13T)	9	31 (13T)	19 (10T)	9	9
1,153–1,210 (0.88)	975–1,261 (0.84)	973–1,323 (0.86)	973–1,273 (0.84)	973–1,273 (0.84)	(892–1,278) 1,007–1,278 (0.86)	962–1,276 962–1,276 (0.84) 970–1,268	908–1,145 (0.77)	903–1,293 (0.82)	949–1,303 (0.84)	969–1,287 (0.84)	1,023–1,273 (0.86)
0.89	0.46	1.1	0.18	0.13	10.0	10.2 10.4	16.0^{+}	0.35+	0.64	5.4	0.20
1.995 (192.6)	1.821 (175.9)	1.951 (188.4)	2.021 (195.1)	2.086 (201.4)	1.340 (129.4)	(1482 (143.1) 1.484 (143.3)	(1.46) (1.46) (141.0) 1.382 ⁺ (133.4)	(2.301) (222.2) 2.403 ⁺ (232)	2.285 (220.6)	1.638 (158.2)	2.319 (223.9)
0.30	0.034	0.25	0.076	0.095	0.0144	0.0399 0.0412	(0.063) 0.026^{+}	(1.2) 4.1 ⁺	2.67	0.082	1.1
ï	Ni	Ņ	Ъd	Pt	Sb	Sn	Te	ï	>	Zn	Zr

Fig. 11.01 Self-diffusion in lithium. Results of NMR investigations. ∇ , Ailion [11.03]; \bigcirc , Weithase [11.05]; \triangle , Messer [11.06]; \Box , Lodding [11.04] (tracer data are shown for comparison). Fitting line according to [11.06].

Fig. 11.02 Self-diffusion in lithium. \Box , ⁷Li in ⁶Li and \bigcirc , ⁶Li in ⁷Li Lodding [11.04]; \triangle , Messer [11.10]. Fitting line: two-exponential fit according to [11.10].

Fig. 11.03 Impurity diffusion in lithium. Ag in Li: \Box , Mundy [11.13]; Au in Li: \bigcirc , Ott [11.14]; Au in ⁶Li: \triangle , Ott [11.14]. Fitting line determined by the use of $D^0 = 0.141 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}$, Q = 0.465 eV. Cu in Li: ∇ , Mundy [11.17]; Li in Li according to [11.10] ($D^0 = 0.31 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}$, Q = 0.584 eV).

Fig. 11.04 Impurity diffusion in lithium. Bi in Li: \Box , Ott [11.15]; In in Li: \bigcirc , Ott [11.18]; Pb in Li: \triangle , Ott [11.15]; Li in Li according to [11.10] ($D^0 = 0.31 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}$, Q = 0.584 eV).

Fig. 11.05 Impurity diffusion in lithium. Cd in Li: \Box , Ott [11.16]; Sn in Li: \bigcirc , Ott [11.15]; Li in Li according to [11.10] ($D^0 = 0.31 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}$, Q = 0.584 eV).

Fig. 11.06 Impurity diffusion in lithium. Ga in Li: \Box , Ott [11.16]; Zn in Li: \bigcirc , Mundy [11.20]; Li in Li according to [11.10] ($D^0 = 0.31 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}$, Q = 0.584 eV).

Fig. 11.07 Impurity diffusion in lithium. Hg in Li: \Box , Ott [11.16]; Na in Li: \bigcirc , Mundy [11.19]; \triangle , Mundy [11.13]; Li in Li according to [11.10] ($D^0 = 0.31 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}$, Q = 0.584 eV).

Fig. 12.01 (A) Self-diffusion in sodium. \Box , Nachtrieb [12.01]; \bigcirc , Mundy [12.03]; \triangle , Neumann [12.06]. Three-exponential fit according to Neumann [12.06]. (B) (Detail). Self-diffusion in sodium. \Box , Nachtrieb [12.01]; \bigcirc , Mundy [12.03]; \triangle , Neumann [12.06]. Two-exponential fit according to Neumann [12.05].

Fig. 12.02 Impurity diffusion in sodium. Ag in Na: □, Barr [12.07]; Au in Na: ○, Barr [12.08].

Fig. 12.03 Impurity diffusion in sodium. Cd in Na: □, Barr [12.07]; Sn in Na: ○, Barr [12.07].

Fig. 12.04 Impurity diffusion in sodium. In in Na: □, Barr [12.07]; Tl in Na: ○, Barr [12.07].

Fig. 12.05 Impurity diffusion in sodium. K in Na: \Box , Barr [12.09]; Li in Na: \bigcirc , Naumov [12.10]; Rb in Na: \triangle , Barr [12.09].

Fig. 13.01 Self-diffusion in potassium. □, Mundy [13.01]; ○, Mundy [13.02]. Two-exponential fit according to [13.02].

Fig. 13.02 Impurity diffusion in potassium. Au in K: \Box , Smith [13.03]; Na in K: \bigcirc , Barr [13.04]; Rb in K: \triangle , Smith [13.05].

Fig. 14.01 (A) Self-diffusion in copper. \Box , Rothman [14.04]; \bullet , Lam [14.09]; \diamond , Maier [14.11]; \triangle , Bartdorff [14.12]; \bigcirc , Fujikawa [14.14]. Fitting line according to [14.12]. (B) (Detail) Self-diffusion in copper. \Box , Rothman [14.04]; \triangle , Bartdorff [14.12]; \bigcirc , Fujikawa [14.14].

Fig. 14.02 Impurity diffusion in copper. Ag in Cu: \Box , Gorbachev [14.18]; \bigcirc , Krautheim [14.19]. Fitting line according to [14.18]. Al in Cu: \triangle , Oikawa [14.20]; ∇ , Fogelson [14.21]. Fitting line estimated ($D^0 = 0.11 \times 10^{-4} \text{m}^2 \text{s}^{-1}$, Q = 1.906 eV). As in Cu: \diamondsuit , Klotsman [14.22].

Fig. 14.03 Impurity diffusion in copper. Bi in Cu: \Box , Gorbachev [14.24]; Cd in Cu: \bigcirc , Hirone [14.30]; Δ , Gorbachev [14.18]; ∇ , Hoshino [14.31]. Fitting line according to [14.18].

Fig. 14.04 (A) Impurity diffusion in copper. Au in Cu: \Box , Sippel [14.23]; \bigcirc , Gorbachev [14.24]; ∇ , Fujikawa [14.27]; \triangle , Fujikawa [14.25, 14.26]. Fitting line according to [14.24, 14.27]. Be in Cu: \bullet , Fogelson [14.28]; \diamondsuit , Almazouzi [14.29]. Fitting line according to [14.29]. (B) (Detail) Impurity diffusion in copper. Au in Cu: \bigcirc , Gorbachev [14.24]; \triangle , Fujikawa [14.25, 14.26].

Fig. 14.05 Impurity diffusion in copper. Co in Cu: ■, Mackliet [14.32]; ◇, Döhl [14.33]. Fitting line according to Neumann [14.34]. Cr in Cu: □, Hoshino [14.35]; △, Rockosch [14.36]; ○, Almazouzi [14.37]. Fitting line according to [14.37].

Fig. 14.06 Impurity diffusion in copper. Ga in Cu: □, Klotsman [14.43]; ○, Fogelson [14.44]. Fitting line according to [14.43].

Fig. 14.07 Impurity diffusion in copper. Ge in Cu: \Box , Reinke [14.45]; \bigcirc , Klotsman [14.43]. Fitting line according to [14.43]. In in Cu: \triangle , Gorbachev [14.18]; ∇ , Krautheim [14.46]. Fitting line according to Neumann [14.34].

Fig. 14.08 Impurity diffusion in copper. Fe in Cu: \blacksquare , Mackliet [14.32]; \diamond , Mullen [14.38]; \blacktriangle , Almazouzi [14.42]. Fitting line according to [14.42]. (The fitting lines of Fe and Cu nearly coincide.) Mn in Cu: \Box , Fogelson [14.49]; \bigcirc , Hoshino [14.35]; \triangle , Maier [14.50]; \bullet , Rockosch [14.36]; ∇ , Almazouzi [14.37]; \blacklozenge , Mackliet [14.32]. Fitting line according to [14.37].

Fig. 14.09 (A) Impurity diffusion in copper. Ni in Cu: \Box , Mackliet [14.32]; \bigcirc , Monma [14.02]; \triangle , Anusavice [14.08]; ∇ , Almazouzi [14.42]. Fitting line according to [14.42]. Ti in Cu: \blacksquare , lijima [14.66]; \diamond , Almazouzi [14.37]. Fitting line according to [14.37]. (B) (Detail) Impurity diffusion in copper. Ni in Cu: \Box , Mackliet [14.32]; \bigcirc , Monma [14.02]; \triangle , Anusavice [14.08]. Ti in Cu: \blacksquare , lijima [14.66].

Fig. 14.10 Impurity diffusion in copper. Ir in Cu: \Box , Klotsman [14.48]. Pd in Cu: \bullet , Peterson [14.55]. Pt in Cu: \triangle , Fogelson [14.56]; \bigcirc , Neumann [14.57]. Fitting line estimated $(D^0 = 0.61 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}, Q = 2.415 \text{ eV}).$

Fig. 14.11 Impurity diffusion in copper. Pb in Cu: ■, Gorbachev [14.24]. Sn in Cu: □, Gorbachev [14.62]; ○, Fogelson [14.65]; △, Krautheim [14.63]. Fitting line according to [14.62].

Fig. 14.12 Impurity diffusion in copper. Rh in Cu: \bigcirc , Fogelson [14.58]. Ru in Cu: \square , Bernardini [14.40].

Fig. 14.13 Impurity diffusion in copper. Sb in Cu: \Box , Inman [14.61]; \bigcirc , Gorbachev [14.62]; \triangle , Krautheim [14.63]. Fitting line according to [14.62]. Si in Cu: \blacksquare , Minamino [14.65]; \diamondsuit , Iijima [14.66]. Fitting line using $D^0 = 0.2 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}$, Q = 1.942 eV.

Fig. 14.14 Impurity diffusion in copper. Se in Cu: \blacksquare , Rummel [14.64]. Zn in Cu: \Box , Hino [14.68]; \bigcirc , Peterson [14.69]; \triangle , Klotsman [14.70]. Approximative fitting line using $D^0 = 0.54 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}$, Q = 2.03 eV.

Fig. 14.15 Impurity diffusion in copper. Te in Cu: □, Rummel [14.64]. Tl in Cu: ○, Komura [14.67].

Fig. 15.01 (A) Self-diffusion in silver. ▲, Tomizuka [15.01]; □, Rothman [15.03]; ○, Reimers [15.04]; △, Lam [15.05]; ∇, Backus [15.06]; ◇, Bihr [15.07]; ■, Rein [15.08]; ●, Mehrer [15.09]. Fitting line according to Neumann [15.10]. (B) (Detail) Self-diffusion in silver. ▲, Tomizuka [15.01]; □, Rothman [15.03]; ○, Reimers [15.04]. Fitting line according to Neumann [15.10].

Fig. 15.02 Impurity diffusion in silver. Al in Ag: \Box , Fogelson [15.11]. Cd in Ag: \bigcirc , Tomizuka [15.16]; Δ , (serial sectioning) and ∇ , (residual activity) Kaygorodov [15.17]. Fitting line according to [15.17].

Fig. 15.03 Impurity diffusion in silver. Au in Ag: \Box , Jaumot [15.13]; \bigcirc , Mead [15.14]; Δ , Mallard [15.15]. Fitting line estimated ($D^0 = 0.62 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}$, Q = 2.061 eV). Co in Ag: \diamondsuit , Bernardini [15.19]; \bullet , Lundy [15.18]. Fitting line according to [15.19]. Cu in Ag: ∇ , Sawatzky [15.22].

Fig. 15.04 Impurity diffusion in silver. Cr in Ag: \Box , Neumann [15.21]. Fe in Ag: Δ , Bernardini [15.19].

Fig. 15.05 Impurity diffusion in silver. Ga in Ag: \Box , Fogelson [15.26]; Mn in Ag: \bigcirc , Barclay [15.30]; Sn in Ag: \triangle , Tomizuka [15.16]; ∇ , Kaygorodov [15.45]. Fitting line according to [15.45].

Fig. 15.06 Impurity diffusion in silver. In in Ag: \Box , Tomizuka [15.16]; \bigcirc , Kaygorodov [15.28]; \triangle , Mehrer [15.29]. Fitting line: forced fit. Te in Ag: ∇ , Kaygorodov [15.45]; \bigcirc , Geise [15.46]. Fitting line according to [15.46].

Fig. 15.07 Impurity diffusion in silver. Ge in Ag: \Box , Hoffmann [15.27]. Hg in Ag: \bigcirc , Sawatzky [15.22].

Fig. 15.08 Impurity diffusion in silver. Pd in Ag: \Box , Peterson [15.35]; Ti in Ag: \bigcirc , Makuta [15.20]; Pt in Ag: Δ , Neumann [15.37].

Fig. 15.09 Impurity diffusion in silver. Sb in Ag: \Box , Sonder [15.41]; \bigcirc , Kaygorodov [15.42]; Δ , Hagenschulte [15.43]. Fitting line according to [15.41]. Se in Ag: \diamondsuit , Rummel [15.44].

86

Fig. 15.10 Impurity diffusion in silver. Tl in Ag: \Box , Hoffmann [15.27]. Zn in Ag: \bigcirc , Sawatzky [15.47]; Δ , Rothman [15.48]. Fitting line according to [15.47, 15.48].

Fig. 16.01 (A) Self-diffusion in gold. \Box , Makin [16.01]; \bigcirc , Duhl [16.02]; \blacktriangle , Gainotti [16.04]; **V**, Rupp [16.06]; Δ , Dreyer [16.07]; ∇ , Herzig [16.08]; \textcircledleftheta , Rein [16.09]; \diamondsuit , Werner [16.10]. Fitting line: two-exponential fit according to Neumann [16.11]. (B) (Detail) Self-diffusion in gold. \Box , Makin [16.01]; \bigcirc , Duhl [16.02]; Δ , Dreyer [16.07]; ∇ , Herzig [16.08]. Fitting line: twoexponential fit according Neumann [16.11].

Fig. 16.02 Impurity diffusion in gold. Ag in Au: \Box , Mallard [16.12]; \bigcirc , Klotsmann [16.13]; \diamondsuit , Herzig [16.14]. Fitting line according to [16.13]. Co in Au: Δ , Fogelson [16.16]; ∇ , Herzig [16.08]. Fitting line according to [16.08].

Fig. 16.03 Impurity diffusion in gold. Al in Au: \Box , Fogelson [16.15]. Ge in Au: \bigcirc , Cardis [16.19].

Fig. 16.04 Impurity diffusion in gold. Cu in Au: □, Vignes [16.18]. In in Au: ○, Dreyer [16.07].

Fig. 16.05 Impurity diffusion in gold. Ni in Au: \Box , Reynolds [16.21]; \bigcirc , Fogelson [16.22]. Fitting line according to [16.22]. Ti in Au: Δ , Richter [16.17]. Fitting line according to present recalculation ($D^0 = 4.1 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}$, Q = 2.403 eV).

Fig. 16.06 Impurity diffusion in gold. Pd in Au: □, Fogelson [16.23]. Pt in Au: ○, Fogelson [16.23].

Fig. 16.07 Impurity diffusion in gold. Sb in Au: \Box , Herzig [16.24]; Te in Au: \bigcirc , Rummel [16.26].

Fig. 16.08 Impurity diffusion in gold. Sn in Au: \Box , EPMA and \bigcirc , tracer Herzig [16.25]. Zn in Au: Δ , Cardis [16.19].

REFERENCES

- [11.01] D.F. Holcomb, R.E. Norberg, Phys. Rev. 98 (1955) 1074.
- [11.02] A.N. Naumov, G.Ya. Ryskin, Zh. Tekh. Fiz. 29 (1959) 189; Sov. J. Techn. Phys. 4 (1959) 162 (English transl.).
- [11.03] D.C. Ailion, C.P. Slichter, Phys. Rev. 137 (1965) A 235.
- [11.04] A. Lodding, J.N. Mundy, A. Ott, Phys. Stat. Sol. 38 (1970) 559.
- [11.05] M. Weithase, F. Noack, Phys. Stat. Sol. (b) 57 (1973) K111.
- [11.06] R. Messer, F. Noack, Appl. Phys. 6 (1975) 79.
- [11.07] R. Messer, in: Magnetic Resonance and Related Phenomena, Proc. 19th Congress Ampère, Heidelberg, Ed. H. Brunner, Heidelberg Groupement Ampère (1976), p. 269.
- [11.08] P. Heitjans, A. Körblein, H. Ackermann, D. Dubbers, F. Fujara, H.J. Stöckmann, J. Phys. F: Metal Phys. 15 (1985) 41.
- [11.09] M. Mali, J. Roos, M. Sonderegger, D. Brinkmann, P. Heitjans, J. Phys. F: Metal Phys. 18 (1988) 403.
- [11.10] R. Messer, A. Seeger, K. Zick, Z. Metallk. 80 (1989) 299.
- [11.11] O. Wieland, H.D. Carstanjen, Defect and Diffusion Forum 194-199 (2001) 35.
- [11.12] A. Ott, A. Nordén-Ott, Z. Naturforsch. (23a) (1968) 473.
- [11.13] J.N. Mundy, W.D. McFall, Phys. Rev. B 7 (1973) 4363.

- [11.14] A. Ott, J. Appl. Phys. 42 (1971) 2999.
- [11.15] A. Ott, A. Lodding, D. Lazarus, Phys. Rev. 188 (1969) 1088.
- [11.16] A. Ott, Z. Naturforsch. 25a (1970) 1477.
- [11.17] J.N. Mundy, W.D. McFall, Phys. Rev. B 8 (1973) 5477.
- [11.18] A. Ott, Z. Naturforsch. 23a (1968) 2126.
- [11.19] J.N. Mundy, A. Ott, L. Löwenberg, A. Lodding, Z. Naturforsch. 22a (1967) 2113.
- [11.20] J.N. Mundy, A. Ott, L. Löwenberg, A. Lodding, Phys. Stat. Sol. 35 (1969) 359.

Further Investigations

- Li [11.21] R.A. Hultsch, R.G. Barnes, Phys. Rev. 125 (1962) 1832; NMR
- Li [11.22] A. Ott, J.N. Mundy, L. Löwenberg, A. Lodding, Z. Naturforsch. 23a (1968) 771.
- Li [11.23] J.M. Titman, B.M. Moores, J. Phys. F: Met. Phys. 2 (1972) 592; NMR
- Li [11.24] H. Ackermann, D. Dubbers, M. Grupp, P. Heitjans, R. Messer, H.J. Stöckmann, Phys. Stat. Sol. (b) **71** (1975) K91; β-NMR, precursor to Ref. [11.08].
- Au [11.25] A. Ott, Z. Naturforsch. 23a (1968) 1683; precursor to Ref. [11.14].
- Cu [11.26] A. Ott, J. Appl. Phys. 40 (1969) 2395.

References to Chapter 1.2

- [12.01] N.H. Nachtrieb, E. Catalano, J.A. Weil, J. Chem. Phys. 20 (1952) 1185.
- [12.02] D.F. Holcomb, R.E. Norberg, Phys. Rev. 98 (1955) 1074.
- [12.03] J.N. Mundy, Phys. Rev. B 3 (1971) 2431.
- [12.04] G. Brünger, O. Kanert, D. Wolf, Solid State Comm. 33 (1980) 569.
- [12.05] G. Neumann, V. Tölle, Phil. Mag. A 61 (1990) 563.
- [12.06] M. Neumann, P. Scharwaechter, A. Seeger, W. Frank, K. Freitag, M. Konuma, G. Majer, Defect and Diffusion Forum 143–147 (1997) 85.
- [12.07] L.W. Barr, F.A. Smith, in: DIMETA 82, Diffusion in Metals and Alloys, Eds. F.J. Kedves, D.L. Beke, Trans. Tech. Publ., Switzerland (1983), p. 325.
- [12.08] L.W. Barr, J.N. Mundy, F.A. Smith, Phil. Mag. 20 (1969) 389.
- [12.09] L.W. Barr, J.N. Mundy, F.A. Smith, Phil. Mag. 16 (1967) 1139.
- [12.10] A.N. Naumov, Fiz. Tverd. Tela 6 (1964) 2517; Soviet Phys. Solid State 6 (1965) 1997 (English transl.).

Further Investigations

- Na [12.11] R.A. Hultsch, R.G. Barnes, Phys. Rev. 125 (1962) 1832; NMR
- Na [12.12] L.W. Barr, J.N. Mundy, in: *Diffusion in Body-Centered Cubic Metals*, Eds. J.A. Wheeler, F.R. Winslow, American Society for Metals, Metals Park (1965), p. 171.
- Na [12.13] J.N. Mundy, L.W. Barr, F.A. Smith, Phil. Mag. 14 (1966) 785; precursor to Ref. [12.03].
- Na [12.14] M. Ait-Salem, T. Springer, A. Heidemannn, B. Alefeld, Phil. Mag. A 39 (1979) 797; QNS.
- Na [12.15] G. Göltz, A. Heidemann, H. Mehrer, A. Seeger, D. Wolf, Phil. Mag. A 41 (1980) 723; QNS.
- Au [12.16] L.W. Barr, J.N. Mundy, F.A. Smith, Phil. Mag. 14 (1966) 1299; precursor to Ref. [12.08].
- Li see Ref. [12.07].

- [13.01] J.N. Mundy, L.W. Barr, F.A. Smith, Phil. Mag. 15 (1967) 411.
- [13.02] J.N. Mundy, T.E. Miller, R.J. Porte, Phys. Rev. B 3 (1971) 2445.
- [13.03] F.A. Smith, L.W. Barr, Phil. Mag. 21 (1970) 633.
- [13.04] L.W. Barr, J.N. Mundy, F.A. Smith, Phil. Mag. 16 (1967) 1139.
- [13.05] F.A. Smith, L.W. Barr, Phil. Mag. 20 (1969) 205.

- [14.01] A. Kuper, H. Letaw, L. Slifkin, E. Sonder, C.T. Tomizuka, Phys. Rev. 96 (1954) 1224; erratum ibid. 98 (1955) 1870.
- [14.02] K. Monma, H. Suto, H. Oikawa, J. Japan Inst. Metals 28 (1964) 192.
- [14.03] M. Beyeler, Y. Adda, J. Physique 29 (1968) 345.
- [14.04] S.J. Rothman, N.L. Peterson, Phys. Stat. Sol. 35 (1969) 305.
- [14.05] U. El-Hanany, D. Zamir, Phys. Rev. 183 (1969).
- [14.06] H.G. Bowden, R.W. Balluffi, Phil. Mag. 19 (1969) 1001.
- [14.07] J. Kučera, B. Million, Metall. Trans. 1 (1970) 2599.
- [14.08] K.J. Anusavice, R.T. DeHoff, Metall. Trans. 3 (1972) 1279.
- [14.09] N.Q. Lam, S.J. Rothman, L.J. Nowicki, Phys. Stat. Sol. (a) 23 (1974) K35.
- [14.10] M. Weithase, F. Noack, Z. Physik 270 (1974) 319.
- [14.11] K. Maier, Phys. Stat. Sol. (a) 44 (1977) 567.
- [14.12] D. Bartdorff, G. Neumann, P. Reimers, Phil. Mag. A 38 (1978) 157.
- [14.13] G. Krautheim, A. Neidhardt, U. Reinhold, A. Zehe, Kristall und Technik 14 (1979) 1491.
- [14.14] S. Fujikawa, K. Hirano, in: Point Defects and Defect Interactions, Eds. J. Takamura, M. Doyama, K. Kiritani, The University of Tokyo Press, Tokyo (1982), p. 554; private communication to the authors.
- [14.15] S. Ushino, S. Fujikawa, K. Hirano, Res. Rep. Lab. Nucl. Sci., Tohoku Univ. 22 (1989) 204.
- [14.16] N.H. Nachtrieb, C.T. Tomizuka, L.G. Schulz, Report AFOSR-TR-60-23, The University of Chicago (1960).
- [14.17] G. Barreau, G. Brunel, G. Cizeron, C.R. Acad. Sci. Paris 270C (1970) 516.
- [14.18] V.A. Gorbachev, S.M. Klotsman, Ya.A. Rabovskiy, V.K. Talinskiy, A.N. Timofeyev, Fiz. Met. Metalloved. 34 (1972) 879; Phys. Met. Metallogr. 34 (4) (1972) 202 (English transl.).
- [14.19] G. Krautheim, A. Neidhardt, U. Reinhold, Phys. Stat. Sol. (a) 49 (1978) K125.
- [14.20] H. Oikawa, T. Obara, S. Karashima, Metall. Trans. 1 (1970) 2969.
- [14.21] R.L. Fogelson, Ya.A. Ugay, A.V. Pokoyev, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall. (3) (1973) 143.
- [14.22] S.M. Klotsman, Ya.A. Rabovskiy, V.K. Talinskiy, A.N. Timofeyev, Fiz. Met. Metalloved. 29 (1970) 803; Phys. Met. Metallogr. 29 (4) (1970) 127 (English transl.).
- [14.23] R.F. Sippel, Phys. Rev. 115 (1959) 1441.
- [14.24] V.A. Gorbachev, S.M. Klotsman, Ya.A. Rabovskiy, V.K. Talinskiy, A.N. Timofeyev, Fiz. Met. Metalloved. 44 (1977) 214; Phys. Met. Metallogr. 44 (1) (1977) 191 (English transl.).
- [14.25] S. Fujikawa, A. Seeger, Res. Rep. Nucl. Sci., Tohoku Univ. 20 (1987) 375.
- [14.26] S. Fujikawa, M. Werner, H. Mehrer, A. Seeger, Mater. Sci. Forum 15-18 (1987) 431.
- [14.27] S. Fujikawa, H. Mehrer, in: Application of Ion Beams in Materials Science, Hosei Univ. Press, Tokyo (1988), p. 265.
- [14.28] R.L. Fogelson, Ya.A. Ugay, A.V. Pokoyev, I.A. Akimova, V.D. Kretinin, Fiz. Met. Metalloved. 35 (1973) 1307; Phys. Met. Metallogr. 35 (6) (1973) 176 (English transl.).
- [14.29] A. Almazouzi, M.P. Macht, V. Naundorf, G. Neumann, Phys. Stat. Sol. (a) 133 (1992) 305.
- [14.30] T. Hirone, N. Kunitomi, M. Sakamoto, H. Yamaki, J. Phys. Soc. Japan 13 (1958) 838.
- [14.31] K. Hoshino, Y. Iijima, K. Hirano, in: Point Defects and Defect Interactions, Eds. J. Takamura, M. Doyama, K. Kiritani, The University of Tokyo Press, Tokyo (1982), p. 562.
- [14.32] C.A. Mackliet, Phys. Rev. 109 (1958) 1964.
- [14.33] R. Döhl, M.P. Macht, V. Naundorf, Phys. Stat. Sol. (a) 86 (1984) 603.
- [14.34] G. Neumann, V. Tölle, Phil. Mag. A 57 (1988) 319.
- [14.35] K. Hoshino, Y. Iijima, K. Hirano, Metall. Trans. 8A (1977) 469.
- [14.36] H.J. Rockosch, Ch. Herzig, Phys. Stat. Sol. (b) 119 (1983) 199.
- [14.37] A. Almazouzi, M.P. Macht, V. Naundorf, G. Neumann, Phys. Stat. Sol. (a) 167 (1998) 15.
- [14.38] J.G. Mullen, Phys. Rev. 121 (1961) 1649.
- [14.39] G. Barreau, G. Brunel, G. Cizeron, C.R. Acad. Sci. Paris 272C (1971) 618.
- [14.40] J. Bernardini, J. Cabané, Acta Metall. 21 (1973) 1561.
- [14.41] S.K. Sen, M.B. Dutt, A.K. Barua, Phys. Stat. Sol. (a) 45 (1978) 657.
- [14.42] A. Almazouzi, M.P. Macht, V. Naundorf, G. Neumann, Phys. Rev. B 54 (1996) 857.
- [14.43] S.M. Klotsman, Ya.A. Rabovskiy, V.K. Talinskiy, A.N. Timofeyev, Fiz. Met. Metalloved. 31 (1971) 429; Phys. Met. Metallogr. 31 (2) (1971) 214 (English transl.).

- [14.44] R.L. Fogelson, Ya.A. Ugay, I.A. Akimova, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall. (1) (1977) 172.
- [14.45] F.D. Reinke, C.E. Dahlstrom, Phil. Mag. 22 (1970) 57.
- [14.46] G. Krautheim, A. Neidhardt, U. Reinhold, Kristall und Technik 13 (1978) 1335.
- [14.47] W. Gust, C. Ostertag, B. Predel, U. Roll, A. Lodding, H. Odelius, Phil. Mag. A 47 (1983) 395.
- [14.48] S.M. Klotsman, Ya.A. Rabovskiy, V.K. Talinskiy, A.N. Timofeyev, Fiz. Met. Metalloved. 45 (1978) 1104; Phys. Met. Metallogr. 45 (5) (1978) 181 (English transl.).
- [14.49] R.L. Fogelson, Ya.A. Ugay, A.V. Pokoyev, Izv. Vyssh. Uchebn. Zaved., Chern. Metall. (9) (1973) 136.
- [14.50] K. Maier, R. Kirchheim, G. Tölg, Microchim. Acta 8(Suppl.) (1979) 125.
- [14.51] M.C. Saxena, B.D. Sharma, Trans. Indian Inst. Metals 23 (1970) 16.
- [14.52] A. Ikushima, J. Phys. Soc. Japan 14 (1959) 1636.
- [14.53] R.L. Fogelson, Ya.A. Ugay, A.V. Pokoyev, I.A. Akimova, Fiz. Tverd. Tela 13 (1971) 1028; Soviet Phys. Solid State 13 (1971) 856 (English transl.).
- [14.54] P. Spindler, K. Nachtrieb, Phys. Stat. Sol. (a) 37 (1976) 449; see also Metall. Trans. 9A (1978) 763.
- [14.55] N.L. Peterson, Phys. Rev. 132 (1963) 2471.
- [14.56] R.L. Fogelson, Ya.A. Ugay, A.V. Pokoyev, Fiz. Met. Metalloved. 33 (1972) 1102; Phys. Met. Metallogr. 33 (5) (1972) 194 (English transl.).
- [14.57] G. Neumann, M. Pfundstein, P. Reimers, Phil. Mag. A 45 (1982) 499.
- [14.58] R.L. Fogelson, Ya.A. Ugay, A.V. Pokoyev, Fiz. Met. Metalloved. 34 (1972) 1104; Phys. Met. Metallogr. 34 (5) (1972) 198 (English transl.).
- [14.59] F. Moya, G.E. Moya-Goutier, F. Cabané-Brouty, Phys. Stat. Sol. 35 (1969) 893.
- [14.60] S.J. Wang, H.J. Grabke, Z. Metallk. 61 (1970) 597.
- [14.61] M.C. Inman, L.W. Barr, Acta Metall. 8 (1960) 112.
- [14.62] V.A. Gorbachev, S.M. Klotsman, Ya.A. Rabovskiy, V.K. Talinskiy, A.N. Timofeyev, Fiz. Met. Metalloved. 35 (1973) 889; Phys. Met. Metallogr. 35 (4) (1973) 226 (English transl.).
- [14.63] G. Krautheim, A. Neidhardt, U. Reinhold, A. Zehe, Phys. Lett. 72A (1979) 181.
- [14.64] G. Rummel, H. Mehrer, Defect and Diffusion Forum 66–69 (1989) 453; G. Rummel, Diploma work, Univ. Münster (1987).
- [14.65] Y. Minamino, T. Yamane, T. Kimura, J. Mater. Sci. Lett. 7 (1988) 365.
- [14.66] Y. Iijima, Y. Wakabayashi, T. Itoga, K. Hirano, Mater. Trans. Japan Inst. Metals 32 (1991) 457.
- [14.67] R.L. Fogelson, Ya.A. Ugay, I.A. Akimova, Fiz. Met. Metalloved. 37 (1974) 1107; Phys. Met. Metallogr. 37 (5) (1974) 201 (English transl.).
- [14.68] Y. Iijima, K. Hoshino, K. Hirano, Metall. Trans. 8A (1977) 997.
- [14.69] S. Komura, N. Kunitomi, J. Phys. Soc. Japan 18(Suppl II) (1963) 208.
- [14.70] J. Hino, C.T. Tomizuka, C.A. Wert, Acta Metall. 5 (1957) 41.
- [14.71] N.L. Peterson, S.J. Rothman, Phys. Rev. 154 (1967) 558.
- [14.72] S.M. Klotsman, Ya.A. Rabovskiy, V.K. Talinskiy, A.N. Timofeyev, Fiz. Met. Metalloved. 28 (1969) 1025; Phys. Met. Metallogr. 28 (6) (1969) 66 (English transl.).
- [14.73] M.B. Dutt, S.K. Sen, Japan J. Appl. Phys. 18 (1979) 1025.

Further Investigations

- Cu [14.74] W.L. Mercer, *Thesis*, Univ. of Leeds (1955); from D.B. Butrymowicz, J.R. Manning, M.E. Read, J. Chem. Ref. Data **3** (1974) 527.
- Cu [14.75] K. Maier, C. Bassani, W. Schüle, Phys. Lett. 44A (1973) 539; precursor to Ref. [14.11].
- Al [14.76] J. Hirvonen, J. Appl. Phys. 52 (1981) 6143; Al implanted, NRA
- Au [14.77] A.B. Martin, R.D. Johnson, F. Asaro, J. Appl. Phys. 25 (1954) 364.
- Au [14.78] T.F. Archbold, W.H. King, Trans. AIME 233 (1965) 839.
- Au [14.79] A. Chatterjee, D.J. Fabian, Acta Metall. 17 (1969) 1141.
- Co [14.80] M. Sakamoto, J. Phys. Soc. Japan 13 (1958) 845.
- Co [14.81] S. Badrinarayanan, H.B. Mathur, Indian J. Pure Appl. Phys. 10 (1972) 512.
- Co [14.82] F.J. Bruni, J.W. Christian, Acta Metall. 21 (1973) 385; EPMA.
- Co [14.83] M.P. Macht, V. Naundorf, R. Döhl, in: DIMETA 82, Diffusion in Metals and Alloys, Eds. F.J. Kedves, D.L. Beke, Trans. Tech. Publ., Switzerland (1983), p. 516; precursor to Ref. [14.33].

- Cr [14.84] W.L. Seitz, *Thesis*, Univ. of Arizona (1963); from D.B. Butrymowicz, J.R. Manning, M.E. Read, J. Chem. Ref. Data 4 (1975) 177
- Cr see Ref. [14.39].
- Cr [14.85] M.C. Saxena, Trans. Indian Inst. Metals 24 (4) (1971) 56.
- Fe [14.86] Y. Tomono, A. Ikushima, J. Phys. Soc. Japan 13 (1958) 762.
- Fe [14.87] G. Salje, M. Feller-Kniepmeier, J. Appl. Phys. 49 (1978) 229; EPMA.
- Fe [14.88] K.H. Steinmetz, G. Vogl, W. Petry, K. Schroeder, Phys. Rev. B 34 (1986) 107; QMS.
- Mn [14.89] A. Ikushima, J. Phys. Soc. Japan 14 (1959) 111.
- Ni [14.90] K.J. Anusavice, J.J. Pinajian, H. Oikawa, R.T. DeHoff, Trans. AIME 242 (1968) 2027; precursor to Ref. [14.08].
- Ni [14.91] G. Brunel, G. Cizeron, P. Lacombe, C.R. Acad. Sci. Paris 270C (1970) 393.
- Ni [14.92] T.J. Renouf, Phil. Mag. 22 (1970) 359; autoradiography.
- Ni [14.93] J.L. Seran, Acta Metall. 24 (1976) 627; ⁵⁸Ni, ⁶⁴Ni (stable isotopes), SIMS analysis.
- Ni [14.94] M.B. Dutt, S.K. Sen, A.K. Barua, Phys. Stat. Sol. (a) **56** (1979) 149; resistometric method. Ni see Ref. [14.83]; precursor to Ref. [14.42].
- S [14.95] F. Moya, F. Cabané-Brouty, C.R. Acad. Sci. Paris 264C (1967) 1543; precursor to Ref. [14.59].
- S [14.96] J. Ladet, B. Augray, F. Moya, Met. Sci. 12 (1978) 195.
- Sb [14.97] T.J. Renouf, Phil. Mag. 9 (1964) 781; autoradiography.
- Sn [14.98] S.D. Gertsriken, A.L. Revo, Ukr. Fiz. Zh. 6 (1961) 398.
- Sn [14.99] S.K. Sen, M.B. Dutt, A.K. Barua, Phys. Stat. Sol. (a) **32** (1975) 345; resistometric method.
- Sn [14.100] K. Hoshino, Y. Iijima, K. Hirano, Trans. Japan Inst. Metals 21 (1980) 674; EPMA.
- Zn [14.101] R.T. DeHoff, A.G. Guy, K.J. Anusavice, Trans. AIME 236 (1966) 881; precursor to Ref. [14.08].
- Zn [14.102] H. Oikawa, K.J. Anusavice, R.T. DeHoff, A.G. Guy, Trans. ASM (Trans. Quart.) 61 (1968) 354; precursor to Ref. [14.08].
- Zn [14.103] J. Kučera, B. Million, J. Plšková, Phys. Stat. Sol. (a) 11 (1972) 361.

- [15.01] C.T. Tomizuka, E. Sonder, Phys. Rev. 103 (1956) 1182.
- [15.02] V.N. Kaygorodov, S.M. Klotsman, A.N. Timofeyev, I.Sh. Trakhtenberg, Fiz. Met. Metalloved. 25 (1968) 910; Phys. Met. Metallogr. 25 (5) (1972) 150 (English transl.).
- [15.03] S.J. Rothman, N.L. Peterson, J.T. Robinson, Phys. Stat. Sol. 39 (1970) 635.
- [15.04] P. Reimers, D. Bartdorff, Phys. Stat. Sol. (b) 50 (1972) 305.
- [15.05] N.Q. Lam, S.J. Rothman, H. Mehrer, L.J. Nowicki, Phys. Stat. Sol. (b) 57 (1973) 225.
- [15.06] J.G.E.M. Backus, H. Bakker, H. Mehrer, Phys. Stat. Sol. (b) 64 (1974) 151.
- [15.07] J. Bihr, H. Mehrer, K. Maier, Phys. Stat. Sol. (a) 50 (1978) 171.
- [15.08] G. Rein, H. Mehrer, Phil. Mag. A 45 (1982) 467.
- [15.09] H. Mehrer, F. Hutter, in: Point Defects and Defect Interactions in Metals, Eds. J. Takamura, M. Doyama, M. Kiritani, Univ. of Tokyo Press, Tokyo (1982), p. 558.
- [15.10] G. Neumann, V. Tölle, Phil. Mag. A 54 (1986) 619.
- [15.11] R.L. Fogelson, Ya.A. Ugay, I.A. Akimova, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall. (2) (1975) 142.
- [15.12] Th. Hehenkamp, R. Wübbenhorst, Z. Metallk. 66 (1975) 275.
- [15.13] F.E. Jaumot, A. Sawatzky, J. Appl. Phys. 27 (1956) 1186.
- [15.14] H.W. Mead, C.E. Birchenall, Trans. AIME 209 (1957) 874.
- [15.15] W.C. Mallard, A.B. Gardner, R.F. Bass, L.M. Slifkin, Phys. Rev. 129 (1963) 617.
- [15.16] C.T. Tomizuka, L.M. Slifkin, Phys. Rev. 96 (1954) 610.
- [15.17] V.N. Kaygorodov, S.M. Klotsman, A.N. Timofeyev, I.Sh. Trakhtenberg, Fiz. Met. Metalloved. 27 (1969). 1048; Phys. Met. Metallogr. 27 (6) (1969) 91 (English transl.).
- [15.18] T.S. Lundy, R.A. Padgett, Trans. AIME 242 (1968) 1897.
- [15.19] J. Bernardini, J. Cabané, Acta Metall. 21 (1973) 1561.
- [15.20] F. Makuta, Y. Iijima, K. Hirano, Trans. Japan Inst. Metals 20 (1979) 551.
- [15.21] G. Neumann, M. Pfundstein, P. Reimers, Phys. Stat. Sol. (a) 64 (1981) 225.

- [15.22] A. Sawatzky, F.E. Jaumot, Trans. AIME 209 (1957) 1207.
- [15.23] P. Dorner, W. Gust, M.B. Hintz, A. Lodding, H. Odelius, P. Predel, Acta Metall. 28 (1980) 291.
- [15.24] J.G. Mullen, Phys. Rev. 121 (1961) 1649.
- [15.25] S. Bharati, S. Badrinarayanan, A.P.B. Sinha, Phys. Stat. Sol. (a) 43 (1977) 653.
- [15.26] R.L. Fogelson, Ya.A. Ugay, I.A. Akimova, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall. (1) (1977) 172.
- [15.27] R.E. Hoffmann, Acta Metall. 6 (1958) 95.
- [15.28] V.N. Kaygorodov, Ya.A. Rabovskiy, V.K. Talinskiy, Fiz. Met. Metalloved. 24 (1967) 117; Phys. Met. Metallogr. 24 (1) (1967) 115 (English transl.).
- [15.29] H. Mehrer, D. Weiler, Z. Metallk. 75 (1984) 203.
- [15.30] R.S. Barclay, P. Niessen, Trans. ASM (Trans. Quart.) 62 (1969) 721.
- [15.31] T. Hirone, Sh. Miura, T. Suzuoka, J. Phys. Soc. Japan 16 (1961) 2456.
- [15.32] J. Ladet, J. Bernardini, F. Cabané-Brouty, Scr. Metall. 10 (1976) 195.
- [15.33] S.K. Sen, M.B. Dutt, A.K. Barua, Phys. Stat. Sol. (a) 45 (1978) 657.
- [15.34] R.E. Hoffmann, D. Turnbull, E.W. Hart, Acta Metall. 3 (1955) 417.
- [15.35] N.L. Peterson, Phys. Rev. 132 (1963) 2471.
- [15.36] R.L. Fogelson, Ya.A. Ugay, I.A. Akimova, Fiz. Met. Metalloved. 39 (1975) 447; Phys. Met. Metallogr. 39 (2) (1975) 212 (English transl.).
- [15.37] G. Neumann, M. Pfundstein, P. Reimers, Phil. Mag. A 45 (1982) 499.
- [15.38] C.B. Pierce, D. Lazarus, Phys. Rev. 114 (1959) 686.
- [15.39] N. Barbouth, J. Oudar, J. Cabané, C.R. Acad. Sci. Paris 264C (1967) 1029.
- [15.40] S.J. Wang, H.J. Grabke, Z. Metallk. 61 (1970) 597.
- [15.41] E. Sonder, L.M. Slifkin, C.T. Tomizuka, Phys. Rev. 93 (1954) 970.
- [15.42] V.N. Kaygorodov, Ya.A. Rabovskiy, V.K. Talinskiy, Fiz. Met. Metalloved. 24 (1967) 661; Phys. Met. Metallogr. 24 (4) (1967) 78 (English transl.).
- [15.43] H. Hagenschulte, Th. Heumann, J. Phys. Condens. Matter 1 (1989) 3601.
- [15.44] G. Rummel, H. Mehrer, Defect and Diffusion Forum 66–69 (1989) 453; G. Rummel, Diploma work, Univ. Münster (1987).
- [15.45] V.N. Kaygorodov, S.M. Klotsman, A.N. Timofeyev, I.Sh. Trakhtenberg, Fiz. Met. Metalloved. 28 (1969) 128; Phys. Met. Metallogr. 28 (1) (1969) 128 (English transl.).
- [15.46] J. Geise, H. Mehrer, Ch. Herzig, G. Weyer, Mater. Sci. Forum 15-18 (1987) 443.
- [15.47] A. Sawatzky, F.E. Jaumot, Phys. Rev. 100 (1955) 1627.
- [15.48] S.J. Rothman, N.L. Peterson, Phys. Rev. 154 (1967) 552.

Further Investigations

- Ag [15.49] R.E. Hoffmann, D. Turnbull, E.W. Hart, J. Appl. Phys. 22 (1951) 634; Erratum ibid. 22 (1951) 984.
- Ag [15.50] L. Slifkin, D. Lazarus, T. Tomizuka, J. Appl. Phys. 23 (1952) 1032; precursor to Ref. [15.01].
- Ag [15.51] A.A. Zhukhovitskii, V.A. Geodyakin, Dokl. Akad. Nauk. 102 (1955) 301.
- Ag [15.52] N.H. Nachtrieb, J. Petit, J. Wehrenberg, J. Chem. Phys. 26 (1957) 106.
- Ag [15.53] V.A. Geodakyan, A.A. Zhukhovitskii, Zh. Fiz. Khim. 31 (1957) 2295.
- Ag [15.54] M.E. Yanitskaya, A.A. Zhukhovitskii, S.Z. Bokshtein, Dokl. Akad. Nauk. (112) (1957) 720.
- Ag [15.55] A.V. Savitskii, Fiz. Met. Metalloved. **10** (1960) 564; Phys. Met. Metallogr. **10** (4) (1960) 71 (English transl.).
- Ag [15.56] P. Reimers, Metall. 22 (1968) 577.
- Ag [15.57] A. Brun, J. Bernardini, J. Cabané, Scr. Metall. 2 (1968) 515.
- Ag [15.58] C.T. Lai, H.M. Morrison, Can. J. Phys. 48 (1970) 1548.
- Ag see Ref. [15.19].
- Cd [15.59] S. Bharati, A.P.B. Sinha, Phys. Stat. Sol. (a) 44 (1977) 391.
- Co [15.60] T. Hirone, H. Yamamoto, J. Phys. Soc. Japan 16 (1961) 455.
- Co [15.61] J. Bernardini, A. Combe-Brun, J. Cabané, Scr. Metall. 4 (1970) 985; precursor to Ref. [15.19].
- Co [15.62] S. Badrinarayanan, H.B. Mathur, Indian J. Chem. 11 (1973) 465.
- Fe [15.63] J. Bernardini, A. Combe-Brun, J. Cabané, C.R. Acad. Sci. Paris **269C** (1969) 287; Scr. Metall. **3** (1969) 591; precursor to Ref. [15.19].
- Pb [15.64] S.K. Sen, M.B. Dutt, A.K. Barua, Phys. Stat. Sol. (a) 32 (1975) 345; resistometric method.

- S [15.65] J. Ladet, B. Augray, F. Moya, Met. Sci. 12 (1978) 195.
- Sb [15.66] L. Slifkin, D. Lazarus, T. Tomizuka, J. Appl. Phys. 23 (1952) 1405; precursor to Ref. [15.41].
- Sn [15.67] P. Gas, J. Bernardini, Scr. Metall. 12 (1978) 367.
- Zn [15.68] M.B. Dutt, S.K. Sen, Japan J. Appl. Phys. 18 (1979) 1025.

References to Chapter 1.6

- [16.01] S.M. Makin, A.H. Rowe, A.D. Le Claire, Proc. Phys. Soc. B 70 (1957) 545.
- [16.02] D. Duhl, K. Hirano, M. Cohen, Acta Metall. 11 (1963) 1.
- [16.03] H.M. Gilder, D. Lazarus, J. Phys. Chem. Sol. 26 (1965) 2081.
- [16.04] A. Gainotti, L. Zecchina, Nuovo Cimento 40 (1965) 295.
- [16.05] M. Beyeler, Y. Adda, J. Physique 29 (1968) 345.
- [16.06] W. Rupp, U. Ermert, R. Sizmann, Phys. Stat. Sol. 33 (1969) 509.
- [16.07] K. Dreyer, Ch. Herzig, Th. Heumann, in: Atomic Transport in Solids and Liquids, Eds. A. Lodding, T. Lagerwall, Verlag der Zeitschrift für Naturforschung, Tübingen (1971), p. 237.
- [16.08] Ch. Herzig, H. Eckseler, W. Bussmann, D. Cardis, J. Nucl. Mater. 69/70 (1978) 61.
- [16.09] G. Rein, H. Mehrer, Phil. Mag. A 45 (1982) 467.
- [16.10] M. Werner, H. Mehrer, in: DIMETA 82, Diffusion in Metals and Alloys, Eds. F.J. Kedves, D.L. Beke, Trans. Tech. Publ., Switzerland (1983), p. 393.
- [16.11] G. Neumann, V. Tölle, Phil. Mag. A 54 (1986) 619.
- [16.12] W.C. Mallard, A.B. Gardner, R.F. Bass, L.M. Slifkin, Phys. Rev. 129 (1963) 617.
- [16.13] S.M. Klotsman, N.K. Arkhipova, A.N. Timofeyev, I.Sh. Trakhtenberg, Fiz. Met. Metalloved. 20 (1965) 390; Phys. Met. Metallogr. 20 (3) (1965) 70 (English transl.).
- [16.14] Ch. Herzig, D. Wolter, Z. Metallk. 65 (1974) 273.
- [16.15] R.L. Fogelson, N.N. Trofimova, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall. (4) (1978) 152.
- [16.16] R.L. Fogelson, N.N. Kazimirov, I.V. Soshnikova, Fiz. Met. Metalloved. 43 (1977) 1105; Phys. Met. Metallogr. 43 (5) (1977) 185 (English transl.).
- [16.17] K. Richter, Doctoral Thesis, TU Bergakademie, Freiberg (1998); see also K. Richter, D. Bergner, A. Müller, C. Kirbach, A. Plötsch, S. Lorenz, Ch. Raub, D. Ott, Defect and Diffusion Forum 143–147 (1997) 103; 109.
- [16.18] A. Vignes, J.P. Haeussler, Mém. Sci. Rev. Métall. 63 (1966) 1091; C.R. Acad. Sci. Paris 263C (1966) 1504.
- [16.19] D. Cardis, Doctoral Thesis, Univ. Münster (1977).
- [16.20] A.J. Mortlock, A.H. Rowe, Phil. Mag. 11 (1965) 1157.
- [16.21] J.E. Reynolds, B.L. Averbach, M. Cohen, Acta Metall. 5 (1957) 29.
- [16.22] R.L. Fogelson, Ya.A. Ugay, I.A. Akimova, Fiz. Met. Metalloved. 41 (1976) 653; Phys. Met. Metallogr. 41 (3) (1976) 180 (English transl.).
- [16.23] R.L. Fogelson, I.M. Voronina, T.I. Somova, Fiz. Met. Metalloved. 46 (1978) 190; Phys. Met. Metallogr. 46 (1) (1978) 163 (English transl.).
- [16.24] Ch. Herzig, Th. Heumann, Z. Naturforsch. 27a (1972) 613.
- [16.25] Ch. Herzig, Th. Heumann, Z. Naturforsch. 27a (1972) 1109.
- [16.26] G. Rummel, H. Mehrer, Defect and Diffusion Forum 66–69 (1989) 453; G. Rummel, Diploma work, Univ. Münster (1987).

Further Investigations

- Au [16.27] B. Okkerse, Phys. Rev. 103 (1956) 1246.
- Au [16.28] H.W. Mead, C.E. Birchenall, Trans. AIME 209 (1957) 874.
- Au [16.29] J.L. Whitton, G.V. Kidson, Can. J. Phys. 46 (1968) 2589; low temperature investigations.
- Au [16.30] H.M. Morrison, V.L.S. Yuen, Can. J. Phys. 49 (1971) 2704; low temperature investigations.
- Pt [16.31] A.J. Mortlock, A.H. Rowe, A.D. Le Claire, Phil. Mag. 5 (1960) 803.
- Sn see Ref. [16.07]; precursor to Ref. [16.25].

CHAPTER 2

Self-Diffusion and Impurity Diffusion in Group II Metals

Contents	Tables	
	2.1. Beryllium (Be)	100
	2.2. Magnesium (Mg)	102
	2.3. Calcium (Ca)	104
	2.4. Zinc (Zn)	105
	2.5. Cadmium (Cd)	107
	Figures	
	Beryllium	109
	Magnesium	110
	Calcium	112
	Zinc	113
	Cadmium	116
	References	118

For **strontium** (Sr), **barium** (Ba), **radium** (Ra) and **mercury** (Hg) no data are available. Most of the group II metals have a hexagonal lattice structure. The respective c/a axis ratios deviate from the ideal value $\sqrt{8/3} \approx 1.633$ for the hexagonal closed packed (hcp) structure (see Table 2.0). The deviation of c/a from 1.633 leads to an anisotropy of the diffusivity.

Frequently, the single crystals used in the diffusion measurements deviate from the ideal crystallographic direction by an angle θ . In those cases D_{\perp} and $D_{//}$ are calculated according to Eq. (02.18), using two crystals with different θ .

In Table 2.0 lattice structure, lattice constants c and a, c/a ratio and melting temperature of group II metals are listed.

Metal	Ве	Mg	Ca	Zn	Cd
Structure	hcp	hcp	hcp ¹	hcp	hcp
<i>c</i> (nm)	3.58	5.21	6.52	4.95	5.62
<i>a</i> (nm)	2.27	3.21	3.98	2.66	2.99
c/a	1.58	1.62	1.64	1.86	1.88
$T_{\rm m}$ (K)	1,560	922	1,116	693	594

Table 2.0 Lattice structure, lattice constants c and a, c/a ratio and melting temperature T_m

 1 At T > 723 K.

118)
page
see
ences,

100

berylli
. <u></u>
iffusion
ō
ble 2

Table	2.1 Diffus	ion in bery	llium							(Re	eferenc	es, see page 118)
Ξ	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(II)	(12)
×	D ⁰ (10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (kJmole ⁻¹)	$D(T_m)$ (10 ⁻¹² m ² s ⁻¹)	au-range (K) $(\overline{T}/T_{\rm m})$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Self-i Be	tiffusion 1 0.52 // 0.62	1.631 (157.4) 1.709 (165.0)	280 190	836-1,342 (0.70) 841-1,321 (0.69)	16 (7T) 12 (7T)	sc ⁶¹	⁷ Be, dried-on from salt solution ⁷³ ; residual	1 example (log dI/dx vs. x ² , slight NSE)	Marked data scatter		21.01	Dupouy (1966) [21.01]
Be	0.36	1.665 (160.8)	150	923–1,473 (0.77)	14 (7T)	pc 4N	activity ⁷ Be, vapour deposition of ⁷ Be Cl_{2}^{73} ; residual	5 examples ⁸⁴			I	Pavlinov (1968) [21.02]
Be	1	I		966	2 ⁵¹	sc ⁶¹	activity 7Be ⁷² ; residual activity	No	$\begin{array}{l} D_{\perp} = 1.6 \times 10^{-13} \\ \mathrm{m}^2 \mathrm{s}^{-1}, \\ D_{//} = 8.3 \times 10^{-14} \\ \mathrm{m}^2 \mathrm{s}^{-1} \end{array}$	$\Delta V/V_0 = 1.2;$ Al in Al	21.01	Beyeler (1970) [21.03]
Impu Al	rity diffusion 1.0	1.743 (168.3)	230	1,068–1,356 (0.78)	Ŋ	pc 3N	²⁶ Al, dried-on from salt solution; residual activity	No ⁸¹	Pronounced data scatter	c _s = 0.13 · exp (-0.55 eV/kT)	I	Gladkov (1976) [21.04]
Ag	6.2 ⊥ 1.76 // 0.43	2.00 (193.0) 1.873 (180.9) 1.704 1.704	215 155 134	923-1,183 929-1,170 (0.67) 929-1,170	രഗര	pc 2N75 sc	¹¹⁰ Ac vapour deposition; residual activity	No	Pronounced data scatter	Fe in Be	21.02	Naik (1966) [21.05]
Чч	⊥ (9.0) ⁺ // (41) ⁺	$(2.327)^+$ (2.24.7) $(2.50)^+$ (2.41.4)		938, 1,053 (0.64)	6 (2T)	sc, pc (10 µm) 3N5	Au, implanted; RBS	I	+Present calculation; $D_{\rm Pc}$ is 20 and 30 times larger than D_{\perp} and	Ag in Be at 1,053K	1	Myers (1975) [21.06]
Ce	(310)	(3.14) (304)	I	1,223-1,528 (0.88)	6	pc 2N7	¹⁴¹ Ce, dried-on from salt solution; residual activity	No	$D_{1/1}$, respectively Considerable data scatter, abnormal increase of D at $T > 1,500$ K	Nb, V in Be; c _s = 16–45 ppma	1	Ananin (1976) [21.07]

Gladkov (1979) [21.08]	Dupouy (1965) [21.09]	Myers (1974) [21.10]		Donze (1962) [21.11]	Naik (1966) [21.05]	Ananin (1976) [21.07]	Ananin (1970) [21.12]	Ananin (1976) [21.07]
I	21.02	21.02		I	I	I	I	I
					Ag in Be	Ce, V in Be; $c_s = 150.390$ ppma at $T =$ 1,173–1,423 K	Ni in Be(Ni)	Ce, Nb in Be
Pronounced data scatter	*Cu activated after sectioning	*Data not used because of surface oxidation ^x Fit together	with the data of [21.09]	X = 0.05, 0.1, 0.2		Considerable data scatter, abnormal increase of D at $T >1,500$ K	Considerable data scatter, abnormal increase of D at $T > 1,500$ K	Considerable data scatter
No	No	2 examples $(c - x)$			No	No	No	No
⁵⁷ Co, dried-on from solution; residual activity	⁶⁴ Cu*, vapour deposition; residual activity	Cu, vapour deposition*; ion implantation RBS		Fe, EPMA Be/ Be(X% Fe) (Matano)	⁵⁹ Fe, vapour deposition; residual activity	⁹⁵ Nb, dried-on from salt solution; residual activity	⁶³ Ni, dried-on from salt solution; residual activity	⁴⁸ V, dried-on from salt solution; residual activity
pc 2N8	sc ⁶¹	sc ⁶¹		pc	pc 2N75	pc 2N7	pc 2N7	pc 2N7
9	പവ	(9) 7 (10)	(8)	10 (4T)	œ	~	5 ⁵¹	Q
1,253–1,493 (0.88)	972–1,273 (0.72)	673–1,073* 693–913 (693–1,273)	(693–1,273)	1,073–1,373 (0.78)	973–1,349 (0.74)	1,318–1,538 (0.92)	1,123-1,523 (0.85)	1,173–1,423 (0.83)
0.66	13 10.4	14 ^x	8.6 [×]	3.7	2.9	I	I	I
2.975 (287)	1.990 (192.2) 2.147 (207.3)		2.056 [×] (198.5)	2.298 (221.9)	2.246 (216.9)	(3.73) (360)	(2.515) (242.8)	(2.515 (242.8)
27	L 0.35	- - L 0.416 ^x	// 0.381 [×]	1.0	0.53	(2×10^4)	(0.2)	(29)
C	Cu	Cu		Fe	Fe	Ŋ	ïZ	>

Table	2.2 Diffusic	on in magn	esium							R)	teferenc	es, see page 118)
(L)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(II)	(12)
×	D ⁰ (10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (kJ mole ⁻¹)	$D(T_m)$ (10 ⁻¹² m ² s ⁻¹)	T-range (K) (\overline{T}/T_m)	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Self-a	liffusion											
Mg	(1.0)	1.388		741-900	ß	pc	²⁸ Mg, vapour	All	⁺ Present		I	Shewmon (1954)
)	1.2 ⁺	(134.0)	3.1+	(0.89)	(3T)	3N	deposition ⁷³ ; lathe (50 μm		recalculation			[22.01]
Mg	μ 1.5	1.409	3.0	741-849	4	sc*	²⁸ Mg, vapour	АІІ	*Two crystals		I	Shewmon (1956)
p		(136.1)		(0.86)		3N5	deposition ⁷³ ;		deviating 7° and			[22.02]
	// 1.0	1.396 (134 8)	2.3	740–908 (0 80)	9		lathe (40 µm		78°, respectively,			
Μσ	1 (1 75)	(1) 1 (1)		775-906	6	SC	²⁸ Mo dried-on	2 examples	+Present		22.01	Combronde
9	1.68+	(138.2)	2.5^{+}	(0.91)	`	4N	from salt	m during =	recalculation			(1971) [22.03]
	// (1.78)	1.440		775-906	10		solution ⁷³ ;					
	1.64^{+}	(139.0)	2.2^{+}	(0.91)			grinder and					
							residual activity					
ndmI	wity diffusion											
Ag	0.34	1.236	5.9	750-894	7	pc	¹¹⁰ Ag; grinder and			In, Zn in Mg	I	Lal (1967) [22.04]
		(119.3)		(0.89)	(ET)	~3N	residual activity					
Ag	L (17.9)	1.535		752–912	7	sc	¹¹⁰ Ag, vapour	2 examples	⁺ Present	Cd, In, Sb, Sn	22.02	Combronde
	17.0^{+}	(148.2)	6.9+	(06.0)	I	4N	deposition ⁷³ ;		recalculation	in Mg		(1972) [22.05]
	// (3.62)	1.379			2		grinder and					
	3.47^{+}	(133.2)	10.0^{+}		+	5	residual activity	10	1			
Be	(8.06)	1.626	+	773-873		pc ⁰¹	Be, Mg/Mg	4 examples ⁵¹	⁺ Present	$c_{\rm s} = (130-250)$	22.03	Yerko (1966)
	9.6	(157.0)	0.72	(0.89)	(19)		(0.2% Be) diffusion couple;	(x - z)	recalculation $*p = 0.60 \text{ MPa}$	ppma		[22.06]
							spectral analysis		$(\Delta V/V_0 \approx 0)$			
Cd	⊥ 0.46	1.375	1.40	733-899	8	SC	¹⁰⁹ Cd, dried-on	No		Ag, In, Sb, Sn	22.02	Combronde
		(132.7)		(0.88)		4IN	from salt			an Mg		[60.22] (2761)
	// 1.29	1.457 (140 7)	1.39		9	pc 4N	solution' ³ ; grinder and residual					
					7		activity; EPMA at					
C	450	1.82	5.0	823-871	4	pc ⁶¹	Ce, dissolution of			La in Mg	I	Lal (1966) [22.07]
		(175.8)		(0.92)			precipitates in					
							diftusion couple; EPMA					

Pavlinov (1968) [22.08]	Stloukal (2003) [22.09]		Lal (1967) [22.04]	Combronde	(1972) [22.05]		Lal (1966) [22.07]		Pavlinov (1968)	[22.08]	Combronde	(1972) [22.05]					Combronde (1972) [22.05]			Pavlinov (1968)	[22.08]	Lal (1967) [22.04]		Čermák (2006)	[22.10]				
I	22.03		I	22.04			I		I		22.04						22.03			I		22.05		22.05					22.05
Ni, U in Mg, Ca, Fe, Ni, U in Ca	gb diffusion		Ag, Zn in Mg	Ag, Cd, Sb, Sn	in Mg		Ce in Mg)	Fe, U in Mg,	Ca, Fe, Ni, U in Ca	Ag, Cd, In, Sn in	Mg)			5	Ag, Cd, In, Sb in Mo	0		Fe, Ni in Mg,	Ca, Fe, Ni, U in Co	ш Са Аg, In in Mg	ò	gb diffusion					
	*Simultaneous evaluation of	lattice and gb diffusion; low- temperature data extranolated	1	⁺ Present	recalculation				⁺ Correct value		⁺ Present	recalculation				, 	⁺ Present recalculation			⁺ Present	recalculation	⁺ Present	approximation	⁺ Present	approximation				Present rough fit to the data of [22.09, 22.10]
2 examples ⁸¹	1 example $(\log c - x)$	5		No					No^{81}		4 examples ⁸¹					;	No			2 examples ⁸¹				All ⁸³					
⁵⁹ Fe, vapour deposition ⁷³ ; residual activity	⁶⁷ Ga, vapour deposition:	residual activity*	¹¹⁴ In; residual	activity ¹¹⁴ In; vapour	deposition ⁷³ ;	grinder and	La, dissolution of	precipitates in diffusion couple; EPMA	⁶³ Ni, vapour	deposition ⁷³ ; residual activity	¹²⁴ Sb, vapour	deposition ⁷³ ,	¹²⁵ Sb, dried-on	from salt	solution; residual	acuvuy	¹¹³ Sn, vapour denosition ⁷³ :	racidual activity	residual acuvity	²³⁵ U, vapour	deposition ⁷³ ;	⁶⁵ Zn; residual	activity	⁶⁵ Zn, vapour	deposition and	dried-on from	salt solution; erinder and	residual activity	
pc 3N5	pc (1 mm)	3N7	pc	~3N SC	4N		pc ⁶¹	ĸ	bc	3N5	sc	4N					sc 4N			pc	3N5	pc	$\sim 3N$	pc	3N8				
10 (5T)	6	IJ	8	(01) 6		7	4		12	(6T)	7		8			,	7	v	۲	4		ß		ъ					(10)
673–873 (0.84)	639–872 (0.82)	777–872 (0.89)	745-883	(0.88) 776–906	(0.91)	748-906	813-868	(10.0)	673-873	(0.84)	781-896	(0.91)	781-884	(06:0)		000 000	858, 902	748-007	(0.89)	773-893	(06.0)	740-893	(0.89)	648-848	(0.81)				(648–893) (0.84)
0.0038		3.0	0.96		1.55^{+}		3.6			0.002^{+}		4.5^{+}		4.0^{+}		+0,	1.2^{+}		1.18^{+}		8×10^{-4} +		6.4^{+}			8.7+			7.5
0.919 (88.8)	I	1.391 (134.3)	1.231	(118.9)	(142.4)	1.485	(140.4)	(102.2)	0.993	(95.9)	1.431	(138.2)	1.422	(137.3)		+	1.496° (144.5)	1 553	(149.9)	1.188	(114.7)	1.240	(119.8)	(1.303)	(125.8)	1.335^{+}	(128.9)		1.303 (125.8)
$4 imes 10^{-6}$	I	1.2	0.052	L (1.88)	1.79^{+}	// (1.75)	0.022		(1.2×10^{-5})	5×10^{-6} +	L (3.27)	3.0^{+}	// (2.57)	2.4^{+}		+••••	L 1.84 ⁺	(2010) / /	7. (1 .27) 3.63 ⁺	(1.6×10^{-5})	2.5×10^{-5} +	(0.41)	0.385^{+}	(1.05)		1.73^{+}			1.0
Fe	Ga		In	In			La		ïŻ		\mathbf{Sb}					0	Sn			D		Zn		Zn					Zn

Table	2.3 Diffusion	in calcium								(Ref	erences	, see page 118)
E	(2a)	(2b)	(3)	(4)	(2)	(9)	(2)	(8)	(6)	(OL)	(II)	(12)
×	D ⁰ (10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (kJ mole ⁻¹)	$D(T_m)$ ($10^{-12} m^2 s^{-1}$)	T-range (K) (\overline{T}/T_m)	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Self-	diffusion and impurity d	liffusion										
Ca	8.3	1.670 (161.2)	24	773–1,073 (0.83)	14 (7T)	pc 3N5	⁴⁵ Ca, vapour deposition ⁷³ ;	2 examples (extremely		Fe, Ni, U in Ca and Mg	23.01	Pavlinov (1968) [23.01]
ţ	- C - C - C - C - C - C - C - C - C - C	000		010 1 000	c.		residual activity	flat pp)	ţ			
Ч	(3.2×10^{-9})	1.292		823-1,073	12	Ъс	Te, vapour	2 examples	Present	Ca, Ni, U in Ca,	I	Pavlinov (1968)
	3.7×10^{-5} +	(124.8)	0.0054^{+}	(0.85)	(ET)	3N5	deposition ⁷³ ;		recalculation	Fe, Ni, U in		[23.01]
	ı						residual activity	50		Mg		
Ż	(1.0×10^{-3})	1.253		823-1,073	12	Ъс	⁰⁰ Ni, vapour	No ⁸¹	⁺ Present	Ca, Fe, U in Ca,	I	Pavlinov (1968)
	4×10^{-5} +	(121.0)	0.0087^{+}	(0.85)	(ET)	3N5	deposition ⁷³ ;		recalculation	Fe, Ni, U in		[23.01]
							residual activity			Mg		
D	(1.1×10^{-5})	1.509		773-973	10	pc	²³⁵ U, vapour	2 examples ⁸¹	⁺ Present	Ca, Fe, Ni in Ca,	I	Pavlinov (1968)
	1.35×10^{-4} +	(145.7)	0.002^{+}	(0.78)	(5T)	3N5	deposition ⁷³ ;		recalculation	Fe, Ni, U in Mg		[23.01]
							residual activity					

Table	: 2.4 Diffusio	on in zinc								(Refer	ences,	see page 118)
(1)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(IO)	(11)	(12)
×	D^{0} (10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (kJ mole ⁻¹)	$D(T_m)$ ($10^{-12} m^2 s^{-1}$)	T-range (K) (\overline{T}/T_m)	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Self-	diffusion and impuri	ity diffusion										
Zn	L 0.58	, 1.054 (101.7)	1.25	513–683 (0.86)	15 (14T)	sc*	⁶⁵ Zn, electroplated:	2 examples	$^* < 10^\circ$ deviating from c - and		24.01	Shirn (1953) [24.01]
	// (0.13) 0.115 ⁺	0.945 (91.3)	1.53^{+}		9		lathe (50 μm sections)		<i>a</i> -axis direction ⁺ Present fit to the			
									experimental data			
Zn	I	I		625-685	8	sc	⁶⁵ Zn, ⁶⁹ Zn,	4 examples		$E \approx 0.67;$	24.01	Batra (1967)
				(0.95)		5N	electroplated; lathe			Cd in Zn		[24.02]
Zn	L 0.18	0.997	1.00	513-691	8	sc	⁶⁵ Zn, ⁶⁹ Zn,	3 examples		$E_{\perp} \approx 0.74$,	24.01	Peterson (1967)
		(6.3)		(0.86)		5N	electroplated;	4		$E_{I/I} \approx 0.70$		[24.03]
	// 0.13	0.950	1.60		œ		lathe					
		(7.16)			I							
Ag	L 0.45	1.197 (115.6)	0.09	544-686 (0.80)	8 ⁵¹	SC*	¹¹⁰ Ag, plated from cranide	1 example	*About 20° deviating from	In in Zn	24.02	Rosolowski (1961) [24 04]
	// (0.32)	1.128		(/0.0)	751	5	solution; lathe		c- and a-axis			
	0.28^{+}	(108.9)	0.18^{+}						direction			
									⁺ Present fit to the denicted data			
Αu	L 0.29	1.289	0.012	620-688	4	sc^*	¹⁹⁸ Au, plated	1 example	*Deviating from	Cd in Zn	24.02	Ghate (1963)
		(124.4)		(0.94)		5N	from salt		c- and a -axis			[24.05]
	// 0.97	// 1.289	0.04	588-688	5		solution; lathe		direction			
		(124.4)		(0.92)			(20 µm sections)					
Cd	L 0.117	0.886	4.2	498-689	9	sc*	¹¹⁵ Cd, dried-on	1 example ⁸⁵	*Deviating from	Au in Zn	24.03	Ghate (1963)
		(0.08)		(0.86)		NG	from salt		c- and a-axis			[c0.42]
	// 0.114	168.0	3.8		9		solution; lathe		direction			
Cd	I	(86.0)		617, 683	4	SC	(35 µm sections) ¹⁰⁹ Cd, ¹¹⁵ Cd,	4 examples		E = 0.27 - 0.51;	24.03	Batra (1967)
						5N	electroplated;	I		Zn in Zn		[24.02]
							lathe					

Self-Diffusion and Impurity Diffusion in Group II Metals

105

Table	2.4 (Contin	(pən										
(L)	(2a)	(Zb)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(0L)	(11)	(12)
×	D^{0} (10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (kJ mole ⁻¹)	$D(T_m)$ ($10^{-12} m^2 s^{-1}$)	T-range (K) (\overline{T}/T_m)	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Impu	rity diffusion											
Ū,	́⊥ (165)	(1.387)		573-633	5 ⁵¹	sc	⁵¹ Cr,		Experimental and		I	Chandramouli
		(133.9)		(0.87)	i	3N8	electroplated;		calculated data			(1974) [24.06]
	// (170)	(1.303) (125.8)			5 ⁵¹		lathe		(from D^0 and Q) differ by a factor of $20-300$			
Си	L 2.00	1.298	0.073	611-688	8	sc^*	⁶⁴ Cu,	1 example	*Deviating from	Ga in Zn	24.04	Batra (1966)
		(125.3)		(0.94)		5N	electroplated;		c- and a -axis			[24.07]
	// 2.22	1.281 (123.6)	0.11		×		lathe		direction			
Ga	L 0.018	0.787	3.4	513-676	×	sc*	⁷² Ga,	1 example	*Deviating from	Cu in Zn	24.05	Batra (1966)
		(26.0)		(0.86)		5N	electroplated;	ĸ	c- and a -axis			[24.07]
	// 0.016	0.798	2.5		10		lathe		direction			
		(77.0)						щe				
Hg	Д 0.073	0.875 (84 5)	3.1	533-686 (0 88)	7	sc*	²⁰³ Hg, alactronistad:	2 examples ⁸⁵	*Deviating from		24.06	Batra (1967) 124 081
	//0.056	0.854		(00.0)	1	NIC	latha		ci allu u-axis			[00.42]
	0cn'n //	0.03 4 (82.5)	4.0				Jathe		direction			
In	Д 0.14	0.850	9.2	444-689 (0 82)	7 ⁵¹	sc* / 5N	¹¹⁴ In, chemically mated: lathe	1 example ⁸⁴	*About 20° deviating from	Ag in Zn	24.03	Rosolowski (1961) [24.04]
	// 0.062	0.828	5.9		7^{51}		Linea, min		c- and a-axis			
		(80.0)							direction			
Ņ	L 0.43	1.258	0.03	564-664	8	sc	⁶³ Ni,		Pronounced data		I	Mortlock
		(121.5)		(68.0)		5N	electroplated;		scatter			(1967) [24.09]
	// 8.1	1.415	0.04		8		autoradiography					
5	1 (0.13)	(0.001)		571 673	~	*	113 c .,	No. NGE at	*Doviating from		20.05	(1070) Morford
IIC	(CT:0) T	(07.0)		(06.0)	۲	5N	electroplated;	lower	<i>c</i> - and <i>a</i> - axis		00.17	[24.10]
	0.185^{+}	0.812^{+}	23^{+}				lathe	temperatures	direction			
		(78.4)							⁺ Present fit to the			
	// (0.15)	0.841			4				experimental data			
	0.16^{+}	(81.4)	12^{+}									
Table	2.5 Diffusio	on in cadm	nium							(Ref	erence	i, see page 119)
--------	--	--	---------------------------------------	-------------------------------------	--------------------------	---------------------	---------------------------	----------------------	--	-----------------	--------	------------------
(I)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(II)	(12)
×	D^{0} (10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (kJ mole ⁻¹)	$D(T_m)$ ($10^{-12} m^2 s^{-1}$)	T-range (K) (\overline{T}/T_m)	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Self-a	tiffusion											
Cď	‴⊥ (0.10)	0.828		402-583	10	sc^*	¹¹⁵ Cd,	2 examples	* < 10° deviating	gb diffusion	25.01	Wajda (1955)
	0.115^{+}	(80.0)	1.1^{+}	(0.83)		2N5	electroplated;		from c - and			[25.01]
	// (0.05)	(0.789) (76.2)		402–582 (0.83)	4		lathe (40 μm sections)		<i>a</i> -axis direction ⁺ Present fit to the			
	0.024^{+}	0.749^{+} (72.3)	1.1^{+}						experimental data			
Cd	// 0.68	0.893	1.8	453-560	5^{51}	sc	¹¹⁵ Cd, vapour	No		Ag, Zn in Cd	I	Hirschwald
		(86.3)		(0.85)		4N	deposition; absorption)		(1967) [25.02]
Cd	L 0.183	0.850	1.1	411-587	6^{51}	sc^*	¹¹⁵ Cd,	No	* < 10° deviating	Ag, Au, Hg,	25.01	Mao (1972)
		(82.0)		(0.84)		5N	electroplated;		from c - and a -axi	is In, Zn in Cd		[25.03]
	// (0.118)	(0.807) (77.9)			6 ⁵¹		lathe		direction ⁺ Present fit to the			
	0.165^{+}	0.829^{+}	1.5^{+}						depicted data			
Cd	L 0.43	(80.0) 0.911	0.8	524-592	4	sc*	¹⁰⁹ Cd.	4 examples	* < 10° deviating	Pressure	25.01	Buescher (1973)
		(87.9)		(0.94)		5N	electroplated;	(at high	from c - and	dependence		[25.04]
	// 0.32	0.861 (83-2)	1.6		4		lathe	pressure)	<i>a</i> -axis direction	(0–0.8 Gpa)		
Impu	rity diffusion	(7:00)										
Ag	// 2.21	1.102	0.10	457-574	4^{51}	sc	¹¹⁰ Ag, vapour	No		Cd, Zn in Cd	I	Hirschwald
		(106.4)		(0.87)		4N	deposition; absorption					(1967) [25.02]
Ag	L (0.68)	1.087		479–582	6^{51}	sc^*	¹¹⁰ Ag,	No	* < 10° deviating	Au, Cd, Hg,	25.02	Mao (1972)
	0.60^+ // (1.40)	(105.0) 1.069	0.04^{+}	(68.0)	6 ⁵¹	5N	electroplated; lathe		from c- and a-axis direction	In, Zn in Cd		[25.03]
	1.25+	(103.2)	0.11^{+}						⁺ Present fit to the depicted data			
Αu	L 3.16	1.146	0.06	452–577	5^{51}	sc^*	¹⁹⁵ Au,	No	$* < 10^{\circ}$ deviating	Ag, Cd, Hg,	25.03	Mao (1972)
		(110.7)		(0.87)	;	5N	electroplated;		from c - and	In, Zn in Cd		[25.03]
	// 1.40	1.105 (106.6)	0.06		551		lathe		a-axis direction			

	2)	sference	iao (1972) [25.03]	iao (1972) [25.03]	eh (1981) [25.05]	iao (1972) [25.03]
	(II) (II)	Figure Re	25.02 M	25.03 M	25.04 Ye	25.04 M
	(10)	Also studied	Ag, Au, Cd, In, Zn in Cd	Ag, Au, Cd, Hg, Zn in Cd		Ag, Au, Cd, Hg, In in Cd; E(472K) for Zn in Cd
	(6)	Further remarks	$* < 10^{\circ}$ deviating from c - and a -axis direction	$* < 10^{\circ}$ deviating from <i>c</i> - and <i>a</i> -axis direction	*1°-18° deviating from <i>c</i> - and <i>a</i> -axis direction	*<10° deviating from c - and a-axis direction
	(8)	Remarks on the pp	No	No	1 example	2 examples
	(2)	Experimental method	²⁰³ Hg, electroplated; lathe	¹¹⁴ In, electroplated; lathe	²¹⁰ Pb, electroplated; lathe	65Zn, electroplated; lathe
	(9)	Material, purity	sc*	sc* 5N	sc 5N	sc* 5N
	(5)	No. of data points	7 ⁵¹ 7 ⁵¹	5 ⁵¹	ഗഗ	12 ⁵¹ 11 ⁵¹
	(4)	T-range (K) - 1) (\overline{T}/T_{m})	422–572 (0.84)	434–571 (0.85)	514–571 (0.91)	430–588 (0.86)
	(3)	D(T _m) (10 ⁻¹² m ² s ⁻	2.6 2.6	5.2 3.8	11.7 5.3	3.0
(pənı	(2b)	Q (eV) and (k) mole ⁻¹)	0.814 (78.6) 0.814 (78.6)	0.735 (70.9) 0.757 (73.1)	0.681 (65.8) 0.714 (68.9)	0.781 (75.4) 0.782 (75.5)
2.5 (Contin	(2a)	D^{0} $(10^{-4} \text{ m}^{2} \text{ s}^{-1})$	⊥ 0.21 // 0.21	⊥ 0.09 // 0.10	L 0.071	⊥ 0.084 // 0.13
Table :	(L)	×	Hg	In	ЪР	Zn

Self-Diffusion and Impurity Diffusion in Pure Metals

Fig. 21.01 Self-diffusion in beryllium. □ and ■, Dupouy [21.01]; ○ and ●, Beyeler [21.03]. Fitting lines according to [21.01].

Fig. 21.02 Impurity diffusion in beryllium. Ag in Be: \Box and \blacksquare , Naik [21.05]; Cu in Be: \bigcirc and \bullet , Dupouy [21.09]; \triangle and \blacktriangle , Myers [21.10]. Fitting lines according to [21.10].

Fig. 22.01 Self-diffusion in magnesium. □ and ■, Combronde [22.03].

Fig. 22.02 Impurity diffusion in magnesium. Ag in Mg: \Box and \blacksquare , Combronde [22.05]; Cd in Mg: \bigcirc and \bullet , Combronde [22.05].

Fig. 22.03 Impurity diffusion in magnesium. Be in Mg: \Box , Yerko [22.06]; Ga in Mg: \bigcirc , Stloukal [22.09]; Sn in Mg: \triangle (//) and ∇ (\bot), Combronde [22.05]. Fitting line for $D_{//}$.

Fig. 22.04 Impurity diffusion in magnesium. In in Mg: \Box and \blacksquare , Combronde [22.05]; Sb in Mg: \bigcirc and \bullet , Combronde [22.03].

Fig. 22.05 Impurity diffusion in magnesium. Zn in Mg: \Box , Lal [22.09]; \bigcirc , Čermák [22.10]. Fitting line using $D^0 = 1.0 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}$ and Q = 1.303 eV.

Fig. 23.01 Self-diffusion in Ca. □, Pavlinov [23.01].

Fig. 24.01 Self-diffusion in zinc. \triangle and ∇ , Shirn [24.01]; \Box and \diamond , Batra [24.02]; \bigcirc and \bullet , Peterson [24.03]. Fitting line according to [24.03].

Fig. 24.02 Impurity diffusion in zinc. Ag: \Box and \blacksquare , Rosolowski [24.04]; Au: \bigcirc and \bullet , Ghate [24.05].

Fig. 24.03 Impurity diffusion in zinc. Cd: \Box and \Diamond , Ghate [24.05]; \triangle and ∇ , Batra [24.02]. Fitting lines according to [24.05]. In: \bigcirc and \blacklozenge , Rosolowski [24.04].

Fig. 24.04 Impurity diffusion in zinc. Cu: □ and ■, Batra [24.07].

Fig. 24.05 Impurity diffusion in zinc. Ga: \Box and \Diamond , Batra [24.07]; Sn: \bigcirc and \blacklozenge , Warford [24.10].

Fig. 24.06 Impurity diffusion in zinc. Hg: \Box and \diamondsuit , Batra [24.08].

Fig. 25.01 Self-diffusion in cadmium. \diamond and \Box , Wajda [25.01]; ∇ and \triangle , Mao [25.03]; \bigcirc and \bullet , Buescher [25.04]. Fitting lines according to [25.03].

Fig. 25.02 Impurity diffusion in cadmium. Ag: \Box and \blacksquare , Mao [25.03]; Hg: ∇ and \triangle , Mao [25.03].

Fig. 25.03 Impurity diffusion in cadmium. Au: \Box and \diamond , Mao [25.03]; In: \bigcirc and \bullet , Mao [25.03].

Fig. 25.04 Impurity diffusion in cadmium. Pb: \Box and \blacksquare , Yeh [25.05]; Zn: \bigcirc and \bullet , Mao [25.03].

REFERENCES

References to Chapter 2.1

- [21.01] J.M. Dupouy, J. Mathie, Y. Adda, Mém. Sci. Rev. Métall. 63 (1966) 481.
- [21.02] L.V. Pavlinov, G.V. Grigoryev, Yu.G. Sevastyanov, Fiz. Met. Metalloved. 25 (1968) 565; Phys. Met. Metallogr. 25 (3) (1968) 201 (English transl.).
- [21.03] M. Beyeler, D. Lazarus, Mém. Sci. Rev. Métall. 67 (1970) 395.
- [21.04] V.P. Gladkov, A.V. Svetlov, D.M. Skorov, A.N. Shabalin, Atomn. Energiya 40 (1976) 257; Sov. Atom. Energy 40 (1976) 306 (English transl.).
- [21.05] M.C. Naik, J.M. Dupouy, Y. Adda, Mém. Sci. Rev. Métall. 63 (1966) 488.
- [21.06] S.M. Myers, R.A. Langley, J. Appl. Phys. 46 (1975) 1034.
- [21.07] V.M. Ananin, V.P. Gladkov, A.V. Svetlov, D.M. Skorov, V.I. Tenishev, Atomn. Energiya 40 (1976) 256; Sov. Atom. Energy 40 (1976) 304 (English transl.).
- [21.08] V.P. Gladkov, A.V. Svetlov, D.M. Skorov, A.N. Shabalin, Fiz. Met. Metalloved. 48 (1979) 871; Phys. Met. Metallogr. 48 (4) (1979) 170 (English transl.).
- [21.09] J.M. Dupouy, J. Mathie, Y. Adda, Proc. Intern. Conf. Metall. Beryllium, Grenoble (1965) p.159.
- [21.10] S.M. Myers, S.T. Pricaux, T.S. Prevender, Phys. Rev. B 9 (1974) 3953.
- [21.11] G. Donze, R. Le Hazif, F. Maurice, D. Dutilloy, Y. Adda, C.R. Acad. Sci. Paris 254 (1962) 2328.
- [21.12] V.M. Ananin, V.P. Gladkov, V.S. Zotov, D.M. Skorov, V.I. Tenishev, Atomn. Energiya 29 (1970) 220; Sov. Atom. Energy 29 (1970) 941 (English transl.).

References to Chapter 2.2

- [22.01] P.G. Shewmon, F.N. Rhines, Trans. AIME 200 (1954) 1021.
- [22.02] P.G. Shewmon, Trans. AIME 206 (1956) 918.
- [22.03] J. Combronde, G. Brebec, Acta Metall. 19 (1971) 1393.
- [22.04] K. Lal, Rep. No. CEA-R 3136 (Saclay) (1967); see Diffusion Data 3 (1969) 144.
- [22.05] J. Combronde, G. Brebec, Acta Metall. 20 (1972) 37.
- [22.06] V.F. Yerko, V.F. Zelenskiy, V.S. Krasnorutskiy, Fiz. Met. Metalloved. 22 (1966) 112; Phys. Met. Metallogr. 22 (1) (1966) 112 (English transl.).
- [22.07] K. Lal, V. Lévy, C. R. Acad. Sci. Paris 262C (1966) 107.
- [22.08] L.V. Pavlinov, A.M. Gladyshev, V.N. Bykov, Fiz. Met. Metalloved. 26 (1968) 823; Phys. Met. Metallogr. 26 (5) (1968) 53 (English transl.).
- [22.09] I. Stloukal, J. Čermák, Scr. Mater. 49 (2003) 557; see also Defect and Diffusion Forum 237–240 (2005) 1287.
- [22.10] J. Čermák, I. Stloukal, Phys. Stat. Sol. (a) 203 (2006) 2386.

References to Chapter 2.3

[23.01] L.V. Pavlinov, A.M. Gladyshev, V.N. Bykov, Fiz. Met. Metalloved. 26 (1968) 823; Phys. Met. Metallogr. 26 (5) (1968) 59 (English transl.).

References to Chapter 2.4

- [24.01] G.A. Shirn, E.S. Wajda, H.B. Huntington, Acta Metall. 1 (1953) 513.
- [24.02] A.P. Batra, Phys. Rev. 159 (1967) 487.
- [24.03] N.L. Peterson, S.J. Rothman, Phys. Rev. 163 (1967) 645.
- [24.04] J.H. Rosolowski, Phys. Rev. 124 (1961) 1828.
- [24.05] P.B. Ghate, Phys. Rev. 131 (1963) 174.

- [24.06] M. Chandramouli, V.S. Venkatasubramanian, Proc. Nucl. Phys. Sol. State Symp. 17C (1974) 167.
- [24.07] A.P. Batra, H.B. Huntington, Phys. Rev. 145 (1966) 542.
- [24.08] A.P. Batra, H.B. Huntington, Phys. Rev. 154 (1967) 569.
- [24.09] A.J. Mortlock, P.M. Ewans, Phys. Rev. 156 (1967) 814.
- [24.10] J.S. Warford, H.B. Huntington, Phys. Rev. B 1 (1970) 1867.

Further Investigations

- Zn [24.11] H.B. Huntington, G.A. Shirn, E.S. Wajda, Phys. Rev. 87 (1952) 211; precursor to Ref. [24.01].
- Zn [24.12] T. Liu, H.G. Drickamer, J. Chem. Phys. 22 (1954) 312.
- Zn [24.13] F.E. Jaumot, R.L. Smith, Trans. AIME 206 (1956) 137.
- Zn [24.14] J.E. Hilliard, B.L. Averbach, M. Cohen, Acta Metall. 7 (1959) 86; polycrystalline Zn.
- Zn [24.15] H.M. Gilder, B.J. Buescher, L.C. Chhabildas, in: Atomic Transport in Solids and Liquids, Eds. A. Lodding, T. Lagerwall, Verlag der Zeitschrift für Naturforschung, Tübingen (1971), p. 33.
- Zn [24.16] L.C. Chhabildas, H.M. Gilder, Phys. Rev. B 5 (1972) 2135; pressure dependence of D.

References to Chapter 2.5

- [25.01] E.S. Wajda, G.A. Shirn, H.B. Huntington, Acta Metall. 3 (1955) 39.
- [25.02] W. Hirschwald, W. Schrödter, Z. Phys. Chem. N.F. 53 (1967) 392.
- [25.03] Ch. Mao, Phys. Rev. B 5 (1972) 4693.
- [25.04] B.J. Buescher, H.M. Gilder, N. Shea, Phys. Rev. B 7 (1973) 2261.
- [25.05] D.C. Yeh, L.A. Acuna, H.B. Huntington, Phys. Rev. B 23 (1981) 1771.

Further Investigations

- Cd [25.06] K.A. Mahmoud, R. Kamel, Radioisotopes in Scientific Research 1 (1958) 271; Acta Metall. 5 (1957) 476 (Abstract); absorption.
- Cd [25.07] Y. Masuda, J. Phys. Soc. Japan 13 (1958) 597; polycrystalline Cd, NMR.
- Cd [25.08] W. Chomka, Zeszyty Nauk Politech. Gdansk. Fis. (1) (1967) 39, see Diffusion Data 4 (1970) 17.
- Cd [25.09] K. Apel, S. Hänsch, K. Prescher, Z. Metallk. 58 (1967) 401; polycrystalline Cd.
- Ag [25.10] A.K. Iha, U.P. Sinha, Scr. Metall. 6 (1972) 495; polycrystalline Cd.
- Zn see Ref. [25.02].

CHAPTER 3

Self-Diffusion and Impurity Diffusion in Group III Metals

Contents	Tables	
	3.1. Scandium (Sc)	123
	3.2. Yttrium (Y)	124
	3.3. Lanthanum (La)	125
	3.4. Aluminium (Al)	126
	3.5. Indium (In)	133
	3.6. Thallium (Tl)	134
	Figures	
	Yttrium	135
	Lanthanum	135
	Aluminum	136
	Indium	143
	Thallium	144
	References	145

Lanthanides (rare earth metals) and Actinides are treated in Chapters 9 and 10.

Diffusion investigations in aluminium are accompanied by considerable experimental problems. In air at room temperature oxide films are formed, which can become up to $100 \,\mu\text{m}$ thick. This leads to a tracer hold-up in the penetration profiles (near-surface effect, NSE) (see Figure 01.07). Especially, when the tracer layer is dried-on from a salt solution, a pronounced NSE is observed (see e.g. Ref. [34.12]). Careful surface preparation respectively tracer implantation prevent the formation of a marked NSE.

In the early tracer investigations applying residual activity measurements and grinder sectioning technique penetration profiles with an entire depth of $5-15 \,\mu\text{m}$ (i.e. within the NSE range) were used for the determination of *D*. The resulting diffusion coefficients are orders of magnitude smaller than the real values (see e.g. [34.55]). Typical values of D^0 and *Q* are 10^{-13} to $10^{-10} \,\text{m}^2 \,\text{s}^{-1}$ and 0.6–0.9 eV [30.01–30.05] (for V, Cr, Fe, Co, Ni, Nb, Mo in Al).

For self-diffusion investigations an additional difficulty is that the only available radiotracer ²⁶Al has an extremely low specific activity, which needs the deposition of a thick layer. Again, the oxide hold-up results in too small *D*-values, an effect that increases with decreasing temperature. Only for high temperatures

(>873 K) the measured self-diffusion coefficients [34.01] are assumed to be quite accurate [34.07].

For **actinium** (Ac) no data are available.

For **gallium** (Ga) only self-diffusion was investigated close to $T_{\rm m}$ [30.06]. As in the early diffusion investigations in Al, the evaluated diffusion coefficients of ⁶⁷Ga in Ga are extremely small.

In Table 3.0 lattice structure, lattice constants, melting and phase transition temperatures of group III metals are listed.

Table 3.0 Lattice structure, lattice constants *a* and *c*, phase transition (T_{ij}) and melting temperature T_m

Metal	S	ic	Y	L	a	Al	In	1	-l
Phase	α	β	α	β	γ			α	β
Structure	fcc	hcp	hcp	fcc	bcc	fcc	fct	hcp	bcc
T_{ij} (K)	1,6	508	1,752	1,1	.34			50	07
$T_{\rm m}$ (K)	1,8	312	1,803	1,1	.93	933	430	52	77
<i>a</i> (nm)	0.453	0.331	0.363	0.531		0.404	0.458	0.345	0.387
<i>c</i> (nm)		0.527	0.575				0.494	0.551	
c/a		1.59	1.58				1.07	1.60	

. 145)			36)
, see page	(12)	Reference	Axtell (198 [31.01]
erences	(IL)	Figure	I
(Ref.	(10)	Also studied	Electro- transport
	(6)	Further remarks	*Valid for the α -phase $x_{100X} = 1.2$, 2.5, 4.3
	(8)	Remarks on the pp	1 example (probability plot)
	(2)	Experimental method	Fe; mass spectroscopy Sc/Sc(X% Fe) ^x (Grube)
	(9)	Material, purity	pc 3N5
	(5)	No. of data points	6
Ę	(4)	$ au$ -range (K) $(\overline{T}/ au_{ m m})$	1,241–1,790 (0.84)
on in scandiu	(3)	$D(T_{\rm m})$ (10 ⁻¹² m ² s ⁻¹)	I
urity diffusio	(2b)	Q (eV) and ') (kJ mole ⁻¹)	* 0.599* (54)
1 Impi	(E) ⁻⁴ m ² s ⁻¹	$5 \times 10^{-3*}$
Table 3.	(1) (2 ^z	X (IC	Fe 1.

ble	3.2 Self-diff	^f usion and ir	mpurity diffusic	on in α-yttrium	_					(Refe	rences, s	ee page 145)
(E	(2a)	(2b)	(3)	(4)	(2)	(9)	(2)	(8)	(6)	(10)	(II)	(12)
×	D^{0} (10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (k) mole $^{-1}$)	$D(T_m)$ ($10^{-12}m^2s^{-1}$)	au-range (K) $(\overline{T}/T_{ m m})$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
X	⊥ 5.2 // 0.82	2.910 (281.9) 2.615 (252.5)	1	1,173–1,573 (0.76)	വാ	sc ⁶¹	⁹¹ Y, dried-on from salt solution; residual	1 example			32.01	Gornyy (1970) [32.01]
Ag	0.0054	0.797 (77)	I	1,178–1,453* (0.73)	9	pc 2N4	activity, abrasive paper ¹¹⁰ Ag; diffusion couple; lathe	No	*Temperature uncertainty	Fe in α-Y; electro-	32.01	Murphy (1975)
C	0.014	0.863 (83.3)	I	1,290–1,620 (0.81)	ы	pc 2N6	Co; laser ionization mass spectroscopy,	1 example (probability plot)	about ± 10 K Pronounced data scatter	transport Fe, Ni in <i>a</i> -Y; electro transport	I	[32.02] Okafor (1982) [32.03]
Fe	0.018	0.880 (85)	I	1,173–1,603* (0.77)	×	pc 2N4	Y/Y (0.05% Co) ⁵⁹ Fe; diffusion couple; lathe	No	*Temperature uncertainty	Ag in α-Y; electro	32.01	Murphy (1975)
Fe	0.040	0.954 (92.1)	1	1,355, 1,495	7	pc 2N6	Fe; laser ionization mass	No	about ± 10 K	transport Co, Ni in α-Υ; electro-	32.01	0kafor (1982) (192)
ïŻ	0.058	1.00 (96.5)	I	1,290–1,580 (0.80)	6	pc 2N6	spectroscopy Ni; laser ionization mass spectroscopy	No	Pronounced data scatter	uansport Co, Fe in &-Y; electro- transport	I	[32.03] Okafor (1982) [32.03]

Table 3.3	Self-dif	fusion and	impurity diffu	sion in lantha	unu					(Refere	ences, s	ee page 146)
(1) (2a)		(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(OL)	(LL)	(12)
X D ^o (10 ⁻	⁴ m ² s ⁻¹)	Q (eV) and (kJ mole ⁻¹)	$D(T_m)$ (10^{-12} m ² s ⁻¹)	au-range (K) $(\overline{T}/T_{ m m})$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
La 1.5		1.956 (188.8)	1	934–1,116 (0.86) β-La	6 ⁵¹	pc (0.1– 0.2 mm) 3N7	¹⁴⁰ La, vapour deposition; lathe	3 examples		Au in La	33.01	Dariel (1969) [33.01]
La 0.01	¢.	1.062 (102.6)	41	1,140–1,170 (0.97) v-La	7 ⁵¹	pc 3N7	¹⁴⁰ La, vapour deposition; lathe	2 examples		La in Ce	33.01	Dariel (1973) [33.02]
La 0.11		1.297 (125.2)	37	,, 1,151–1,183 (0.98) v-La	œ	pc 2N85	¹⁴⁰ La, electroplated; lathe	1 example			33.01	Languille (1974) [33 03]
Au 0.02	2	0.785 (75.8)	I	888–1,071 (0.82) β-La	4 ⁵¹	pc (0.1– 0.2 mm) 3N7	¹⁹⁸ Au, vapour deposition; lathe	2 examples		La in La	33.02	Dariel (1969) [33.01]
Ce (0.0 0.02	18)	1.084 (104.7)	52+	1,139-1,170 (0.97) γ -La	9 (5T)	pc ⁶¹	¹⁴¹ Ce, electroplated; grinder	4 examples at 1,146 K	⁺ Present approxi- mation		33.02	Fromont (1976) [33.04]

Table 3.4 Diffus	iion in alum	inium							F)	Reference	ss, see page 146)
(1) (2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(01)	(LL)	(12)
$\begin{array}{cc} X & D^{0} \\ (10^{-4} \mathrm{m^{2} s^{-1}}) \end{array}$	Q (eV) and (kJ mole ⁻¹)	$D(T_m)$ (10^{-12} m ² s ⁻¹)	$ au$ -range (K) (\overline{T}/T_{m})	No. of data points	а Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Self-diffusion Al 1.71	1.474 (142.4)	1.85	729–916 (0.88)	11 (10T)	pc (∼5mm) 4N	²⁶ Al, diffusion couple (150 µm foil of activated Al); latho latho	1 example ^{84, 87} (oxide hold- up, see Eionre 01 070	See introduction page	Mn in Al	34.01	Lundy (1962) [34.01]
Al 2.20 ⁺	1.496 (144.4)	1.81 ⁺	673–883 (0.83)	10 (6T)	sc ⁶¹	²⁶ Al, dried-on from salt solution; grinder (abrasive paper)	No	See intro- duction page +Present approxi- mation	Au in Au, Cu in Cu; $\Delta V/$ $V_0 = 1.29$	34.01	Beyeler (1968) [34.02]
Al 0.176	1.31 (126.5)		358–482 (0.45)	6	рс (100 µm foil) 6N	Al; void shrinkage (TEM)	1			I	Volin (1968) [34.03]
Al 0.137*	1.28 (123.6)	1.66	515–770 (0.69)	$\sim 50^{51}$	pc (~30μm foil) 6N	Al; NMR, SLRT T _{1p} (²⁷ Al signal)	I	*Recalculated to correlated diffusion		34.01	Messer (1974) [34.04]
Al -	I		722	1*	sc 5N	²⁶ Al, diffusion couple; lathe		$D(722 \text{ K}) = 1.05 \times 10^{-14} \text{ m}^2 \text{ s}^{-1}$		34.01	Hood (1985) [34.05]
Al 0.1 ²¹ (90) ²¹ 9* Immuritu diffusion	$\begin{array}{c} 1.26^{21} \\ (121.7) \\ 1.79^{21} \\ (172.8) \end{array}$	1.75	515-916					Reamlysis of the data of [34.04], two- exponential fit of the data of [34.01, 34.02, 34.04] *Corrected value		I	Dais (1987) [34.06]
Ag 0.118	1.207 (116.5)	3.6	644–928 (0.84)	*6	sc 5N	¹¹⁰ Ag, vapour deposition; microtome	1 example	*Deviating <i>D</i> (928K) and <i>D</i> (921K) are not shown in the figure	Au, Co, Cr, Cu, Ga, Ge, Zn in Al	34.02	Peterson (1970) [34.07]

Alexander (1970) [34.08]	Beyeler (1970) [34.09]	Peterson (1970) [34.07]	Alexander (1970) [34.08]	Beyeler (1970) [34.09]	Becker (1989) [34.10]	Alexander (1970) [34.08]	Peterson (1970) [34.07]	Hood (1983) [34.11]	Rummel (1995) [34.12]	Peterson (1970) [34.07]	127
1, 34.02 Ag 6 X) Cu,	- AI	, 34.03 Ge,	1, 34.03		лі; 34.03 «	ı, 34.04	; 34.05 Ge,	34.05	34.05), 34.06 Ge,	
Au, Cd, Cu Fe in Al; in Al (1% X = Ag, Zn	Au, Cu in .	Ag, Co, Cr, Cu, Ga, (Zn in Al	Ag, Cd, Cu Fe in Al	Ag, Cu in .	Fe, Zn in A $\Delta V/V_0 \approx$ 1.0	Ag, Au, Cu Fe in Al	Ag, Au, Cr Cu, Ga, (Zn in Al		Cr, Fe, 5 Mn in Al	Ag, Au, Cc Cu, Ga, (Zn in Al	
									Additional investigations using tracer layers dried- on from ⁵⁷ CoCl ₂ solution, see introduction page	+Present approxi- mation	
No	No	1 example	No	No	3 examples at high pressure	3 examples (slight NSE)	6 examples (marked NSE at lower T, oxide hold-up)	All	II	No	
¹¹⁰ Ag, AgCl deposition; lathe	¹¹⁰ Ag, vapour deposition; grinder and EPMA (vapour deposition of inactive Ag)	¹⁹⁸ Au, vapour deposition; microtome	¹⁹⁸ Au, AuCl ₃ deposition; lathe	¹⁹⁸ Au, vapour deposition; grinder and EPMA (vapour deposition of inactive Au)	¹⁹⁵ Au, implanted; microtome	¹¹⁵ Cd, CdCl ₂ deposition; lathe	⁶⁰ Co, vapour deposition; microtome	⁶⁰ Co, implanted; lathe	⁵⁷ Co, implanted; microtome	⁵¹ Cr, vapour deposition; microtome	
sc	sc 4N5	sc 5N	sc 5N	sc 4N5	sc 5N5	sc 5N	sc	sc 5N	sc 5N5	sc 5N	
a	10 (9T)	×	6 (5T)	8	3 ⁵¹	Ŋ	10	4	n	n	
615-883 (0.80)	665-868 (0.82)	642–928 (0.84)	696–832 (0.82)	723-873 (0.86)	785-873	714–907 (0.87)	695–927 (0.87)	724–930 (0.89)	60 3 -897 (0.80)	859–923 (0.95)	
3.6	ις. Γ	4.0	3.6	4.6		11.4	7.7	7.4	7.3	1.3×10^{-3} +	
1.214 (117.2)	1.232 (118.9)	1.205 (116.4)	1.171 (113.0)	1.253 (121.0)	I	1.288 (124.3)	1.810 (174.8)	1.82 (175.7)	1.744 (168.4)	(2.515) (243) 2.62	(007)
Ag 0.13	Ag 0.16	Au 0.131	Au 0.077	Au 0.27	Au -	Cd 1.04	Co 464	Co 506	Co 193	Cr (5×10^4) 1,800 ⁺	

Table 3	.4 (Contin	(pən										
) (I)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12)
) X	D ⁰ 10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (kJ mole ⁻¹)	$D(T_m)$ (10^{-12} m ² s ⁻¹)	$ au$ -range (K) $(\overline{T}/ au_{ m m})$	No. of data points	n Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
C.	6,430*	2.715* (262.1)	$1.4 imes 10^{-3}$	833–928 (0.94)	12 (10T)	þc	Cr; EPMA Al/Al (X% Cr)	1 example (proba- bility plot)	*Ď valid for X/2; X = 0.1, 0.26	Mo, Ti, V, W in Al	34.06	Chi (1977) [34.13]
Ċ.	2,900	2.662 (257)	1.2×10^{-3}	873–923 (0.96)	8 ⁵¹	pc 4N3	Cr; EPMA Al/Al (0.15% Cr) (Matano, Hall)	1 example (c-x)		Hf, Mn in Al	34.06	Minamino (1987) [34.14]
Ъ	10 ⁵	2.921 (282)	1.7×10^{-3}	873–923 (0.96)	6	sc 5N5	⁵¹ Cr, implanted; microtome	4 examples		Co, Fe, Mn in Al	34.06	Rummel (1995) [34.12]
Cn	(2.02) 1.82 ⁺	1.474 (142.4)	2.0+	714–887 (0.86)	г	pc (wire) 4N5	Cu, electroplated; resistometric method	I	⁺ Present approximation		34.02	Ceresara (1968) [34.15]
Cu	0.647	1.399 (135.1)	1.8	706–925 (0.87)	œ	sc 5N	⁶⁴ Cu, vapour deposition; microtome	1 example		Ag, Au, Co, Cr, Ga, Ge, Zn in Al	34.02	Peterson (1970) [34.07]
Cu	(1.3) 1.05^+	1.431 (138.2)	2.0^{+}	648–892 (0.83)	4	pc 4N8	⁶⁴ Cu, electroplated; residual activity	3 examples	⁺ Present approximation	Au in Al	34.02	Fujikawa (1971) [34.16]
Cu .	1	- 1		858, 929	2	sc	⁶⁴ Cu, ⁶⁷ Cu, electroplated; microtome	No	:	E(929 K) = 0.81, 0.81, E(858 K) = 0.89; Zn in Al	34.02	Peterson (1978) [34.17]
Cu	().654)).59 ⁺	1.41 (136.1)	1.4+	594–928 (0.82)	18 (14T)	5Nc	<pre>67Cu, 64Cu, 61Cu, electroplated; microtome and residual activity (SiC paper)</pre>	Numerous examples (partly very flat pp, NSE at low temper-	¹ Present approximation		34.02	Fujikawa (1989) [34.18]
Cu	0.9 ²¹ 500 ²¹	$\begin{array}{c} 1.440^{21} \\ (139) \\ 2.175^{21} \\ (210) \end{array}$	1.6	667–930 (0.86)	26	sc 5N5	⁶⁷ Cu, ⁶⁴ Cu, ⁶¹ Cu, electroplated; microtome	6 examples		Isotope effect	34.02	Ushino (1991) [34.19]

Hood (1970) [34.20]		vlexander	(1970) [34.08]	ecker (1989) [34.10]		tummel (1995)	[34.12]	eterson (1970)	[34.07]	Ainamino	(1989) [34.21]		eterson (1970)	[34.07]	Vincenino	(1989) [34.21]	'hürer (1995)	[34.22]		awayanagi	(1978) [34.23]	Ainamino	(1987) [34.14]	Hood (1971)	[34.24]	Choukaz	(2000) [34.25]
34.06 H		34.06		34.06 I		34.06 I		34.07 I		34.07 I			34.08 I		34.09		34.08			1		34.09 I		34.07 H		34.10 H	
		Ag, Au, Cd,	Cu in Al	Au, Zn in Al, AV/Vo	≈ 1.5	Co, Cr, Mn in	Al	Ag, Au, Co,	Cr, Cu, Ge, Zn in Al	Ge in Al			Ag, Au, Co,	Cr, Cu, Ga, Zn in ≜l			$\Lambda V/V_0 \approx 1.2$			Pb, Tl in Al		Cr, Mn in Al				Pd in Al	
D(792K) and D(830K) are disregarded in	the least-squares fit	Only 8 of 20 samples	show Gaussian pp					⁺ Present	approxi- mation	⁺ Present	approxi- mation to the	depicted data	4		$V = 0.76 \cdot 1.36$					Pronounced	data scatter	⁺ Present fit to the	depicted data	⁺ Present	approxi- mation		
6 examples		3 examples	(slight NSE)	3 examples at hiøh	pressure	Numerous	examples	1 example		No			1 example		No		Numerous	examples	4	1 example	(NSE, oxide hold-up)	1 example		All		Several	examples
⁵⁹ Fe, vapour deposition and	implantation; lathe	⁵⁹ Fe, FeCl ₂	deposition; lathe	³⁹ Fe, implanted; microtome		⁵⁹ Fe, implanted;	microtome	⁷² Ga, vapour	deposition; microtome	Ga; EPMA AI/AI	(1.16% Ga) (Matano, Hall)		⁷¹ Ge, vapour	deposition; microtome	Co: EDMA A1/A1	(X% Ge) (Matano,	⁷¹ Ge. vapour	deposition and	implantation	²⁰³ Hg, electroplated;	residual activity	Hf; EPMA Al/Al	(0.1% Hf) (Matano, Hall)	¹¹⁴ In, implanted;	microtome	¹⁹² lr, vapour	deposition; microtome
sc, pc 5N, 4N		sc	5N	sc 5N5		sc	5N5	sc	5N	bc	4N3		sc	5N	5	4N3	S	5N5		pc	5N	bc	4N3	sc	5N	sc	5N5
11 (9T)	6 (T7)	8	121	231		10		6		6^{51}			6		751		12	(11T)		6	(8 T)	10^{51}		9		10	
792–931	850–931 (0.95)	823–909	(0.93)	857, 896		723-931	(0.89)	680–925	(0.86)	712-853	(0.84)		674–926	(0.86)	603 873	(0.84)	572-916	(0.80)		718-862	(0.85)	873–923	(96.0)	715-929	(0.88)	592-909	(0.80)
	0.30	0.22				0.33			6.5^{+}		6.7+		7.8		6 0	6	7.1	1		(18)			$3.3 \times 10^{-4+}$		19^{+}	3.6	
	2.68 (258.8)	1.995	(192.6)	I		2.289	(221)	1.268	(122.4)	1.274	(123)		1.257	(121.3)	rcr 1	(118)	1.237	(119.4)		(1.469)	(141.8)	2.506	(242)	1.27	(122.6)	1.135	(109.6)
	9.1×10^5	135		1		7,700		a (0.49)	0.46^{+}	a (0.475)	0.51^{+}		ş 0.481		226.0		0.339			g (15.3)		f (120)	114^{+}	(1.16)	1.38^{+}	0.049	
Fe		Fe	1	Чe		Fe		Ű		Ű			Ğ		Č	5	Ğ			Ĩ		Ŧ		Ч		님	

(1) (2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(IO)	(11)	(12)
$\begin{array}{cc} X & D^{0} \\ (10^{-4} \mathrm{m^{2} s^{-1}}) \end{array}$	Q (eV) and (kJ mole ⁻¹)	$D(T_m)$ (10^{-12} m ² s ⁻¹)	au-range (K) $(\overline{ au}/ au_{ m m})$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Li (0.53)* 0.35 [×]	(1.315)* (127) 1.305 ^x	(4.1)* 3.1 [×]	803–923 (0.92)	9	pc 4N3	Li; resistometric method	I	* \tilde{D} valid for $X \approx$ 0.35 at % Li *Recalculated to		I	Minamino (1987) [34.26]
Mg 1.0*	(120) 1.344* (129.8)	5.4	523–713 (0.66)	6	pc ⁶¹	Mg; EPMA Al/Al (X% Mg) (Hall)	1 example (<i>c</i> - <i>x</i>)	* \tilde{D} valid for $X = 0$; X = 5 to 20		I	Moreau (1971) [34.27]
Mg 1.24	1.351 (130.4)	6.2	667–928 (0.85)	9	sc 5N	²⁸ Mg, vapour deposition; microtome	2 examples ⁸⁵			34.11	Rothman (1974) [34.28]
Mn (104) 130 ⁺	2.19 (211.4)	0.019^{+}	730–921 (0.88)	13 (10T)	sc, pc 5N	⁵⁵ Min, ⁵⁶ Min, implanted; microtome	4 examples	⁺ Present approxi- mation		34.06	Hood (1971) [34.29]
Mn 37	2.102 (203)	0.016	863–923 (0.96)	6	pc 4N3	Mn; EPMA Al/Al (0.25% Mn)	1 example (<i>c</i> - <i>x</i>)		Cr, Hf in Al	I	Minamino (1987) [34.14]
Mn (317) 300 ⁺	2.247 (217)	0.022^{+}	843–927 (0.95)	15 (9T)	pc 4N	⁵⁴ Mh, dried-on from salt solution; microtome	4 examples	⁺ Present approxi- mation		34.06	Fujikawa (1987) [34.30]
Mn 87	2.156 (208.2)	0.019	743–929 (0.90)	10	sc 5N5	⁵⁴ Mn, implanted; microtome	All		Co, Cr, Fe in Al	34.06	Rummel (1995) [34.12]
Mo 14*	2.589* (250)	$1.4 imes 10^{-5}$	898–928 (0.98)	6	Pc 4N	Mo; EPMA Al/Al (X% Mo)	No	* \tilde{D} valid for $X/2$; X = 0.05, 0.08	Cr, Ti, V, W in Al	34.09	Chi (1977) [34.13, 34.31]
Na (6.7×10^{-4})	(1.006) (97.1)		719–863 (0.57)	Ŋ	pc ⁶¹	²⁴ Na, n irradiated Al foil: absorption	I			I	Sudár (1977) [34.32]
Ni (4.4) 4.65 ⁺	1.51 (145.8)	3.2+	742-924 (0.89)	15 (10T)	pc 4N5	Ni, dried-on from salt solution; resistometric method	I	⁺ Present approxi- mation	Co, Zn in Al	34.11	Erdélyi (1978) [34.33]
Pb (50)	(1.508) (145.6)	(36)	777–876 (0.89)	~	pc 5N	²¹⁰ Pb, electroplated; residual activity	1 example (NSE, oxide hold-up)	Pronounced data scatter	Hg, Tl in Al	I	Sawayanagi (1978) [34.23]

Table 3.4 (Continued)

Khoukaz	(2000) [34.25]			Dyment (2005)	[10:10]				Badri-	narayanan	(1968) [34.35]	Fuiikawa	(1997) [34.36]		Bergner (1973)	[34.37]	Fujikawa	(1978) [34.38]		Erdélyi (1991)	[34.39]	Erdélyi (1991)	[34.40]		Chi (1977)	[34.13, 34.41]	Sawayanagi	(1978) [34.23]	Blechet (1968)	[34.42]			Chi (1977) [34-13-34-41]	[11:10 '01'10]	
34.10				I					I			I			I		I			37 34.08	۲K	34.08			/ in 34.06		1 -		I				N 34.Ub		
Ir in Al				Ru in Ru					Ag in Al											$\Delta V/V_0 = 0.8$	at $T = 787$	gb-diffusion			Cr, Mo, V, W	AI	Hg, Pb in A)				į	Cr, Mo, II, I		
⁺ Present approxi-	mation								⁺ Present fit to the	experimental data		Erfc-solution, incorrect	$\ln c - x^2$ evaluation		* Ď valid for X/2		X = 0.58, 0.87, 1.15					*D(erfc) fit together	with the data of [34.39]				Pronounced data	scatter				~	*D valid for $X/2$	Present approximation;	X = 0.14, 0.19
Several	examples			All^{84}				č	3 examples ⁸⁴			2 examples	4		3 examples	(<i>x</i> - <i>3</i>)	I			Several	examples	3 examples	(erfc and $\ln c - x^2$	evaluation)	1 example	(probability plot)	1 example	(NSE, oxide hold-up)	1 example	(only deeper	peneuranon		NO		
¹⁰³ Pd, implanted;	microtome and IBS			¹⁰³ Ru, electroplated		salt solution; Ru,	sputter deposition;	HIRBS	¹²⁴ Sb, vapour	deposition ⁷³ ;	residual activity	⁴⁴ Sc, dried-on from	salt solution;	microtome	Si; EPMA AI/AI	(0.5% Si)	Si; EPMA Al/Al (X%	Si) (Matano,	Darken)	¹¹³ Sn, implanted;	microtome	¹¹³ Sn, implanted;	microtome		Ti; EPMA Al/Al	(0.1% Ti)	²⁰⁴ Tl, electroplated;	residual activity	²³⁵ U, vapour	deposition of UO ₂ ;	nuclear fission	technique	V; EPMA	AI/AI (X% V)	
sc	5N5			pc (2 mm)		N9			pc	specpure		sc	5N5		pc	4N	bc	SN		sc	5N8	sc	5N2		bc	4N	pc	SN	pc ⁶¹				bc	41N	
8		9		4	,	7			12	(6T)		15^{51}	(12T)		15	(10T)	11			8		9			11		7		9	(5T)		ļ	14 24 AT	(171)	
650–929	(0.85)	749–929	(06.0)	719-873	(00.0)	632, 673			721–893	(0.86)		813-928	(0.93)		623-903	(0.82)	753-893	(0.88)		649–905	(0.83)	624-796	(0.76)		843-928	(0.95)	737-876	(0.86)	798-898	(0.91)		000	843-928 (0.01)	(c6.0)	
(0.32)		+07	0.42	0.28							1.5^{+}	060.0			4.1		4.9			19			18		$3.2 imes 10^{-4}$		(33)		(2.7)				1	1.7×10^{-2}	
(1.786)	(172.4)	1.974	(190.6)	2.065 (100 4)	(1,2,2,1)				(1.261)	(121.7)	1.205^{+} (116.3)	1.792	(173)		1.284^{*}	(123.9)	1.409	(136)		1.228	(118.6)	I	1.186^{*} (114.5)		2.693	(260.0)	(1.582)	(152.7)	(1.214)	(117.2)		4 1 0 7 0	3.130 T	(302.7)	
(14)		(170)	193	410					(60.0)		0.05^{+}	4.31			0.35^{*}		2.02			0.84		I	0.454^{*}		1,120		(116)		(0.1)			**************************************	$(1.6 \times 10^{-})$	1.45×10^{-5}	
Рd				Ru					Sb			Sc			Si		Si			Sn		Sn			Ë		E		D			;	>		

Table	3.4 (Contin	(pən										
(1)	(2a)	(2b)	(3)	(4)	(2)	(9)	(2)	(8)	(6)	(01)	(11)	(12)
×	D^{0} ($10^{-4} \mathrm{m^{2} s^{-1}}$)	Q (eV) and (k) mole $^{-1}$)	$D(T_m)$ ($10^{-12} m^2 s^{-1}$)	au-range (K) $(\overline{T}/ au_{\mathrm{m}})$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
X	(2.2×10^5) (10.6)	(3.366) (325) (2.579)	(1.4×10^{-5}) 1.2×10^{-5}	903–928 (0.98) 911–928	6 (5T) 4	Pc 4N	W; EPMA Al/Al (0.027% W)	No	Abnormal data scatter	Cr, Mo, Ti, V in Al	I	Chi (1977) [34.13, 34.31]
Zn	0.259	(120.8) (120.8)	4.5	630–926 (0.83)	16	sc 5N	⁶⁵ Zn, vapour deposition; mirrotome	1 example		Ag, Au, Co, Cr, Cu, Ga, Ce in Al	34.04	Peterson (1970) [34.07]
Zn	0.30	1.258 (121.4)	4.8	699–920 (0.87)	15 ⁵¹ (10T)	pc (1.5 mm)	⁶⁵ Zn, electroplated; grinder and	No			34.04	Gödény (1972) [34.43]
Zn	0.177	1.223 (118.1)	4.4	438–918 (0.73)	30 (19T)	bc 1	⁶⁵ Zn, electroplated ⁷³ ; residual activity	Numerous examples	Marked data scatter	Zn in Al(Zn.Mg)	I	Fujikawa (1976) [34.44]
Zn	0.27	(120.4) (120.4)	4.9	(0.81) (0.81)	8	Pc Pc	⁶⁵ Zn, electroplated; grinder	No		X = Zn, Mg	34.04	Beke (1977) [34.45]
Zn	(0.325) 0.38 ⁺	(1.221) (117.9) 1.252 ⁺	(8.2) 4 8 ⁺	688–928 (0.87)	11	sc 5N	⁶⁵ Zn, ⁶⁹ Zn, electroplated; microtome	1 example	⁺ Present approxi- mation	E = 0.37 to 0.61 for T - 688 to	34.04	Peterson (1978) [34.17]
	07:0	(120.8)	0.				TILLODODING		TI GUOT	1 = 000 to 928 K; Cu in Al		
Zn	0.406	1.285 (124.0)	4.7	757–881 (0.88)	9	pc 4N6	Zn; EPMA Al/Al (3.5% Zn), (Matano, Hall)	1 example (c–x)			I	Minamino (1982) [34.46]
Z	0.16 0.245*	1.212 (117.0) 1.239* (119.6)	4.5 4.9*	714–893 (0.86)	~	pc (1 mm) 4N	⁶⁵ Zn, electroplated; microtome	1 example	*Fit together with the data of [34.42, 34.44]	Zn in Al(X), X = Cu, Zn, Si	34.04	Beke (1983) [34.47]
Zn	- (1.43) ⁺	- (1.367) ⁺ (132.0)	(5.9)+	793–913 (0.91)	ε	sc 5N5	⁶⁵ Zn, electroplated; microtome	No	⁺ Present approxi- mation	Au, Fe in Al; $\Delta V/V_0 \approx 1$	I	Becker (1989) [34.10]
Zr	728	2.507 (242.0)	2.1×10^{-3}	80 4 -913 (0.92)	8 (7T)	pc 5N	⁹⁵ Zr, ZrCl ₄ deposition; residual activity	Several examples	Pronounced data scatter	Zr in Al(Fe), Al(Si)	I	Marumo (1973) [34.48]

es, see page 148)	(12)	Reference	Eckert (1952) [35.01]	Dickey (1959) [35.02]	Anthony (1966) [35.03]	Anthony (1966) [35.03]	Albrecht (1974) [35.04]	Eckert (1952) [35.01]
Referenci	(II)	Figure	I	35.01	35.02	35.02	I	35.02
R)	(01)	Also studied	Tl in In		Au in In	Ag in In	c _s is in ppb range	In in In
	(6)	Further remarks	Abnormal enhanced diffusivity at T > 428 K		⁺ Present fit to the depicted data	*Randomly oriented	*Diffusion in <111> direction; extreme data scatter; authors guess diffusion along dislocations	Abnormal enhanced diffusivity at T > 423 K
	(8)	Remarks on the pp	1 example (close to $T_{m'}$ abrupt slope change)	2 examples (all pp exhibit short- circuit contributions at deeper	penetration) No	No	Several exam- ples ^{81,84}	No
	(2)	Experimental method	¹¹⁴ In, electroplated; microtome	¹¹⁴ In, electroplated; microtome	¹¹⁰ Ag, dried-on from salt solution; microtome	¹⁹⁸ Au, dried-on from salt solution; microtome	⁶⁰ Co, electroplated; microtome	²⁰⁴ TI, electroplated; microtome
	(9)	Material, purity	pc 4N75	sc 3N7, 4N5	sc 4N	sc* 4N	sc* 4N7	Pc 3N
F	(5)	No. of data points	(10) 4	10 ⁵¹ 8 ⁵¹	8 ⁵¹ 6 ⁵¹	9 ⁵¹ (8T)	20 ⁵¹ (14 T)	(9) 5
sion in indiu	(4)	$ au$ -range (K) $(\overline{T}/ au_{ m m})$	(323–429) 323–428	312-417 (0.85) 312-417 (0.85)	296-415 (0.83) 304-418 (0.84)	297–415 (0.83)	363-425 (0.92)	(322–429) 322–412 (0.85)
npurity diffu	(3)	$D(T_m)$ ($10^{-12} m^2 s^{-1}$)	0.08	0.11 0.08	15.2^+ 15.7	350	(1.1)	0.065
fusion and ir	(3b)	Q (eV) and (kJ mole ⁻¹)	- 0.776 (74.9)	0.813 (78.5) 0.813 (78.5)	0.555 (53.6) 0.499 (48.2)	(28.1) (28.1)	(0.26) (25.1)	- 0.672 (64.9)
3.5 Self-dif	(2a)	D^0 (10 ⁻⁴ m ² s ⁻¹)	_ 1.02	⊥ 3.7 // 2.7	\perp (0.52) 0.49 ⁺ // 0.11	600.0	(1.2×10^{-5})	- 0.049
Table :	(1)	×	In	In	Ag	Ν	Co	E

Table	3.6 Self-diffu	sion and imp	ourity diffusic	on in thalliur	F					(R	eference	s, see page 148)
(i) ×	(2a) D^{0} (10 ⁻⁴ m ² s ⁻¹)	(2b) Q (eV) and (kJ mole ⁻¹)	(3) $D(T_m)$ ($10^{-12} m^2 s^{-1}$)	(4) T-range (K) $(\overline{T}/T_{\rm m})$	(5) No. of data points	(6) Material, purity	(7) Experimental method	(8) Remarks on the pp	(9) Further remarks	(10) Also studied	(11) Figure	(12) Reference
IT	$egin{array}{c} \bot & (0.4) \\ 0.44^+ \\ // & (0.4) \\ 0.48^+ \end{array}$	0.980 (94.6) 0.993 (95.9)	1 1	423–502 (0.80) 423–496 (0.80)	10^{51} (5T) 4^{51} (3T)	sc 3N	²⁰⁴ TJ, electroplated; lathe	No	⁺ Present fit to the depicted data		36.01	Shirn (1955) [36.01]
	(0.7) 0.83 ⁺	0.867 (83.7)	2.2+	(1. 11) 514–549 (0.92) (/8-TT)	6 ⁵¹ (3T)							
IT	0.42	0.831 (80.2)	2.3	(0.94) (0.94) (8.71)	17	sc 5N	²⁰⁴ Tl, electroplated; lathe	All			36.01	Chiron (1985) [36.02]
Ag	⊥ 0.038 // 0.027	0.512 (49.4) 0.486 (46.9)	1 1	$(\alpha - T1)$ ($\alpha - T1$)	2 ⁵¹ 2 ⁵¹	sc 6N	¹¹⁰ Ag, dried-on from salt solution; microtome	No	*Present fit to the depicted data	Au in Tl	36.02	Anthony (1968) [36.03]
	(0.042) 0.040^+	0.516 (49.8)	124+	510-572 (0.94) (β -T1)	751	pc (5 mm) 6N						
Ν	$ \begin{array}{c} \perp \ (5.3 \times 10^{-4}) \\ 4.8 \times 10^{-4} \ + \\ / / \ (2.0 \times 10^{-5}) \\ 1.9 \times 10^{-5} \ + \end{array} $	0.226 (21.8) 0.121 (11.7)	1 1	388–490 (0.76) (α-Tl)	5^{51} 4^{51}	sc 6N	¹⁹⁸ Au, dried-on from salt solution; microtome	2 examples	⁺ Present fit to the depicted data	Ag in Tl	36.02	Anthony (1968) [36.03]
	(5.2×10^{-4}) 4.8 × 10 ^{-4 +}	0.260 (25.1)	260+	515–568 (0.94) $(\beta$ -T1)	6 ⁵¹	pc (5 mm) 6N						

Fig. 32.01 Self-diffusion and impurity diffusion in yttrium. Self-diffusion: \Box and \Diamond , Gornyy [32.01]. Ag in α -Y: \bigcirc , Murphy [32.02]; Fe in α -Y: \triangle , Murphy [32.02]; ∇ , Okafor [32.03].

Fig. 33.01 Self-diffusion in lanthanum. Self-diffusion in β -La: \Box , Dariel [33.01]; in γ -La: \bigcirc , Dariel [33.02]; \triangle , Languille [33.03]. Fitting line using the average $D^0 = 0.04 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}$ and Q = 1.18 eV.

Fig. 33.02 Impurity diffusion in lanthanum. Au in β -La: \Box , Dariel [33.01]; Ce in γ -La: \bigcirc , Fromont [33.04].

Fig. 34.01 Self-diffusion in aluminium. \Box , Lundy [34.01]; \bigcirc , Beyeler [34.02]; \triangle , Messer [34.04]; \blacklozenge , Hood [34.05]. The fitting line consists of two linear branches, from T_m to 933 K according to [34.01] and below 933 K according to [34.04].

Fig. 34.02 Impurity diffusion in aluminuim. Ag in Al: \blacksquare , Peterson [34.07]; \blacklozenge , Alexander [34.08]. Fitting line according to [34.07]. Cu in Al: \blacktriangle , Ceresara [34.15]; \triangle , Peterson [34.07]; \bigtriangledown , Peterson [34.17]; \diamondsuit , Fujikawa [34.16]; \bigcirc , Fujikawa [34.18]; \square , Ushino [34.19]. Approximative fitting line using $D^0 = 0.85 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}$ and Q = 1.43 eV.

Fig. 34.03 Impurity diffusion in aluminium. Au in Al: \Box , Peterson [34.07]; \triangle , Alexander [34.08]; \bigcirc , Becker [34.10]. Approximative fitting line using $D^0 = 0.1 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}$ and Q = 1.188 eV.

Fig. 34.04 (A) Impurity diffusion in aluminium. Cd in Al: ■, Alexander [34.08]; Zn in Al: □, Peterson [34.07]; ○, Gödény [34.43]; △, Beke [34.45]; ◇, Peterson [34.17]; ∇ , Beke [34.47]. Fitting line according to [34.47]. (B) (Detail). Impurity diffusion in Al. Zn in Al: □, Peterson [34.07]; ○, Gödény [34.43]; △, Beke [34.45]; ◇, Peterson [34.17]; ∇ , Beke [34.47]. Fitting line according to [34.47].

Fig. 34.05 Impurity diffusion in aluminium. Co in Al: \Box , Peterson [34.07]; \bigcirc , Hood [34.11]; \triangle , Rummel [34.12]. Fitting line according to [34.07].

Fig. 34.06 (A) Impurity diffusion in aluminium. Cr in Al: \blacklozenge , Peterson [34.07]; \bigcirc , Chi [34.13]; \triangle , Minamino [34.14]; \bigtriangledown , Rummel [34.12]. Fitting line according to [34.12]. Fe in Al: \Box , Hood [34.20]; \bigcirc , Alexander [34.08]; \triangle , Becker [34.10]; \bigtriangledown , Rummel [34.12]. Fitting line according to [34.12]. Mn in Al: \Box , Hood [34.29]; \bigcirc , Fujikawa [34.30]; \triangle , Rummel [34.12]. Fitting line according to [34.12]. Ti in Al: \diamondsuit , Chi [34.13]; V in Al: \bigcirc , Chi [34.13]; \triangle , Minamino [34.14]; \bigtriangledown , Rummel [34.12]. Fitting line according to [34.12]. Ti in Al: \diamondsuit , Peterson [34.07]; \bigcirc , Chi [34.13]; \triangle , Minamino [34.14]; \bigtriangledown , Rummel [34.12]. Fitting line according to [34.12]. Fitting line according to [34.12].

Fig. 34.07 Impurity diffusion in aluminium. Ga in Al: \Box , Peterson [34.07]; \bigcirc , Minamino [34.21]. Fitting line according to [34.07]. In in Al: \triangle , Hood [34.24].

Fig. 34.08 Impurity diffusion in aluminium. Ge in Al: \Box , Peterson [34.07]; \bigcirc , Minamino [34.21]; \diamondsuit , Thürer [34.22]. Fitting line according to [34.22]. Sn in Al: \blacksquare , Erdélyi [34.39]; \triangle , Erdélyi [34.40] (erfc); \bigtriangledown , Erdélyi [34.40] (Gauss). Fitting line according to [34.39].

Fig. 34.09 Impurity diffusion in aluminium. Hf in Al: \Box , Minamino [34.14]. Mo in Al: \bigcirc , Chi [34.13, 34.31].

Fig. 34.10 Impurity diffusion in aluminium. Ir in Al: \Box , Khoukaz [34.25]; Pd in Al: \bigcirc , Khoukaz [34.25].

Fig. 34.11 Impurity diffusion in aluminium. Mg in Al: □, Rothman [34.28]; Ni in Al: ○, Erdélyi [34.33].

Fig. 35.01 Self-diffusion in indium. \Box and \Diamond , Dickey [35.02].

Fig. 35.02 Impurity diffusion in indium. Ag in In: \Box and \Diamond , Anthony [35.03]; Au in In: \bigcirc , Anthony [35.03]; Tl in In: \triangle , Eckert [35.01].

Fig. 36.01 Self-diffusion in thallium. In α -Tl: \Box and \Diamond , Shirn [36.01]; in β -Tl: \bigcirc , Shirn [36.01]; \triangle , Chiron [36.02]. Fitting line according to [36.02].

Fig. 36.02 Impurity diffusion in thallium. Ag in α -Tl: \Box and \diamond ; Ag in β -Tl: \bigcirc , Anthony [36.03]; Au in α -Tl: \triangle and ∇ ; Au in β -Tl: \bullet , Anthony [36.03]

REFERENCES

References to Chapter 3.0

[30.01] K. Hirano, R.P. Agarwala, M. Cohen, Acta Metall. **10** (1962) 857.
[30.02] R.P. Agarwala, S.P. Murarka, M.S. Anand, Acta Metall. **12** (1964) 871.
[30.03] G.P. Tiwari, B.D. Sharma, Trans. Indian Inst. Met. **20** (1967) 83.
[30.04] A.R. Paul, R.P. Agarwala, J. Appl. Phys. **38** (1967) 3790.
[30.05] S.P. Murarka, M.S. Anand, R.P. Agarwala, Acta Metall. **16** (1968) 69.
[30.06] A.C. Carter, C.G. Wilson, Brit. J. Appl. Phys. (J. Phys. D) **1** (1968) 515.

References to Chapter 3.1

[31.01] S.C. Axtell, I.C.I. Okafor, R.J. Conzemius, O.N. Carlson, J. Less-Common Metals 115 (1986) 269.

References to Chapter 3.2

- [32.01] D.S. Gornyy, R.M. Altovskiy, Fiz. Met. Metalloved. 30 (1970) 85; Phys. Met. Metallogr. 30 (1) (1970) 87 (English transl.).
- [32.02] J.E. Murphy, G.H. Adams, W.N. Cathey, Metall. Trans. 6A (1975) 343.
- [32.03] I.C.I. Okafor, O.N. Carlson, J. Less-Common Metals 84 (1982) 65.

References to Chapter 3.3

- [33.01] M.P. Dariel, G. Erez, G.M.J. Schmidt, Phil. Mag. 19 (1969) 1053.
- [33.02] M.P. Dariel, Phil. Mag. 28 (1973) 915.
- [33.03] A. Languille, D. Calais, B. Coqblin, J. Phys. Chem. Sol. 35 (1974) 1461.
- [33.04] M. Fromont, J. Physique Lett. 37 (1976) L117.

References to Chapter 3.4

- [34.01] T.S. Lundy, J.F. Murdock, J. Appl. Phys. 33 (1962) 1671.
- [34.02] M. Beyeler, Y. Adda, J. Physique 29 (1968) 345.
- [34.03] T.E. Volin, R.W. Balluffi, Phys. Stat. Sol. 25 (1968) 163.
- [34.04] R. Messer, S. Dais, D. Wolf, in: Proc. 18th Ampère Congress, Eds. P.S. Allen, E.R. Andrews, C.A. Bates, Nottingham (1974), p. 327.
- [34.05] G.M. Hood, in: Solute-Defect Interaction-Theory and Experiment, Eds. S. Saimoto, G.R. Purdy, Pergamon Press, Oxford (1985), p. 83.
- [34.06] S. Dais, R. Messer, A. Seeger, Mater. Sci. Forum 15-18 (1987) 419.
- [34.07] N.L. Peterson, S.J. Rothman, Phys. Rev. B 1 (1970) 3264.
- [34.08] W.B. Alexander, L.M. Slifkin, Phys. Rev. B 1 (1970) 3274.
- [34.09] M. Beyeler, F. Maurice, R. Seguin, Mém. Sci. Rev. Métall. 67 (1970) 295.
- [34.10] Ch. Becker, G. Erdélyi, G.M. Hood, H. Mehrer, Defect and Diffusion Forum 66-69 (1989) 409.
- [34.11] G.M. Hood, R.J. Schultz, J. Armstrong, Phil. Mag. A 47 (1983) 775.
- [34.12] G. Rummel, Th. Zumkley, M. Eggersmann, K. Freitag, H. Mehrer, Z. Metallk. 86 (1995) 122.
- [34.13] N. van Chi, Doctoral Thesis, Bergakademie Freiberg (1977); Neue Hütte 23 (1978) 147.
- [34.14] Y. Minamino, T. Yamane, Sh. Nakagawa, H. Araki, K. Hirao, J. Japan Inst. Light Metals 37 (1987) 72.
- [34.15] S. Ceresara, Phys. Stat. Sol. 27 (1968) 517.
- [34.16] S. Fujikawa, K. Hirano, Trans. Japan Inst. Metals 12 (1971) 435; J. Japan Inst. Light Metals 20 (1970) 267.
- [34.17] N.L. Peterson, S.J. Rothman, Phys. Rev. B 17 (1978) 4666.
- [34.18] S. Fujikawa, K. Hirano, Defect and Diffusion Forum 66-69 (1989) 447.
- [34.19] S. Ushino, S. Fujikawa, K. Hirano, J. Japan Inst. Light Metals 41 (1991) 433.
- [34.20] G.M. Hood, Phil. Mag. 21 (1970) 305.
- [34.21] Y. Minamino, T. Yasuda, H. Araki, T. Yamane, Defect and Diffusion Forum 66–69 (1989) 1251.
- [34.22] A. Thürer, G. Rummel, Th. Zumkley, K. Freitag, H. Mehrer, Phys. Stat. Sol. (a) 149 (1995) 535.
- [34.23] F. Sawayanagi, R.R. Hasiguti, J. Japan Inst. Metals 42 (1978) 1155.
- [34.24] G.M. Hood, R.J. Schultz, Phys. Rev. B 4 (1971) 2339.
- [34.25] Ch. Khoukaz, H. Mehrer, Z. Metallk. 91 (2000) 888.
- [34.26] Y. Minamino, T. Yamane, H. Araki, Metall. Trans. 18A (1987) 1536.
- [34.27] G. Moreau, J.A. Cornet, D. Calais, J. Nucl. Mater. 38 (1971) 197.
- [34.28] S.J. Rothman, N.L. Peterson, L.J. Nowicki, L.C. Robinson, Phys. Stat. Sol. (b) 63 (1974) K29.
- [34.29] G.M. Hood, R.J. Schultz, Phil. Mag. 23 (1971) 1479.
- [34.30] S. Fujikawa, K. Hirano, Mater. Sci. Forum 13/14 (1987) 539.
- [34.31] N. van Chi, D. Bergner, in: DIMETA 82, Diffusion in Metals and Alloys, Eds. F.J. Kedves, D.L.Beke, Trans. Tech. Publ., Switzerland (1983), p. 334.
- [34.32] S. Sudár, J. Csikai, M. Buszkó, Z. Metallk. 68 (1977) 740.
- [34.33] G. Erdélyi, D.L. Beke, F.J. Kedves, I. Gödény, Phil. Mag. B 38 (1978) 445.
- [34.34] F. Dyment, S. Balart, C. Lugo, R.A. Perez, N. Di Lalla, M.J. Iribarren, Defect and Diffusion Forum 237–240 (2005) 402.
- [34.35] S. Badrinarayanan, H.B. Mathur, Int. J. Appl. Radiat. Isot. 19 (1968) 353.
- [34.36] S. Fujikawa, Defect and Diffusion Forum 143-147 (1997) 115.
- [34.37] D. Bergner, E. Cyrener, Neue Hütte 18 (1973) 356.
- [34.38] S. Fujikawa, K. Hirano, Y. Fukushima, Metall. Trans. 9A (1978) 1811.

- [34.39] G. Erdélyi, K. Freitag, H. Mehrer, Phil. Mag. A 63 (1991) 1167.
- [34.40] G. Erdélyi, K. Freitag, G. Rummel, H. Mehrer, Appl. Phys. A 53 (1991) 297.
- [34.41] D. Bergner, N. van Chi, Wiss. Zeitschrift der Pädagogischen Hochschule N.K. Krupskaja, Halle, 15 (3) (1977) 15.
- [34.42] J.J. Blechet, A. van Craeynest, D. Calais, J. Nucl. Mater. 27 (1968) 112.
- [34.43] I. Gödény, D.L. Beke, F.J. Kedves, Phys. Stat. Sol. (a) 13 (1972) K155.
- [34.44] S. Fujikawa, K. Hirano, Trans. Japan Inst. Metals 17 (1976) 809.
- [34.45] D.L. Beke, I. Gödény, F.J. Kedves, G. Groma, Acta Metall. 25 (1977) 539.
- [34.46] Y. Minamino, T. Yamane, M. Koizumi, M. Shimada, N. Ogawa, Z. Metallk. 73 (1982) 124.
- [34.47] D.L. Beke, I. Gödény, F.J. Kedves, Phil. Mag. A 47 (1983) 281.
- [34.48] T. Marumo, S. Fujikawa, K. Hirano, J. Japan Inst. Light Metals 23 (1973) 17.

Further Investigations

- Al [34.49] J.J. Spokas, C.P. Slichter, Phys. Rev. 113 (1959) 1462; NMR.
- Al [34.50] T.G. Stoebe, R.D. Gulliver, T.O. Ogurtani, R.A. Huggins, Acta Metall. 13 (1965) 701; NMR.
- Al [34.51] F.Y. Fradin, *Doctoral Thesis*, Univ. Illinois (1967); F.Y. Fradin, T.J. Rowland, Appl. Phys. Lett. **11** (1967) 207; NMR.
- Al [34.52] R.D. Engardt, R.G. Barnes, Phys. Rev. B 3 (1971) 2391; NMR.
- Al [34.53] Ch.Y. Sun, *Doctoral Thesis*, Univ. of Illinois (1971); NMR; see also A. Seeger, D. Wolf, H. Mehrer, Phys. Stat. Sol. (b) **48** (1971) 481.
- Ag [34.54] Th. Heumann, S. Dittrich, Z. Elektrochemie **61** (1957) 1138; Interdiffusion, potentiometric titration.
- Ag [34.55] M.S. Anand, R.P. Agarwala, Trans. AIME 239 (1967) 1848.
- Ag [34.56] Th. Heumann, H. Böhmer, J. Phys. Chem. Sol. **29** (1968) 237; Kryukov absorption method; D^0 corrected to $0.24 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}$.
- Ag see Ref. [34.35].
- Ag [34.57] D. Bartdorff, P. Reimers, Phys. Stat. Sol. (a) 28 (1975) 433; isotope effect.
- Au see Ref. [34.16].
- Au [34.58] D. Acker, M. Beyeler, G. Brebec, M. Bendazzoli, J. Gilbert, J. Nucl. Mater. **50** (1974) 281; low temperature measurements.
- Co [34.59] M.S. Anand, R.P. Agarwala, Phil. Mag. 26 (1972) 297.
- Co [34.60] R.V. Patil, G.P. Tiwari, Trans. Indian Inst. Metals 27 (1974) 215.
- Co see Ref. [34.33]; resistometric method.
- Cr [34.61] W.G. Fricke, in: *Aluminum*, Vol. **1**, Ed. K.R. van Horn, ASM Metals Park (1967); see also Scr. Metall. **6** (1972) 1139; EPMA.
- Cu [34.62] J.B. Murphy, Acta Metall. 9 (1961) 563; Interdiffusion, spectrophotometric analysis.
- Cu [34.63] M.S. Anand, S.P. Murarka, R.P. Agarwala, J. Appl. Phys. 36 (1965) 3860.
- Cu see Ref. [34.08].
- Cu see Ref. [34.09].
- Cu see Ref. [34.58]; low temperature measurements.
- Fe [34.64] S. Mantl, W. Petry, K. Schroeder, G. Vogl, Phys. Rev. B 27 (1983) 5313; QMS.
- Fe [34.65] D.L. Beke, I. Gödény, I.A. Szabo, G. Erdélyi, F.J. Kedves, Phil. Mag. A 55 (1987) 425.
- In [34.66] M.S. Anand, R.P. Agarwala, Phys. Stat. Sol. (a) 1 (1970) K41.
- Li [34.67] C.J. Wen, W. Weppner, B.A. Boukamp, R.A. Huggins, Metall. Trans. **11B** (1980) 131; Interdiffusion, electrochemical technique.
- Li [34.68] C. Moreau, A. Allouche, E.J. Knystautas, J. Appl. Phys. 58 (1985) 4582; Interdiffusion, low temperature measurements.
- Mg [34.69] S. Fujikawa, K. Hirano, Mater. Sci. Eng. 27 (1977) 25.
- Mn see Ref. [34.61]; EPMA.
- Mn [34.70] D. Bergner, E. Cyrener, Neue Hütte 18 (1973) 9.
- Mn [34.71] D.L. Beke, I. Gödény, I. Móricz, F.J. Kedves, Phil. Mag. Lett. 60 (1989) 219.
- Sn see Ref. [34.66].

- Zn [34.72] J.E. Hilliard, B.L. Averbach, M. Cohen, Acta Metall. 7 (1959) 86.
- Zn [34.73] S. Ceresara, T. Federighi, F. Pieragostini, Phys. Stat. Sol. **16** (1966) 439; resistometric method. Zn see Ref. [34.69].
- Zn see Ref. [34.33]; resistometric method.
- Zn [34.74] Y. Minamino, T. Yamane, K. Tokuda, Z. Metallk. 71 (1980) 90.
- Zn [34.75] S. Varadarajan, R.A. Fournelle, Acta Metall. Mater. 40 (1992) 1847; low temperature measurements, X-ray analysis, TEM.

References to Chapter 3.5

- [35.01] R.E. Eckert, H.G. Drickamer, J. Chem. Phys. 20 (1952) 13.
- [35.02] J.E. Dickey, Acta Metall. 7 (1959) 350.
- [35.03] T.R. Anthony, D. Turnbull, Phys. Rev. 151 (1966) 495.
- [35.04] W.W. Albrecht, G. Frohberg, H. Wever, Z. Metallk. 65 (1974) 279.

References to Chapter 3.6

[36.01] G. Shirn, Acta Metall. 3 (1955) 87.

- [36.02] R. Chiron, G. Faivre, Phil. Mag. A 51 (1985) 865; Rev. Phys. Appl. 20 (1985) 553.
- [36.03] T.R. Anthony, B.F. Dyson, D. Turnbull, J. Appl. Phys. 39 (1968) 1391.

CHAPTER 2

Self-Diffusion and Impurity Diffusion in Group IV Metals

Contents	Tables	
	4.1. Titanium (Ti)	151
	4.2. Zirconium (Zr)	162
	4.3. Hafnium (Hf)	172
	4.4. Tin (Sn)	173
	4.5. Lead (Pb)	176
	Figures	
	Titanium	181
	Zirconium	191
	Hafnium	197
	Tin	200
	Lead	203
	References	206

Silicon (Si) and **germanium** (Ge) are not topic of the present data collection. Selfdiffusion and impurity diffusion data in the semi-conductors Si and Ge are collected in Refs. [40.01–40.03].

Anomalous diffusion behaviour is observed in α -Ti and especially in α -Zr. Interstitially dissolved 3d group metals, particularly iron, enhance self-diffusion and impurity diffusion in α -Ti and α -Zr, caused by highly mobile Fe-interstitial/vacancy pairs [40.04]. Whereas in α -Ti the enhancement results in a linear Arrhenius plot with low diffusion energy, in α -Zr lnD vs. 1/T is divided into three regions (see Fig. 40.01). Region I, at high temperatures, represents intrinsic diffusion with normal values of D^0 and Q. In region II, at intermediate temperatures, Fe-enhanced extrinsic self-diffusion exceeds that intrinsic diffusion, where the enhancement is directly proportional to the Fe content of the sample. In region III the solubility limit of Fe is exceeded, which leads to Fe precipitation and a reduced influence of Fe on the diffusivity [40.04].

Lead was the first solid metal on which self-diffusion was studied. In 1896 Roberts-Austen had investigated the extremely fast diffusion of Au [40.05]. Later on Seith and co-workers had investigated impurity diffusion in lead using optical spectrum analysis [40.06–40.12] and self-diffusion with the aid of radio isotopes [40.13].

Fig. 40.01 Schematic illustration of self-diffusion in α -Zr. The influence of Fe impurities (according to Ref. [40.04]). See text for details.

In Table 4.0 lattice structure, lattice constants, melting and phase transition temperatures of the group IV metals are listed.

Table 4.0 Lattice structure, lattice constants *a* and *c*, phase transition temperature T_{ij} and melting temperature T_m

Metal	1	Гі	7	Źr	ŀ	lf	Sn	Pb
phase	α	β	α	β	α	β	β	
Structure	hcp	bcc	hcp	bcc	hcp	bcc	bct	fcc
T_{ij} (K)	1,1	155	1,1	136	2,0	013	434	
$T_{\rm m}$ (K)	1,9	940	2,1	125	2,5	500	505	601
<i>a</i> (nm)	0.295	0.331	0.323	0.362	0.320	0.360	0.583	0.495
<i>c</i> (nm)	0.469		0.515		0.506		0.318	

e 4.1 Diffusion	in titanium									(Reference	es, see page 206)
a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12)
⁰ (10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (kJ mole ⁻¹)	$D (T_m)$ ($10^{-12} m^2 s^{-1}$)	T-range (K) (\overline{T}/T_m)	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
fusion 58 × 10 ⁻⁴ ²¹ 09 ²¹	1.353 ²¹ (130.6) 2.602 ²¹	30	1,172–1,813 (0.77) β-Ti	14	pc 3N	⁴⁴ Ti, dried-on from salt solution;	3 examples (50 μm sections)		V in β-Ti	41.01	Murdock (1964) [41.01]
5 ²²	(221.2) 3.4 ²² (328.3)	31	1,176–1,893 (0.79) β-Ti	10	$^{\rm pc}_{\sim 3N8}$	⁴⁴ Ti, dried-on from salt solution;	IIA	Ω -fit with $\Omega = 4.1$		41.01	Köhler (1987) [41.02]
27×10^{-4} ²¹ 45^{21}	1.24^{21} (119.7) 2.41^{21}	32	(1,172–1,893) β-Ti	(24)		זמרוני		Two-exponential fit to the data of [41.01,41.02]		I	Neumann (1990) [41.03]
- $(1.7 \times 10^{-4})^*$	(192.8) (192.8)	I	858-1,127 (0.51) α-Τi	6 (5T)	sc ∼3N*	⁴⁴ Ti, vapour deposition; microtome	No	* ~30 ppma Fe and Ni impurities, see introduction page	Co in <i>α</i> -Ti	I	Herzig (1991) [41.04]
- 13.5 / -	3.138 (303) -	1 1	873–1,133 (0.52) 923, 1,023 ~-Ti	7 4	sc ultra- pure*	and Ib5 ⁴⁴ Ti, vapour deposition; IBS	All (total depth: 0.5-4μm)	* ~0.025 ppma Fe and Ni impurities, see introduction	Al in &-Ti	41.13	Köppers (1997) [41.05]
ty diffusion).003*) .0026 ⁺	1.865 [×] (180.0)	37+	σ 1,213–1,863 (0.79) β-Ti	11 ⁵¹ (9T)	pc 3N5	$^{110}Ag^{72}$; lathe	No (linear pp)	*Almost linear $^{+}$ Dot $D = 1/T$ plot $^{+}$ Present fit to the	Sc in β-Ti	I	Askill (1971) [41.06]
).8 ²²	3.656 ²² (353)	31	1,173–1,773 (0.76) <i>R</i> -Ti	13	pc 3N5	Ag; EPMA Ti/ Ti(2.76% Ag) (Matano)	No	depicted data Ω -fit with $\Omega = 4.52$	Cu in β-Ti	41.02	Lee (1990) [41.07]
.065) 25 ⁺	(2.486) (240) 2.620 ⁺ (253)	I	n 1,030–1,120 (0.55) ∞-Ti	5 ⁵¹	pc* (1–2 mm) 2N7	Ag: EPMA Ti/ Ti(3.19% Ag) (Matano)	No	*Fe content not specified, see introduction page +Present fit to the depicted data	Au, Cu in a-Ti	I	Taguchi (1995) [41.08]
								1			

(1) (2a)	(zb)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12)
X D^{0} (10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (kJ mole ⁻¹)	$D (T_m) (10^{-12} \text{m}^2 \text{s}^{-1})$	$ au$ -range (K) (\overline{T}/T_m)	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Ag 1.0	2.890 (279)	I	823-1,073 (0.49) ∝-Ti	Q	pc 3N*, 4N×	Ag, implanted; RBS	All	Fe content * <150 ×3.8 ppma; <i>D</i> (uncertainty 20-25%) is independent of the	Al in <i>α</i> -Ti	41.14	Araujo (2000) [41.09]
Al 1.2×10^{-3} *	1.554* (150)	(11)*	1,223–1,573 (0.72) β-Ti	×	pc 2N9	Al; EPMA Ti/ Ti(2.1% Al) (Boltzmann– Matano,	1 example (proba- bility plot)	Impurity content *Forced fit		41.03	Araki (1994) [41.10]
Al -	I		1,193–1,873 (0.79) _{6-T5}	6 ⁵¹	pc ⁶¹	Al; SIMS				41.03	Köppers (2000) [41.11]
Al 0.114 ²³	2.207 ²³ (213.1)	21	р-11 1,193–1,873 β-Ті	14				Present α -fit with $\alpha = 6.7$ and $T_0 = T_{\rm m}$ to the data of [41.10, $\alpha_{11.11}$		41.03	
Al 1 (66)* 1 80 ⁺ // -	(3.407) ^x (329) 3.433+ (331.5) -	1 1 1	935-1,140 (0.53) &-Ti 1,036, 1,073	11 (8T) 2	sc, pc ultrapure*	Al, vapour deposition; SIMS	Several exam- ples (total depth: 0.5– 5 µm)	*Fe. Ni content 0.025 ppma $^{x}D_{pc} \approx D_{\perp}$ *Present approxi- mation	Ti in α-Ti	41.14	Köppers (1997) [41.05]
Al 140	3.376 (326)	I	948–1,073 (0.52) α-Ti	9	pc 3N, 4N	Al, implanted; NRA (²⁷ Al(p,y) ²⁸ Gi)	All (total depth: ≤ 0.2 µm)	Uncertainty of D: 20-25%	Ag in &-Ti	I	Araujo (2000) [41.09]
Au 9.32 ²²	3.604 ²² (348)	27	1,173–1,823 (0.77) β-Τi	14	pc (2 mm) 3N5	Au; EPMA Ti/ Ti(1.26% Au) (Matano)	No	Ω -fit with $\Omega = 4.2$		41.02	Lee (1993) [41.12]

Table 4.1 (Continued)

dos Santos (1994) [41.13]	Faguchi (1995) [41.08]	?avlinov (1969) [41.14]	Shabalin (1979) [41.15]	?eart (1962) [41.16]	Gibbs (1963) [41.17]	Araki (1997) [41.18]	Vakajima (1983) [41.19]	² érez (1995) [41.20]	Mortlock (1959) [41.21]
-0.35	i i	-Zr -	1	- Nb, - β-Ti	Mn, 41.04 Nb, Ni Ii	= 0.22 41.04	41.15	41.15	- (Cr)
Fe, Ni content c_s is 0.2 ~150 ppma, see at % introduction page Present approximation	Fe content not Ag, Cu specified a-Ti Present fit to the depicted data	Be in β	Fe content 0.25% Present approximation	Fe, Mn Ni in	Approximative two- C_T , F_{Θ_1} , M_{Θ_2} In exponential fit; M_{Θ_2} In Present rough fit to in β -, the depicted data	$(1,223 \text{ K}) = \Delta V/V_0$ $3.64 \times 10^{-12} \text{ m}^2 \text{ s}^{-1}$	Fe content ~ 7.5 ppma	Fe, Co, Ni content < 200 ppma, see introduction page $D_{pc} \approx D_{\perp}$	Ti in Ti
3 exam- *	No *	No	3 exam-*	No	1 example A (∼80 µm sections) +	No	2 examples *	All (partly erfc- * solution) */	1 example
Au, implan- ted; RBS	Au; EPMA Ti/ Ti(0.61% Au) (Matano)	⁷ Be; residual activity	⁷ Be, dried-on from salt solution; residual activity	⁶⁰ Co, electro- plated; auto- radiography	⁶⁰ Co, electro- plated; lathe	Co; EPMA Ti/ Ti(2.25% Co) (Boltzmann– Matano, Hall)	⁶⁰ Co, electro- plated ⁷³ ; lathe	⁶⁰ Co, vapour deposition; microtome	⁵¹ Cr, vapour deposition; auto- radiography
Pc 3N*	pc (1–2mm) 2N7*	pc 2N62	pc 2N5*	pc (5–10 mm) 2N7	pc 2N7	≥c ~3N	sc 3N6*	pc 3N*	Pc ∼2N7
Ŋ	5 ⁵¹	10^{51} (5T)	4	11 ⁵¹	25 ⁵¹ (20T)	-	ę ę	Ŋ	œ
823-973 (0.46) ¤-Ti	980–1,120 (0.54) α-Ti	1,188–1,573 (0.71) ß-Ti	9,3−1,133 (0.55) ∞-Ti	1,191–1,497 (0.69) <i>B</i> -Ti	1,188–1,899 (0.80) (β-Ti)	1,223 β-Τi	871–1,135 (0.52) α-Ti	619–823 (0.37) α-Ti	1,199–1,466 (0.69) β-Tī
1	1		1		710+		1 1	I	56
(2.693) (260)	(1.947) (188)	1.743 (168.3)	(2.693) (260) (2.514) ⁺ (242.8)	1.327 (128.1)	$\begin{array}{c} 1.327^{21} \\ (128.1) \\ 2.277^{21} \\ (219.8) \end{array}$	I	1.315 (126.1) 1.182 (114.1)	1.315 [×] (127)	1.636 (158.0)
Au (0.19) (0.24)+	Au (2.5×10^{-4}) $(2.0 \times 10^{-4})^+$	Be 0.8	Be (1.4×10^4) $(2,400)^+$	Co 0.0121	Co (0.012 ²¹) 0.0105 ⁺ (2.0 ²¹) 2.8 ⁺		Co 1 0.032 // 0.019	Co 0.03*	Cr 0.01

		()6)		41.24]	(69)	<u> </u>	1995)	23
(12)	Reference	Gibbs (19 [41.17] Lee (1991]	[41.22] Araki (20	[62.14]	Nakajima (1990) [.	Caloni (19 [41.25]	Lee (1990) [41.07]	Taguchi ([41.08]	Peart (196 [41.16]
(II)	Figure	- 41.04	41.04		41.15	41.02	41.02	1	41.05
(JO)	Also studied	Co, Fe, Mn, Mo, Nb, Ni in β-Ti Pd in β-Ti	$\Delta V/V_0 =$	0.4-0-4-0	Cr in α -Ti(X) X = Al, Sn		Ag in β-Ti	Ag, Au in α-Ti	Co, Mn, Nb, Ni in β -Ti; Fe in Ti(Fe) Fe in Ti(Nb)
(6)	e Further remarks	Approximative two- exponential fit together with the data of $[41.21]$ Ω -fit with $\Omega = 1.16$	*Two linear	prancines below and above 1,370 K	*Fe, Ni content <60 ppma		Ω -fit with $\Omega = 2.3$	*Fe content not specified, see introduction page *Present fit to the depicted data	
(8)	Remarks on th pp	o No N	1 example	(x-2)	IIA		No	No	1 example
(7)	Experimental method	⁵¹ Cr, vapour deposition ⁷³ auto- radiography Cr; EPMA Ti/	Ti(4.62% Cr) (Matano, Darken) Cr; EPMA Ti/	II(4.81% Cr) (Boltzmann– Matano, Hall)	⁵¹ Cr, dried-on from salt solution; lathe	Cu; EPMA	Cu; EPMA Ti/ Ti(2.28% Cu (Matano, Darken)	Cu; EPMA Ti/ Ti(0.91% Cu (Matano)	⁵⁵ Fe*, ⁵⁹ Fe ^x , electro- plated; auto- radiography
(9)	Material, purity	pc 2N7 pc	~ 3N5	NIC~	$\sim 3N8^*$	$^{\rm pc}_{\sim 2N8}$	pc ~ 3N5	pc (1–2 mm) 2N7*	pc (5–10 mm) 2N7, 3N
(5)	No. of data points	20 ⁵¹ (10T) 14	м		é é	11	13	4^{51}	8* 11 [×]
(4)	$ au$ -range (K) (\overline{T}/ au_m)	1,284–1,895 (0.82) β-Ti 1,173–1,823	(0.77) β-Τi 1,173–1,573	β-Ti	875-1,123 (0.51) α -Ti	1,233–1,733 (0.76) β-Ti	1,173–1,773 (0.76) β-Ti	1,030–1,100 (0.55) α-Ti	1,183–1,468 (0.68) 1,177–1,557 (0.70) β-Ti
(3)	D (T _m) (10 ⁻¹² m ² s ⁻¹)	(115) 68	68		I	(290)	190	1	1 1
(2b)	Q (eV) and (kJ mole ⁻¹)	$\begin{array}{c} 1.531^{21} \\ (147.8) \\ 2.645^{21} \\ (255.4) \\ 2.154^{22} \end{array}$	(208) 1.522 [×]	(147) 1.730 [×] (167)	1.755 (169.4) 1.714 (165.5)	$\begin{array}{c} 1.266^{21} \\ (122.3) \\ 2.611^{21} \\ (252.1) \end{array}$	2.496 ²² (241)	2.029 (195)	1.370 (132.3) 1.388 (134.0)
(1) (2a)	X D^{0} (10 ⁻⁴ m ² s ⁻¹)	Cr 0.005 ²¹ 4.9 ²¹ Cr 0.084 ²²	Cr 0.0038 ^x	0.0212 [×]	Cr ⊥ 0.020 // 0.022	Cu 0.0021 ²¹ 11.3 ²¹	Cu 0.57 ²²	Cu (0.38) 0.34 ⁺	Fe 0.0078 0.0085

 Table 4.1 (Continued)

Gibbs (1963) [41.17]	Nakajima (1983) [41.26]	Lee (1993) [41.27]	Köppers (1997) [41.28], [41.29]	Behar (2003) [41.30]	Iijima (1993) [41.31]	Le Gall (1987) [41.32]	Behar (1991) [41.33]	Pérez (1993) [41.34]
41.05	41.16	41.03	41.16	1	41.06	I	1	I
Co, Cr, Mn, Mo, Nb, Ni, Ni in β -Ti; E < 0.1		In in β-Ti	Tī, Al, In in ¤-Tī		Si, Sn in β-Ti			
Approximative two- exponential fit together with the ⁵⁵ Fe data of [41.16]	*Fe content <10 ppma	Ω -fit with $\Omega = 4.0$ ⁺ Present approximation	${}^{x}D_{pc} \approx D_{\perp}$ *Fe, Ni content ~0.03 ppma	*Fe, Ni content ~ 150 ppma, see introduction page *Present approximation	Ω -fit with $\Omega = 3.05$	X = 50-100 *Two linear branches 'Present approximation	*Fe content < 40 ppma, see introduction page	*Fe content ~ 100 ppma, see introduction page
No	No (2 exam- ples in Ref. [41.36])	No	5 examples (at lower <i>T</i> non- linear in ln $c - x^2$)	3 examples	No	No		All ⁸⁵
⁵⁹ Fe*, ⁵⁵ Fe ^x , electro- plated ⁷³ ; lathe and auto- radiography	⁵⁹ Fe, electro- plated; lathe	Ga; EPMA Ti/ Ti(1.71% Ga) (Matano, Darken)	Ga; SIMS analysis	Ga, implanted; RBS	Ge; EPMA Ti/ Ti(2% Ge) (Matano, Darken)	Hf; EPMA Ti/ Ti(X % Hf) (Den Broeder)	Hf, vapour deposition; RBS	Hf, vapour deposition; RBS, HIRBS
pc 2N7	sc 3N5*	pc 3N5	pc ultra- pure*	$\sim 4 \mathrm{N}^{*}$	pc ~3N5	pc 2N7	\sim^{3N6*}	pc 3N*
18^{51} * (10T) 6^{51} ×	9 9	13	9 ⁵¹	9	14	હ ગ	5 (6)	9
1,242–1,918 (0.81) 1,256–1,490 (0.71) β-Ti	877–1,137 (0.52) α-Ti	1,223–1,823 (0.79) β-Ti	873-1,143 (0.52) α-Ti	873-1,123 (0.51) &-Ti	1,173–1,823 (0.77) β-Ti	$\begin{array}{c} 1,623-1,873\\ (0.90)\\ 1,273-1,573\\ (0.73)\\ \beta^{-}\mathrm{Ti} \end{array}$	(823–1,023) 823–973 (0.46) &-Ti	902–1,145 (0.53) α-Ti
390	1 1	33+	I	1	43	18+	I	I
1.370 ²¹ (132.3) 2.385 ²¹ (230.3)	1.493 (144.2) 1.163 (112.3)	3.480 ²² (336)	3.06 [×] (295.5)	3.190 (308)	2.921 ²² (282)	1.761* (170) 1.191* (115)	(2.9) (280)	(2.631) (254)
e 0.0078 ²¹ 2.7 ²¹	e ⊥ 0.064 // 0.0047	a (6.35 ²²) 6.7 ⁺	а ⊥ 21 [×]	a (25) 34+	e 0.792 ²²	f - 0.0069 ⁺ - 1.2 $\times 10^{-4+}$	f (1.5)	f (0.04)
F	Fe	Ö	J	Ú	Ū	H	Н	H

(2b)	(3)	(4)	(5)	(6)	(7)	(8)	(6)	(0L)	(LL)	(12)
Q (eV) and (kJ mole ⁻¹)	$D (T_m)$ ($10^{-12} m^2 s^{-1}$)	$ au$ -range (K) (\overline{T}/T_m)	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
3.263 ²² (315)	20+	1,173–1,823 (0.77) β-Ti	14	pc 3N5	In; EPMA Ti/ Ti(1.71% In) (Matano, Darken)	No	Ω -fit with $\Omega = 3.83$ ⁺ Present approximation	Ga in β -Ti	41.07	Lee (1993) [41.27]
3.41 [×] (329.2)	I	990–1,142 (0.55) &-Ti	6 ⁵¹	pc ultra- pure*	In; SIMS analysis	No	${}^{x}D_{pc} \approx D_{\perp}$ *Fe, Ni content ~0.03 ppma	Ti, Al, Ga in &-Ti	41.18	Köppers (1997) [41.28]
(2.692) (260)	I	823-1,073 (0.49) α -Ti	9	pc 3N*	In, implanted; RBS	All	*Fe content ~ 100 ppma, see introduction page		I	Pérez (1997) [41.35]
1.461 (141.1)		1,213–1,492 (0.70) <i>B</i> -Ti	9 ⁵¹ (8T)	pc (5–10 mm) 2N7	⁵⁴ Mn, electro- plated; auto- radiography	No		Co, Fe, Nb, Ni in β -Ti	I	Peart (1962) [41.16]
$\begin{array}{c} 1.461^{21} \\ (141.1) \\ 2.515^{21} \\ (242.8) \end{array}$	200+	1,213–1,897 (0.80) β-Tì	26 ⁵¹ (17T)	pc 2N7	⁵⁴ Mn, electro- plated; lathe	1 example ($\sim 80 \mu m$ sections)	Approximative two- exponential fit ⁺ Present rough fit to the depicted data	Co, Cr, Fe, Mo, Nb, Ni in β-Ti	41.05	Gibbs (1963) [41.17]
1.960 (189.2) 1.662 (160.5)	I	878–1,135 (0.52) &-Ti	Q Q	sc, pc 3N5	⁵⁴ Mn, dried-on from salt solution; lathe	All	Fe, Ni content ∼ 60 ppma	Mn in &-Ti(O)	41.16	Nakamura (1988) [41.36]
(1865^{21}) (180.0) 3.166^{21} (305.7)	19+	1,179–1,899 (0.79) β-Ti	24 ⁵¹ (17T)	pc 2N7	⁹⁹ Mo, electro- plated; lathe	1 example $(\sim 80 \ \mu m)$ sections)	Approximative two- exponential fit ⁺ Present rough fit to the depicted data	Co, Cr, Fe, Mn, Nb, Ni in β-Ti	41.08	Gibbs (1963) [41.17]
1.704 (164.5)		1,270–1,532 (0.72) β-Ti	6 ⁵¹	pc (5–10 mm) 2N7	⁹⁵ Nb, electro- plated; auto- radiography	No		Co, Fe, Mn, Ni in β -Ti; Nb in Ti(Nb), Nb in Ti(Fe)	41.08	Peart (1962) [41.16]

Table 4.1 (Continued)

Gibbs (1963) [41.17]	Peart (1962) [41.16]	Gibbs (1963) [41.17]	Hood (1972) [41.37]	Nakajima (1985) [41.38]	Askill (1965) [41.39]	Nakajima (1986) [41.40]	Mirassou (1996) [41.41]
41.08	41.05	41.05	I	41.19	41.10	41.19	41.18
Co, Cr, Fe, Mn, Mo, Ni in β-Ti, Nb in Ti(Nb)	Co, Fe, Mn, Nb in β -Ti	Co, Cr, Fe, Mn, Mo, Nŀ in β-Tì	Co, Fe, Ni in &-Zr	Ni in <i>α</i> -Ti(O)	Sc, Sn in β -Ti	P in Ti(O)	
Approximative two- exponential fit together with the data of [41.16] "Present rough fit to the depicted data		Approximative two- exponential fit together with the data of [41.16] "Present rough fit to the depicted data	*Fe content not specified +Present approximation	*Fe, Ni content ~ 100 ppma, see introduction page	Approximative two- exponential fit	*Marked downward curvature of ln <i>D</i> – 1/ <i>T</i> below 973K *Fe content <7.5 ppma	*Fe, Ni content < 150 ppma, see introduction page *Present approximation
No	No	No	All (partly marked NSE)	No	No	4 examples	2 examples
⁹⁵ Nb, electro- plated; auto- radiography	⁶³ Ni, electro- plated; auto- radiography	63Ni, electro- plated; auto- radiography	63Ni, electro- plated; lathe (50 μm sections)	⁶³ Ni, electro- plated; lathe	³² P, electro- plated; lathe	³² P, dried-on from salt solution; lathe	Pb, implanted; RBS
pc 2N7	pc (5–10 mm) 2N7	Pc 2N7	pc "high- pure''*	$\sim 3N^*$	pc 2N7	sc 3N6 ^x	3N*
15 ⁵¹ (8T)	10^{51}	16 ⁵¹ (11T)	ß	5 ⁵¹ 5 ⁵¹	15 (10T)	(14) 4 4	5 (4T)
1,311–1,890 (0.83) β-Tĩ	1,209–1,511 (0.70) β-Ti	1,220-1,911 (0.81) β-Τϊ	912-1,141 (0.53) &-Ti	876-1,103 (0.51) &-Ti	1,218–1,873 (0.80) β-Ti	(872–1,123)* 973–1,123 (0.54) α-Ti	823–973 (0.46) &-Ti
21+		+062	I	1 1	910	1 1	1
$\begin{array}{c} 1.704^{21} \\ (164.5) \\ 3.166^{21} \\ (305.7) \\ 1.684^{21} \\ (159.1) \\ 3.166^{21} \\ (159.2) \end{array}$	1.284 (123.9)	1.284 ²¹ (123.9) 2.277 ²¹ (219.8)	- 1.445+ (139.5)	1.469 (141.8) 1.421 (137.2)	(1045^{21}) (100.9) 2.450^{21} (236.6)	1.431 (138.2) 1.785 (172.3)	(2.351) ⁺ (227)
(0.005^{21}) (20^{21}) 0.003^{21+} 10^{21+}	0.0092	(0.0092 ²¹) 0.008 ⁺ (2.0 ²¹) 3.5 ⁺	- 0.061+	⊥ 0.054 // 0.056	0.00362 ²¹ 5 ²¹	⊥ 0.155 // 4.7	$(8 \times 10^{-4})^+$
Ŋ	ïŻ	Ż	ïŻ	ïZ	Ч	Ч.	Ч

Table	: 4.1 (Continued	()										
(I)	(2a)	(2b)	(3)	(4)	(5)	(6)	(2)	(8)	(6)	(0L)	(11)	(12)
×	D ⁰ (10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (kJ mole ⁻¹)	D (T _m) (10 ⁻¹² m ² s ⁻¹)	$ au$ -range (K) (\overline{T}/T_m)	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Pb	0.056	2.693 (260)	I	913-1,123 (0.52) TE	~	pc 3N*	Pb, vapour deposition;	1 example	*Fe content ~ 100 ppma, see	Ag in <i>α</i> -Ti	41.18	Mirassou (1997) [41.42]
Рд	5.70 ²²	3.21 ²² (310)	62	2-11 1,173–1,823 (0.77) β-Ti	14	pc ∼3N5	Pd; EPMA Ti/ Ti(1.84% Pd) (Boltzmann- Matano,	Q	Introduction page Ω -fit with $\Omega = 3.18$	Cr in β -Ti	41.09	Lee (1991) [41.22]
РЧ	(20) 29+	2.734 (264)	1	723-1,073 (0.45) &-Ti	×	pc 4N*	глацу Pd, implanted; RBS	All	*Fe, Ni content <3 ppma +Present		41.17	Behar (2000) [41.43]
Pu	(1×10^{-6}) $(1.5 \times 10^{-6})^+$	(0.663) (64.1)		1,178–1,400 (0.68) β-Ti	551	pc ⁶¹	Pu, diffusion couple; &-auto-	No	⁺ Present fit to the depicted data	Pu in Ti(Pu)	I	Languille (1971) [41.44]
Sc	0.0021 [×]	1.418 [×] (136.9)	43	1,192–1,563 (0.71) <i>R</i> .Ti	œ	pc 2N7	46Sc, vapour deposition; latha	No	^x Forced fit	P, Sn in β -Ti	41.10	Askill (1965) [41.39]
S	$(0.004^{\rm x})$ 0.0019^{+}	1.405 [×] (135.7)	42*	1,213-1,843 (0.79) R_{T}	12 ⁵¹ (11T)	pc 3N5	⁴⁶ Sc ⁷² ; Lathe	No	^x Forced fit ⁺ Present fit to the deviced data	Ag in β -Ti	41.10	Askill (1971) [41.06]
S:	0.422 ²²	2.682 ²² (259)	56	1,173–1,823 (0.77) β-Ti	14	Pc ∼3N5	Si; EPMA Ti/ Ti(1.02% Si) (Matano, Darken)	No	Ω -fit with $\Omega = 2.52$	Ge, Sn in β -Ti	41.06	lijima (1993) [41.31]
Si	(4.4×10^{-7})	(1.09) (105.2)	I	923-1,073 (0.51) ~.T:	4	pc 3N*	Si, implanted; NRA (³⁰ C;(,,,,) ³¹ P)	No	*Fe content not specified		I	Räisänen (1986) [41.45]
Sn	$(3.8 \times 10^{-4} \ ^{21})$ $3.6 \times 10^{-4} \ ^{+}$ (9.5^{21}) 13^{+}	$\begin{array}{c} 1.370^{21} \\ (132.3) \\ 3.001^{21} \\ (289.7) \end{array}$	30+	2-11 1,226–1,868 (0.80) β-Tî	17 (10T)	pc 2N7	¹¹³ Sn, electro- plated; lathe	No	Approximative two- exponential fit *Present rough approximation	P, Sc in β -Ti	I	Askill (1965) [41.39]

Sn – 0.007+	- 1.714 ⁺ (165.5)	25+	1,245–1,798 (0.78) β-Ti	Ŋ	pc 3N7	¹¹³ Sn, ¹²¹ Sn, electro- plated; lathe	No	Pronounced data scatter ⁺ Present rough	E = 0.18 - 0.37	I	Jackson (1977) [41.46]
Sn 0.69 ²²	3.117 ²² (301)	18	1,173–1,823 (0.77) β-Ti	14	$^{ m pc}_{\sim 3N5}$	Sn; EPMA Ti/ Ti(1.65% Sn) (Matano, Darken)	No	Ω -fit with $\Omega = 3.50$	Ge, Si in β -Ti	41.06	lijima (1993) [41.31]
Sn 2.69 ²²	3.407 ²² (329)	21	1,173–1,773 (0.76) β-Ti	œ	Pc ∼3N	Sn; EPMA Ti/ Ti(4.9% Sn) (Matano, Hall)	1 example (probability plot)	Ω -fit with $\Omega = 4.0$	$\Delta V/V_0 = 0.2841$	41.06	Araki (1993) [41.47]
Sn (40) 36 ⁺ -	3.5 (338) -	I	873–1,098 (0.51) 923–1,073 ¤-Ti	3 ×	pc 3N* ×	Sn, implanted; RBS	Several examples	Fe, Ni content *<150 ppma *500 ppma, see introduction page *Present annrovimation		41.20	Pérez (1997) [41.48]
Ta $(3 \times 10^{-4} {}^{21})$ 2.8 × 10^{-4+} (13^{21}) 11 ⁺	$\begin{array}{c} 1.453^{21} \\ (140.3) \\ 3.209^{21} \\ (309.8) \end{array}$	9.7+	1,187—1,869 (0.79) β-Ti	15	pc 2N7	182 Ta 72 ; lathe	No	Approximative two- exponential fit +Present rough approximation		41.11	Askill (1966) [41.49]
Ta 0.15 ^{22*}	2.973 ²² * (287)	7.5	1,273–1,873 (0.81)	12	pc ∼3N5	Ta; EPMA Ti/ Ta diffusion couple (Den Broeder, Hall)	No	* \tilde{D} extrapolated to $x = 0$; D (Hall) \approx $0.9\tilde{D}(0)$; Ω -fit with $\Omega = 3.28$		41.11	Ansel (1998) [41.50]
Ta (10) 11 ⁺ (0.25) ^x	3.294 (318) (2.986) ^x (275.7)	1	911–1,123 (0.52) 911, 1,043 &-Ti	7 4	pc 4N* 3N [×]	Ta, vapour deposition; RBS, HIRBS	AII	*Fe, Ni content < 3 ppma; Fe, Ni content < 150 ppma +Present antroximation		41.20	Pérez (2003) [41.51]
U (5.1×10^{-4}) $(4.9 \times 10^{-4})^*$	(1.271) (122.7) -		1,188–1,473 (0.69) 1,188–1,373 β-Ti	11 (6T) 9 (5T)	pc 2N7	²³⁵ U, vapour deposition ⁷³ ; residual activity and absorption	No	*According to [41.65]		I	Pavlinov (1966) [41.52]

\sim
Continued)
ble 4.1 (C

Tabl	e 4.1 (Continuea	(†										
(E	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(IO)	(LL)	(12)
×	D^0 (10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (k) mole ⁻¹)	D (T _m) (10 ⁻¹² m ² s ⁻¹)	T-range (K) (\overline{T}/T_m)	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
U	(0.002)	(1.43) (138.1)		1,188–1,298 (0.64) β-Ti	4	pc ∼2N3	U(natural), vapour deposition; fission fragment	1 example		U in <i>γ</i> -Fe	1	de Keroulas (1967) [41.53]
U	$(1.6 \times 10^{-5} 2^{1})$ (0.02^{21})	(0.924^{21}) (89.2) (1.995^{21})	(19)	1,182–1,775 (0.76) β-Ti	7 ⁵¹		radiography Experimental details not reported		⁺ Present fit to the depicted data		I	Fedorov (1978) [41.54]
	(4.1×10^{-7}) $(2.3 \times 10^{-7})^+$	(172.0) (1.186) (114.1)	I	1,022–1,123 (0.55) ~-Ti	3 ⁵¹							
>	3.1×10^{-4} ²¹ 1.37^{21}	1.396 ²¹ (134.8) 2.481 ²¹	56	0.77) β-Ti	13	pc 3N	⁴⁸ V, dried-on from salt solution;	3 examples (50 μm sections)		Ti in β-Ti	41.09	Murdock (1964) [41.01]
>	8×10^{-6} ²¹ 0.21^{21} 33^{22}	(101.4) (101.4) (101.4) (208.6) 3.66^{22} (353.4)	<u>2</u> 6 23	(1,175-1,816) β-Τi	(13)				Two-exponential and Ω -fit to the data of [41.01] with $\Omega = 4.0$		41.09	Neumann (1991) [41.55]

Minamino (1993) [41.56]	Araki (1996) [41.57]	Pérez (1994) [41.58]	Pérez (1996) [41.59]
 41.12 0.02 23- 385 23, 	.35 41.07	41.17	41.17
$\Delta V/V_0 = 0.30 \pm (0.30 \pm 1.33)$ for 1,33 K 1,573 K $V_0 = 0$ for 1,673 F	$\Delta V/V_0 = 0.22 - 0$		
fit with $\Omega = 5.64$	fit with $\Omega = 4.34$	ie, Ni content <150 ppma ronounced data scatter	content 00 ppma 00 ppma
Ċ	-C	ч * ~	Fe * 25(
oZ	No	All	No
W; EPMA Ti/ W diffusion couple (Matano, Darken)	Zr; EPMA Ti/ Ti(3.06% Zr) (Boltzmann- Matano, Hall)	Zr, vapour deposition; HIRBS, RBS	Zr, vapour deposition; HIRBS
3N SN	pc 2N5	3N*	pc ⁶¹
13 ⁵¹	9 ⁵¹	9 (8T) 6 [×]	4 * ×
1,173–1,773 (0.76) β-Ті	1,173–1,773 (0.76) β-Τϊ	873–1,133 (0.52) 823–1,012 ∞-Ti	922-1,123 931-1,127 (0.53) &-Ti
13	37	I	1 1
4.464 ²² (431)	3.273 ²² (316)	3.149 (304) -	1 1
/ 180 ²²	r 1.59 ²²	r 43 -	1 1
~	IN	N	IN I

209)
page
see
ences,
Refere

	е	(1961) []	· (1963) 2]	n (1970) 4]	(1979) 5]	(1979) 5]	nn [42.07]	992) 3]
(12)	Referen	Kidson [42.0]	Federer [42.0'	Grahan [42.0	Herzig [42.09	Pruthi [42.0	Neuma (1990	Patil (1 [42.08
(LL)	Figure	42.01	42.01	42.01	.1 42.01	I	42.01	I
(10)	Also studied		Nb in β-Zr n n	$E \approx 0$	E = 0.29 - 0.4 (1,189- 2,000 K)	Mn in β-Zr; Zr, Mn in Zr(Mn)	e [Zr in Zr(Ag)
(6)	Further remarks		Erroneous thermal expansion correctio *Two-exponential fit according to Kidson [42.03]			*The tabulated data were calculated from D^0 and Q	Two-exponential and Ω -fit ($\Omega = 4.2$) of th data of [42.03, 42.05]	
(8)	Remarks on the pp	1 example	3 examples		5 examples	1 example		No
(7)	Experimental method	⁹⁵ Zr, vapour deposition; lathe	⁹⁵ Zr, dried-on from oxalate solution; lathe	⁹⁵ Zr, ⁸⁹ Zr; mechanical sectioning	⁹⁵ Zr, ⁸⁸ Zr, dried-on from oxalate solution; lathe	⁹⁵ Zr, dried-on from oxalate solution; serial sectioning)	⁹⁵ Zr, vapour deposition; grinder
(9)	Material, purity	pc 3N	pc 3N4	pc (>5mm)	pc (1–3 mm) 3N8	$^{\rm pc}_{\sim 3N}$		pc ⁶¹
(2)	No. of data points	11 (7T)	18	8 (4T)	18 (15T)	7*	(31)	19 (10T)
(4)	\mathcal{T} -range (K) $(\overline{\mathcal{T}}/\mathcal{T}_m)$	1,441–1,776 (0.76) <i>B-</i> Zr	$\beta - 2,020$ (0.75) $\beta - Zr$	1,215–2,088 (0.78) ß-Zr	1,189–2,000 (0.75) β-Zr	1,173–1,473 (0.62) β-Zr	(1,174–2,020) β-Zr	1,200–1,518 (0.64) β -Zr
(3)	$D(T_m)$ ($10^{-12} m^2 s^{-1}$)		29*		31		32 34	
(2b)	Q (eV) and (kJ mole ⁻¹)	1.305 (126.0)	$\begin{array}{c} - \\ 1.201^{21} \\ (116.0) \\ 2.827^{21} \\ (273.0) \end{array}$	I	$\begin{array}{c} 0.74^{21} \\ (71.4) \\ 1.91^{21} \\ (184.4) \end{array}$	1.090 (105.3)	$\begin{array}{c} 0.84^{21} \\ (81.1) \\ 2.01^{21} \\ (194.1) \\ 3.53^{22} \\ 0.0400 \end{array}$	(304.8) 1.031 (99.5)
(2a)	D ⁰ (10 ⁻⁴ m ² s ⁻¹)	usion 2.4×10^{-4}	-0.85 ^{21*} 1.34 ^{21*}	I	1.0×10^{-6} ²¹ 0.01^{21}	3.1×10^{-5}	2.8×10^{-6} ²¹ 0.0173^{21} 1.2^{22}	$1.74 imes 10^{-5}$
(L)	×	Self-diff Zr	Zr	Zr	Zr	Zr	Zr	Zr

Table 4.2 Diffusion in zirconium

Hood (1974) [42.09]	Horvath (1984) [42.10]	Lübbehusen (1991) [42.11]	Hood (1995) [42.12]	Hood (1997) [42.13]	Tendler (1974) [42.14]	Manke (1982) [42.15]	Neumann (1991) [42.16]	lijima (1995) [42.17]	Hood (1971) [42.18]
42.08 K	42.08	42.08	42.08	, 42.08	42.02	42.02	42.02	I	42.09
Several impurities in α-Zr at about 1,110	S	s		Hf in α-Zr; Zr in α-Zr(Nb) Hf, Zr in α-Zr(Ti)	Ag in α-Zr	$E = 0.4 \pm 0.04;$ Zr in β -Zr at 1,913 K: $D = 1.2 \times$ $10^{-11} \text{ m}^2 \text{ s}^{-1}$	0	Ag in α-Zr Cu in β-Zr	Au, Zn in ¤-Zr
	*Tilted 36° to the <i>c</i> -axi [×] Fe content 2 ppma	*Tilted 14° to the <i>c</i> -axi ^x Fe content 90– 230 ppma	*Fe content 47, 57, <1 ppma	* Fe content <1 ppma	⁺ Present fit to the depicted data		Two-exponential and Ω -fit ($\Omega = 5.9$) of thu data of [42.15]		*Orientation not specified $^{x}D = 4.0 \times 10^{-16}$ $m^{2} s^{-1}$
2 examples	S All	All ^{84,85}	4 examples	ои	2 examples	t 6 examples (partly ⁸⁵)		No	
⁹⁷ Zr, vapour deposition; microtome	⁹⁵ Zr, electroplated; IB9	⁹⁵ Zr, vapour deposition; IBS	⁹⁵ Zr, vapour deposition; microtome and IBS	⁹⁵ Zr, vapour deposition; IBS	¹¹⁰ Ag, dried-on from salt solution; serial sectioning (lapping)	¹¹⁰ Ag, ¹⁰⁵ Ag, dried-on from salt solution; lathe		Ag; EPMA Zr/Zr (1.27% Ag) (Sauer, Freise)	¹¹⁰ Ag; lathe
sc 3N3	sc* 4N [×]	sc nominally pure ^x	sc nominally pure ^x	SC ⁶¹ *	pc 4N	pc 3N8		pc 2N6	sc* 3N3
7	10	4 (2T) 5*	0 4 0 0	ю ю	6 ⁵¹	12	(12)	4 ⁵¹	1×
1,124 α-Zr	779–1,128 (0.45) &-Zr	871–1,074 (0.46) &-Zr	1,107 868-1,107 (0.46) 1,110 x-Zr	937–1,099 (0.48) α-Zr	1,221–1,457 (0.63) β-Zr	1,199–1,988 (0.75) β-Zr	(1,199–1,988) β-Zr	1,200–1,290 (0.59) <i>B</i> -Zr	1,094 α-Zr
I	I	1 1	111	I		225	215 165		I
1	I	1 1	1 1 1	- 3.17 (306.1)	1.418 (136.9)	$\begin{array}{c} 1.37^{21} \\ (132.3) \\ 3.36^{21} \\ (324.4) \end{array}$	$\begin{array}{c} 1.36^{21} \\ (131.3) \\ 3.27^{21} \\ (315.7) \\ 4.78^{22} \\ (461.5) \end{array}$	1.326 (128)	I
I	I	⊥- ≈ // -	т, //- т, //- т	⊥ – // 0.9	(5.7×10^{-4}) $(5.1 \times 10^{-4+})$	4.2×10^{-4} ²¹ 190.5^{21}	3.9×10^{-4} ²¹ 109^{21} 980^{22}	$2.5 imes 10^{-4}$	I
Zr	Zr	Zr	Zr	Zr	Ag	Ag	Ag	Ag	Ag

		74)	-	(68)	-		-	.22]	-	(69)
(12)	Reference	Tendler (197 [42.14]	Tobar (1989) [42.19]	Vieregge (19 [42.20]	lijima (1995) [42.17]	Laik (2002) [42.21]	Hood (1974) [42.09]	Räisänen (1985) [42	Hood (1971) [42.18]	Pavlinov (19 [42.23]
(LL)	Figure	42.09	42.09	42.09	। .म	42.03	' e Ħ	1	। .भ	I
(10)	Also studied	Ag in β -Zr			Ag, Cu in β-Z		Several impurities i \$\alpha -Zr at abou 1,100 K	Al in <i>a</i> -Hf	Ag, Au in α-Z 1	Be in β -Ti
(6)	Further remarks	*Fe content 900 ppma (see [42.20])	*Fe content 20 ppma *D(θ) recalculated to D ^{//} according to Eq. (02.18)	*Tilted 22° from the c-axis; Fe content ¹ 107, ² 192, ³ 20 ppme			*Orientation not specified $^{x}D = 3.4 \times 10^{-17}$ $\text{m}^2 \text{s}^{-1}$	*Fe content not specified; For comparison with [42.09]: D(1,108 K) = $1.1 \times 10^{-16} \text{ m}^2 \text{ s}^{-1}$	*Orientation not specified $^{x}D = 1.3 \times 10^{-15} \text{m}^2 \text{s}^{-1}$	
(8)	Remarks on the pp	3 examples ⁸³	АЛ	A11 ⁸³	No	6 No	Slight NSE	1 example $(c - x)$		No
(7)	Experimental method	¹¹⁰ Ag, electroplated; serial sectioning (lapping)	¹¹⁰ Ag, electroplated; grinder	¹¹⁰ Ag, electroplated; microtome and grinder	Ag, EPMA Zr/Zr (0.34% Ag) (Sauer, Freise)	Al; EPMA Zr/Zr (10% Al) (Hall)	²⁶ Al, dried-on from salt solution; microtome	Al, implanted; NRA (²⁷ Al (p,j) ²⁸ Si)	¹⁹⁸ Au; lathe	⁷ Be; residual activity
(9)	ta Material, purity	pc 4N*	sc 4N6*	sc ^x 3N3 ¹ Pc 3N6 ³	pc 2N6	Pc 3N	sc* 3N3	pc 2N8*	sc* 3N3	pc 2N7
(5)	No. of da points	6 ⁵¹	4 4	S N	4^{51}	ß	1×	n	1^{\times}	8 ⁵¹ (5T)
(4)	$ au$ -range (K) (\overline{T}/T_m)	1,037–1,120 (0.51) ¤-Zr	1,063–1,118 (0.51) α-Zr	938–1,117 (0.48) 895–1,110 (0.47) &-Zr	1,028–1,104 (0.50) ¤-Zr	1,203–1,323 (0.59) β-Zr	1,108 α-Zr	873–1,073 (0.46) &-Zr	1,143 α-Zr	$\begin{array}{c} 1,188-1,573\\ (0.65)\\ \beta\text{-}Zr \end{array}$
(3)	$D(T_m)$ ($10^{-12} m^2 s^{-1}$)	1	1 1	1 1	I		I	1	I	
(2b)	Q (eV) and (kJ mole ⁻¹)	1.938 (187.2)	1.8 (173.8) 2.2 (212.4)	2.537 (245) 2.175 (210)	2.113 (204)	2.280 (220.1)	I	(2.9) (280)	I	1.349 (130.2)
(2a)	D ⁰ (10 ⁻⁴ m ² s ⁻¹)	$5.1 imes 10^{-3}$	$\perp 5.9 \times 10^{-4}$ // 0.067	2.20 0.068	0.017	0.056	I	(17)	I	0.0833
(L)	×	Ag	Ag	Ag	Ag	PI	AI	F	ЧЧ	Be

Table 4.2 (Continued)

Tendler (1976) [42.24]		Paul (1968) [42.25]	Kidson (1969) [42.26]	Herzig (1987) [42.27]	Zee (1989)[42.28]	Kidson (1981) 142 201	[/ 7 :71]			Pavlinov (1967) [42.30]
I		Mo in β-Zr 42.04	42.05	$E = 0.23 \pm 0.05; 42.05$ Fe in β -Zr; Co in β - Zr(Nb)	Cr, Fe in 42.05 β -Zr; electro- transport					Fe, Mo, W in β-Zr, Mo, W, Zr in β-Ti
			Present fit to the tabulated data			Tilted $^{1}42^{\circ}$, $^{2}14^{\circ}$, $^{3}87^{\circ}$ from the c-avis $D(0)$	recalculated to D_{\perp}	Fe content $^ \sim 500 \text{ ppma}$	^x ~ 1,250 ppma; see introduction page; D^0 and Q valid for $\bigtriangledown > 923$ K, $^{\Delta} < 873$ K	
All (erfc- solutions for	α-Zr)	~	Several examples (total penetration 2,500 µm, gb contribu- tions at	No	No	All ⁸⁵ (partly arfc_	solutions)			No
⁷ Be, electroplated; serial sectioning	(lapping)	¹⁴¹ Ce; residual activit	⁶⁰ Co, vapour deposition; lathe	$^{60}\text{Co},^{57}\text{Co}^{72},$ lathe	⁶⁰ Co, dried-on from salt solution; lathe	⁵⁸ Co, implanted; microtome				⁵¹ Cr; residual activity
pc (>2mm)	4N	pc (3–4 mm) ''high purity''	4Nc	pc 3N8	рс "high muritv"	pc ⁶¹	sc ^{61, 1}	$sc^{2, *} \sim 3N$	$ m sc^{3, \times} \sim 2N7$	pc 2N7
7	4	11	16 (14T)	7 ⁵¹	4	5 (3T)	4	4	9	12 ⁵¹ (6T)
1,318, 1,421 β-Zr	1,013–1,120 (0.50) &-Zr	1,153–1,873 (0.71) β-Zr	1,193–1,977 (0.75) β-Zr	1,193 $-$ 1,741 (0.69) β -Zr	1,600–1,950 (0.84) ß-Zr	1,049–1,103 (0 51)	873-1,023	860-990	825–1,044 (0.44) α-Zr	1,173–1,673 (0.67) β-Zr
	I	270	2,000	1,850	2,000	I				
I	1.383 (133.6)	$\begin{array}{c} 1.8^{21} \\ (173.8) \\ 3.22^{21} \\ (310.9) \end{array}$	0.946 (91.4)	0.95 (91.7)	1.00 (96.6)	I	1.51 igta (145.8)	1.9^{Δ} (183.4)	1.98 (191.2)	1.388 (134.0)
I	0.33	0.032^{21} 42.2^{21}	(3.26×10^{-3}) 3.45×10^{-3} +	3.3×10^{-3}	$4.7 imes 10^{-3}$	I	\pm 37 $^{\circ}$	$\perp 1,200^{\Delta}$	$//4 \times 10^{4}$	4.17×10^{-3}
Be		Ce	Co	Co	Co	Co				ڻ

ימרוע		(na										
(L)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(JO)	(11)	(12)
×	D ⁰ (10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (kJ mole ⁻¹)	$D(T_m)$ ($10^{-12} m^2 s^{-1}$)	au-range (K) (\overline{T}/T_m)	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Ç	7×10^{-3}	1.474 (142.4)		1,187–1,513 (0.64) β-Zr	11 (10T)	pc ⁶¹ (0.6 – 2 mm)	⁵¹ Cr, dried-on from salt solution and electroplated; serial	4 examples (partly erfc- solution)			42.05	Nicolai (1979) [42.31]
Ç	4.53×10^{-3}	1.427 (137.8)		1,201–1,479 (0.63) β-Zr	6 (4T)	pc 3N5	⁵¹ Cr, dried-on from salt solution; grin- der (SiC papers)	No		Zr, Fe in β -Zr; Zr in Zr(X), X = Cr, Fe	42.05	Patil (1981) [42.32]
ų	3.1	2.27 (219.2)	1,300	1,630-1,910 (0.83) β -Zr	Ŋ	pc ''high puritv''	⁵¹ Cr, dried-on from salt solution; lathe	No		Co, Fe in β -Zr electro- transport	; 42.05	Zee (1989) [42.28]
J	(4.9×10^{-3}) 0.012^{+}	(1.305) (126.0) 1.40 ⁺ (135)	I	896–1,105 (0.47) α-Zr	11 ⁵¹ (9T)	pc (0.2–2 mm) 5N, 2N5	⁵¹ Cr, electroplated; residual activity	2 examples	⁺ Present fit to the depicted data	J	I	Tendler (1972) [42.33]
Ċ	L 0.2 // 0.2	1.688 (163) 1.585 (153)	1	1,023-1,121 (0.50) <i>x-Zr</i>	4 5 (4T)	sc* ~4N ^x	⁵¹ Cr, electroplated; serial sectioning (lapping)	Several examples (partly erfc- solutions)	*Single crystals of different orientation, $D(\theta)$ recalculated to D_{\perp} and $D_{//}$ according to Eq. (02.18) xFe content 20 ppma, see introduction page		42.10	Balart (1983) [42.34]
Ç	- 	- 1.62 (156.4) - 1.39 (134.2)	1 1	799–1,057 886–1,057 (0.46) 724–1,057 886–1,057 \$\$Zx	വര വല	sc ⁶¹ ×	⁵¹ Cr, dried-on from salt solution; microtome	1 example ⁸⁴	*Fe content <3 ppma		42.10	Hood (1993) [42.35]
Cu	0.1	1.605 (155)		1,173-1,290 (0.58) β -Zr	5 ⁵¹	pc 2N6	Cu, EPMA Zr/ Zr(1.57% Cu) (Sauer, Freise)	No		Ag in α -Zr and β -Zr	42.05	lijima (1995) [42.17]

Table 4.2 (Continued)

Hood (1975)	[42.30]		Trampenau (1990) [42.37]	Hood (1972) [42.38]	Hood (1974) [42.09]	Tendler (1975) [42.39]	Nakajima (1988) [42.40]			Herzig (1987) [42.41]	Neumann (1991) [42.16]	
42.11			Zr in β- 42.05 (Fe)	Ni in <i>«</i> -Zr, 42.12 i in <i>«</i> -Ti	ral 42.12 purities in Zr at about 100 K	Zn in β-Zr, 42.12), Cr, Zn in Zr	1 a-Zr(Fe) 42.12			0.45 42.06	42.06	
*Tilted 10° from the	с-ахіs ^x Fe content 55 ppma		Fe, 7 Zi	$^{x}D(973 \text{ K}) = 3.7 \times 10^{-12} \text{ Co},$ $^{x}D(1,071 \text{ K}) = N_1^{-12} \text{ m}^{-12} \text{ N}_1^{-12}$	*Orientation not Seve specified in $xD = 7 \times 10^{-11} \text{ m}^2 \text{ s}^{-1}$ 2.1		Downward curvature Fe in of $\ln D - 1/T$ at higher temperature "Fe content 88 ppma	approximation		£ ₽	Two-exponential and Ω -fit ($\Omega = 3.5$) of the data of [42.41]	
Several	examples		Several examples	All	pp with slight NSE	No	4 examples ⁸³			No		
⁶⁴ Cu, implanted;	Jathe		⁵⁹ Fe, dried-on from salt solution; lathe	⁵⁹ Fe, vapour deposition; lathe	⁵⁹ Fe, vapour deposition; lathe	⁵⁹ Fe, electroplated; residual activity	⁵⁹ Fe, implanted and dried-on from salt solution; lathe			¹⁸¹ Hf; experimental details not reported		
SC	31N0-		pc 3N7	pc (2–3 mm) 3N3	sc* 3N3	pc (> 2mm) 4N	sc 3N8 ^x			pc 3N8		
9	×	ß	12	2×	1×	3 ⁵¹ (2T)	4 κ	<i>و</i> رو	9	12 (11T)	(11) (10T)	
933–1,132 (0.40)	(0.49) 888–1,132 (0.48)	887–1,117 α-Zr	1,172–1,886 (0.72) ß-Zr	973, 1,071 α-Zr	1,113 α-Zr	891, 1,096 α-Zr	871-1,131 871-1,032 (0.47)	765–1,133 765–980	765–1,032 (0.45) α-Zr	1,192–1,973 (0.74) <i>B</i> -Zr	(1,192–1,973) β-Zr	
I	I	I	1,450	I	I	I	I		I		27	22
1.60 (1 E 4 E 1	(1.54.5) 1.54 (148.7)	1.62* (156.4)	1.08 (104.3)	I	I	I	$^{-}_{(1.68)}$ (1.68) (162.2) 1.69^{+} (163.2)	- (1.81) (174.8)	1.69 ⁺ (163.2)	I	$\begin{array}{c} 1.11^{21} \\ (107.2) \\ 2.60^{21} \\ 0.551 \end{array} \right)$	3.18^{22} (307.0)
L 0.25	// 0.40	0.42*	$5.3 imes 10^{-3}$	1	I	I	- L (57) 60 ⁺	- // (1,700)	300^+	I	2.8×10^{-5} ²¹ 0.30^{21}	0.23^{22}
Cu			Fe	Fe	Fe	Fe	Fe			Η	Ηf	

E	(-0)	(10)	(2)	(4)	(5)	(6)	(1)	(8)	(0)	lot	(11)	(11)
(1)	(24)	(42)	(c)	(ד)	(~)	(0)	(1)	(0)	(2)		()	(21)
×	D^{0} (10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (kJ mole ⁻¹)	$D(T_m)$ (10 ⁻¹² m ² s ⁻¹)	$ au$ -range (K) $(\overline{ au}/ au_m)$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Ħ	0.26	3.1 (299.3)	1	873–1,111 (0.47) <i>a-7x</i>	12 (5T)	pc (1–2 mm) ~4N*	Hf, sputter deposition, SIMS analysis	2 examples $(c - x)$	*Fe content <1 ppma pronounced data scatter	; Hf in sc α -Zr (Fe content ~50 nnma)	1	Hood (1992) [42.42]
Mn	$5.6 imes 10^{-3}$	1.431 (138.2)		(0.62) β -Zr	5 ⁵¹	pc (> 2mm) 2N5	⁵⁴ Mn, deposition in metallic form or as MnCl ₂ ; residual	2 examples		Mn in α -Zr	42.06	Tendler (1973) [42.43]
Mn	5.38×10^{-3}	1.457 (140.7)		1,173–1,473 (0.62) 8-7r	*	pc 3N	activity ⁵⁴ Mh, dried-on from salt solution; serial sectioning	1 example	*The tabulated data were calculated from D ⁰ and O	Zr in β-Zr; Zr, Mn in Zr(Mn)	I	Pruthi (1979) [42.06]
Mn	$2.4 imes 10^{-3}$	1.310 (126.4)	I	898–1,111 (0.47) a-Zr	5^{51}	pc (> 2mm) 5N. 2N5	⁵⁴ Mn, electroplated; residual activity	1 example		Mn in β -Zr	42.11	Tendler (1973) [42.43]
Mn	I	I	I	α-Zr α-Zr	1 [×]	sc* 3N3	⁵⁴ Mn, electroplated; lathe	1 example	*Orientation not specified $^{x}D = 2.8 \times 10^{-13} \text{ m}^2 \text{ s}^{-13}$	Several impurities in a-Tz at about	42.11	Hood (1974) [42.09]
Mo	$\begin{array}{c} (1.99 \times \\ 10^{-4})^{21} \\ 2.15 \times \\ 10^{-4+} \\ (2.63)^{21} \\ 2.07 \end{array}$	1.53 ²¹ (147.7) 2.97 ²¹	27.5+	1,173–1,873 (0.72) β-Zr	10	pc (3–4 mm) "high purity"	⁹⁹ Mo; residual activity		*Present approximation	L, TOUR Ce in β -Zr	42.07	Paul (1968) [42.25]
Ŋb	0 0 *	(200.0) *		1,155–2,031 (0.75) β-Zr	15	pc 3N4	⁹⁵ Nb, dried-on from oxalate solution; lathe	3 examples	*Unusual evaluation of the curved Arrhenius plot; erroneous thermal	Zr in β-Zr	42.07	Federer (1963) [42.02]
ЯŊ	I	I		1,510-1,995 (0.82) R-7r	8 ⁵¹	pc ⁶¹	95Zr; experimental details not reported	No		Hf in β -Hf	42.07	Herzig (1982) [42.44]
Nb	2.7×10^{-5} ²¹ 0.26^{21}	$\begin{array}{c} 1.21^{21} \\ (116.8) \\ 2.47^{21} \\ 2.38 \\ 5 \end{array}$	40	β-Zr) (β-Zr)	(15)				Two-exponential and Ω -fit ($\Omega = 4.3$) of th data of [42.03]	υ	42.07	Neumann (1991) [42.16]
	12^{22}	(5.00.2) 3.94 ²² (380.4)	40									

Table 4.2 (Continued)

Hood (1997) [42.45]	Hood (1972) [42.38]	Hood (1987) [42.46]	Vandyshev (1970) [42.47]	Hood (1991) [42.48]	Pérez (1999) [42.49]			Schwegler	(1968) [42.50]	Balart (1989)	[42.51]		Vandyshev	(1967) [42.52]			
42.09	Fe in α-Zr; 42.13 Vi in α-Ti	in <i>a</i> -Zr(Nb) 42.13	- ^ 1	Ta in <i>x-Z</i> r –	I			- M u		Ι			I				
*Common fit for D_{\perp} and $D_{//}$ *Fe content <0.1 ppma	*Unspecified Co, orientation D	${}^{*}D_{\perp} = 1.6 \times 10^{-10}$ Ni ${}^{*}D_{//} = 6.0 \times 10^{-10} \text{m}^2 \text{s}^{-1}$	Ρi	*Fe content 30 and Hf, (p_{prma} ; non-linear in ln $D - 1/T$; $D(T)$ is about one order of magnitude smaller than in Ref. [42.49]	*Fe content ~ 80 ppma			Pronounced data U i	scatter	*Fe content 20 ppma:	D(1,194 K) = 12	$D(1,093 \text{ K}) = D(1,093 \text{ K}) = 1.2 \times 10^{-11} \text{ m}^2 \text{s}^{-1}$	^{a, b} Different pre-	annealing	horance		
No	All ⁸⁴	All	No	No	All			No		All (partly	erfc-	solutions	No^{81}				
⁹³ Nb, ⁹⁴ Nb, dried-on from salt solution; microtome and IBS	⁶³ Ni, vapour deposition; lathe	⁶³ Ni, dried-on from salt solution; lathe	³² P; residual activity	Pb, sputter deposi- tion; RBS	Pb, vapour deposi- tion: HIRBS			Rb; out-diffusion	from Rb doped Zr filaments, mass	spectroscopy ¹⁰³ Ru. electroplated	and vapour	aeposition; grinaer	³⁵ S, dried-on from	benzene solution, forming a constant	source of ZrS_2^{73} ;	serial sectioning	
sc ^{61 ×}	sc* (2–3 mm) 3N3	sc ⁶¹	pc 3N4	SC ≷3N8*	$^{\rm pc}_{\sim 3N7^*}$			pc ⁶¹			sc^{61}		pc	3N3			
17 (7T)	4	2*	10 (6T)	6 (4T)	7			14	(9T) 5	(4T) 1		4 (3T)	8	(4T)	10	(5T)	
1,002−1,097 (0.49) ∞-Zr	971–1,103 (0.49) &-Zr	1,123 α-Zr	1,223–1,473 (0.63) ß-Zr	872–1,098 (0.46) &-Zr	823–1,123 (0.46)	953-1,123	823–893 α-Zr	1,040-1,302	1,159–1,302 (0.58)	β -Zr 1.194	β-Zr	a-Zr 2-Zr	1,155-1,250	(0.57) $R_{-}7_{+}$	870-1,080	(0.46)	α-Zr
I	I	I		I	I							I			I		I
2.69* (259.7)	I	I	1.444 (139.4)	I	I	(2.330) (225)	(3.304) (319)	I	(1.592) (153.7)	I		I	1.683	(162.5)	(1.917 ^a)	(185.7)	(1.782 ^b) (172.1)
1.88*	I	I	0.33	1	I	(1.9×10^{-3})	(53)	I	(8.8×10^{-4})	I		I	27.6		(8.9^{a})		(3.1 ^b)
ЧZ	ïZ	ïZ	2	42	Pb			Rb		Ru			ŝ				

2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(11) (01)	(12)
	Q (eV) and (k) mole ⁻¹)	$D(T_m)$ ($10^{-12} m^2 s^{-1}$)	$ au$ -range (K) $(\overline{ au}/ au_m)$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied Figure	Reference
1	1	1	1,120 α-Zr	2× (1T)	sc* 3N3	¹²² Sb, ion implantation; microtome	1 example (pronounced dislocation	*Orientation not specified $^{x}D = (2\pm 0.6) \times ^{-17} = 2^{-1}$	Several – impurities in <i>x-Zr</i> at about	Hood (1974) [42.09]
6	(1.691) (163.3) 1.77 ⁺ (171)		1,193–1,523 (0.64) β-Zr	6 ⁵¹	pc 2N, 3N	¹¹³ Sn; residual activity	No	⁺ Present fit to the depicted data	$z_{r,100,R}$ Zr in β -Zr, Zr, - Sn in β - Zr(Sn)	Fedorov (1959) [42.53]
-	- - 1.755 ⁺		1,279-1,723 (0.71) 8.7*	8 (4T)	pc 3N7	¹¹³ Sn, dried-on from salt solution ⁷³ ;	All	⁺ Present approximation	Fe in β -Zr at 42.03 T = 1,223 K	Chelluri (1981) [42.54]
*	$(0.954)^{*}$	I	923-1,093 (0.47) ~ 7-	4	pc ⁶¹	¹¹³ Sn; residual activity	No	*Abnormally small values of D^0 and Q	Sn, Zr in 2- Zr(Sn)	Fedorov (1959) [42.55]
ц	1.171 (113.0) 3.036 (293.1)	I	$p_{1,173}^{J-L1}$ 1,173-1,473 (0.62) β -Zr 973-1,073 (0.48)		pc 2N6	¹⁸² Ta; residual activity			Zr in ∞-Zr and – β-Zr	Borisov (1958) [42.56]
	I	I	$^{\alpha-Zr}_{872-1,096}$ (0.46)	4 (3T)	sc* ~3N8	Ta, sputter deposi- tion; RBS	No	*Fe content 30 and 60 ppma; non-linear	Hf, Pb in α-Zr –	Hood (1991) [42.48]
	I	I	α-Zr 1,116 α-Zr	1^{\times}	sc* 3N3	⁴⁴ Ti, dried-on from salt solution; microtome	1 example	m In $D = 1/1$ *Orientation not specified * $D = 9.4 \times 10^{-17} \text{ m}^2 \text{ s}^{-1}$	Several 42.10 impurities in α -Zr at about	Hood (1974) [42.09]
	- - 2.93 (282.9)	I	773-1,124 (0.45) $773-1,124$ $1,037-1,124$ (0.51)	10* ⁰ 14 ⁰ 7	sc ^{61 x}	⁴⁴ Ti, dried-on from salt solution; microtome and Ti sputter deposition; SIMS	4 examples	*Pronounced data scatter ⁰ Pronounced NSE at lower T *Fe content	42.10	Hood (1994) [42.57]
ŝ	1.154 (111.4)		α -Zr 1,223 $-1,573$ (0.66) $\beta_{-}7r$	10 (5T)	pc 2N6	²³⁵ U; Kryukov absorption	No	30-60 ppma	I	Pavlinov (1970) [42.58]

Table 4.2 (Continued)

edorov (1971) [42.59]	Agarwala (1968) [42.60]				ruthi (1982)	[42.61]	Agarwala	(1968) [42.60]	avlinov (1967)	[42.30]	edorov (1966) [42.62]		endler (1975)	[42.39]	food (1971) [42.18]	endler (1975) [42.39]
se U in Mo, Nb, – I es V, Ta, W	$V \text{ in } \alpha$ -Zr, V – in V, Nb	, pu			V, Zr in Zr – I	د. (0.5-2% V) اط	V in β -Zr, V – λ	in V, Nb	Cr, Fe, Mo in – I	β-Zr, Mo, W, Zr in β-Ti	-		Cr, Fe in β -Zr, –	Co, Cr, Fe, Zn in α-Zr	Ag. Au in – I 2-Zr	Cr, Fe, Zn in – β-Zr, Co, Cr, Fe in α-Zr
D(T) calculated by us of $D_{1,2}^0$ and $Q_{1,2}$ do not fit to D_{exp}	⁺ Present approximation; the	results of [42.60] ar [42.61] differ by a	factor 5–25		*The tabulated data	were calculated from D^0 and Q ; the results of [42.60] ar [42.61] differ by a factor 5–25	*Fe content	\sim 1,000 ppma			$^*D = 3.5 \times 10^{-17} \mathrm{m}^2 \mathrm{s}^{-1}$				*Orientation not specified $^{x}D = 2.8 \times 10^{-15}$ $m^{2} s^{-1}$	Pronounced data scatter
No	2 examples				: 1 example		1 example				No		No (pp linear	In $\ln c - x^{-1}$ up to $400 \mu m$	-	No (partly NSE)
²³⁵ U; vapour deposition; serial sectioning	⁴⁸ V, dried-on from VOCl ₃ solution;	residual activity			⁴⁸ V, dried-on from salt	solution; serial sectioning	⁴⁸ V, dried-on from	VOCl ₃ solution; residual activity	¹⁸⁵ W; absorption		⁹⁰ Y, vapour deposi- tion; residual	activity	⁶⁵ Zn, vapour	deposition; residual activity	⁶⁵ Zn; lathe	⁶⁵ Zn, vapour deposition; residual activity
pc ⁶¹	$pc (\sim 1 \text{ mm})$	~3N			bc	~3N	pc*	$(\sim 1 \mathrm{mm})$ $\sim 3 \mathrm{N}$	bc	2N7	pc ⁶¹		bc ,	(> 2 mm) 3N2, 4N	sc* 3N3	pc (> 2mm) 3N2, 4N
6	~	З		Ŋ	7*		6		19^{51}	(81)	4	1*	6^{51}		1×	12 ⁵¹ (9T)
1,223–1,773 (0.70) β-Zr	1,143-1,673 (0.66)	1,473-1,673 (0.74)		1,143-1,473 (0.62) β -Zr	1,166–1,480	(0.62) β-Zr	873-1,123	(0.47) α -Zr	1,173–1,523	β -Zr	1,373-1,608 (0.70)	β-Zr 1,073 α-Zr	1,273-1,453	(0.64) β-Zr	1,099 &-Zr	1,002–1,114 (0.50) α-Zr
							I								I	I
21) (0.854) ²¹ (82.5) (2.515) ²¹ (242.8)	I	(2.480) (239.5)	2.267 ⁺ (218.9)	1.986 (191.8)	1.207	(116.6)	³) (0.993)	(95.9)	2.420	(233.6)	1.032 (99.7)	I	1.904	(183.8)	I	2.320 (224.0)
$(5.3 \times 10^{-6.2})$ (0.36^{21})	I	(0.32)	0.075+	(7.6×10^{-3}) 8.0×10^{-3} +	$8.9 imes 10^{-5}$		(1.12×10^{-8})		0.41		8×10^{-5}	I	0.082		I	1.65
D	>				>		^		Μ		X		Zn		Zn	Zn

s, see page 211)	(12) Reference	Winslow (1965) [43.01]	Herzig (1982) [43.02]	Davis (1972) [43.03]	Herzig (2002) [43.04]	Herzig (2002) [43.04]	Bernardi (2005) [43.05]	Dyment (1976) [43.06]	Dyment (1976) [43.06]	Köppers (1993) [43.07]
(Reference:	(11) (Figure F	43.01	43.01 I	43.02 I	43.02 I	43.03 I	-	43.04 I	1	43.05 I
	(10) Also studied		E = 0.36 - 0.28; Nb in β -Zr; Nb in β - Zr(Nb)		Al in α-Hf	Hf in α-Hf		Cr in α -Hf and β -Hf	Co in <i>α</i> -Hf	
	(9) Further remarks			Pronounced data scatter		⁺ Present approximation	⁺ Present approximation *Fe content		*Common fit for <i>x</i> - and <i>f</i> -phase; pronounced data scatter	*Common fit for D_{\perp} and $D_{//}$ "Fe content < 80 ppma
	(8) Remarks on the pp	No (linear in ln c – x ²)	No	3 examples (dislocation tails at lower T)	No	No	Several examples	1 example	3 examples	Numerous examples
	(7) Experimental method	¹⁸¹ Hf, vapour deposition; lathe	¹⁸¹ Hf, serial sectioning	¹⁸¹ Hf, vapour deposition; lathe	Experimental details not reported	Al; SIMS analysis	Al, implanted; NRA (²⁷ Al (p,;) ²⁸ Si)	⁶⁰ Co, electroplated; serial sectioning	⁵¹ Cr, electroplated; serial sectioning	⁴⁴ Ti, dried-on from salt solution; microtome; Ti, vapour deposition; SIMS analysis
	(6) Material, purity	pc (4.0 at % Zr)	pc (5.5 at % Zr)	sc (4.0 at % Zr)	pc ∼ 3N	pc ~ 3N	$_{\rm \sim 2N*}^{\rm pc}$	pc (5.1 at % Zr)	pc (5.1 at % Zr)	sc ^x ∼3N
	(5) No. of data points	6 (5T)	7 ⁵¹ (6T)	27 10 10 27)	6 ⁵¹	6 ⁵¹	œ	6	3	⊥ 15 // 6
	(4) T-range (K) (\overline{T}/T_m)	2,068–2,268 (0.87) ß_Hf	ρ-11 2,013–2,351 (0.87) β-Hf	1,437–1,883 1,473–1,883 (0.67) α-Hf	1,173–1,633 (0.56) α-Hf	1,073–1,870 (0.59) ~-Hf	973–1,298 (0.45) α-Hf	1,106–1,798 (0.58) ~-Hf	2,073-2,173 (0.85) β -Hf (1,183-1,983 (0.63) \sim Hf	α-11 1,075–1,858 (0.59) α-Hf
ium	(3) $D(T_m)$ (10^{-12} m ² s ⁻¹)	50	52	1 1	1	I	I	I	1	1 1
sion in hafr	(2b) Q (eV) and (k) mole ⁻¹)	1.678 (162.0)	1.65 (159.3)	- 3.606 (348.3) 3.833	(370.1) 3.345 (323)	- 3.42 ⁺ (330)	3.490 (337)	0.99 (95.5)	2.216* (214.0)	3.335* (322)
4.3 Diffu	(2a) D ⁰ (10 ⁻⁴ m ² s ⁻¹	iffusion 1.2×10^{-3}	1.1×10^{-3}	⊥, // – ⊥ 0.28 // 0.86	0.054	nuy unjusion - 1.0 ⁺	$\sim 5^{+}$ (3)	5.3×10^{-3}	0.14*	0.27*
Table	(I) ×	Self-a Hf	Щ	Н	Η,	Al	IA	Co	Ċ	Ë

Table	4.4 Diffusion ir	tin									(Referenc	es, see page 211)
(I) ×	(2a) D ⁰ (10 ⁻⁴ m ² s ⁻¹)	(2b) Q (eV) and (kJ mole ⁻¹)	(3) $D(T_m)$ (10 ⁻¹² m ² s ⁻¹)	(4) au-range (K) (\overline{T}/T_m)	(5) No. of data points	(6) Material, purity	(7) Experimental method	(8) Remarks on the pp	(9) Further remarks	(10) Also studied	(11) Figure	(12) Reference
Self-i Sn	diffusion ⊥ 1.4 // 8.2	1.010 (97.6) 1.110	0.011 6.8×10^{-3}	451–495 (0.94)	∞ ∞	sc 4N8	¹¹³ Sn, electroplated ⁷³ ; microtome	2 examples			44.01	Meakin (1960) [44.01]
Sn	10.7 // 7.7	(107.2) 1.089 (105.1) 1.110	0.015 6.4×10^{-3}	434–499 (0.92)	21 6	sc 5N	¹¹³ Sn, vapour deposition ⁷³ ; microtome	1 example		$\Delta V/V_0 = 0.33$	44.01	Coston (1964) [44.02]
Sn	⊥ 21.0 // 12.8	(107.2) 1.123 (108.5) 1.127 (108.9)	0.013 7.1×10^{-3}	455-499 (0.94)	5 ⁵¹ 5 ⁵¹	sc 5N	¹¹³ Sn, electroplated ⁷³ ; lathe	No		Cd, Sb, Zn in Sn	44.01	Huang (1974) [44.03]
Impı Ag	<i>trity diffusion</i> $\perp 0.18$ $// 7.1 \times 10^{-3}$	0.798 (77.0) 0.533	0.19 3.4	414–495 405–499	8 ⁵¹ 8 ⁵¹	sc ⁶¹	¹¹⁰ Ag, chemical deposition from nitrate solution;	No		Au in Sn	44.02	Dyson (1966) [44.04]
Чи	$\perp 0.16$ //(5.8 × 10 ⁻³)	(51.5) 0.768 (74.1) 0.477	0.35 10	(0.90) 420–500 (0.91) 407–483	7 ⁵¹ 7 ⁵¹	sc ⁶¹	microtome ¹⁹⁸ Au, chemical deposition from chloride solution;	No		Ag in Sn	44.02	Dyson (1966) [44.04]
Cd	⊥ 120 // 220	(46.1) 1.197 (115.6) 1.223	0.014 0.013	(0.88) 458–500 (0.95)	7 ⁵¹	sc 5N	microtome ¹⁰⁹ Cd, electroplated ⁷³ ; lathe	No		Sn, Sb, Zn in Sn	44.03	Huang (1974) [44.03]
Co	д – (150°) // – (13*)	(118.1) - (1088 ⁺) (105) - (105) (103)	(0.21)	399–502 (0.89)	6 ⁵¹ 6 ⁵¹	sc 4N5	⁶⁰ Co, electroplated; residual activity	2 examples ⁸⁴	⁺ Present rough fit to the depicted data; abnormally low <i>D</i> values for 3d impurities, see Ni in Sn for comparison	Fe in Sn	I	Brik (1982) [44.05]

(I) ×	(2a) D^0 (10 ⁻⁴ m ² s ⁻¹)	(2b) Q (eV) and (k) mole ⁻¹)	(3) $D(T_m)$ (10 ⁻¹² m ² s ⁻¹)	(4) T-range (K) (\overline{T}/T_m)	(5) No. of data points	(6) Material, purity	(7) Experimental method	(8) Remarks on the pp	(9) Further remarks	(10) (11) Also studied Figu	е Г. Л	2) eference
Си	$\perp (2.4 \times 10^{-3})$ //(~1 × 10^{-3}) ^x	(0.343) (33.1) $(\sim 0.173)^{x}$ (16.7)	(90) (2×10^3)	408-495 (0.89)	4^{51} 1 *	sc ⁶¹	Cu ⁷¹ ; microtome	No ⁸⁴	Pronounced data scatter *Estimated * $D_{1/1}$ (298 K) \approx	I		yson (1967) [44.06]
Fe	$(4.8 imes 10^{-4})$	(0.47) (45.4)	(0.25)	387–462 (0.84)	4 ⁵¹	pc 5N5	⁵⁷ Co, electroplated; Mößbauer spectroscopy ⁵⁷ Fe		- s-m - 01 × 7	I	S	himotomai (1978) [44.07]
Fe	⊥ - (42⁺) // - (2.7⁺)	$\begin{array}{c} - \\ (1.10^{+}) \\ (106) \\ - \\ (1.046^{+}) \\ (1.046^{+}) \end{array}$	(0.05) (0.01)	399–502 (0.89)	5 ⁵¹ 5 ⁵¹	sc 4N5	signal ⁵⁵ Fe, ⁵⁹ Fe, electroplated; residual activity	No	⁺ Present rough fit to the depicted data; see Co in Sn	Co in Sn -	m	rik (1982) [44.05]
Hg	⊥*30.1 // 7.5	(101) 1.162 (112.2) 1.097	7.5×10^{-3} 8.4×10^{-3}	448-499 448-497 00 040	10 9	sc 6N	²⁰³ Hg, chemical deposition from nitrate solution;	1 example	* <i>D</i> measured in [110] direction	44.0	4 V	Varburton (1972) [44.08]
Ч	34.1 // (12.2) 13.2 ⁺	1.119 1.110 1.110 1.110 (107.2)	0.023	(0.94) (0.94)	10 (5T) 9 (5T)	4 N8 4 N8	114 In, electroplated ⁷³ ; lathe	3 examples	Erroneous thermal expansion correction "Peviating 5° and 10° from the <i>c</i> -axis, D_{\perp} and $D_{//}$ calculated according to Eq. (02.18) "Present approximation	44.0	5 v	awatzky (1558) [44.09]

Table 4.4 (Continued)

Yeh (1984) [44.10]	Huang (1971) [44.11], [44.03]	Bartha (1969) [44.12]	Huang (1974) [44.03]
44.06	44.05	ا د	44.07
		gb- diffusio	Sn, Cd, St in Sn
	*Crystals of different orientation, D_{\perp} and $D_{//}$ calculated according to Eq. (02.18)	gb-diffusion enhanced	⁺ Present approximation
No	4 examples	No	2 examples
⁶³ Ni, electroplated; lathe	¹²⁴ 5b, electroplated ⁷³ ; lathe	²⁰⁴ TJ, electroplated; lathe and auto- radiography (3T)	⁶⁵ Zn, electroplated ⁷³ ; lathe
sc 5N	Sc*	pc 5N	sc
5^{51} 5^{51}	7 (6T) 7 (6T)	10 (77)	6 4
393–474 (0.86) 298–373 (0.66)	466–498 (0.95)	410–489 (0.85)	409–499 409–496 (0.90)
4.7 (3×10^{-4})	1.4×10^{-3} 2.0×10^{-3}	(0.05)	0.50 7.3^{+}
0.561 (54.2) 0.187 (18.1)	1.275 (123.1) 1.262 (121.8)	(0.637) (61.5)	0.924 (89.2) 0.520 (50.2)
Д 0.0187 // 0.0199	L 76.6 // 79.1	(1.2×10^{-3})	⊥ 8.4 // (0.011) 0.0115 ⁺
ïŻ	S	F	Zu

Table	4.5 Diffusic	on in lead									(Referenc	es, see page 212)
Ξ×	(2a) D^{0} (10 ⁻⁴ m ² s ⁻¹)	(2b) Q (eV) and (kJ mole ⁻¹)	(3) $D(T_m)$ $(10^{-12} m^2 s^{-1})$	(4) T-range (K) (\overline{T}/T_m)	(5) No. of data points	(6) Material, purity	(7) Experimental method	(8) Remarks on the PP	(9) Further remarks	(10) Also studied	(11) Figure	(12) Reference
Self-ı Pb	liffusion 0.281	1.050 (101.3)	0.044	447–595 (0.87)	И	sc 5N	²¹⁰ Pb, vapour deposition;	1 example			45.01	Nachtrieb (1955) [45.01]
Ч	1.372	1.130 (109.1)	0.046	480–596 (0.90)	л	pc 4N	²¹⁰ Pb, vapour deposition;	No		Bi, Tl in Pb; Pb, Bi, Tl in pb,(TT)	45.01	Resing (1961) [45.02]
ЧI	0.463	1.075 (103.8)	0.044	477–571 (0.87)	6 ⁵¹	bc N9	²¹⁰ Pb, electroplated; electrochemical sectioning	No		$\Delta V/V_0 = 0.57-0.63$ ($p = 0^{-0.00}$	45.01	Hudson (1961) [45.03]
Pb Pb	0.887 0.88	1.107 (106.9) 1.106	0.046 0.047	470–574 (0.87) 487–568	9 ⁵¹ (8T) 5	sc sc	²¹⁰ Pb, electroplated; microtome ²¹⁰ Pb, electroplated;	No No (linear in		4.0.0.Fa) Cd in Pb; Pb in Pb(Cd) Hg in Pb; Pb,	45.01 45.01	Miller (1969) [45.04] Warburton
	uita diffusion	(106.8)		(0.88)		N9	lathe	$\ln c - x^2$)		Hg in Pb(Hg)		(1973) [45.05]
Ag	nity aiffusion - 0.048*	- 0.63* (60.8)	25*	473–578 (0.87)	5 ⁵ 1	sc 5N	¹¹⁰ Ag, vapour deposition; microtome	No (linear in $ln c - x^2$)	Marked data scatter *Fit for $p = 0$ according to Decker [45.32]	$\Delta V/V_0 = 0.35$ ($p = 0$ - 3.9 GPa) according to Ref. [45.32]	I	Curtin (1965) [45.06]
Ag Ag	0.046 -	0.626 (60.5) -	26	398–594 (0.83) 553–575 (0.94)	8 ⁵¹ 8 (4T)	sc ⁶¹ Pc 5N5	¹¹⁰ Ag, electroplated; microtome ¹¹¹ Ag, ¹⁰⁵ Ag, chemical deposition;	No (linear in ln $c - x^2$) All (slight NSE)		Cu in Pb $E \approx 1$	45.02 45.02	Dyson (1966) [45.07] Herzig (1971) [45.08]
Ag	I	I		423–576 (0.83)	4	sc 6N	microtome ¹¹⁰ Ag, ¹⁰⁵ Ag, electroplated; microtome	2 examples		E = 0.31 - 0.19	45.02	Miller (1973) [45.09]
Ag	0.0442	0.630 (60.8)	23	437–572 (0.84)	Ŋ	sc 4N8	¹¹⁰ Ag, chemical deposition; microtome	1 example		$\Delta V/V_0 = 0.37$ (p = 0- 0.9 GPa)	I	Ascoli (1974) [45.10]
Ag	I	I		423-477 (0.75)	ю	sc 6N	¹¹⁰ Ag, electroplated; lathe	No		Ag in Pb(Ag); $c_{\rm s} = 75-$ $300 \rm ppma$	45.02	Cohen (1975) [45.11]

Hu (1982) [45.12]	Shi (1987) [45.13]		Ascoli (1956) [45.14]	Ascoli (1961) [45.15]	Ascoli (1966) [45.16]	Kidson (1966) [45.17]	Weyland (1971) [45.18]	Warburton (1975) [45.19]
Ni in Pb; Ag, 45.02 Ni in Pb(Sn)	Ag, Au, Cu in 45.02 Pb(In)	45.02	1	I	p-dependence – of $D(p = 0-1.0GPa)$	I	$\Delta V/V_0 \approx 0.30 - (p = 2.1 - 4.6 GPa)$	Au in Pb(Au) 45.02
		⁺ Present fit to the data of [45.07–45.09], [45.11–45.13]	*~0.2 µm layer; see column (9) in Ref. [45.19]	* <0.2 μm layers; see column (9) in Ref. [45.19]	* ~0.2 µm layers; see column (9) in Ref. [45.19]	See column (9) in Ref. [45.19]	* $D(p)$ recalculated to D(p = 0) *Reanalysis using a new pressure calibration [45.32]	Au additions to Pb drastically de- enhance the diffusivity of Au (and Pb). In the earlier papers probably too thick Au layers lead to reduced diffusivities.
1 example	No		1 example	1 example		3 examples	No	1 example
¹¹⁰ Ag, chemical deposition; microtome	$^{110}Ag^{72}$, microtome		¹⁹⁸ Au (neutron irradiation of Au after the diffusion run), vapour deposition*; microtome (250µm sections)	¹⁹⁵ Au, electroplated; microtome	¹⁹⁸ Au (neutron irradiation of Au after the diffusion run), electroplated*; microtome (50 µm sections)	¹⁹⁸ Au, ¹⁹⁹ Au, vapour deposition; microtome	¹⁹⁸ Au (neutron irradiation of Au after the diffusion run), electroplated; $(\sim 10$ nm layers); microtome	¹⁹⁵ Au, electroplated; lathe
pc (0.2 mm) 5N	pc (0.5 mm) 5N		pc ⁶¹ (1–9 mm)	sc 5N	sc 2 N	sc 5N	= 0) sc 6N	sc 6N
7 (4T)	3 ⁵¹	(33)	∞	23 (15T)	451	14^{51}	0 (at <i>p</i> =	10
423–573 (0.83)	423–513 (0.78)	398–594 (0.83)	463–569 (0.86)	367–598 (0.80)	357–526 (0.73)	461–592 (0.88)	(443-640)	410–511 (0.77)
24	27	26^+	160	160	170	200	200* 185 [×]	230
0.63 (60.8)	0.624 (60.3)	0.628^{+} (60.6)	0.386 (37.3)	0.405 (39.1)	0.379 (36.6)	0.434 (41.9)	0.411* (39.7) 0.417 [×] (40.3)	0.388 (37.4)
0.046	0.046	0.048^{+}	2.8×10^{-3}	4.1×10^{-3}	2.5×10^{-3}	8.7×10^{-3}	$5.6 \times 10^{-3*}$ $5.8 \times 10^{-3} \times$	3.62×10^{-3}
Ag	Ag	Ag	Аи	Au	Au	Au	Au	Au

£×	(2a) D^0 (10^{-4} m ² s ⁻¹)	(2b) Q (eV) and (k) mole ⁻¹)	(3) $D(T_m)$ $(10^{-12} m^2 s^{-1})$	(4) T-range (K) (\overline{T}/T_m)	(5) No. of data points	(6) Material, purity	(7) Experimental method	(8) Remarks on the PP	(9) Further remarks	(10) Also studied	(11) Figure	(12) Reference
Au	$5.2 imes 10^{-3}$	0.400 (38.6)	230	334–563 (0.75)	14 (13T)	pc 6N	¹⁹⁵ Au (carrier free), chemical deposition; microtome	3 examples (erfc- solution at low T)		Au in Pb(Ag) and Pb(Pd)	45.02	Decker (1979) [45.20]
Bi	12.0^{+}	1.191^+ (115.0)	0.12^{+}	564, 596	5	pc 4N	²¹⁰ Bi, vapour deposition*; microtome	No	⁺ Present calculation *Daughter of ²¹⁰ Pb	Pb, Tl in Pb and Pb(Tl)	45.03	Resing (1961) [45.02]
Cd	0.409	0.920 (88.9)	0.78	423–594 (0.85)	9 ⁵¹	sc 6N	¹¹⁵ Cd, electroplated; microtome	2 examples (dislocation tail at low T)		Pb in Pb and Pb(Cd)	45.04	Miller (1969) [45.04]
Cd	0.92	0.961 (92.8)	0.79	523–570 (0.91)	8 ⁵¹	sc 6N	¹⁰⁹ Cd, electroplated; microtome	1 example		$\Delta V/V_0 \approx 0.32$ ($p = 0-4.0$ GPa); Hg in Pb	I	Vanfleet (1977) [45.21]
Co	9×10^{-3}	0.481 (46.4)	84	372–552 (0.77)	6 ⁵¹	pc (3–4 mm) 6N	⁶⁰ Co (neutron irradiation of Co after the diffusion run), implanted; microtome (30 µm sections)	1 example ⁸⁴			I	Kusunoki (1978) [45.22]
C C	8.7×10^{-3} 2.03	0.577 (55.7) 1.080	130 0.18	502–591 (0.91) 504–590	52 52	sc 4N5 sc	⁵¹ Cr, electroplated; lathe ¹³⁷ Cs, implanted; lathe	No (linear in $\ln c - x^2$) No (linear in		Cs in Pb Cr in Pb	1 1	Chandramouli (1974) [45.23] Chandramouli
Cu	7.9×10^{-3}	(104.3) 0.348 (33.6)	950	(0.91) 497-591 (0.91)	8 ⁵¹	4N5 sc ⁶¹	64Cu, chemical deposition;	ln $c - x^2$) 2 examples (partly oxide		Ag in Pb	45.02	(1974) [45.23] Dyson (1966) [45.07]
Си	(8×10^{-4}) $8.6 \times 10^{-3*}$	(0.243) (23.4) 0.354* (34.2)	920*	491–600 (0.91)	52	sc 6N	⁶⁴ Cu, chemical deposition; microtome (20 µm	1 example ⁸⁴	*Fit for $p = 0$ according to Decker [45.32]	Pressure dependence of D ($p = 0$ -	I	Candland (1972) [45.24]
Cu	I			592, 595	7	sc 6N	⁶⁴ Cu, ⁶⁷ Cu, chemical deposition; microtome	2 examples		E = 0.23; $c_{\rm s}(594 \text{ K}) \approx$ 13 mma	45.02	Mundy (1974) [45.25]
Cu	1	0.343 (33.1)		508–575 (0.90)	4 ⁵¹ *				*Pre-annealed samples used in Ref. [45.24] (p = 0)		45.02	Decker (1975) [45.26]

Table 4.5 (Continued)

	Warburton (1973) [45.05]	Vanfleet (1977) [45.21]	Kučera (1969) [45.27]	Cheriet (1987) [45.28]	Zeiger (1982) [45.29]	Owens (1972) [45.30]	Candland (1973) [45.31]	Decker (1975) [45.32]	Hu (1982)[45.12]	Mei (1987) [45.33]	Decker (1975) [45.32]	
45.02	Pb in Pb; Hg, 45.03 Pb in Pb(Hg)	$\Delta V/V_0 \approx 0.52 45.03$ $(p = 0 - 3.8 \text{GPa}); \text{Cd}$ in Pb	1	- Pb(In) -	I	ı	$\Delta V/V_0 \approx 0.13 45.05$ ($p = 0-5.0$ GPa)	I	Ag in Pb; Ag, 45.05 Ni in Pb(Sn)	45.05	$\Delta V/V_0 \approx 0.04 45.05$ $(p = 0-$ $4 \text{GPa})$	
Present fit to the data of [45.07, 45.25, 45.26]		*Fit together with the data of [45.05]	⁺ Present approximation; the results of [45.27] and [45.28] at 516 K differ by a factor of 10	$^*D = 1.3 \times 10^{-15} \text{m}^2 \text{s}^{-1}$; see Ref [45.27]	Pronounced data scatter ⁺ Present	approximation Pronounced data scatter		*Fit for $p = 0$ to the data of Ref. [45.31]				
	No (dislocation tails at deep penetra- tions)	No	l 1 example	No	t Numerous examples ⁸¹	g 1 example ⁸¹	1 example		1 example	No	1 example	
	²⁰³ Hg, electroplated; lathe	²⁰³ Hg, electroplated; microtome	In, 5μm film deposited on the crystal: microtome, EPMA	¹¹⁴ In, electroplated; microtome	¹⁹² lr, dried-on from sal solution; microtome	²² Na, pressure welding of ²² Na-Pb alloys with pure lead; microtome	⁶³ Ni, electroplated; microtome		⁶³ Ni, electroplated; microtome	⁶³ Ni, electroplated; microtome	¹⁰⁹ Pd, chemical deposition; microtome	
	sc 6N	sc 6N	sc	pc 5N	sc 5N	sc 6N	sc 6N		Pc (0.2 mm) 5N	pc 5N	sc 6N	
(14)	6	4^{51}	10 (4T)	*	8 (77) 8	(6T) 10^{51} (7T)	11 ⁵¹	(33)*	5 ⁵¹	5^{51}	10^{51}	
(497–595)	466–573 (0.86)	526–582 (0.92)	437–493 (0.77)	516	419–574 (0.83) 514–574	(0.91) 522–586 (0.92)	483–596 (0.90)		485–554 (0.86)	433–556 (0.82)	482–585 (0.89)	
910	0.58	0.59	(0.50^{+})		(27+)	(0.032)	130	135	125		280	
0.331 (32.0)	0.984 (95.0)	1.002* (96.7)	(1.162) (112.2) (1.136 ⁺) (109.7)	I	(0.462) (44.6) (0.487 ⁺)	(47.0) (1.127) (118.5)	0.461 (44.5)	0.495* (47.8)	0.47 (45.4)	I	0.3 <i>67</i> (35.4)	
$5.5 imes 10^{-3}$	1.05	1.50*	(17 ⁺)	I	(2.1×10^{-3}) $(3.3 \times 10^{-3+})$	(6.3)	9.4×10^{-3}	0.019^{*}	0.011	I	3.4×10^{-3}	
Cu	Hg	Hg	Ч	Ч	님	Na	Ni	ï	ïŻ	Ņ	Pd	
Table	4.5 (Continue	(pa										
-------	---	--	--	--	------------------------------	----------------------------	---	---	---	--	----------------	------------------------------------
Ξ×	(2a) D^0 (10^{-4} m ² s ⁻¹)	(2b) Q (eV) and (kJ mole ⁻¹)	(3) $D(T_m)$ (10 ⁻¹² m ² s ⁻¹)	(4) T-range (K) (\overline{T}/T_m)	(5) No. of data points	(6) Material, purity	(7) Experimental method	(8) Remarks on the PP	(9) Further remarks	(10) Also studied	(11) Figure	(12) Reference
Pt	0.011	0.438 (42.3)	230	490–593 (0.90)	13 ⁵¹ (11T)	sc 6N	Pt, chemical deposition; microtome	2 examples (partly erfc- solutions)	Pt content of each slice was determined by observing the variation of the melting curve	c₅ ≈ 100– 400 ppma	45.06	Vanfleet (1980) [45.34]
Sb	(0.29) 38 ⁺	(0.963) (93.0) 1.20 ⁺	0.33^{+}	461–588 (0.87) 521–588 (0.92)	6 2	sc 6N	¹²⁴ Sb, dried-on from salt solution; microtome	2 examples	*Present fit to the upper temperature range		45.04	Nishikawa (1972) [45.35]
Sn	0.41	1.03 (99.4)	0.094	517–599 (0.93)	13 ⁵¹ (12T)	sc 6N	¹¹³ Sn, electroplated; microtome	No		$\Delta V/V_0 \approx 0.52$ $(p = 0 - 2.9 \text{GPa})$	45.04	Decker (1977) [45.36]
F	(0.511) 0.53^+	1.055 (101.9)	0.075+	480–595 (0.89)	6	pc 4N	²⁰⁴ Tl, vapour deposition; microtome	No	⁺ Present approximation	Pb, Bi in Pb; Pb, Bi, Tl in Pb(Tl)	45.03	Resing (1961) [45.02]
Zn	0.016	0.490 (47.3)	125	455–572 (0.85)	7 ⁵¹	sc 6N	⁶⁵ Zn, electroplated; microtome	2 examples ^{81,85}		$\Delta V/V_0 \approx 0.21$ (p = 0- 4.7 GPa)	45.06	Ross (1974) [45.37], [45.38]

Fig. 41.01 Self-diffusion in β -titanium. \Box , Murdock [41.01]; \bigcirc , Köhler [41.02]. Fitting line: Ω -fit according to [41.02].

Fig. 41.02 Impurity diffusion in β -titanium. Ag in Ti: \Box , Lee [41.07]; Au in Ti: \bigcirc , Lee [41.12]; Cu in Ti: \triangle , Caloni [41.25]; ∇ , Lee [41.07]. Fitting line: Ω -fit according to [41.07].

Fig. 41.03 Impurity diffusion in β -titanium. Al in Ti: \Box , Araki [41.10]; \bigcirc , Köppers [41.11]. Fitting line: α -fit with $D^0 = 0.114 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}$, Q = 2.207 eV, $T_0 = T_m$ and $\alpha = 6.7$. Ga in Ti: Δ , Lee [41.27].

Fig. 41.04 Impurity diffusion in β -titanium. Co in Ti: \Box , Gibbs [41.17]; \blacklozenge , Araki [41.18]; Cr in Ti: \bigcirc , Lee [41.22]; x, Araki [41.23]. Fitting line: Ω -fit according to [41.22].

Fig. 41.05 Impurity diffusion in β -titanium. Fe in Ti: ⁵⁵Fe: \Box , Peart [41.16]; Δ , Gibbs [41.17]; ⁵⁹Fe: ∇ , Gibbs [41.17]. Fitting line according to [41.17]. Mn in Ti: \bullet , Gibbs [41.17]; Ni in Ti: \diamond , Peart [41.16]; \bigcirc , Gibbs [41.17]. Fitting line: present approximation.

Fig. 41.06 Impurity diffusion in β -titanium. Ge in Ti: \Box , Iijima [41.31]; Si in Ti: Δ , Iijima [41.31]; Sn in Ti: \bigcirc , Iijima [41.31]; x, Araki [41.47]. Fitting line according to [41.31].

Fig. 41.07 Impurity diffusion in β -titanium. In in Ti: \Box , Lee [41.27]; Zr in Ti: Δ , Araki [41.57].

Fig. 41.08 Impurity diffusion in β -titanium. Mo in Ti: \Box , Gibbs [41.17]; Nb in Ti: \bigcirc , Peart [41.16]; Δ , Gibbs [41.17]. Fitting line: present fit.

Fig. 41.09 Impurity diffusion in β -titanium. Pd in Ti: \Box , Lee [41.22]; V in Ti: \bigcirc , Murdock [41.01]. Fitting line: Ω -fit according to Neumann [41.55].

Fig. 41.10 Impurity diffusion in β -titanium. P in Ti: Δ , Askill [41.39]; Sc in Ti: \Box , Askill [41.39]; \bigcirc , Askill [41.06]. Fitting line according to [41.39].

Fig. 41.11 Impurity diffusion in β -titanium. Ta in Ti: \Box , Askill [41.49]; \bigcirc , Ansel [41.50]. Fitting line: Ω -fit according to [41.50].

Fig. 41.12 Impurity diffusion in β -titanium. W in Ti: \Box , Minamino [41.56].

Fig. 41.13 Self-diffusion in α -titanium. \Box and \Diamond , Köppers [41.05].

Fig. 41.14 Impurity diffusion in α -titanium. Ag in Ti: \Box , Araujo [41.09]; Al in Ti: Δ and ∇ , Köppers [41.05].

Fig. 41.15 Impurity diffusion in α -titanium. Co in Ti: \Box and \diamond , Nakajima [41.19]; \bigcirc , Perez [41.20]. Fitting line according to [41.19]. Cr in Ti: Δ and ∇ , Nakajima [41.24].

Fig. 41.16 Impurity diffusion in α -titanium. Fe in Ti: \Box and \Diamond , Nakajima [41.26]; Mn in Ti: Δ and ∇ , Nakamura [41.36]; Ga in Ti: \bigcirc , Köppers [41.28], [41.29].

Fig. 41.17 Impurity diffusion in α -titanium. Pd in Ti: ∇ , Behar [41.43]; Zr in Ti: \bigcirc , Perez [41.58]; \Box , Δ , Perez [41.59]. Fitting line according to [41.58].

Fig. 41.18 Impurity diffusion in α -titanium. In in Ti: \Box , Köppers [41.28]; Pb in Ti: Δ , Mirassou [41.41]; ∇ , Mirassou [41.42]. Fitting line according to [41.42].

Fig. 41.19 Impurity diffusion in α -titanium. Ni in Ti: \Box and \diamond , Nakajima [41.38]; P in Ti: Δ and ∇ , Nakajima [41.40].

Fig. 41.20 Impurity diffusion in α -titanium. Sn in Ti: \Box , Perez [41.48]; Ta in Ti: \bigcirc , Perez [41.51].

Fig. 42.01 Self-diffusion in β -zirconium. \blacklozenge , Kidson [42.01]; \bigcirc , Federer [42.02]; Δ , Graham [42.04]; ∇ , Herzig [42.05]; \blacklozenge , Manke [42.15]. Fitting line: two-exponential fit according to Neumann [42.07].

Fig. 42.02 Impurity diffusion in β -zirconium. Ag in Zr: \Box , Tendler [42.14]; \bigcirc , Manke [42.15]. Fitting line: two-exponential fit according to Neumann [42.16].

Fig. 42.03 Impurity diffusion in β -zirconium. Al in Zr: \Box , Laik [42.21]; Sn in Zr: \bigcirc Chelluri [42.54].

Fig. 42.04 Impurity diffusion in β -zirconium. Ce in Zr: \Box , Paul [42.25].

Fig. 42.05 Impurity diffusion in β -zirconium. Co in Zr: \Box , Kidson [42.26]; \bigcirc , Herzig [42.27]; \diamond , Zee [42.28]. Fitting line according to [42.26]. Cr in Zr: Δ , Nicolai [42.31]; ∇ , Patil [42.32]; \bullet , Zee [42.28]. Fitting line: two linear branches above and below 1,516 K according to [42.28] and [42.31]. Cu in Zr: x, Iijima [42.17]; Fe in Zr: \blacksquare , Trampenau [42.37].

Fig. 42.06 Impurity diffusion in β -zirconium. Hf in Zr: \Box , Herzig [42.41]. Fitting line: Ω -fit according to Neumann [42.16]. Mn in Zr: \bigcirc , Tendler [42.43].

Fig. 42.07 Impurity diffusion in β -zirconium. Mo in Zr: \Box , Paul [42.25]; Nb in Zr: Δ , Federer [42.02]; ∇ , Herzig [42.44]. Fitting line: two-exponential fit according to Neumann [42.16].

Fig. 42.08 Self-diffusion in α -zirconium in dependence of the Fe content. \bigcirc , Horvath [42.10], 2 ppma Fe. $D_{//}$ and D_{\perp} : \Box and \blacksquare , Lübbehusen [42.11] (100–200 ppma Fe); x and $_*$, Hood [42.09] (Fe content not specified); \blacklozenge and \diamondsuit , \lor and ∇ , Hood [42.12] (47 and 57 ppma Fe, respectively); \blacktriangle and Δ , Hood [42.12] (< 1 ppma); \blacklozenge and \blacklozenge , Hood [42.13] (< 1 ppma). Fitting line for $D_{//}$ according to [42.13]. (See introduction page.)

Fig. 42.09 Impurity diffusion in α -zirconium. Ag in Zr single crystals: \blacksquare , Hood [42.18] (280 ppma Fe); \blacklozenge , Vieregge [42.20] (107 ppma Fe); \blacktriangle and Δ , Tobar [42.19] (20 ppma Fe) (// and $_{\perp}$ to the *c*-axis); Ag in Zr polycrystals: \Box , Tendler [42.14] (900 ppma Fe); \bigcirc , Vieregge [42.20] (20 and 192 ppma Fe). Fitting line for single crystals according to [42.20]; Nb in Zr: \diamondsuit and \blacklozenge , Hood [42.45].

Fig. 42.10 Impurity diffusion in α -zirconium. Cr in Zr: \Box and \blacksquare , Balart [42.34]; \bigcirc and \blacklozenge , Hood [42.35]. Fitting line according to [42.35]. Ti in Zr: Δ , Hood [42.57]; \blacktriangle , Hood [42.09].

Fig. 42.11 Impurity diffusion in α -zirconium. Cu in Zr: \Box and \blacksquare , Hood [42.36]; Mn in Zr: \bigcirc , Tendler [42.43]; \blacklozenge , Hood [42.09]. Fitting line according to [42.43].

Fig. 42.12 Impurity diffusion in α -zirconium. Fe in Zr: Δ , Hood [42.38] (pc); ∇ , Hood [42.09] (sc); \Box , Tendler [42.39] (pc); \bullet and \bigcirc , Nakajima [42.40]. Tentative fitting line using $D^0 = 0.02 \text{ m}^2 \text{ s}^{-1}$, Q = 1.87 eV (pc).

Fig. 42.13 Impurity diffusion in α -zirconium. Ni in Zr: \Box , Hood [42.38]; \bigcirc and \bigcirc , Hood [42.46].

Fig. 43.01 Self-diffusion in β -hafnium. \Box , Winslow [43.01]; \bigcirc , Herzig [43.02]. Fitting line according to [43.02].

Fig. 43.02 Self-diffusion in α -hafnium. \bullet , Herzig [43.04]; Δ (parallel) and \Box (perpendicular), Davis [43.03]. Fitting lines: solid line for D_{pc} according to [43.04] and dotted line for $D_{//}$ according to [43.03].

Fig. 43.03 Impurity diffusion in α -hafnium. Al in α -Hf: \Box , Herzig [43.04].

Fig. 43.04 Impurity diffusion in α -hafnium. Co in α -Hf: \Box , Dyment [43.06].

Fig. 43.05 Impurity diffusion in α -hafnium. Ti in α -Hf: \Box (perpendicular) and \Diamond (parallel), Köppers [43.07].

Fig. 44.01 Self-diffusion in tin. \bigcirc and \bullet , Meakin [44.01]; \triangle and ∇ , Coston [44.02]; \square and \diamondsuit Huang [44.03]. Fitting lines according to [44.03].

Fig. 44.02 Impurity diffusion in tin. Ag in Sn: \Box and \Diamond , Dyson [44.04]; Au in Sn: Δ and ∇ , Dyson [44.04].

Fig. 44.03 Impurity diffusion in tin. Cd in Sn: \Box and \Diamond , Huang [44.03].

Fig. 44.04 Impurity diffusion in tin. Hg in Sn: \Box and \Diamond , Warburton [44.08].

Fig. 44.05 Impurity diffusion in tin. In in Sn: \Box and \Diamond , Sawatzky [44.09]; Sb in Sn: Δ and ∇ , Huang [44.11, 44.03].

Fig. 44.06 Impurity diffusion in tin. Ni in Sn: \Box and \Diamond , Yeh [44.10].

Fig. 44.07 Impurity diffusion in tin. Zn in Sn: \Box and \Diamond , Huang [44.03].

Fig. 45.01 Self-diffusion in lead. \Box , Nachtrieb [45.01]; \bigcirc , Resing [45.02]; Δ , Hudson [45.03]; ∇ , Miller [45.04]; \diamond , Warburton [45.05]. Fitting line according to [45.04].

Fig. 45.02 Impurity diffusion in lead. Ag in Pb: \Box , Dyson [45.07]; \bigcirc , Herzig [45.08]; Δ , Miller [45.09]; ∇ , Cohen [45.11]; \diamondsuit , Hu [45.12]; +, Shi [45.13]. Fitting line using $D^0 = 4.8 \times 10^{-6} \text{ m}^2 \text{ s}^{-1}$, Q = 0.628 eV. Au in Pb: \Box , Warburton [45.19]; \bigcirc , Decker [45.20]. Fitting line using $D^0 = 4.4 \times 10^{-7} \text{ m}^2 \text{ s}^{-1}$, Q = 0.394 eV; Cu in Pb: \Box , Dyson [45.07]; \bigcirc , Mundy [45.25]; Δ , Decker [45.26]. Fitting line: present approximation using $D^0 = 5.5 \times 10^{-7} \text{ m}^2 \text{ s}^{-1}$, Q = 0.331 eV.

Fig. 45.03 Impurity diffusion in lead. Bi in Pb: \Box , Resing [45.02]; Hg in Pb: \bigcirc , Warburton [45.05]; Δ , Vanfleet [45.21]. Fitting line according to [45.05]. Tl in Pb: \diamondsuit , Resing [45.02].

Fig. 45.04 Impurity diffusion in lead. Cd in Pb: \Box , Miller [45.04]; Sb in Pb: \bigcirc , Nishikawa [45.35]; Sn in Pb: \diamondsuit , Decker [45.36].

Fig. 45.05 Impurity diffusion in lead. Ni in Pb: \Box , Hu [45.12]; \bigcirc , Candland [45.31]; Δ , Mei [45.33]. Fitting line according to [45.31]. Pd in Pb: \diamondsuit , Decker [45.32].

Fig. 45.06 Impurity diffusion in lead. Pt in Pb: □, Vanfleet [45.34]; Zn in Pb: ○, Ross [45.37].

REFERENCES

References to Chapter 4.0

- [40.01] M. Schulz, in: Landolt-Börnstein, New Series III 22b, Eds. O. Madelung, M. Schulz, Springer, Berlin (1989), Chapter 4.2, p. 207.
- [40.02] N.A. Stolwijk, in: Landolt-Börnstein, New Series III 22b, Eds. O. Madelung, M. Schulz, Springer, Berlin (1989), Chapter 4.3, p. 439.
- [40.03] B.L. Sharma, Defect and Diffusion Forum 70/71 (1990).
- [40.04] A.D. King, G.M. Hood, R.A. Holt, J. Nucl. Mater. 185 (1991) 174.
- [40.05] W.C. Roberts-Austen, Proc. Roy. Soc. London 59 (1896) 281; ibid. 67 (1900) 101.
- [40.06] G.v. Hevesy, W. Seith, Z. Elektrochemie 37 (1931) 528.
- [40.07] W. Seith, J.G. Laird, Z. Metallk. 24 (1932) 193.
- [40.08] W. Seith, A. Keil, Z. Phys. Chem. B 22 (1933) 350.
- [40.09] W. Seith, E. Hofer, H. Etzold, Z. Elektrochem. 40 (1934) 322.
- [40.10] W. Seith, H. Etzold, Z. Elektrochem. 40 (1934) 829.
- [40.11] W. Seith, H. Etzold, Z. Elektrochem. 41 (1935) 122.
- [40.12] W. Seith, Z. Elektrochem. 41 (1935) 872.
- [40.13] G.v. Hevesy, W. Seith, A. Keil, Z. Phys. 79 (1932) 197.

References to Chapter 4.1

[41.01] J.F. Murdock, T.S. Lundy, E.E. Stansbury, Acta Metall. **12** (1964) 1033.

[41.02] U. Köhler, Ch. Herzig, Phys. Stat. Sol. (b) 144 (1987) 243.

- [41.03] G. Neumann, V. Tölle, Phil. Mag. A 61 (1990) 563.
- [41.04] Ch. Herzig, R. Willecke, K. Vieregge, Phil. Mag. A 63 (1991) 949.
- [41.05] M. Köppers, Ch. Herzig, M. Friesel, Y. Mishin, Acta Mater. 45 (1997) 4181; see also Ref. [41.28].
- [41.06] J. Askill, Phys. Stat. Sol. (b) 43 (1971) K1.
- [41.07] S.Y. Lee, Y. Iijima, O. Taguchi, K. Hirano, J. Jpn. Inst. Met. 54 (1990) 502.
- [41.08] O. Taguchi, Y. Iijima, Phil. Mag. A 72 (1995) 1649.
- [41.09] L.L. Araújo, M. Behar, Appl. Phys. A 71 (2000) 169.
- [41.10] H. Araki, T. Yamane, Y. Minamino, S. Saji, Y. Hana, S.B. Jung, Metall. Mater. Trans. A 25 (1994) 874.
- [41.11] M. Köppers, M. Friesel, Ch. Herzig, to be published; see Y. Mishin, Ch. Herzig, Acta Mater. 48 (2000) 589.
- [41.12] S.Y. Lee, Y. Iijima, K. Hirano, Defect and Diffusion Forum 95-98 (1993) 623.
- [41.13] J.H.R. dos Santos, P.F.P. Fichtner, M. Behar, R.A. Pérez, F. Dyment, Appl. Phys. A 58 (1994) 453.
- [41.14] L.V. Pavlinov, G.V. Grigoryev, G.O. Gromyko, Izv. Akad. Nauk SSSR, Met. (3) (1969) 207.
- [41.15] A.N. Shabalin, V.P. Gladkov, P.L. Gruzin, A.V. Svetlov, Fiz. Met. Metalloved. 48 (1979) 663; Phys. Met. Metallogr. 48 (3) (1979) 182 (English transl.).
- [41.16] R.F. Peart, D.H. Tomlin, Acta Metall. 10 (1962) 123.
- [41.17] G.B. Gibbs, D. Graham, D.H. Tomlin, Phil. Mag. 8 (1963) 1269; the recalculated diffusion parameters in Ref. [41.39] do not improve the agreement between experimental and calculated diffusion coefficients.
- [41.18] H. Araki, Y. Minamino, T. Yamane, Y. Shirai, Y. Miyamoto, Defect and Diffusion Forum 143–147 (1997) 125.
- [41.19] H. Nakajima, M. Koiwa, Y. Minonishi, S. Ono, Trans. Jpn. Inst. Met. 24 (1983) 655.
- [41.20] R.A. Pérez, F. Dyment, Phil. Mag. A 71 (1995) 965.
- [41.21] A.J. Mortlock, D.H. Tomlin, Phil. Mag. 4 (1959) 628.
- [41.22] S.Y. Lee, Y. Iijima, K. Hirano, Mater. Trans. Jpn. Inst. Met. 32 (1991) 451.
- [41.23] H. Araki, T. Yamane, T. Nakatuka, Y. Minamino, Z. Metallk. 97 (2006) 22.
- [41.24] H. Nakajima, K. Ogasawara, S. Yamaguchi, Mater. Trans. Jpn. Inst. Met. 31 (1990) 249.
- [41.25] O. Caloni, A. Ferrari, P.M. Strocchi, Electrochim. Metal. 4 (1969) 45; from Diff. Data 4 (1970) 65.
- [41.26] H. Nakajima, M. Koiwa, S. Ono, Scr. Metall. 17 (1983) 1431.
- [41.27] S.Y. Lee, Y. Iijima, K. Hirano, Phys. Stat. Sol. (a) 136 (1993) 311.
- [41.28] M. Köppers, D. Derdau, M. Friesel, Ch. Herzig, Defect and Diffusion Forum 143-147 (1997) 43.
- [41.29] Ch. Herzig, M. Friesel, D. Derdau, S.V. Divinski, Intermetallics 7 (1999) 1141.
- [41.30] M. Behar, J.H.R. dos Santos, F. Bernardi, F. Dyment, Defect and Diffusion Forum 213–215 (2003) 1.
- [41.31] Y. Iijima, S.Y. Lee, K. Hirano, Phil. Mag. A 68 (1993) 901.
- [41.32] G. Le Gall, D. Ansel, J. Debuigne, Acta Metall. 35 (1987) 2297.
- [41.33] M. Behar, F. Dyment, R.A. Pérez, J.H.R. dos Santos, R.L. Maltez, E.J. Savino, Phil. Mag. A 63 (1991) 967.
- [41.34] R.A. Pérez, F. Dyment, G. García Bermúdez, H. Somacal, D. Abriola, J. Nucl. Mater. 207 (1993) 221; see also Ref. [41.42].
- [41.35] R.A. Pérez, M.R.F. Soares, M. Behar, F. Dyment, J. Nucl. Mater. 249 (1997) 52.
- [41.36] Y. Nakamura, H. Nakajima, S. Ishioka, M. Koiwa, Acta Metall. 36 (1988) 2787.
- [41.37] G.M. Hood, R.J. Schultz, Phil. Mag. 26 (1972) 329.
- [41.38] H. Nakajima, M. Koiwa, Titanium, Sci. Technol. (1985) 1759; see also H. Nakajima, S. Maekawa, Y. Aoki, M. Koiwa, Trans. Jpn. Inst. Met. 26 (1985) 1.
- [41.39] J. Askill, G.B. Gibbs, Phys. Stat. Sol. 11 (1965) 557.
- [41.40] H. Nakajima, J. Nakazawa, Y. Minonishi, M. Koiwa, Phil. Mag. A 53 (1986) 427.
- [41.41] M.L. Mirassou, R.A. Pérez, F. Dymont, J.H.R. dos Santos, M. Behar, Scr. Mater. 34 (1996) 1537.
- [41.42] M.L. Mirassou, R.A. Pérez, F. Dyment, Defect and Diffusion Forum 143-147 (1997) 67.
- [41.43] M. Behar, M.R.F. Soares, F. Dyment, R.A. Pérez, S. Balart, Phil. Mag. A 80 (2000) 1319.
- [41.44] A. Languille, Mém. Sci. Rev. Métall. 63 (1971) 435.
- [41.45] J. Räisänen, J. Keinonen, Appl. Phys. Lett. 49 (1986) 773.

- [41.46] M.S. Jackson, D. Lazarus, Phys. Rev. B 15 (1977) 4644.
- [41.47] H. Araki, T. Yamane, Y. Minamino, S. Saji, Y. Fujiishi, Y. Miyamoto, Mater. Trans. Jpn. Inst. Met. 34 (1993) 763.
- [41.48] R.A. Pérez, M. Behar, F. Dyment, Phil. Mag. A 75 (1997) 993.
- [41.49] J. Askill, Phys. Stat. Sol. 16 (1966) K63.
- [41.50] D. Ansel, I. Thibon, M. Boliveau, J. Debuigne, Acta Mater. 46 (1998) 423.
- [41.51] R.A. Pérez, F. Dyment, G. García Bermúdez, D. Abriola, M. Behar, Appl. Phys. A 76 (2003) 247.
- [41.52] L.V. Pavlinov, A.I. Nakaneshnikov, Met. Metalloved. Chist. Met. (5) (1966) 124.
- [41.53] F. de Keroulas, J. Mory, Y. Quéré, J. Nucl. Mater. 22 (1967) 276.
- [41.54] G.B. Fedorov, E.A. Smirnov, Diffuziya v Reaktornykh Materialakh. Moscow, Atomizdat Publ. (1978), Diffusion in Reactor Materials, Trans. Tech. Publ., Switzerland (1984) (English transl.).
- [41.55] G. Neumann, V. Tölle, Z. Metallk. 82 (1991) 741.
- [41.56] Y. Minamino, H. Araki, T. Yamane, S. Ogino, S. Saji, Y. Miyamoto, Defect and Diffusion Forum 95–98 (1993) 685; see also H. Araki, Y. Minamino, T. Yamane, S. Saji, S. Ogino, Y. Miyamoto, J. Jpn. Inst. Met. 57 (1993) 501.
- [41.57] H. Araki, Y. Minamino, T. Yamane, T. Nakatsuka, Y. Miyamoto, Metall. Mater. Trans. 27A (1996) 1807.
- [41.58] R.A. Pérez, F. Dyment, Hj. Matzke, G. Linker, H. Dhers, J. Nucl. Mater. 217 (1994) 48; see also Ref. [41.42].
- [41.59] R.A. Pérez, M.L. Aguirre, F. Dyment, J. Nucl. Mater. 229 (1996) 15.

 β -titanium

- Ti [41.60] N.E. Walsoë de Reca, C.M. Libanati, Acta Metall. 16 (1968) 1297.
- Ti [41.61] A.E. Ponteau, D. Lazarus, Phys. Rev. B 19 (1979) 4027.
- Fe [41.62] K. Ouchi, Y. Iijima, K. Hirano, Titanium, Sci. Technol. (1980) 559; EPMA.
- Fe [41.63] L.G. Korneluk, L.M. Mirsky, B.S. Bokshtein, Titanium, Sci. Technol. (1973) 905.
- Mo [41.64] L.V. Pavlinov, Fiz. Met. Metalloved. 24 (1967) 272; Phys. Met. Metallogr. 24 (2) (1967) 70 (English transl.).

Nb see Ref. [41.61].

- U [41.65] L.V. Pavlinov, A.I. Nakonechnikov, V.N. Bykov, Atomn. Energiya **19** (1965) 521; Sov. Atom. Energy 19 (1965) 1495 (English transl.); precursor to Ref. [41.52].
- W see Ref. [41.64].
- Zr see Ref. [41.64].

 α -titanium

- Ti [41.66] C.M. Libanati, F. Dyment, Acta Metall. 11 (1963) 1263.
- Ti [41.67] F. Dyment, Titanium, Science and Technology (1980) 519.
- Al [41.68] A.V. Pokoyev, V.M. Mironov, L.K. Kudryavtseva, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall. 19(2), (1976) 130; Sov. Non-ferrous Met. Res. 4 (2) (1976) 81 (English transl.); X-ray diffraction method.
- Al [41.69] J. Räisänen, A. Anttila, J. Keinonen, J. Appl. Phys. 57 (1985) 613; NRA.
- Al see Ref. [41.62].
- Co [41.70] E. Santos, F. Dyment, Phil. Mag. 31 (1975) 809.
- Co [41.71] H. Nakajima, Sh. Ishioka, M. Koiwa, Phil. Mag. A 52 (1985) 743; isotope effect measurement.
- Co see Ref. [41.04].
- Fe see Ref. [41.63].
- Fe [41.72] H. Nakajima, M. Ohno, S. Yamaguchi, M. Koiwa, Scr. Metall. 22 (1988) 1455; influence of oxygen on the diffusion.
- Hf [41.73] R.A. Pérez, F. Dyment, G. García Bermúdez, H. Somacal, J. Nucl. Mater. 186 (1992) 206; precursor to Ref. [41.34].
- Mn see Ref. [41.70].
- Zr see Ref. [41.73]; precursor to Ref. [41.58].

References to Chapter 4.2

- [42.01] G.V. Kidson, J. McGurn, Can. J. Phys. 39 (1961) 1146.
- [42.02] J.I. Federer, T.S. Lundy, Trans. AIME 227 (1963) 592.
- [42.03] G.V. Kidson, Can. J. Phys. 41 (1963) 1563.
- [42.04] D. Graham, E.R. Hanes, NASA TN D 5905 (1970); unpublished; see Ref. [42.05].
- [42.05] Ch. Herzig, H. Eckseler, Z. Metallk. 70 (1979) 215.
- [42.06] D.D. Pruthi, M.S. Anand, R.P. Agarwala, Phil. Mag. A 39 (1979) 173; see also Ref. [42.61].
- [42.07] G. Neumann, V. Tölle, Phil. Mag. A 61 (1990) 563.
- [42.08] R.V. Patil, J. Nucl. Mater. 187 (1992) 197.
- [42.09] G.M. Hood, R.J. Schultz, Acta Metall. 22 (1974) 459.
- [42.10] J. Horvath, F. Dyment, H. Mehrer, J. Nucl. Mater. 126 (1984) 206.
- [42.11] M. Lübbehusen, K. Vieregge, G.M. Hood, H. Mehrer, Ch. Herzig, J. Nucl. Mater. 182 (1991) 164.
- [42.12] G.M. Hood, H. Zou, D. Gupta, R.J. Schultz, J. Nucl. Mater. 223 (1995) 122.
- [42.13] G.M. Hood, H. Zou, R.J. Schultz, N. Matsuura, J.A. Roy, J.A. Jackman, Defect and Diffusion Forum 143–147 (1997) 49.
- [42.14] R. Tendler, C.F. Varotto, J. Nucl. Mater. 54 (1974) 212.
- [42.15] L. Manke, Ch. Herzig, Acta Metall. 30 (1982) 2092.
- [42.16] G. Neumann, V. Tölle, Z. Metallk. 82 (1991) 741.
- [42.17] Y. Iijima, O. Taguchi, J. Mater. Sci. Lett. 14 (1995) 486.
- [42.18] G.M. Hood, in: Diffusion Processes, Eds. J.N. Sherwood, A.V. Chadwick, W.M. Muir, F.L. Swinton, Gordon and Breach, London (1971), p. 361.
- [42.19] G. Tobar, S. Balart, Defect and Diffusion Forum 66-69 (1989) 381.
- [42.20] K. Vieregge, Ch. Herzig, J. Nucl. Mater. 165 (1989) 65.
- [42.21] A. Laik, K. Bhanumurthy, G.B. Kale, J. Nucl. Mater. 305 (2002) 124.
- [42.22] J. Räisänen, J. Keinonen, Appl. Phys. A 36 (1985) 175.
- [42.23] L.V. Pavlinov, G.V. Grigoryev, G.O. Gromyko, Izv. Akad. Nauk SSSR, Met. (3) (1969) 207.
- [42.24] R. Tendler, J. Abriata, C.F. Varotto, J. Nucl. Mater. 59 (1976) 215.
- [42.25] A.R. Paul, M.S. Anand, M.C. Naik, R.P. Agarwala, Intern. Conf. Vacancies and Interstitials in Metals, Jülich, Vol. 1 (1968) 105.
- [42.26] G.V. Kidson, G.J. Young, Phil. Mag. 26 (1969) 1047.
- [42.27] Ch. Herzig, J. Neuhaus, K. Vieregge, L. Manke, Mat. Sci. Forum 15-18 (1987) 481.
- [42.28] R.H. Zee, J. Phys.: Condens. Matter 1 (1989) 5631.
- [42.29] G.V. Kidson, Phil. Mag. A 44 (1981) 341.
- [42.30] L.V. Pavlinov, Fiz. Met. Metalloved. 24 (1967) 272; Phys. Met. Metallogr. 24 (2) (1967) 70 (English transl.).
- [42.31] L.I. Nicolai, R.H. de Tendler, J. Nucl. Mater. 87 (1979) 401.
- [42.32] R.V. Patil, G.P. Tiwari, B.D. Sharma, Phil. Mag. A 44 (1981) 717.
- [42.33] R. Tendler, C.F. Varotto, J. Nucl. Mater. 44 (1972) 99.
- [42.34] S.N. Balart, N. Varela, R.H. de Tendler, J. Nucl. Mater. 119 (1983) 59.
- [42.35] G.M. Hood, R.J. Schultz, J. Nucl. Mater. 200 (1993) 141.
- [42.36] G.M. Hood, R.J. Schultz, Phys. Rev. B 11 (1975) 3780.
- [42.37] J. Trampenau, Ch. Herzig, J. Phys.: Condens. Matter 2 (1990) 9345.
- [42.38] G.M. Hood, R.J. Schultz, Phil. Mag. 26 (1972) 329.
- [42.39] R. Tendler, E. Santos, J. Abriata, C.F. Varotto, in: *Thermodynamics of Nuclear Materials* 1974, Vol. 2, Intern. Atomic Energy Agency, Vienna (1975), p. 71.
- [42.40] H. Nakajima, G.M. Hood, R.J. Schultz, Phil. Mag. B 58 (1988) 319.
- [42.41] Ch. Herzig, U. Köhler, Mater. Sci. Forum 15-18 (1987) 301.
- [42.42] G.M. Hood, H. Zou, R.J. Schultz, J.A. Roy, J.A. Jackman, J. Nucl. Mater. 189 (1992) 226.
- [42.43] R. Tendler, C.F. Varotto, J. Nucl. Mater. 46 (1973) 107.
- [42.44] Ch. Herzig, L. Manke, W. Bussmann, in: Point Defects and Defect Interactions in Metals, Eds. J.I. Takamura, M. Doyama, M. Kiritani, Univ. Tokyo Press, Tokyo (1982), p. 578.
- [42.45] G.M. Hood, H. Zou, R.J. Schultz, N. Matsuura, Defect and Diffusion Forum 143-147 (1997) 55.

- [42.46] G.M. Hood, R.J. Schultz, Mater. Sci. Forum 15-18 (1987) 475.
- [42.47] B.A. Vandyshev, A.S. Panov, Izv. Akad. Nauk. SSSR, Met. (1) (1970) 231.
- [42.48] G.M. Hood, T. Laursen, J.A. Jackman, R. Belec, R.J. Schultz, J.L. Whitton, Phil. Mag. A 63 (1991) 937.
- [42.49] R.A. Pérez, F. Dyment, Appl. Phys. A 68 (1999) 667.
- [42.50] E.Ch. Schwegler, F.A. White, Intern. J. Mass Spectrom. Ion Phys. (1) (1968) 191.
- [42.51] S. Balart, R. Tendler, A. Amalric, F. Carbone, F. Gaioli, J. Nucl. Mater. 168 (1989) 346.
- [42.52] B.A. Vandyshev, A.S. Panov, P.L. Gruzin, Fiz. Met. Metalloved. 23 (1967) 908; Phys. Met. Metallogr. 23 (5) (1967) 133 (English transl.).
- [42.53] G.B. Fedorov, V.D. Gulyakin, Met. Metalloved. Chist. Met. (1) (1959) 170.
- [42.54] B. Chelluri, D. Lazarus, C.A. Wert, Phys. Rev. B 23 (1981) 4849.
- [42.55] G.B. Fedorov, F.I. Zhomov, Met. Metalloved. Chist. Met. (1) (1959) 162.
- [42.56] E.V. Borisov, Yu.G. Godin, P.L. Gruzin, A.I. Eustyukin, V.S. Emelyanov, Met. Met., Izdatel Akad. Nauk. SSSR, Moscow (1958), NP-TR-448 (1960) 196 (English transl.).
- [42.57] G.M. Hood, H. Zou, R.J. Schultz, E.H. Bromley, J.A. Jackman, J. Nucl. Mater. 217 (1994) 229.
- [42.58] L.V. Pavlinov, Fiz. Met. Metalloved. 30 (1970) 367; Phys. Met. Metallogr. 30 (2) (1970) 149 (English transl.).
- [42.59] G.B. Fedorov, E.A. Smirnov, F.I. Zhomov, V.N. Gusev, S.A. Paraev, Met. Metalloved. Chist. Met. (9) (1971) 30; see also Atomn. Energiya 31 (1971) 516, Sov. Atom. Energy 31 (1971) 1280 (English transl.).
- [42.60] R.P. Agarwala, S.P. Murarka, M.S. Anand, Acta Metall. 16 (1968) 61.
- [42.61] D.D. Pruthi, R.P. Agarwala, Phil. Mag. A 46 (1982) 841.
- [42.62] G.B. Fedorov, F.I. Zhomov, E.A. Smirnov, Met. Metalloved. Chist. Met. (5) (1966) 22.

 β -zirconium

- Zr [42.63] P.L. Gruzin, V.S. Emelyanov, G.G. Ryabova, G.B. Fedorov, Proc. 2nd U.N. Intern. Conf. Peaceful Uses of Atomic Energy, Geneva 1958, **19** (1958) 187.
- Zr see Ref. [42.56].
- Zr see Ref. [42.53].
- Zr [42.64] V.S. Lyachenko, V.N. Bykov, L.V. Pavlinov, Fiz. Met. Metalloved. 8 (1959) 362; Phys. Met. Metallogr. 8 (3) (1959) 40 (English transl.)
- Zr [42.65] D. Volokoff, S. May, Y. Adda, C.R. Acad. Sci. Paris 251 (1960) 2341.
- Zr see Ref. [42.32].
- Cr [42.66] R.P. Agarwala, S.P. Murarka, M.S. Anand, Trans. AIME 233 (1965) 986.
- Cr see Ref. [42.39].
- Fe [42.67] A.M. Blinkin, V.V. Vorobiov, Ukr. Fiz. Zh. 9(1), (1964) 91.
- Fe see Ref. [42.30].
- Fe see Ref. [42.54].
- Fe see Ref. [42.27]; precursor to Ref. [42.37].
- Fe see Ref. [42.28].
- Hf [42.68] D. Ansel, A.M. Margottet, M. Boliveau, J. Debuigne, Scr. Metall. 34 (1996) 749; EPMA.
- Mo see Ref. [42.30].
- Mo [42.69] G.B. Fedorov, E.A. Smirnov, V.N. Gusev, F.I. Zhomov, V.L. Gorbenko, Met. Metalloved. Chist. Met. (10) (1973) 62.
- Nb [42.70] G.B. Fedorov, E.A. Smirnov, S.M. Novikov, Met. Metalloved. Chist. Met. (8) (1969) 41.
- Nb [42.71] G.P. Tiwari, B.D. Sharma, V.S. Raghunathan, R.V. Patil, J. Nucl. Mater. 46 (1973) 35.
- U [42.72] L.V. Pavlinov, A.I. Nakonechnikov, V.N. Bykov, Atomn. Energiya 19 (1965) 521; Soviet Atom. Energy 19 (1965) 1495 (English transl.).
- U [42.73] G.B. Fedorov, E.A. Smirnov, F.I. Zhomov, Met. Metalloved. Chist. Met. (7) (1968) 116.

- Zr see Ref. [42.64].
- Zr see Ref. [42.56].
- Zr see Ref. [42.65].
- Zr see Ref. [42.53].

Zr [42.74] P. Flubacher, Eidgenössisches Institut für Reaktorforschung, EIR-Report No. 49 (1963) Zr [42.75] F. Dyment, C.M. Libanati, J. Mater. Sci. **3** (1968) 349.

- Co see Ref. [42.38].
- Co see Ref. [42.09].
- Co see Ref. [42.39].
- Cr see Ref. [42.66].
- Cu see Ref. [42.18].
- Fe see Ref. [42.67].
- Hf [42.76] F. Dyment, M. Behar, H. Dhers, P.L. Grande, E. Savino, F.C. Zawislak, Appl. Phys. A 51 (1990) 29; RBS.
- Hf see Ref. [42.48].
- Hf [42.77] G.M. Hood, H. Zou, J.A. Roy, R.J. Schultz, N. Matsuura, J.A. Jackman, J. Nucl. Mater. 228 (1996) 43; SIMS.
- Nb see Ref. [42.75].
- Pb [42.78] C.R.S. da Silva, F. Zawislak, Mat. Res. Symp. Proc. 316 (1994) 173.

References to Chapter 4.3

[43.01] F.R. Winslow, T.S. Lundy, Trans. AIME 233 (1965) 1790.

- [43.02] Ch. Herzig, L. Manke, W. Bussmann, in: *Point Defects and Defect Interactions in Metals*, Eds. J.I. Takamura, M. Doyama, M. Kiritani, Univ. Tokyo Press, Tokyo (1982), p. 578.
- [43.03] B.E. Davis, W.D. McMullen, Acta Metall. 20 (1972) 593.
- [43.04] Ch. Herzig, Y. Mishin, S.V. Divinski, Metall. Mater. Trans. A 33A (2002) 765.
- [43.05] F. Bernardi, M. Behar, J.H.R. dos Santos, F. Dyment, Appl. Phys. A 80 (2005) 69.
- [43.06] F. Dyment, J. Nucl. Mater. 61 (1976) 271.
- [43.07] M. Köppers, Ch. Herzig, U. Södervall, A. Lodding, Defect and Diffusion Forum 95–98 (1993) 783.

Further Investigations

- Hf [43.08] N.E. Walsöe de Reca, C.M. Libanati, Acta Metall. 16 (1968) 1297.
- Hf [43.09] F. Dyment, C.M. Libanati, J. Mater. Sci. 3 (1968) 349.
- Al [43.10] J. Räisänen, J. Keinonen, Appl. Phys. A 36 (1985) 175; NRA.

References to Chapter 4.4

- [44.01] J.D. Meakin, E. Klokholm, Trans. AIME 218 (1960) 463.
- [44.02] C. Coston, N.H. Nachtrieb, J. Phys. Chem. 68 (1964) 2219.
- [44.03] F.H. Huang, H.B. Huntington, Phys. Rev. B 9 (1974) 1479.
- [44.04] B.F. Dyson, J. Appl. Phys. 37 (1966) 2375.
- [44.05] V.B. Brik, Phys. Met. Metalloved. 53 (1982) 600; Phys. Met. Metallogr. 53 (3) (1982) 176 (English transl.).
- [44.06] B.F. Dyson, T.R. Anthony, D. Turnbull, J. Appl. Phys. 38 (1967) 3408.
- [44.07] M. Shimotomai, R.R. Hasiguti, S. Umeyama, Phys. Rev. B 18 (1978) 2097.
- [44.08] W.K. Warburton, Phys. Rev. B 6 (1972) 2161.
- [44.09] A. Sawatzky, J. Appl. Phys. 29 (1958) 1303.
- [44.10] D.C. Yeh, H.B. Huntington, Phys. Rev. Lett. 53 (1984) 1469.
- [44.11] F.H. Huang, H.B. Huntington, Scr. Metall. 5 (1971) 705.
- [44.12] L. Bartha, T. Szalay, Intern. J. Appl. Rad. Isotopes 20 (1969) 825.

 Sn [44.13]
 W. Lange, A. Hässner, I. Berthold, Phys. Stat. Sol. 1 (1961) 50.

 Sn [44.14]
 D. Bergner, W. Lange, Phys. Stat. Sol. 18 (1966) 67.

 Zn
 see Ref. [44.14].

References to Chapter 4.5

- [45.01] N.H. Nachtrieb, G.S. Handler, J. Chem. Phys. 23 (1955) 1569.
- [45.02] H.A. Resing, N.H. Nachtrieb, J. Phys. Chem. Sol. 21 (1961) 40.
- [45.03] J.B. Hudson, R.E. Hoffman, Trans. AIME 221 (1961) 761.
- [45.04] J.W. Miller, Phys. Rev. 181 (1969) 1095.
- [45.05] W.K. Warburton, Phys. Rev. B 7 (1973) 1330.
- [45.06] H.R. Curtin, D.L. Decker, H.B. Vanfleet, Phys. Rev. 139 (1965) A1552.
- [45.07] B.F. Dyson, T.R. Anthony, D. Turnbull, J. Appl. Phys. 37 (1966) 2370.
- [45.08] Ch. Herzig, Th. Heumann, D. Wolter, Z. Naturforsch. 26a (1971) 1477.
- [45.09] J.W. Miller, J.N. Mundy, L.C. Robinson, R.E. Loess, Phys. Rev. B 8 (1973) 2411.
- [45.10] A. Ascoli, L. Filoni, G. Poletti, S.L. Rossi, Phys. Rev. B 10 (1974) 5003.
- [45.11] B.M. Cohen, W.K. Warburton, Phys. Rev. B 12 (1975) 5682.
- [45.12] C.K. Hu, H.B. Huntington, Phys. Rev. B 26 (1982) 2782.
- [45.13] J. Shi, S. Mei, H.B. Huntington, J. Appl. Phys. 62 (1987) 451.
- [45.14] A. Ascoli, E. Germagnoli, L. Mongini, Nuovo Cimento 4 (1956) 123.
- [45.15] A. Ascoli, J. Inst. Met. 89 (1961) 218.
- [45.16] A. Ascoli, B. Bollani, G. Guarini, D. Kustudic, Phys. Rev. 141 (1966) 732.
- [45.17] G.V. Kidson, Phil. Mag. 13 (1966) 247.
- [45.18] J.A. Weyland, D.L. Decker, H.B. Vanfleet, Phys. Rev. B 4 (1971) 4225.
- [45.19] W.K. Warburton, Phys. Rev. B 11 (1975) 4945.
- [45.20] D.L. Decker, J.G. Melville, H.B. Vanfleet, Phys. Rev. B 20 (1979) 3036.
- [45.21] H.B. Vanfleet, J.D. Jorgensen, J.D. Schmutz, D.L. Decker, Phys. Rev. B 15 (1977) 5545.
- [45.22] K. Kusunoki, S. Nishikawa, Scr. Metall. 12 (1978) 615.
- [45.23] M. Chandramouli, N.K. Mishra, V.S. Venkatasubramanian, Proc. Nucl. Phys. Sol. State Phys. Symp. 17C (1974) 91; Defect Diffusion Data 13 (1976) 83.
- [45.24] C.T. Candland, D.L. Decker, H.B. Vanfleet, Phys. Rev. B 5 (1972) 2085.
- [45.25] J.N. Mundy, J.W. Miller, S.J. Rothman, Phys. Rev. B 10 (1974) 2275.
- [45.26] D.L. Decker, Phys. Rev. B 11 (1975) 1770.
- [45.27] J. Kučera, K. Stránský, Can. Metall. Quart. 8 (1969) 91.
- [45.28] L. Cheriet, H.B. Huntington, Acta Metall. 35 (1987) 1649.
- [45.29] H. Ziegler, Diploma Work, Univ. Münster (1982), unpublished.
- [45.30] C.W. Owens, D. Turnbull, J. Appl. Phys. 43 (1972) 3933.
- [45.31] C.T. Candland, H.B. Vanfleet, Phys. Rev. B 7 (1973) 575.
- [45.32] D.L. Decker, C.T. Candland, H.B. Vanfleet, Phys. Rev. B 11 (1975) 4885.
- [45.33] S. Mei, J. Shi, H.B. Huntington, J. Appl. Phys. 62 (1987) 444.
- [45.34] H.B. Vanfleet, Phys. Rev. B 21 (1980) 4337.
- [45.35] S. Nishikawa, K. Tsumuraya, Phil. Mag. 26 (1972) 941.
- [45.36] D.L. Decker, J.D. Weiss, H.B. Vanfleet, Phys. Rev. B 16 (1977) 2392.
- [45.37] R.A. Ross, H.B. Vanfleet, D.L. Decker, Phys. Rev. B 9 (1974) 4026.
- [45.38] D.L. Decker, R.A. Ross, W.E. Evenson, H.B. Vanfleet, Phys. Rev. B 15 (1977) 507.

Pb [45.39] B. Okkerse, Acta Metall. 2 (1954) 551.

Au [45.40] W.K. Warburton, Scr. Metall. 7 (1973) 105; precursor to Ref. [45.19].

Au [45.41] C.K. Hu, H.B. Huntington, J. Appl. Phys. 58 (1985) 2564; Diffusion in Pb(Sn).

- Au see Ref. [45.13].
- Cu see Ref. [45.13].

Ni [45.42] H. Amenzou-Badrour, G. Moya, J. Bernardini, Acta Metall. 36 (1988) 767.

Sn [45.43] S. Mei, H.B. Huntington, C.K. Hu, M.J. McBride, Scr. Metall. 21 (1987) 153.

Sn [45.44] S.K. Sen, A. Ghorai, Phil. Mag. A 59 (1989) 707; resistometric method.

CHAPTER 5

Self-Diffusion and Impurity Diffusion in Group V Metals

Contents	Tables	
	5.1. Vanadium (V)	217
	5.2. Niobium (Nb)	220
	5.3. Tantalum (Ta)	224
	5.4. Antimony (Sb)	226
	Figures	
	Vanadium	227
	Niobium	230
	Tantalum	234
	Antimony	235
	References	236
	Niobium Tantalum Antimony References	

Phosphorus (P) and arsenic (As) are not topic of this data collection.

In **vanadium** oxygen impurities enhance the diffusivity at lower temperatures (see Refs. [51.01, 51.04]). This effect is not observed in **niobium** (see Refs. [52.01, 52.03]).

Diffusion coefficients derived from out-diffusion investigations of spallation products in **niobium** (Sr, Y, Zn, Zr) [50.01] and in **tantalum** (rare earth metals, As, Ba, Cs, Hf, Rb, Sr and Y) [50.02] are not taken into consideration in this data collection (see Chapter 0.1).

Legoux and Merini have studied the diffusion of actinides in **tantalum** (summarized in Ref. [50.03]). The α -emitting actinides were generated by ion bombardment of heavy elements and implanted into a Ta foil. The results of the investigations between about 1,000 and 1,700 K ($\overline{T}/T_m \approx 0.4$) exhibit an extreme data scatter. Because of the very low diffusion energies, probably not representative for lattice diffusion, the reported diffusion parameters are not considered in Table 5.3.

Diffusion of the almost insoluble alkaline metals was investigated in single as well as polycrystals of **vanadium** (Cs [50.04]), **niobium** (Na, K [50.05], Cs [50.04]) and **tantalum** (Cs [50.04]) at temperatures lower than 0.7 $T_{\rm m}$. The results refer to dominating grain-boundary and dislocation diffusion. Note that Cs could not be detected in single crystals of V, Nb and Ta [50.04]. The results of the alkaline diffusion are not considered in Tables 5.1–5.3.

In **bismuth** (Bi) only self-diffusion of ²¹⁰Bi in single crystals was investigated [50.06]. Anomalous penetration plots, however, do not permit the determination of credible diffusion coefficients.

In Table 5.0 lattice structure, lattice constant and melting temperature of group V metals are listed.

Metal	۷	Nb	Ta	Sb
Structure $T_{\rm m}$ (K) a (nm) c (nm)	bcc 2,175 0.302	bcc 2,740 0.330	bcc 3,288 0.331	Trigonal 904 0.431 1.125

Table 5.0 Lattice structure, lattice constants a and c and melting temperature T_m
Table	5.1 Diffusio	n in vanad	lium								(Referenc	es, see page 236)
(I)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(01)	(11)	(12)
×	D^0 ($10^{-4} \mathrm{m^2 s^{-1}}$)	Q (eV) and (kJ mole ⁻¹)	$D(T_m)$ (10^{-12} m ² s ⁻¹)	$ au$ -range (K) $(ilde{T}/ au_{ m m})$	No. of data points	n Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Self-	liffusion				,				1			
>	58	3.968 (383.1)	3.7	1,771–2,161 (0.90)	×	sc 2N7*	^{*o} V, electroplated; lathe	4 examples	*Oxygen content 880 ppm, see		51.01	Lundy (1965) [51.01]
	(0.011)	(2.645) (255.4)		1,275–1,674 (0.67)	7 (5T)				introduction page			
>	214	4.082	7.4	1,629–2,106	12	sc	⁴⁸ V, electroplated	Numerous	*Oxygen content	Fe in V	51.01	Peart (1965)
	0.36	(394.2) 3.194		(0.85) 1,153 $-1,590$	(10T) 21	4N*	and vapour deposition ⁷³ ;	examples	5 ppm, see introduction page			[51.02]
	500^{21}	(308.4) 4.272 ²¹	7.0	(0.63) 1,153 $-2,106$	(131)	.NE	lathe and chemical etching		^x Corrected value			
	0.065^{21x}	(412.4) 3.014 ²¹					5					
;		(0.1.62)			,		48	;			2	
>	1/3	4.239 (409.3)	2.6	1,915-2,115 (0.93)	9	sc >3N*	²² V, dried-on from salt solution; lathe,	Numerous examples,	"Oxygen content not specified		10.16	Pelleg (1974) [51.03]
	0.288	3.206		997–1,865	34		grinder and	short circuit				
		(309.6)		(0.66)	(26T)		anodizing and stripping	tails at low T and deeper penetrations				
>	79.9	3.99 (385.2)	4.5	1,695–2,166 (0.89)	23 (12T)	$\sim 2N7^*$	⁴⁸ V, dried-on from salt solution ⁷³ :	Several examples	*Oxygen content 940 nnm. see		51.01	Macht (1979) [51.04]
	0.0208	2.82 (272.3)		1,446-1,641 (0.71)	12 (6T)		lathe	4	introduction page			
Ν	Į	I		1,323-2,147	18	sc	$^{48}V^{72}$; residual	Numerous	*Oxygen content	V in V(Fe)	51.01	Ablitzer (1983)
	26.8	3.857 (372.4)	3.1	1,806–2,147 (0.91)	6	3N7* pc	activity	examples	170 ppm, see introduction page	and V(Ta)		[51.05]
	1.79	3.438 (331.9)		1,521–1,757 (0.75)	9	•			•			
>	0.10*	3.09 (298.3)		1,335–1,845 (0.73)	15^{51}	pc 3N5 2N8	⁵¹ V; NMR SLRT T _{1p}		$^*D^0 = f_{1V}D^0_{\rm NMR}$ (see Chapter 0.2)		1	Günther (1983) [51.06]
>	118	4.032 (389.3)	5.3	1,578-1,888 (0.80)	5	pc 3N5*	⁴⁸ V, dried-on from salt solution; serial sectioning	1 example	*Oxygen content not specified	Zr in V; V, Zr in V(Zr)	51.01	Pruthi (1984) [51.07]

		1 22										
(L)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12)
×	D^{0} (10^{-4} m ² s ⁻¹)	Q (eV) and (kJ mole ⁻¹)	$D(T_m)$ (10^{-12} m ² s ⁻¹)	au-range (K) (au/ au^m)	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
>	2,420 0.31	3.21 (310.0) 4.70	4.2	(997–2,166)	(133)				Two-exponential fit to the data of [51.01– 51.05]		51.01	Neumann (1990) [51.08]
>	0.359	(453.8) 3.201 (309.1)		1,220–1,694 (0.67)	9	pc >3N*	⁴⁸ V, dried-on from salt solution; grinder	1 example	*Oxygen content not specified	V in V(Co)	51.01	Segel (1997) [51.09]
Impi Al	trity diffusion 0.084	2.778 (268.2)		1,273–1,773 (0.70)	~	pc ⁶¹	Al, vapour deposition; X-ray diffraction method	I			51.02	Maslov (1985) [51.10]
Co	1.12	3.055 (295.0)	9.3	1,298–2,126 (0.79)	23	sc > 3N	60Co, dried-on from salt solution;	Numerous examples			51.03	Pelleg (1975) [51.11]
Co	(0.7) 0.66 ⁺	(2.391) (283) 3.020^+		1,337–1,521 (0.66)	4	pc 3N8	guider and adde o'Co, dried-on from salt solution; grinder	2 examples	⁺ Present approximation	Co in V(Co)	1	Pelleg (1995) [51.12]
ſ	100	(291.6) 3.913 (377.8)		1,424–1,873 (0.76)	12	pc 3N8*	⁵¹ Cr, dried-on from salt solution; grinder	Several examples	*Oxygen content 725 ppm; pronounced data		I	Pelleg (1995) [51.13]
Ге	0.60	3.057 (295.2)		1,115–1,444 (0.59)	8 (4T)	sc 4N	⁵⁹ Fe, dried-on from salt solution ⁷³ ;	1 example	scatter	V in V	I	Peart (1965) [51.02]
Fe	274 0.37	3.997 (385.9) 3.079	15	1,618–2,090 (0.85) 1,253–1,570	9 (8T) 7	sc ⁶¹	⁵⁹ Fe, ⁵⁵ Fe, dried-on from salt solution; lathe and chemical	Numerous examples		E = 0.70 - 0.30	51.03	Coleman (1968) [51.14]
	2,280 ²¹ 0.0936 ²¹	(2.79.3) 4.402 ²¹ (425.0) 2.932 ²¹ (283.0)	17	(0.00) 1,253–2,090	(10)		etching					

Table 5.1 (Continued)

Ablitzer (1981) [51.15]	Neumann (1991) [51.16]	Pelleg (1991) [51.17]	Roux (1970) [51.18]	Pelleg (1986) [51.19]	Vandyshev (1970) [51.20]	Vandyshev (1969) [51.21]	Pelleg (1977) [51.22]	Murdock (1968) [51.23]	Fedorov (1971) [51.25]	Pruthi (1984) [51.07]
51.03	51.03	51.02	I	I	I	I	I	51.04	I	51.04
			X in Nb(X) X = Mo, Ti, V, W, Zr (EPMA)		P in β -Zr t	S in Ta t		Ti, V in V(Ti)	U in β -Zr, Nb, Ta, W	V in V; V, Zr in V(Zr)
	Two-exponential fit to the data of [51.14, 51.15]		⁺ Present rough approximation	Pronounced data scatter	Marked gb contributions canno be excluded	Marked gb contributions canno be excluded	Pronounced data scatter	 "Fit according to Ref. [51.24] "Oxygen content 112 ppm, see introduction page 	*Corrected value	*Oxygen content not specified
Numerous examples		All	No	Numerous examples (very flat pp)	No	No	Numerous examples ⁸⁴ (verv flat pp)	No	No	1 example
⁵⁹ Fe, electroplated and dried-on from salt solution; lathe, grinder (residual activity) and anodizing; Fe, vapour deposition; EPMA		⁹⁹ Mo, dried-on from salt solution; grinder	Nb, EPMA, thin film of V in a Nb/V/Nb sandwich sample (Hall)	⁶³ Ni, dried-on from salt solution; residual activity	³² P; residual activity	³⁵ S, residual activity	¹⁸² Ta, dried-on from salt solution; grinder	⁴⁴ ñ, dried-on from salt solution; lathe	²³⁵ U, experimental details not reported	⁹⁵ Zr dried-on from salt solution; serial sectioning
sc 3N c		pc ⁶¹	Pc ∼2N7	sc 3N	pc 2N8	pc 2N8	sc 3N	pc 3N8*	pc ⁶¹	pc 3N5*
44 (34T) 8 8 23 (18T)	(49)	10	9	24 (20T)	10 (5T)	8 (5T)	18	115 110 5	5 ⁵¹	~
1,211–2,088 1,839–2,088 (0,90) 1,484–1,788 (0,75)	(1,253–2,090)	1,340–1,868 (0.74)	1,673–2,023 (0.85)	1,175–1,948 (0.72)	1,473–1,723 (0.73)	1,320–1,520 (0.65)	1,371–2,076 (0.79)	1,373-2,076 1,623-2,076 (0.85) 1,373-1,573	1,373–1,773 (0.72)	1,578-1,883 (0.80)
8.7	12.6		6.2 ⁺				14	6.3		
- 3.694 (356.6) 3.301 (318.7)	$\begin{array}{c} 4.45^{21} \\ (429.7) \\ 3.08^{21} \\ (297.4) \end{array}$	3.176 (306.7)	_ 3.90 ⁺ (376.6)	2.758 (266.2)	2.160 (208.5)	1.474 (142.4)	3.121 (301.4)	- 3.769 [×] (363.9) (2.952 [×]) (285.0)	2.663 (257.1)	3.824 (369.2)
- 31.7 2.48	2,030 ²¹ 0.38 ²¹	0.185		0.18	0.0245	0.031	0.244	- 34.1 ^x (0.1 ^x)	$2.0 imes 10^{-4}$ ×	81
Че	Fe	Mo	Ŋ	ïŻ	4	S	Ta	Ë	D	Zr

Table	5.2 Diffusic	on in niobiu	Ę								(Referen	ces, see page 237)
(E)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12)
×	D ⁰ (10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (k) mole)	$D(T_{\rm m})$ (10 ⁻¹² m ² s ⁻¹)	au-range (K) $(au^{}/ au^{})$	No. of data points	Adterial, purity	Experimental method	Remarks on the PP	Further remarks	Also studied	Figure	Reference
Self- Nb	diffusion 1.1	4.163 (402.0)		1,151–2,668 (0.70)	32 (31T)	sc pc 2N75	⁹⁵ Nb, dried-on from oxalate solution; lathe, grinder, anodizing and stripping	Several examples	Erroneous thermal expansion correction; no influence of oxygen on the diffusivity	Ta in Nb	52.01	Lundy (1965) [52.01]
dN	0.61	4.115 (397.3)		1,421–2,509 (0.72)	11	sc 3N Pc ⁶¹	⁹⁵ Nb, electroplated and dried-on from salt solution; residual activity, grinder, anodizing	3 examples	observed	Co, Cu, Fe, Ni in Nb	52.01	Ablitzer (1977) [52.02]
dN	3.7^{21} 0.008^{21}	$\begin{array}{c} 4.54^{21} \\ (438.3) \\ 3.62^{21} \\ \end{array}$	1.8^{21}	1,354–2,695 (0.74)	36 (19T)	sc 3N8	and stripping ⁹⁵ Nb, dried-on from oxalate solution; grinder, anodizing	5 examples	No influence of oxygen on the diffusivity		52.01	Einziger (1978) [52.03]
ŊŊ	$\frac{-}{4.6^{21*}}$ 0.015 ²¹ *	(349.5) - $4.59^{21} *$ (443.2) $3.67^{21} *$ (354.3)	1.9 ²¹ *	1,929–2,673 (0.84)	14	sc ⁶¹	⁹⁵ Nb, ⁹² Nb, dried-on from salt solution; lathe	Several examples	*Two-exponential fit to the data of [52.03]	Isotope effect, <i>E-</i> values ranging from 0.35 to 0.48,	52.01	Bussmann (1981) [52.04]
ŊŊ	*(1.1)	(4.163)* (402.0)		2,300–2,510 (0.88)	Ŋ	4N	⁹⁵ Nb, dried-on from salt solution; serial sectioning	1 example (in [52.10])	For experimental details, see Ref. [52.10] *The temperatures of the measured D values are fitted	maximum at ~2,200 K Co, Cr, Fe, Ta in Nb; electro- transport	1.	Serruys (1983) [52.05], [52.06]
ЧN	65 ²¹ 0.115 ²¹	5.21^{21} (503.0) 3.88^{21} (374.6)	2.5 ²¹	(1,151–2,695)	(88)		Two-exponential fit to the data of [52.01–52.04]		to D(1) acc. to [52.01]		52.01	Neumann (1990) [52.07]

Impur	ity diffusion										
IA	(0.11^*) 0.055^+	3.476 (335.7)	1,623–1,823 (0.63)	ß	pc 4N	Al; EPMA Nb/Nb (4.5% Al) (Boltzmann- Matano)	2 examples (<i>c</i> - <i>x</i>)	*Average (corrected value) *Present extrapolation to <i>c</i> = 0		I	Ruiz-Aparicio (1993) [52.08]
C	0.0418	2.66 4 (257.2)	1,347–2,173 (0.64)	19 (18T)	sc ⁶¹	⁶⁰ Co; vapor deposition; grinder	Several examples	Marked data scatter		52.02	Pelleg (1976) [52.09]
C	(0.11) 0.115^+	2.845 (274.7)	1,580–1,920 (0.64)	Q	pc ⁶¹	Co, vapour deposition; EPMA Nb/ Co*/Nb	2 examples (see Figure 01.02)	⁺ Present approximation *Thin film	Nb, Cu, Fe, Ni in Nb	52.02	Ablitzer (1977) [52.02]
Co	(0.11)*	(2.845)* (274.7)	1,582–2,163 (0.68)	Ŷ	pc 4N	⁶⁰ Co, dried-on from salt solution; serial sectioning	No	*The temperatures of the measured <i>D</i> -values are fitted to <i>D</i> (<i>T</i>) acc. to [52.02]	Nb, Cr, Fe in Nb; electro- transport	I	Serruys (1982) [52.10, 52.06]
Co	I	1	1,422–1,561 (0.54)	4	sc >4N	⁶⁰ Co, vapour deposition; chemical sectioning	2 examples			52.02	Wenwer (1989) [52.11]
Ċ	0.30	3.621 (349.6)	1,226-1,708 (0.54)	20 (12T)	$\sim 3N8$	⁵¹ Cr, vapour deposition; anodizing and stripping	6 examples (total penetration depth <1.5 µm; pronounced NSE at lower T)	Marked data scatter		I	Pelleg (1969) [52.12]
ڻ	0.13	3.495 (337.5)	1,220-1,766 (0.54)	24 (17T)	$\sim 3N7$	⁵¹ Cr, vapour deposition; anodizing and stripping	6 examples (total penetration depth <2 µm; partly very flat pvb	Pronounced data scatter		I	Pelleg (1969) [52.13]
Cu	- (11.2) ⁺	~ 3.12 (301) (3.80) ⁺ (3.67)	1,829, 1,909 (0.68)	0	pc ⁶¹	Co; EPMA Nb/Co*/Nb	No	*Thin film	Nb, Co, Fe, Ni in Nb	I	Ablitzer (1977) [52.02]
Fe	0.14	3.049 (294.3)	1,664–2,168 (0.70)	6	pc ⁶¹	⁵⁹ Fe, electroplated and dried-on from salt solution; grinder and lathe	Ň		Nb, Co, Cu, Ni in Nb	52.02	Ablitzer (1977) [52.02]

Ξ	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12)
×	D^{0} (10^{-4} m ² s ⁻¹)	Q (eV) and (kJ mole)	$D(T_{\rm m}) (10^{-12} { m m^2 s^{-1}})$	T-range (K) $({ ilde T}/{ au_{ m m}})$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Ге	(0.14)*	(3.049)* (294.3)		1,865–2,379 (0.77)	ы	pc 4N	⁵⁹ Fe, dried-on from salt solution; serial sectioning	No	*The temperatures of the measured D-values are fitted to $D(7)$ acc. to 152 071	Nb, Co, Cr, Ni in Nb; electro- transport	I	Serruys (1982) [52.10], [52.06]
Mo	(92) 200 ⁺	(5.291) (510.8) 5.437 ⁺	2.0+	1,998–2,455 (0.81)	▶	${\rm Pc}_{\sim 2N7}$	Mo; EPMA thin film of Mo in Nb/Mo/ Nb sandwich	1 example	*Present approximation	Ti, V, W, Zr in Nb, Nb in V	52.03	Roux (1970) [52.14]
Ni	0.077	(264.2) (264.2)		1,434–1,533 (0.54)	10*	pc ⁶¹	sampre (trau) ⁶³ Ni, electroplated and dried-on from salt solution; residual activity	No	*Two strongly deviating data points	Nb, Co, Cu, Fe in Nb	52.04	Ablitzer (1977) [52.02]
Ч	(0.051) 0.057^{+}	2.233 (215.6)		1,573–2,073 (0.67)	15 (6T)	sc 3N	³² P, surface reaction with H ₃ PO ₄ ; residual activity	1 example	⁺ Present approximation	P in Mo	52.04	Vandyshev (1968) [52.15]
Ра	2.4+	4.143^{+} (400)		1,965–2,341 (0.79)	6	pc ⁶¹	Pd, vapour deposition (6 µm film); EPMA N1, /Pd /N15	1 example	⁺ Present approximation	Ru in Nb	52.05	Sathyaraj (1979) [52.16]
Ru	29^+	4.764 ⁺ (460)		2,026–2,342 (0.80)	г	pc ⁶¹	103Ru, dried-on from salt solution; grinder and	2 examples	⁺ Present approximation	Pd in Nb	52.06	Sathyaraj (1979) [52.16]
S	2,600	3.170 (306.1)		1,370–1,770 (0.57)	10 ⁵¹ (7T)	sc pc	³⁵ S, dried-on from salt solution;	No			I	Vandyshev (1968) [52.17]
Sn	0.14	3.422 (330.4)	7.1	2,123–2,663 (0.88)	8 (5T)	~ 2003 pc (2-4 mm) 20185	¹¹³ Sn, dried-on from salt solution ⁷³ ;	No			52.06	Askill (1965) [52.18]
Ta	-	- 4.306 (415.8)		(1,376–2,346) 1,526–2,346 (0.71)	(11) 8	sc pc 2N75	^{18,2} Ta, dried-on from oxalate solution; grinder and anodizing and stripping	2 examples	Erroneous thermal expansion correction; pronounced data scatter	Nb in Nb	52.05	Lundy (1965) [52.01]

Table 5.2 (Continued)

Pelleg (1970) [52.19]	Roux (1970) [52.14]	Pavlinov (1965) [52.20]	Fedorov (1971) [52.21]	Roux (1970) [52.14]	Roux (1970) [52.14]	Gornyy (1971) [52.22]	Roux (1970) [52.14]	Einziger (1978) [52.23]	
I	52.03	I	I	52.07	1	I	52.07	52.07	52.07
	Mo, V, W, Zr in Nb, Nb	U in β -Ti, β -Zr, Nb, Mo	U in β-Zr, V, Nb, Ta, Mo. W	Mo, Ti, W, Zr in Nb, Nb in V	Mo, Ti, V, Zr in Nb, Nb in V	Y in Ta, Mo, W	Mo, Ti, V, W in Nb, Nh in V		
	⁺ Present approximation *X = 15-26			$^{*}X = 4.7-20$	⁺ Present approximation *X = 16-18		$^{*}X = 13-21$	*Co-diffusion of ⁹⁵ Nb and ⁹⁵ Zr	Present rough fit to the data of [52.14, 52.23]
5 examples ⁸⁴ (total penetration depth <1.5 um)	1 example	No	No	No	No	No	No	1 example	
⁴⁴ Ti, dried-on from salt solution; anodizing and stripping	Ti; EPMA Nb/Nb (X% Ti)* (Hall)	²³⁵ U, vapour deposition; residual activity	²³⁵ U, vapour deposition; serial sectioning	V; EPMA Nb/Nb (X% V)* (Hall)	W; EPMA Nb/Nb (X% W)* (Hall)	⁹¹ Y, dried-on from salt solution ⁷³ ; residual activity	Zr; EPMA Nb/Nb (X% Zr)* (Hall)	⁹⁵ Zr, dried-on from oxalate solution*, grinder and anodizing and strinning	Q
$\sim 3N8$	$\sim 2N7$	pc 2N55	pc ⁶¹	$\frac{\text{pc}}{\sim}2\text{N7}$	$^{\rm pc}_{\sim 2N7}$	sc 2N8	pc ~ 2N7	sc 3N8	
32 (17T)	11	10^{51} (5T)	4^{51}	×	9	10 (5T)	~	12 (8T)	(15)
1,267–1,765 (0.55)	1,898–2,348 (0.77)	1,773–2,273 (0.74)	1,973–2,273 (0.77)	1,898–2,348 (0.77)	2,175–2,443 (0.84)	1,473–1,873 (0.61)	1,855–2,357 (0.77)	1,773–2,523 (0.79)	1,855–2,523 (0.80)
	3.0^{+}			3.1	2.7 ⁺		5.4	5.0	4.3
3.770 (364.0)	(3.838) (370.5) 3.739 ⁺ (361)	(3.330) (321.6)	(3.326) (321.1)	4.293 (414.5)	(6.765) (653.2) 6.667 ⁺ (643.7)	(232.8) (232.8)	3.773 (364.3)	3.93 (379.5)	3.70 (357.2)
660.0	(0.4) 0.225 ⁺	(0.089)	(5×10^{-6})	0.47	(7×10^4) $5 \times 10^{4+}$	1.5×10^{-3}	0.47	0.85	0.28
Ë	Ë	U	D	>	M	Х	Zr	Zr	Zr

Table	5.3 Diffusic	on in tantalı	En								(Referenc	es, see page 238)
(1)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(II)	(12)
×	D ⁰ (10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (k) mole ⁻¹)	$D(T_m)$ (10^{-12} m ² s ⁻¹)	$ au$ -range (K) $(ilde{T}/ au_{ m m})$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Self- Ta	tiffusion (0.124*) 0.09*	4.280 (413.3)		(0.62) (0.62)	7	sc Pc 2N7	¹⁸² Ta, dried-on from oxalate solution* and vapour deposition* at T < 1, 773 K; grinder (3 samples) and anodizing and striping (11 samples)	1 example	Erroneous thermal expansion correction expansion correction $D_{Nb}/D_{Ta} \approx 1.85$ "Present rough fit, disregarding the grinder results "Simultaneous diffusion of ¹⁸² Ta diffusion of ¹⁸² Ta	Nb in Ta	53.01	Pawel (1965) [53.01]
Та	0.21 1.3×10^{-3} ²¹ $1.0^{21} \times 10^{-3}$	$\begin{array}{l} 4.39 \\ (423.9) \\ \times & 3.80^{21} \times \\ (366.9) \\ 4 \ 7 d^{21} \times \end{array}$	5.6 ²¹	1,261–2,993 (0.65)	17	$\sim 3N5$	¹⁸² Ta, vapour deposition; grinder and IBS	Several examples	and ⁹⁵ Nb *Two-exponential fit together with the data of [53.01]		53.01	Weiler (1983) [53.02]
Та	1.89×10^{-3} ² 1.16^{21}	$\begin{array}{ccc} (457.7) \\ (457.7) \\ 3.84^{21} \\ (370.8) \\ 4.78^{21} \\ (461.5) \end{array}$	5.7 ²¹		(31)				Two-exponential fit to the data of [53.01, 53.02]		53.01	Neumann (1990) [53.03]
Impı, Al	rity diffusion (1.5)	(3.172) (306.2)		1,780–2,000 (0.57)	10^{51}	pc ⁶¹	Al; out-diffusion method; atomic	I	Pronounced data scatter		I	Nikolaev (1978) [53.04]
C	(0.93)+	3.728^{+} (360)		2,128, 2,330 [×]	2 ⁵¹	pc ⁶¹	absorption Co; EPMA, Ta/Co*/Ta	No	$^{x}D(2,128 \text{ K}) =$ 8.0 × 10 ⁻¹³ , D(2,330 K) = 1.4 × 10 ⁻¹³ m ² s ⁻¹ ⁺ Present calculation *Thin film	Fe, Ni in Ta	53.02	Ablitzer (1976) [53.05]

Ablitzer (1976) [53.05]	Borisov (1968) [53.06]	Roux (1972) [53.07]	Pawel (1965) [53.01]			Neumann (1991) [53.08]		Ablitzer (1976) [53.05]	Fedorov (1969) [53.09]	Fedorov (1971) [53.10]	Gornyy (1971) [53.11]
53.02	I	53.03	53.03			53.03		53.02	I	I	I
Co, Ni in Ta	Co, Cr, Ta, W in Mo, Mo in Ni	Nb, Ta, V, W in Mo	Ta in Ta						S in V	U in Mo, Nb, V, W, β-Zr	Y in Mo, Nb, W
*Thin film	Probably dominated by gb diffusion		Erroneous thermal expansion	correction *Simultaneous	diffusion of ⁹⁵ Nb and ¹⁸² Ta	Two-exponential fit to the data of	[53.01]	$^{x}D(2,050 \text{ K}) =$ 1.2 × 10 ⁻¹³ , D(2,300 K) = 1.15 × 10 ⁻¹² m^{2} s ⁻¹ ⁺ Present calculation *Thin film	Marked gb contributions cannot be excluded	⁺ Corrected value	
No		No	3 examples					No	No	No	1 example
Fe; EPMA Ta/Fe*/Ta	⁹⁹ Mo; residual activity	Mo; EPMA Ta/Mo (Hall)	⁹⁵ Nb, dried-on from salt	solution [×] and vapour	deposition ^x , lathe, grinder, anodizing and stripping			Ni; EPMA Ta/Ni*/Ta	³⁵ S; residual activity	²³⁵ U, vapour deposition; residual activity	⁹¹ Y, dried-on from salt solution ⁷³ ; residual activity
pc ⁶¹	pc ⁶¹	pc ~2N7	sc pc	2N7				pc ⁶¹	pc 2N	pc ⁶¹	sc 2N8
4^{51}	б	4 ⁵¹	25	×	17	(25)		2 ⁵¹	4	5 ⁵¹	8 (4T)
2,050–2,330 (0.67)	2,023–2,503 (0.69)	2,198–2,449 (0.70)	1,194–2,757 (0.60)	2,376–2,757	1,194–2,278	(1,194-2,757)		2,050, 2,330	1,970–2,110 (0.62)	1,865–2,400 (0.65)	1,473–1,773 (0.49)
						12^{21}					
3.417 (329.9)	3.513 (339.1)	4.553 (439.6)	(4.280) (413.3)	4.384 (423.3)	4.133 (399.0)	5.30^{21} (511.7)	3.96^{21} (382.4)	3.335 ⁺ (322)	3.036 (293.1)	3.660 (353.4)	3.131 (302.3)
0.059	1.8×10^{-3}	0.28	(0.23)	0.32	0.068	13.6^{21}	0.0205^{21}	0.19^+	100	(7.610^{-5}) 1.510^{-4} +	0.12
Fe	Мо	Мо	qN			Я		ïZ	S	D	×

(1) (1) (1) (1) (1) (1) (1) (1)	ange (K) No. of data Material, Experimental method Remarks on the Further remarks Also studied Figure Reference (T _m) points purity pp	3–863 9^{51} sc ¹²⁴ gb, electroplated; 2 examples Extreme data scatter – Huntigton 90) (8T) 4N8 grinder (pronounced of D_{\perp} (1964) [54.01] 5–889 6^{51} 6 ⁵¹ (1964) [54.01] 32) tail)	7-856 36* pc ¹²⁴ Sb, electroplated; Several *Marked gb - Hässner (1965) (9T) 3N residual activity examples contributions at [54.02] 6-856 22 (gb contribu- lower T [54.02] 99) (6T) at deeper	$\begin{array}{cccc} 3-903 & 15^{51} & \text{sc} & 1^{24}\text{Sp}; \text{ chemical} & \text{No} & ^{+}\text{Present} & 54.01 & \text{Cordes} (1966) \\ 93) & (8T) & 6N & \text{etching} & & \text{approximation} & [54.03] \\ 13^{51} & & & & & & & & & & & & & & & & & & &$	8-863 5 pc ¹²⁴ Sb; serial 1 example Ag, Sn in Sb; - Kuzmenko 87) 3N sectioning 1 example electro- (1973) [54.04]	 3-879 6 pc ¹¹⁰ Ag; serial 1 example ⁺Present 55, 51,02 Kuzmenko 32) 3N sectioning approximation electro- (1973) [54.04] 	3-763 3 pc ¹¹³ Sn, ¹²³ Sn; No ⁺ Present Sb, Ag in Sb, 54.02 Kuzmenko
(7) (8)	Experimental method Remar	¹²⁴ Sb, electroplated; 2 exan grinder (pro dish tail)	¹²⁴ Sb, electroplated; Severar residual activity exaa (gb tion deel deel	¹²⁴ Sb; chemical No etching	¹²⁴ Sb; serial 1 exan sectioning	¹¹⁰ Ag; serial 1 exan sectioning	¹¹³ Sn, ¹²³ Sn; No
(5) (6)	No. of data Material, points purity	9 ⁵¹ sc (8T) 4N8 6 ⁵¹	36* pc (9T) 3N 22 (6T)	15 ⁵¹ sc (8T) 6N 13 ⁵¹ (8T)	5 pc	6 pc	3 pc
(4)	T-range (K)) $(ilde{T}_{ m m})$	763–863 (0.90) 775–889 (0.92)	657–856 746–856 (0.89)	773–903 (0.93)	708–863 (0.87)	603–879 (0.82)	723-763
(3)	$\frac{D(T_m)}{(10^{-12} \text{ m}^2 \text{ s}^{-1})}$	0.030	0.029	0.024^{+} 0.014	0.029	$1,000^{+}$	
(2b)	Q (eV) and (k) mole ⁻¹)	1.925 (185.9) 2.042 (197.2)	- 1.713 (165.4)	1.552 (149.9) 2.082	(201.0) 1.605 (154.9)	1.240 (119.7)	1.336^+
(2a)	D^0 (10 ⁻⁴ m ² s ⁻¹)	⊥ 16.6 // 22.2	- 1.05	⊥ (0.10) 0.11 ⁺ // 56	0.26	(67) 81^+	0.03^{+}
(L)	×	Sb	Sb	Sb	Sb	Ag	Sn

Fig. 51.01 (A) Self-diffusion in vanadium. ●, Lundy [51.01]; □, Peart [51.02]; ○, Pelleg [51.03]; \triangle , Macht [51.04]; \bigtriangledown , Ablitzer [51.05]; ♥, Pruthi [51.07]; ▲, Segel [51.09]. Fitting line: twoexponential fit according to Neumann [51.08]. (B) (Detail) Self-diffusion in vanadium. ●, Lundy [51.01]; □, Peart [51.02]; ○, Pelleg [51.03]; \triangle , Macht [51.04]; \heartsuit , Ablitzer [51.05]; ♥, Pruthi [51.07]; ▲, Segel [51.09]. Fitting line: two-exponential fit according to Neumann [51.08].

Fig. 51.02 Impurity diffusion in vanadium. Al in V: □, Maslov [51.10]; Mo in V: ○, Pelleg [51.17].

Fig. 51.03 Impurity diffusion in vanadium. Co in V: \Box , Pelleg [51.11]; Fe in V: \triangle , Coleman [51.14]; ∇ , Ablitzer [51.15]. Fitting line: two-exponential fit according to Neumann [51.16].

Fig. 51.04 Impurity diffusion in vanadium. Ti in V: \Box , Murdock [51.23]; Zr in V: \bigcirc , Pruthi [51.07].

Fig. 52.01 (A) Self-diffusion in niobium. \bigcirc , Lundy [52.01] (disregarding four markedly deviating data points); \triangle , Ablitzer [52.02]; \bigtriangledown , Einziger [52.03]; \diamond , Bussmann [52.04]. Fitting line: two-exponential fit according to Neumann [52.07]. (B) (Detail) Self-diffusion in niobium; \bigcirc , Lundy [52.01] (disregarding four markedly deviating data points); \triangle , Ablitzer [52.02]; \bigtriangledown , Einziger [52.03]; \diamond , Bussmann [52.04]. Fitting line: two-exponential fit according to Neumann [52.04]. Fitting line: two-exponential fit according to Neumann [52.07].

Fig. 52.02 Impurity diffusion in niobium. Co in Nb: \bigcirc , Pelleg [52.09]; \bigcirc , Ablitzer [52.02]; \Box , Wenwer [52.11]. Fitting line according to [52.09]. Fe in Nb: \triangle , Ablitzer [52.02].

Fig. 52.03 Impurity diffusion in niobium. Mo in Nb:
, Roux [52.14]; Ti in Nb:
, Roux [52.14];

Fig. 52.04 Impurity diffusion in niobium. Ni in Nb: □, Ablitzer [52.02]; P in Nb: ○, Vandyshev [52.15].

Fig. 52.05 Impurity diffusion in niobium. Pd in Nb: \Box , Sathyaraj [52.16]; Ta in Nb: \bigcirc , Lundy [52.01] (disregarding three markedly deviating data points).

Fig. 52.06 Impurity diffusion in niobium. Ru in Nb: \Box , Sathyaraj [52.16]; Sn in Nb: \bigcirc , Askill [52.18].

Fig. 52.07 Impurity diffusion in niobium. V in Nb: \Box , Roux [52.14]; Zr in Nb: \bigcirc , Roux [52.14]; Δ , Einziger [52.23]. Fitting line using $D^0 = 0.28 \times 10^{-4} \text{m}^2 \text{s}^{-1}$, Q = 3.70 eV.

Fig. 53.01 Self-diffusion in tantalum. \Box , Pawel [53.01]; \bigcirc , Weiler [53.02]. Fitting line: two-exponential fit according to Neumann [53.03].

Fig. 53.02 Impurity diffusion in tantalum. Co in Ta: \bigcirc , Ablitzer [53.05]; Fe in Ta: \square , Ablitzer [53.05]; Ni in Ta: \triangle , Ablitzer [53.05].

Fig. 53.03 Impurity diffusion in tantalum. Mo in Ta: \bullet , Roux [53.07]; Nb in Ta: \Box , Pawel [53.01]. Fitting line: two-exponential fit according to Neumann [53.08].

Fig. 54.01 Self-diffusion in antimony. □ and ■, Cordes [54.03].

Fig. 54.02 Impurity diffusion in antimony. Ag in Sb: \Box , Kuzmenko [54.04]; Sn in Sb: \bigcirc , Kuzmenko [54.04].

REFERENCES

References to Chapter 5.0

- [50.01] G.J. Beyer, A.F. Novgorodov, Radiochem. Radioanal. Lett. 27 (1976) 341.
- [50.02] G.J. Beyer, W.D. Fromm, A.F. Novgorodov, Nucl. Instrum. Methods 146 (1977) 419.
- [50.03] Y. Legoux, J. Merini, J. Less-Common Met. 166 (1990) 141.
- [50.04] K.N. Gedgovd, A.I. Krasovskiy, S.M. Novikov, Fiz. Met. Metalloved. 50 (1980) 437; Phys. Met. Metallogr. 50 (2) (1980) 185 (English transl.).
- [50.05] M.G. Karpman, G.V. Shcherbedinski, G.N. Dubinin, G.P. Benediktova, Metalloved. Termichesk. Obrab. Met. (3) (1967) 46.
- [50.06] W.P. Ellis, N.H. Nachtrieb, J. Appl. Phys. 40 (1969) 472.

References to Chapter 5.1

- [51.01] T.S. Lundy, C.J. McHargue, Trans. AIME 233 (1965) 243.
- [51.02] R.F. Peart, J. Phys. Chem. Sol. 26 (1965) 1853.
- [51.03] J. Pelleg, Phil. Mag. 29 (1974) 383.
- [51.04] M.P. Macht, G. Frohberg, H. Wever, Z. Metallk. 70 (1979) 209.
- [51.05] D. Ablitzer, J.P. Haeussler, K.V. Sathyaraj, Phil. Mag. A 47 (1983) 515.
- [51.06] B. Günther, O. Kanert, Acta Metall. 31 (1983) 909.
- [51.07] D.D. Pruthi, R.P. Agarwala, Phil. Mag. A 49 (1984) 263.
- [51.08] G. Neumann, V. Tölle, Phil. Mag. A 61 (1990) 563.

- [51.09] V. Segel, J. Pelleg, Phil. Mag. A 76 (1997) 1203.
- [51.10] I.A. Maslov, V.M. Mironov, A.V. Pokoyev, Fiz. Met. Metalloved. 60 (1985) 193; Phys. Met. Metallogr. 60 (1) (1985) 180 (English transl.).
- [51.11] J. Pelleg, Phil. Mag. 32 (1975) 593.
- [51.12] J. Pelleg, Phil. Mag. A 72 (1995) 1547.
- [51.13] J. Pelleg, Phil. Mag. A 71 (1995) 431.
- [51.14] M.G. Coleman, C.A. Wert, R.F. Peart, Phys. Rev. 175 (1968) 788.
- [51.15] D. Ablitzer, J.P. Haeussler, K.V. Sathyaraj, A. Vignes, Phil. Mag. A 44 (1981) 589.
- [51.16] G. Neumann, V. Tölle, Z. Metallk. 82 (1991) 741.
- [51.17] J. Pelleg, Y. Zaklos, Phil. Mag. A 63 (1991) 439.
- [51.18] F. Roux, A. Vignes, Rev. Phys. Appl. 5 (1970) 393.
- [51.19] J. Pelleg, Phil. Mag. A 54 (1986) L21.
- [51.20] B.A. Vandyshev, A.S. Panov, Izv. Akad. Nauk SSSR, Met. (2) (1970) 231.
- [51.21] B.A. Vandyshev, A.S. Panov, Izv. Akad. Nauk SSSR, Met. (1) (1969) 244.
- [51.22] J. Pelleg, M. Herman, Phil. Mag. 35 (1977) 349.
- [51.23] J.F. Murdock, C.J. McHargue, Acta Metall. 16 (1968) 493.
- [51.24] J. Pelleg, Rev. High-Temp. Mater. 4 (1978) 5.
- [51.25] G.B. Fedorov, E.A. Smirnov, F.I. Zhomov, V.N. Gusev, S.A. Paraev, Atomn. Energiya 31 (1971) 516; Sov. Atom. Energy 31 (1971) 1280 (English transl.).

Further Investigations

- V [51.26] R.P. Agarwala, S.P. Murarka, M.S. Anand, Acta Metall. 16 (1968) 61.
- V [51.27] J.F. Tiers, Y. Chabre, J. Phys. F: Metal Phys. 11 (1981) 1943; NMR
- Cr [51.28] J. Pelleg, Phys. Stat. Sol. (a) 147 (1995) 361; Influence of oxygen on the diffusivity.
- Cr [51.29] R.A. Wolfe, H.W. Paxton, Trans. AIME 230 (1964) 1426.

References to Chapter 5.2

- [52.01] T.S. Lundy, F.R. Winslow, R.E. Pawel, C.J. McHargue, Trans. AIME 233 (1965) 1533.
- [52.02] D. Ablitzer, Phil. Mag. 35 (1977) 1239.
- [52.03] R.E. Einziger, J.N. Mundy, H.A. Hoff, Phys. Rev. B 17 (1978) 440.
- [52.04] W. Bussmann, Ch. Herzig, H.A. Hoff, J.N. Mundy, Phys. Rev. B 23 (1981) 6216.
- [52.05] Y. Serruys, Scr. Metall. 16 (1982) 365.
- [52.06] Y. Serruys, G. Brebec, in: DIMETA 82, Diffusion in Metals and Alloys, Eds. F.J. Kedves, D.L. Beke, Trans. Tech. Publ., Aedermannsdorf, Switzerland (1983), p. 351.
- [52.07] G. Neumann, V. Tölle, Phil. Mag. A 61 (1990) 563.
- [52.08] J.G.L. Ruiz-Aparicio, F. Ebrahimi, J. Alloys Compds. 202 (1993) 117.
- [52.09] J. Pelleg, Phil. Mag. 33 (1976) 165.
- [52.10] Y. Serruys, G. Brebec, Phil. Mag. A 45 (1982) 563.
- [52.11] F. Wenwer, N.A. Stolwijk, H. Mehrer, Z. Metallk. 80 (1989) 205.
- [52.12] J. Pelleg, Phil. Mag. 19 (1969) 25.
- [52.13] J. Pelleg, J. Less-Common Met. 17 (1969) 319.
- [52.14] F. Roux, A. Vignes, Rev. Phys. Appl. 5 (1970) 393; see also F. Roux, Thesis, Univ. Nancy (1972).
- [52.15] B.A. Vandyshev, A.S. Panov, Fiz. Met. Metalloved. 26 (1968) 517; Phys. Met. Metallogr. 26 (3) (1968) 138 (English transl.).
- [52.16] K.V. Sathyaraj, D. Ablitzer, C. Demangeat, Phil. Mag. A 40 (1979) 541.
- [52.17] B.A. Vandyshev, A.S. Panov, Izv. Akad. Nauk SSSR, Met. (1) (1968) 206.
- [52.18] J. Askill, Phys. Stat. Sol. 9 (1965) K167.
- [52.19] J. Pelleg, Phil. Mag. 21 (1970) 735.
- [52.20] L.V. Pavlinov, A.I. Nakonechnikov, V.N. Bykov, Atomn. Energiya 19 (1965) 521; Sov. Atom. Energy 19 (1965) 1495 (English transl.).
- [52.21] G.B. Fedorov, E.A. Smirnov, F.I. Zhomov, V.N. Gusev, S.A. Paraev, Atomn. Energiya 31 (1971) 516; Sov. Atom. Energy 31 (1971) 1280 (English transl.).

- [52.22] D.S. Gornyy, R.M. Altovskiy, Fiz. Met. Metalloved. **31** (1971) 781; Phys. Met. Metallogr. **31** (4) (1971) 108 (English transl.).
- [52.23] R.E. Einziger, J.N. Mundy, Phys. Rev. B 17 (1978) 449.

Further Investigations

- Nb [52.24] R. Resnick, L.S. Castleman, Trans. AIME 218 (1960) 307.
- Nb [52.25] R.F. Peart, D. Graham, D.H. Tomlin, Acta Metall. 10 (1962) 519.
- Nb [52.26] V.D. Lyubimov, P.V. Geld, G.P. Shveykin, Izv. Akad. Nauk SSSR Metall. Gorn. Delo (5) (1964). 137; Izv. Akad. Nauk SSSR Met. (2) (1967) 84.
- Nb [52.27] G.B. Fedorov, F.I. Zhomov, E.A. Smirnov, Met. Metalloved. Chist. Met. (8) (1969) 145.
- Al [52.28] G.I. Nikolaev, N.V. Bodrov, Zh. Fiz. Khim. **52** (1978) 1430; Russian J. Phys. Chem. **52** (1978) 821 (English transl.); out-diffusion method.
- Co see Ref. [52.25].
- Cr see Ref. [52.10].
- Fe see Ref. [52.25].
- Mo [52.29] G.B. Fedorov, E.A. Smirnov, V.N. Gusev, F.I. Zhomov, V.L. Gorbenko, Met. Metalloved. Chist. Met. (10) (1973) 62.
- Ni [52.30] R.P. Agarwala, K. Hirano, Trans. Japan Inst. Met. 13 (1972) 425.
- Ta see Ref. [52.05].
- V [52.31] R.P. Agarwala, S.P. Murarka, M.S. Anand, Acta Metall. 16 (1968) 61.
- W see Ref. [52.27].

References to Chapter 5.3

- [53.01] R.E. Pawel, T.S. Lundy, J. Phys. Chem. Sol. 26 (1965) 937.
- [53.02] D. Weiler, K. Maier, H. Mehrer, in: DIMETA 82, Diffusion in Metals and Alloys, Eds. F.J. Kedves, D.L. Beke, Trans. Tech. Publ., Aedermannsdorf, Switzerland (1983), p. 342.
- [53.03] G. Neumann, V. Tölle, Phil. Mag. A 61 (1990) 563.
- [53.04] G.I. Nikolaev, N.V. Bodrov, Zh. Fiz. Khim. 52 (1978) 1430; Russian J. Phys. Chem. 52 (1978) 821 (English transl.).
- [53.05] D. Ablitzer, M. Gantois, La Diffusion dans les Milieux Condensés, Théorie et Applications, Centre Etudes Nucléaires Saclay 1 (1976) 299.
- [53.06] E.V. Borisov, P.L. Gruzin, S.V. Zemskii, Zash. Pokryt. Met. (2) (1968) 104; see also Diffus. Data 3 (1969) 289.
- [53.07] F. Roux, Thesis, Univ. Nancy (1972).
- [53.08] G. Neumann, V. Tölle, Z. Metallk. 82 (1991) 741.
- [53.09] B.A. Vandyshev, A.S. Panov, Izv. Akad. Nauk SSSR, Met. (1) (1969) 244.
- [53.10] G.B. Fedorov, E.A. Smirnov, F.I. Zhomov, V.N. Gusev, S.A. Paraev, Atomn. Energiya 31 (1971) 516; Sov. Atom. Energy 31 (1971) 1280 (English transl.).
- [53.11] D.S. Gornyy, R.M. Altovskiy, Fiz. Met. Metalloved. **31** (1971) 781; Phys. Met. Metallogr. **31** (4) (1971) 108 (English transl.).

References to Chapter 5.4

- [54.01] H.B. Huntington, P.B. Ghate, J.H. Rosolowski, J. Appl. Phys. 35 (1964) 3027.
- [54.02] A. Hässner, R. Hässner, Phys. Stat. Sol. 11 (1965) 575.
- [54.03] H. Cordes, K. Kim, J. Appl. Phys. 37 (1966) 2181.
- [54.04] P.P. Kuzmenko, G.P. Grinevich, Metallofizika 47 (1973) 98.

CHAPTER 6

Self-Diffusion and Impurity Diffusion in Group VI Metals

Contents	Tables	
	6.1. Chromium (Cr)	240
	6.2. Molybdenum (Mo)	241
	6.3. Tungsten (W)	244
	Figures	
	Chromium	247
	Molybdenum	248
	Tungsten	250
	References	254

The first investigations of **chromium** self-diffusion were performed on polycrystalline samples at lower temperatures [60.01–60.09]. The results strongly refer to the dominance of grain-boundary diffusion with diffusion energies smaller than 3.3 eV.

Diffusion coefficients derived from out-diffusion of spallation products in **molybdenum** (Rb, Se, Sr, Y, Zn, Zr) [60.10] and **tungsten** (rare earth metals, Ba, Ce, Y) [60.11] are not taken into consideration in this data collection (see Chapter 0.1).

Diffusion of the almost insoluble alkaline metals was investigated in single as well as polycrystals of **molybdenum** (Li [60.12, 60.13], Na, K [60.14], Cs [60.15, 60.16]) and **tungsten** (Li [60.13], Na, K [60.17], Cs [60.16]) at temperatures lower than 0.7 $T_{\rm m}$. In general, extremely low diffusion energies were observed which refer to dominating grain-boundary and dislocation diffusion. Note that Cs could not be detected in single crystals of molybdenum and tungsten. The results of alkaline metal diffusion are not listed in Tables 6.2 and 6.3.

Sulphur (S), **selenium** (Se) and **tellurium** (Te) are not topic of the present data collection.

In Table 6.0 lattice structure, lattice constant and melting temperature of the group VI metals are listed.

Metal	Cr	Мо	W
Structure	bcc	bcc	bcc
$T_{\rm m}$ (K)	2,130	2,893	3,673
<i>a</i> (nm)	0.302	0.315	0.316

Table 6.0 Lattice structure, lattice constant a and melting temperature T_m

Table	6.1 Self-dif	fusion and	impurity diffu	sion in chron	nium					(Refer	ences, s	ee page 255)
(1)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(01)	(11)	(12)
×	D^0 ($10^{-4} \mathrm{m^2 s^{-1}}$)	Q (eV) and (k) mole ⁻¹)	$D(T_m)$ ($10^{-12} m^2 s^{-1}$)	$ au$ -range (K) $(\overline{ au}/ au_{ m m})$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
C	026	4.510 (435.4)	2.1	1,369–2,093 (0.81)	31 (24T)	sc 4N5	⁵¹ Cr, ⁴⁸ Cr, dried-on from salt solution and vapour	3 examples		V in Cr; E = 0.52 - 0.31 (1,714-2,093 K)	61.01	Mundy (1976) [61.01]
C	(46) 40^+ $1,280^*$	4.20 (405.5) 4.58*	1.9*	1,073-1,446 (0.59)	7 (38)	sc 4N	deposition; grinder ⁵¹ Cr, vapour deposition; IBS	2 examples (dislocation tails)	*Present approximation *Fit together with the		61.01	Mundy (1981) [61.02]
Fe	- 0.47	(41 2.2) - 3.439		1,260–1,700 1,523–1,700 1,523–1,700	7 ⁵¹ (6T) 4 ⁵¹	pc ⁶¹	⁵⁵ Fe, vapour deposition; residual activity	No	data or 101.011 Strongly enhanced diffusivities below 1,523 K	Cr in V; Fe, Cr in Fe(Cr)	I	Wolfe (1964) [61.03]
Mo	$(2.7 10^{-3})$	(232.0) (2.515) (242.8)		(0.7.0) 1,373–1,693 (0.72)	Ŋ	pc ⁶¹	⁹⁹ Mo; residual activity		Probably dominated by gb diffusion	Mo in Ni	I	Gruzin (1963) [61-041
>	86+	4.09^+ (394.9)	(1.8) ⁺	1,595–2,041 (0.85)	6 (4T)	sc 4N5	⁴⁸ V, dried-on from salt solution; grinder	No	⁺ Present approximation	Cr in Cr	61.02	Mundy (1976) [61.01]

Table (6.2 Diffusic	on in molybc	denum							(Re	eference	s, see page 255)
(L)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(01)	(11)	(12)
×	D^{0} (10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (kJ mole ⁻¹)	$D(T_{\rm m})$ (10^{-12} m ² s ⁻¹)	au-range (K) $(\overline{\mathcal{T}}/\mathcal{T}_{\mathrm{m}})$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
<i>Self-d</i> Mo	iffusion (4) 5.7 ⁺	4.987 (481.5)		2,073–2,448 (0.78)	551	Pc 2N3 0.7%, MJ	⁹⁹ Mo, electroplated; residual activity	No	⁺ Present fit to the depicted data	W in Mo	62.01	Borisov (1959) [62.01]
Мо	2.77	4.814 (464.8)		1,973–2,193 (0.72)	3 ⁵¹	$\frac{\text{pc}}{(1-2\text{mm})}$	⁹⁹ Mo, electroplated; serial sectioning	No			62.01	Bronfin (1960) [62.02]
Mo	8* 139 ²¹ 0.13 ²¹	5.056* (488.2) 5.69 ²¹ (549.4) 4.53 ²¹ (437.4)	1.8 ²¹	1,360–2,773 (0.71)	12 (11T)	sc 44N	⁹⁹ Mo, vapour and sputter deposition; IBS and grinder	All	*Forced fit	Ta in Mo at 2,373K	62.01	Maier (1973) [62.03]
Impu) Co	rity diffusion 3.0	4.337 (418.7)	8.3	2,213–2,603 (0.83)	6 ⁵¹	pc (1–2 mm)	⁶⁰ Co, electroplated; autoradiography*	1 example	*Annealed in argon atmosphere	Nb, Co, Fe in Nb	I	Peart (1962) [62.04]
Co	18	4.627 (446.8)	15	2,123–2,603 (0.82)	15 (9T)	sN/ sc sc	⁶⁰ Co, electroplated ⁷³ ; serial sectioning*	No	*Annealed in vacuum, strong influence of argon atmosphere	Nb in Mo	62.02	Askill (1965) [62.05] [62.06]
ſ	1.88	3.517 (339.6)		1,273–1,423 (0.47)	4	sc ∼2N7	⁵¹ Cr; residual activity	No	Marked gb contributions cannot		I	Mulyakayev (1971) 162 071
Fe Nb	0.15 1,000	3.586 (346.3) 6.028 (582.0)		1,273–1,623 (0.50) 2,073–2,436 (0.78)	16 (8T) 3 ⁵¹	pc 3N6 pc	⁵⁹ Fe; residual activity Nb; EPMA Mo/Mo (50% Nb)	3 examples			62.02 62.03	Nohara (1973) [62.08] Winklelman (1963) [62.09]

Table	6.2 (Continu	(pər										
(L)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(LL)	(12)
×	D ⁰ (10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (kJ mole ⁻¹)	$D(T_{\rm m})$ (10 ⁻¹² m ² s ⁻¹)	$ au$ -range (K) $(\overline{T}/ au_{ m m})$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
ЯЪ	(2.9) 4.5 ⁺	(5.898) (569.4) 4.974 ⁺ (480.2)		2,098–2,455 (0.79)	ى س	pc 3N	Nb; EPMA Mo/Nb (Hall)	No	⁺ Present fit to the tabulated data	Ta, V, W in Mo, Mo in Ta, Mo, Ti, V, W, Zr in	62.03	Roux (1972) [62.10]
ЧN	0.017	3.929 (379.3)		1,973–2,273 (0.73)	4	pc ⁶¹	⁹⁵ Nb; residual activity	No		Mo, Zr in Mo	62.03	Fedorov (1973) [62.11]
<u>م</u>	(0.19) 0.245^{+}	3.491 (337.1)		2,273–2,493 (0.82)	10 (5T)	sc 3N7	³² P, surface reaction with H ₃ PO ₄ ³ ; residual activity	1 example	⁺ Present approximation	P in Nb	62.04	Vandyshev (1968) [62.12]
Re	0.097	4.107 (396.5)		1,973–2,373 (0.75)	9	pc ⁶¹	¹⁸⁶ Re, electroplated; serial sectioning	No			62.05	Bronfin (1964) [62.13]
S	(320) 3,800 ⁺	(4.380) (422.9) 5.43 ⁺		2,493–2,743 (0.90)	10 (5T)	sc 3N7	³⁵ S, dried-on ⁷³ ; grinder	r No (erfc- solutions)	⁺ Present fit to the tabulated data		62.04	Vandyshev (1968) [62.14]
Та	1.9	(5.473.1) (473.1)		2,098–2,449 (0.79)	Ŋ	Pc 3N	Ta; EPMA Mo/Ta (Hall)	No		Nb, V, W in Mo, Mo in Ta, Mo, Ti, V, W, Zr in Nb	62.03	Roux (1972) [62.10]

Continued)
6.2 (
Ę

Maier (1979) [62.03]	Pavlinov (1965) [62.15]	Fedorov (1971) [62.16]	Roux (1972) [62.10]	Roux (1972) [62.10]	Erley (1974) [62.17]	Gornyy (1971) [62.18]	Fedorov (1973) [62.11]
62.03	I	I	62.05	62.05	I	I	I
Mo in Mo	U in β -Ti, β -Zr, Nb	U in β-Zr, V, Nb, Ta, W	Nb, Ta, W in Mo, Mo in Ta, Mo, Ti, V, W, Zr in Nb	Nb, Ta, V in Mo, Mo in Ta, Mo, Ti, V, W, Zr in Nb	Mo in W	Y in Nb, Ta, W	Mo, Nb in Mo
*Simultaneous diffusion of ¹⁸² Ta and ⁹⁹ Mo $^{x}D = 1.09 \times$ $10^{-14} m^{2} s^{-1}$			X = 15-22	⁺ Present approximation; X = 21-64		Pronounced data scatter	⁺ Present approximation
1 example	No	No	oN	No	No	No	No
¹⁸² Ta*; grinder	²³⁵ U, vapour deposition; residual activity	²³⁵ U, vapour deposition; serial sectioning	V; EPMA Mo/V and Mo/Mo (X% V) (Hall)	W; EPMA Mo/W and Mo/Mo (X% W) (Hall)	W, sputter deposition (1 µm film); EPMA	⁹¹ Y, dried-on from salt solution ⁷³ ; residual activity	⁹⁵ Zr; residual activity
sc 4N	pc 3N8	pc ⁶¹	3N	3N 3N	sc ⁶¹	sc 2N8	pc ⁶¹
1×	10 ⁵¹ (5T)	5 ⁵¹	7 (6T)	16 (12T)	4	Ŋ	4
2,373	1,773–2,273 (0.70)	2,073–2,373 (0.77)	1,998-2,449 (0.77)	2,093–2,453 (0.79)	2,173–2,541 (0.81)	1,473-1,873 (0.58)	2,073–2,373 (0.77)
	3) 9)	8) 5)	- -	4)	8)	8)	4)
I	(3.31) (319.9	(3.27 (316.5	4.900 (473	5.898 (569.₄	5.343 (515.8	2.225 (214.8	3.794 (366.4
I	(7.6×10^{-3})	(1.3×10^{-6})	2.9	(140) 150^{+}	3.6	$1.8 imes 10^{-4}$	(1.9×10^{-3}) 2.1 × 10 ^{-3 +}
Та	D	D	>	3	M	¥	Zr

ומחור												
(L)	(2a)	(2b)	(3)	(4)	(2)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
×	D ⁰ (10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (kJ mole ⁻¹)	$D(T_m)$ ($10^{-12} m^2 s^{-1}$)	$ au$ -range (K) $(\overline{ au}/ au_{ m m})$	No. of da points	ata Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Self W	-diffusion 1.88	6.084 (587.4)		2,073–2,676 (0.65)	~	sc ⁶¹	¹⁸⁸ W, vapour deposition; anodizing and	No (dislocation tails at deeper penetrations;	Erroneous therme expansion corrections	al Nb, Ta in W	63.01	Pawel (1969) [63.01]
M	15.3	6.487 (626.4)		2,042–2,819 (0.66)	20 (8T)	sc ∼5N	stripping ¹⁸⁷ W, sputter deposition; anodizing and	see Ta in W) Several examples			63.01	Arkhipova (1977) [63.02]
3	46^{21} 0.04 ²¹	$\begin{array}{c} 6.9^{21} \\ (666.2) \\ 5.45^{21} \\ (526.2) \end{array}$	1.7^{21}	1,705-3,409 (0.70)	51 (49T)	sc	¹⁸⁷ W, ¹⁸⁵ W, vapour deposition of irradiated WCl ₆ , grinder and anodizing and	4 examples ⁸³	Marked data scatter, temperature uncertainties uj to $\pm 40{ m K}$	C.	63.01	Mundy (1978) [63.03]
X	200^{21} 0.13 ²¹	7.33 ²¹ (707.7) 5.62 ²¹ (542.6)	2.0 ²¹	(1,705-3,409)	(52)		stripping		Two-exponential fit to the data o [63.01, 63.03]	ł	63.01	Neumann (1990) [63.04]
lmp Co	urrity diffusion 0.16 0.71 ⁺	5.147 (497.0) 5.410 ⁺		1,684–2,265 (0.54) (1,773–2,265)	6 1	sc ∼5N	⁵⁷ Co, electroplated; anodizing and stripping	All	⁺ Present approximation		63.02	Klotsman (1992) [63.05]
Ç	0.89	(522.4) 5.669 (547.4)		2,084–2,658 (0.65)	12 (11T)	sc ⁶¹	Cr, sputter deposition*; SIMS	All ((ln $c_0/c)^{y_2}$ vs. x)	*Simultaneous diffusion of Cr	Mo in W	63.02	Klotsman (1989)
Fe	I	I		2,300	*	sc ∼5N	Fe; SIMS	1 example	and Mo * $D = 7.2 \times 10^{-17} \text{ m}^2 \text{ s}^{-1}$; simultaneous diffusion of Fe, Mn, Ni	Mn, Ni in W at 2,300K	63.03	[63.06] Klotsman (1995) [63.07]

Klotsman	(1996) [63.08]	Arkhipova (1984) [63.09]	Klotsman (1995) [63.07]	Klotsman (1989) [63.06]	Klotsman (1996) [63.08]	Pawel (1969) [63.01]	Klotsman (1995) [63.07]	Arkhipova (1984) [63.09]	Iovkov (1978) [63.10]	Arkhipova (1982) [63.11]
63.04		63.05	63.03	63.06	63.06	63.07	63.03	63.05	I	63.04
Mo in W		Os, Ta in W	Fe, Ni in W at 2,300 K	Cr in W	Hf in W	W, Ta in W	Fe, Mn in W at 2,300 K	Ir, Ta in W		
Disregarding	three deviating data points "Present least- squares fit to all data points "Simultaneous diffusion of Hf and Mo		${}^{}D = 5.9 \times$ $10^{-17} \text{ m}^2 \text{ s}^{-1};$ simultaneous diffusion of Fe, Mn, Ni	*Simultaneous diffusion of Mo and Cr	*Simultaneous diffusion of Mo and Hf	Erroneous thermal expansion correction	${}^{*}D = 1.03 \times 10^{-16} \text{ m}^2 \text{ s}^{-1};$ simultaneous diffusion of Fe, Mn, Ni		Pronounced data scatter	
All (partly erfc-	solutions)	Several examples	1 example	All ((ln $c_0/c)^{1/2}$ vs. x)	All (partly erfc- solutions)	1 example	1 example	Several examples	No	Several examples
Hf, vapour	deposition*, SIMS	¹⁹² Lr, vapour deposition; grinder and anodizing and stripping	Mn; SIMS	Mo, sputter deposition ^x ; SIMS	Mo, vapour deposition ^x ; SIMS	⁹⁵ Nb, vapour deposition; anodizing and stripping	Ni; SIMS	¹⁸⁶ Os, vapour deposition; grinder and anodizing and stripping	³² P; serial sectioning	¹⁸⁶ Re, sputter deposition; grinder and anodizing and stripping
sc	$\sim 5N$	sc ⁶¹	$\sim 5N$	sc ⁶¹	$\sim 5N$	SC ⁶¹	~5N	sc ⁶¹	sc 4N	$^{\rm sc}$
8	(5T)	11	т.*	9 (8T)	18 (12T)	14		12	12 (4T)	13
2,017-2,571	(0.62)	2,007–2,960 (0.68)	2,300	2,084-2,529 (0.63)	2,017–2,483 (0.61)	1,578–2,640 (0.57)	2,300	2,105–2,928 (0.69)	2,153–2,453 (0.63)	2,113–2,906 (0.68)
5.777*	(557.8) 5.884 ⁺ (568.1)	(5.243 (506.2)	1	5.875 (567.3)	5.864 (566.2)	5.967 (576.1)	1	5.577 (538.5)	5.282 (510.0)	(597.1)
2.19*	3.63+	0.32	1	1.45	1.4	3.01	I	0.64	26.8	4.0
Ηf		ч	Mn	Mo	Mo	qN	ïŻ	Os	പ	Re

(L)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(01)	(11)	(12)
×	D ⁰ (10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (kJ mole ⁻¹)	$D(T_m)$ (10^{-12} m ² s ⁻¹)	au-range (K) $(\overline{ au}/ au_{ m m})$	No. of dat: points	a Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
s	2.17×10^{-5}	3.027 (292.3)		2,153–2,453 (0.63)	11 (4T)		³⁵ S, dried-on; serial sectionin <i>e</i>	No	Pronounced data scatter		I	Iovkov (1972) [63.12]
Sc	2.96*	(560.2) (560.2)		1,978–2,467 (0.61)	6	$\sim 5N$	Sc; SIMS	Several examples	*Disregarding D(2,294 K)	Ti, V in W	63.08	Klotsman (1996) 162 131
Та	3.05	6.067 (585.8)		1,578–2,648 (0.58)	12	sc ⁶¹ pc	¹⁸² Ta, vapour deposition; grinder and anodizing and strimnine	4 examples (gb and dislocation tails at deeper penetrations)	Erroneous therma expansion correction	al W, Nb in W	63.08	Pawel (1969) [63.01]
Ta	6.2	6.232 (601.7)		2,102–2,906 (0.68)	œ	sc ⁶¹	¹⁸² Ta, vapour deposition; grinder and anodizing and stripping	All		Ir, Os in W	63.08	Arkhipova (1984) [63.09]
Та	I	I		2,115, 2,309	0	sc ⁶¹	Ta; SIMS	2 examples		Cr in W	63.08	Klotsman (1987) [63.14]
Ϊ	I	I		2,085	2* (1T)	$\sim 5N$	Tī; SIMS	2 examples	$^{*}D(2,085 \text{ K}) =$ 1.18 × $10^{-18} \text{ m}^{2} \text{ s}^{-1}$	Sc, V in W	63.03	Klotsman (1996) [63.13]
D	0.018	4.033 (389.4)		2,030–3,000 (0.68)	13 (12T)	pc 4N	Mainly ²³⁵ U; out- diffusion from U- doped W filaments; mass spectrometry	No		Rb in β -Zr	I	Schwegler (1968) [63.15]
D	2×10^{-3}	4.488 (433.4)		1,973–2,473 (0.61)	2	pc ⁶¹	²³⁵ U, vapour deposition; serial sectioning	No		U in Mo, Nb, Ta, V, β-Zr	I	Fedorov (1971) [63.16]
>	I	I		2,085, 2,293	× 5	$\sim 5N$	V; SIMS	2 examples	$D(2,085 K) = 10.3 \times 10^{-18}$, 1.03×10^{-18} , $D(2,293 K) = 1.99 \times 10^{-17} m^2 s^{-1}$	Sc, Ti in W	63.03	Klotsman (1996) [63.13]
×	6.7×10^{-3}	2.953 (285.1)		1,473–1,873 (0.46)	10 (5T)	sc 2N8	⁹¹ Y, dried-on from salt solution ⁷³ ; residual activity	No		Y in Mo, Nb, Ta	I	Gornyy (1971) [63.17]

Fig. 61.01 Self-diffusion in chromium. \Box , Mundy [61.01]; \bigcirc , Mundy [61.02]. Fitting line using $D^0 = 0.11 \text{ m}^2 \text{ s}^{-1}$, Q = 4.55 eV.

Fig. 61.02 Impurity diffusion in chromium. V in Cr: \Box , Mundy [61.01]. Fitting line using $D^0 = 86 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}$, Q = 4.09 eV.

Fig. 62.01 Self-diffusion in molybdenum. \triangle , Borisov [62.01]; \bigcirc , Bronfin [62.02]; \Box , Maier [62.03]. Fitting line according to [62.03].

Fig. 62.02 Impurity diffusion in molybdenum. Co in Mo: \Box , Askill [62.05]; [62.06]. Fe in Mo: \bigcirc , Nohara [62.08].

Fig. 62.03 Impurity diffusion in molybdenum. Nb in Mo: \Box , Winklelman [62.09]; \bigcirc , Roux [62.10]; \triangle , Fedorov [62.11]. Fitting line according to [62.10]. Ta in Mo: \diamondsuit , Roux [62.10]; \blacklozenge , Maier [62.03]. Fitting line according to [62.10].

Fig. 62.04 Impurity diffusion in molybdenum. P in Mo: □, Vandyshev [62.12]. S in Mo: ○, Vandyshev [62.14].

Fig. 62.05 Impurity diffusion in molybdenum. Re in Mo: □, Bronfin [62.13]. V in Mo: ○, Roux [62.10]. W in Mo: ◇, Roux [62.10]

Fig. 63.01 Self-diffusion in tungsten. \Box , Pawel [63.01]; \bigcirc , Arkhipova [63.02]; \triangle , Mundy [63.03]. Fitting line: two-exponential fit according to Neumann [63.04].

Fig. 63.02 Impurity diffusion in tungsten. Co in W: \Box , Klotsman [63.05]. Fitting line using $D^0 = 0.71 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}$, Q = 5.41 eV; Cr in W: \bigcirc , Klotsman [63.06].

Fig. 63.03 Impurity diffusion in tungsten. Fe in W: \Box , Klotsman [63.07]; Mn in W: \bigcirc , Klotsman [63.07]; Ni in W: \triangle , Klotsman [63.07]; Ti in W: ∇ , Klotsman [63.13]; V in W: \diamond , Klotsman [63.13].

Fig. 63.04 Impurity diffusion in tungsten. Hf in W: \Box , Klotsman [63.08]. Fitting line using $D^0 = 3.63 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}$, Q = 5.88 eV. Re in W: \bigcirc , Arkhipova [63.11].

Fig. 63.05 Impurity diffusion in tungsten. Ir in W: \bigcirc , Arkhipova [63.09]; Os in W: \triangle , Arkhipova [63.09].

Fig. 63.06 Impurity diffusion in tungsten. Mo in W: □, Klotsman [63.06]; ○, Klotsman [63.08]. Fitting line according to [63.06].

Fig. 63.07 Impurity diffusion in tungsten. Nb in W: □, Pawel [63.01].

Fig. 63.08 Impurity diffusion in tungsten. Sc in W: \Box , Klotsman [63.13]; Ta in W: \triangle , Pawel [63.01]; ∇ , Arkhipova [63.09]; \bullet , Klotsman [63.14]. Fitting line according to [63.01].

REFERENCES

References to Chapter 6.0

- [60.01] S.Z. Bokshtein, S.T. Kishkin, L.M. Moroz, Zavod. Lab. 23 (1957) 316.
- [60.02] P.L. Gruzin, L.V. Pavlinov, A.D. Tyutyunnik, Izv. Akad. Nauk SSSR, Ser. Fiz. (5) (1959) 155.
- [60.03] H.W. Paxton, E.G. Gondolf, Archiv. Eisenhüttenwesen 30 (1959) 55.
- [60.04] N.A. Bogdanov, Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, Metall. Topl. (3) (1960) 99; Russian Metall. Fuels (3) (1960) 95 (English transl.).
- [60.05] L.I. Ivanov, M.P. Matveeva, V.A. Morozov, D.A. Prokoshkin, Izv. Akad. Nauk SSSR, Otd. Metall. Topl. (2) (1962) 104; Russian Metall. Fuels (2) (1962) 63 (English transl.).
- [60.06] W.C. Hagel, Trans. AIME 224 (1962) 430.
- [60.07] J. Askill, D.H. Tomlin, Phil. Mag. 11 (1965) 467.
- [60.08] G.B. Fedorov, F.I. Zhomov, E.A. Smirnov, Met. Metalloved. Chist. Met. (7) (1968) 128.
- [60.09] J. Askill, Phys. Stat. Sol. (a) 8 (1971) 587.
- [60.10] G.J. Beyer, ZfK-317 (Zentralinstitut für Kernforschung, Dresden) (1976).
- [60.11] G.J. Beyer, ZfK-310 (Zentralinstitut für Kernforschung, Dresden) (1976).
- [60.12] C.H. Wu, J. Chem. Phys. 62 (1975) 4589.
- [60.13] L.N. Larikov, V.I. Isaichev, E.A. Maksimenko, B.M. Belkov, Dokl. Akad. Nauk SSSR 237 (1977) 315; Sov. Phys. Dokl. 22 (1977) 677 (English transl.).
- [60.14] M.G. Karpman, G.V. Shcherbedinski, G.N. Dubinin, G.P. Benediktova, Metalloved. Termichesk. Obrab. Met. (3) (1967) 46.

- [60.15] A.A. Korolev, L.V. Pavlinov, Fiz. Met. Metalloved. 29 (1970) 1326; Phys. Met. Metallogr. 29 (6) (1970) 226 (English transl.).
- [60.16] K.N. Gedgovd, A.I. Krasovskiy, S.M. Novikov, Fiz. Met. Metalloved. 50 (1980) 437; Phys. Met. Metallogr. 50 (2) (1980) 185 (English transl.).
- [60.17] M. Riedel, O. Kaposi, R. Karacsonyi, Ann. Univ. Budapest, Rolando Eötvös Nominatae, Sect. Chim. 12 (1971) 207; from Diffus. Data 6 (1972) 400.

References to Chapter 6.1

- [61.01] J.N. Mundy, C.W. Tse, W.D. McFall, Phys. Rev. B 13 (1976) 2349.
- [61.02] J.N. Mundy, H.A. Hoff, J. Pelleg, S.J. Rothman, L.J. Nowicki, F.A. Schmidt, Phys. Rev. B 24 (1981) 658.
- [61.03] R.A. Wolfe, H.W. Paxton, Trans. AIME 230 (1964) 1426.
- [61.04] P.L. Gruzin, S.V. Zemskii, I.B. Rodina, Met. Metalloved. Chist. Met. (4) (1963) 243.

References to Chapter 6.2

- [62.01] E.V. Borisov, P.L. Gruzin, L.V. Pavlinov, G.B. Fedorov, Met. Metalloved. Chist. Met. (1) (1959) 213.
- [62.02] M.B. Bronfin, S.Z. Bokshtein, A.A. Zhukhovitkii, Zavod. Lab. 26 (1960) 828; Ind. Lab. 26 (1960) 886 (English transl.).
- [62.03] K. Maier, H. Mehrer, G. Rein, Z. Metallk. 70 (1979) 271.
- [62.04] R.F. Peart, D. Graham, D.H. Tomlin, Acta Metall. 10 (1962) 519.
- [62.05] J. Askill, in: Diffusion in Body-Centred Cubic Metals, Eds. J.A. Wheeler, F.R. Winslow, American Society for Metals, Metals Park (1965), p. 247.
- [62.06] J. Askill, Phys. Stat. Sol. 9 (1965) K113.
- [62.07] L.M. Mulyakayev, G.V. Shcherbedinskii, G.N. Dubinin, Metalloved. Termichesk, Obrab. Met. (8) (1971) 45.
- [62.08] K. Nohara, K. Hirano, J. Japan Inst. Metals 37 (1973) 731.
- [62.09] A.H. Winklelman, Thesis, Air Force Inst. Technol. (1963); from C.S. Hartley, J.E. Steedly, L.D. Parsons, in Ref. [62.05], p. 51.
- [62.10] F. Roux, Thesis, Univ. Nancy (1972).
- [62.11] G.B. Fedorov, E.A. Smirnov, V.N. Gusov, F.I. Zhomov, V.L.Gorbenko, Met. Metalloved. Chist. Met. (10) (1973) 62.
- [62.12] B.A. Vandyshev, A.S. Panov, Fiz. Met. Metalloved. 26 (1968) 517; Phys. Met. Metallogr. 26 (3) (1968) 138 (English transl.).
- [62.13] M.B. Bronfin, in: Diffusion Processes, Structure and Properties of Metals, Ed. S.Z. Bokshtein, Moscow (1964) (English transl. by Consultants Bureau Enterprises, New York (1965), p.24).
- [62.14] B.A. Vandyshev, A.S. Panov, Fiz. Met. Metalloved. 25 (1968) 321; Phys. Met. Metallogr. 25 (2) (1968) 130 (English transl.).
- [62.15] L.V. Pavlinov, A.I. Nakonechnikov, V.N. Bykov, Atomn. Energiya 19 (1965) 521; Sov. Atom. Energy 19 (1965) 1495 (English transl.).
- [62.16] G.B. Fedorov, E.A. Smirnov, F.I. Zhomov, V.N. Gusev, S.A. Paraev, Atomn. Energiya 31 (1971) 516; Sov. Atom. Energy 31 (1971) 1280 (English transl.).
- [62.17] W. Erley, H. Wagner, Phys. Stat. Sol. (a) 25 (1974) 463.
- [62.18] D.S. Gornyy, R.M. Altovskiy, Fiz. Met. Metalloved. 31 (1971) 781; Phys. Met. Metallogr. 31 (4) (1971) 108 (English transl.).

Further Investigations

Mo [62.19] W. Danneberg, E. Krautz, Z. Naturforsch. 16a (1961) 854.
Mo [62.20] L.V. Pavlinov, V.N. Bykov, Fiz. Met. Metalloved. 18 (1964) 459.
Mo [62.21] J. Askill, D.H. Tomlin, Phil. Mag. 8 (1963) 997.

Mo	see Ref. [62.05].	
----	-------------------	--

- Fe [62.22] B. Lesage, A.M. Huntz, J. Less-Common Metals 38 (1974) 149.
- Nb see Ref. [62.05].
- S see Ref. [62.22].
- W [62.23] F. Roux, D. Ablitzer, A. Vignes, in: Proc. Thermionic Conversion Specialists Conf., Miami (1970), p. 109; precursor to Ref. [62.10].
 W see Ref. [62.02].
- W [62.24] S.Z. Bokshtein, M.B. Bronfin, S.T. Kishkin, in Ref. [62.13], p. 16.
- W [62.25] J. Askill, Phys. Stat. Sol. 23 (1967) K21.

References to Chapter 6.3

- [63.01] R.E. Pawel, T.S. Lundy, Acta Metall. 17 (1969) 979.
- [63.02] N.K. Arkhipova, S.M. Klotsman, Ya.A. Rabovskiy, A.N. Timofeyev, Fiz. Met. Metalloved. 43 (1977) 779, 46 (1978) 796; Phys. Met. Metallogr. 43 (4) (1977) 88, 46 (4) (1978) 102 (English transl.).
- [63.03] J.N. Mundy, S.J. Rothman, N.Q. Lam, H.A. Hoff, L.J. Nowicki, Phys. Rev. B 18 (1978) 6566.
- [63.04] G. Neumann, V. Tölle, Phil. Mag. A 61 (1990) 563.
- [63.05] S.M. Klotsman, S.V. Osetrov, A.N. Timofeyev, Phys. Rev. B 46 (1992) 2831.
- [63.06] S.M. Klotsman, V.M. Koloskov, S.V. Osetrov, I.P. Polikarpova, G.N. Tatarinova, A.N. Timofeyev, Fiz. Met. Metalloved. 67 (1989) 767; Phys. Met. Metallogr. 67 (4) (1989) 136 (English transl.); see also Defect and Diffusion Forum 66–69 (1989) 439.
- [63.07] S.M. Klotsman, S.A. Matveyev, S.V. Osetrov, A.N. Timofeyev, Fiz. Met. Metalloved. 79 (3) (1995) 126; Phys. Met. Metallogr. 79 (1995) 322 (English transl.).
- [63.08] S.M. Klotsman, S.V. Osetrov, A.N. Timofeyev, Fiz. Met. Metalloved. 81 (6) (1996) 125; Phys. Met. Metallogr. 81 (1996) 668 (English transl.).
- [63.09] N.K. Arkhipova, S.M. Klotsman, I.P. Polikarpova, G.N. Tatarinova, A.N. Timofeyev, L.M. Veretennikov, Phys. Rev. B 30 (1984) 1788.
- [63.10] V.P. Iovkov, A.S. Panov, A.V. Ryabenko, Izv. Akad. Nauk SSSR, Metal (1) (1978) 78.
- [63.11] N.K. Arkhipova, I.M. Veretennikov, S.M. Klotsman, G.N. Tatarinova, A.N. Timofeyev, Fiz. Met. Metalloved. 53 (1982) 104; Phys. Met. Metallogr. 53 (1) (1982) 92 (English transl.).
- [63.12] V.P. Iovkov, A.S. Panov, A.V. Ryabenko, Fiz. Met. Metalloved. 34 (1972) 1322; Phys. Met. Metallogr. 34 (6) (1972) 203 (English transl.).
- [63.13] S.M. Klotsman, S.V. Osetrov, A.N. Timofeyev, Fiz. Met. Metalloved. 81 (5) (1996) 97; Phys. Met. Metallogr. 81 (1996) 527 (English transl.).
- [63.14] S.M. Klotsman, S.V. Osetrov, I.P. Polikarpova, G.N. Tatarinova, A.N. Timofeyev, O.P. Shepatkovskiy, Fiz. Met. Metalloved. 64 (1987) 148; Phys. Met. Metallogr. 64 (1) (1987) 133 (English transl.).
- [63.15] E.C. Schwegler, F.A. White, J. Mass Spectrom. Ion Phys. 1 (1968) 191.
- [63.16] G.B. Fedorov, E.A. Smirnov, F.I. Zhomov, V.N. Gusev, S.A. Paraev, Atomn. Energiya 31 (1971) 516; Sov. Atom. Energy 31 (1971) 1280 (English transl.).
- [63.17] D.S. Gornyy, R.M. Altovskiy, Fiz. Met. Metalloved. **31** (1971) 781; Phys. Met. Metallogr. **31** (4) (1971) 108 (English transl.).

Further Investigations

- W [63.18] W. Danneberg, E. Krautz, Metallurgy 15 (1961) 977.
- W [63.19] R.L. Andelin, J.D. Knight, M. Kahn, Trans. AIME 233 (1965) 19.
- W [63.20] L.N. Larikov, L.F. Chernaya, T.K. Yatsenko, in: Svoystva i primeneniye zharoprochnykh splasov (Properties and use of heat-resistant alloys), Moscow, Nauka (1966) p. 28; see Refs. [63.01, 63.02].
- W [63.21] A.A. Korolev, L.V. Pavlinov, M.I. Gavrilyuk, Fiz. Met. Metalloved. 33 (1972) 295; Phys. Met. Metallogr. 33 (2) (1972) 70 (English transl.).

- Cr [63.22] S.M. Klotsman, G.N. Tatarinova, A.N. Timofeyev, Mater. Sci. Forum 15–18 (1987) 457; precursor to Ref. [63.06]
- Mo [63.23] L.N. Larikov, V.M. Tyshkevich, L.F. Chernaya, Ukr. Fiz. Zh. 12 (1967) 986.
- Mo [63.24] W. Erley, H. Wagner, Phys. Stat. Sol. (a) 25 (1974) 463; EPMA.
- Re see Ref. [63.19].
- Re see Ref. [63.23].

Diffusion in Group VII Metals

MANGANESE, RHENIUM

Preliminary results were published for self-diffusion of 54 Mn in polycrystalline γ - (fcc) and δ - (bcc) **manganese** [70.01]. The results suggest that grain-boundary diffusion dominates.

For technetium (Tc) no data are available.

Self-diffusion in **rhenium** (Re) was investigated by means of field electron microscopy (FEM) [70.02]. The kinetics of the reconstruction of the needle shape was associated with a volume diffusion process with an activation energy of 5.3 eV above 1,520 K.

REFERENCES TO CHAPTER 7

[70.01] J. Askill, Phys. Stat. Sol. 33 (1969) K105.

[70.02] Kh. Noiman, E. Kloze, I.L. Sokolskaya, Fiz. Tverd. Tela 6 (1964) 1744; Sov. Phys. Solid State 6 (1964) 1369 (English transl.).

Self-Diffusion and Impurity Diffusion in Group VIII Metals

Contents	Tables	
	8.1. Iron (Fe)	261
	8.2. Cobalt (Co)	274
	8.3. Iridium (Ir)	277
	8.4. Nickel (Ni)	278
	8.5. Palladium (Pd)	286
	8.6. Platinum (Pt)	287
	Figures	
	Iron	289
	Cobalt	299
	Iridium	301
	Nickel	302
	Palladium	308
	Platinum	309
	References	310

Iron shows a diffusion anomaly around the Curie temperature $T_{\rm C}$. In the present data collection, this anomaly is exclusively described by the model of Ruch et al. [02.14] (Eq. (02.19), see Chapter 0.2). Other interpretations (e.g. [80.01, 81.13, 81.56, 81.99]) are not taken into consideration for the evaluation of the diffusion parameters.

In **cobalt** this type of diffusion anomaly was also observed in some cases [82.03, 82.12, 82.13]. Reliable self-diffusion measurements [82.02], however, suggest that the anomaly is almost negligible.

In **iron**, furthermore, an experimental anomaly is observed: the marked discrepancy (20–30%) between diffusion coefficients measured by means of macrosectioning and sputter sectioning techniques for Fe and Nb in α_p -iron. Although difficult to verify, short-circuit contributions could be responsible for this discrepancy [81.16].

In **ruthenium** (Ru) self-diffusion of ¹⁰³Ru in polycrystalline ruthenium was investigated in the temperature range from 1,267 to 1,373 K ($\bar{T}/T_m \approx 0.5$) [80.02]. The penetration plots refer to marked grain-boundary contributions.

In **rhodium** (Rh) the activation energy for self-diffusion ($Q \approx 3.95 \text{ eV}$) was deduced from high-temperature creep investigations [80.03].

For **osmium** (Os) no data are available.

In Table 8.0 lattice structure, lattice constant, phase transition temperatures and melting temperature of the group VIII metals are listed.

Table 8.0 Lattice structure, lattice constant *a*, phase transition temperatures T_{ij} , Curie temperature T_C and melting temperature T_m .

		Fe		Co	lr	Ni	Pd	Pt
Phase	α	γ	δ					
Structure	bcc	fcc	bcc	fcc	fcc	fcc	fcc	fcc
$T_{\rm C}$ (K)	1,043			1,393				
T_{ij} (K)	1,1	.83 1,6	63					
$T_{\rm m}$ (K)		1,812		1,768	2,716	1,728	1,825	2,042
<i>a</i> (nm)	0.287	0.359		0.355	0.384	0.352	0.389	0.392

Table 8	8.1 Diffus	sion in iron									(Refer	ences, see page 310)
(L)	(2a)	(2b)	(3)	(4)	(2)	(9)	(2)	(8)	(6)	(01)	(11)	(12)
×	D ⁰ (10 ⁻⁴ m ² s	Q (eV) and $^{-1}$) (kJ mole ^{-1})	$D (T_m)$ ($10^{-12} m^2 s^{-1}$)	$ au$ -range (K) $(ilde{T}/ au_{ m m})$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Self-di	ffusion											
Fe	I	I		1,709 <i>б</i> -Fe	1	pc 3N7	⁵⁵ Fe, electroplated; absorption	1 example	$D(1,709 \text{ K}) = 8.4 \times 12 \dots 2^{-12}$	Fe in γ -Fe and α -Fe	81.01	Buffington (1961) [81.01]
Fe	1.9	2.472 (238.7)	25	1,687–1,781 (0.96) ô-Fe	ß	pc ⁶¹	⁵⁹ Fe, vapour deposition; lathe and residual activity	All (probability plot)	10 HI S	Co in ô-Fe	I	Borg (1963) [81.02]
Fe	6.8	2.676 (258.9)	24	1,680–1,788 (0.96) ô-Fe	5 (4T)	pc 4N8	⁵⁵ Fe, electroplated; autoradiography	1 example		Fe in γ-Fe and α-Fe	81.01	Graham (1963) [81.03]
Fe	2.01	2.493 (240.8)	23	1,701–1,765 (0.96) ô-Fe	5 (3T)	pc 3N5	⁵⁹ Fe, electroplated; lathe and residual activity	No		Fe in α -Fe, Co in α -Fe and δ -Fe	81.01	James (1966) [81.04]
Fe	I	I		1,683–1,733 (0.94) ô-Fe	8 (4T)	pc >3N5	⁵⁹ Fe, ⁵² Fé, electroplated; lathe	4 examples		Fe in γ -Fe and α -Fe; $E \approx 0.33$	81.01	Walter (1969) [81.05]
Fe	I	I		1,725 <i>ô</i> -Fe	1	pc (3-4 mm) 5N	⁵⁹ Fe, ⁵⁵ Fe, electroplated; lathe and microtome	1 example	$D(1,725 \text{ K}) = 8.32 \times 10^{-12} \text{ m}^2 \text{ s}^{-1}$	Fe in γ -Fe and α -Fe; E=0.71	I	Graham (1969) [81.06]
Fe	0.18	2.797 (270.1)	I	1,337–1,666 (0.83) ^{11-Fie}	12 (6T)	pc 3N7	⁵⁵ Fe, electroplated; absorption	No		Fe in δ-Fe and α-Fe	81.01	Buffington (1961) [81.01]
Fe	(4.08) 3.7 ⁺	3.222 (311.1)	I	γ-Fe	4	pc (0.12–0.3 mm) 3N8	⁵⁵ Fe ⁷² ; absorption	No	⁺ Present approximation	Fe in Fe(X), X=Bi, Pb, Sb, Sn	81.01	Ivantsov (1966) [81.07]
Fe	(0.49) 0.46^{+}	2.943 (284.1)	I	1,444-1,634 (0.85) γ -Fe	15	pc (2–5 mm) 3N8	⁵⁹ Fe, ⁵⁵ Fe, electroplated; lathe	Several examples	⁺ Present approximation	$E \approx 0.57$	81.01	Heumann (1968) [81.08]
Fe	I	I	I	1,641 γ-Fe	2 (1T)	pc >3N5	⁵⁹ Fe, ⁵² Fe, electroplated; lathe	1 example	$D(1,641 \text{ K}) = 4.5 \times 10^{-14} \text{ m}^2 \text{ s}^{-1}$	Fe in δ-Fe and α-Fe; E=0.53	81.01	Walter (1969) [81.05]

Table £	8.1 (Contir	(pənu										
(1)	(2a)	(2b)	(3)	(4)	(2)	(9)	(7)	(8)	(6)	(01)	(LL)	(12)
×	D^{0} (10 ⁻⁴ m ² s	Q (eV) and (k) mole ⁻¹)	$D (T_m) (10^{-12} m^2 s^{-1})$	$ au$ -range (K) $(ilde{T}/ au_{ m m})$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Fe	I	1	1	1,394, 1,611 ₇ -Fe	0	pc (3-4 mm) 5N	⁵⁹ Fe, ⁵⁵ Fe, electroplated; lathe and microtome	No	$D(1,611 \text{ K}) = 3.47 \times 3.47 \times 10^{-14}, D(1,394 \text{ K}) = 1.33 \times 10^{-15} \text{ m}^2 \text{ s}_{-1}^{-1}$	Fe in δ -Fe and α -Fe; E (1,611 K) = 0.79	1	Graham (1969) [81.06]
Не	(0.41) 0.48^+	2.910 (280.9)	I	1,373–1,523 (0.84) v-Fe	4	pc 3N6	⁵⁹ Fe, electroplated; residual activity	No	⁺ Present approximation	Pd in γ-Fe, Fe, Pd in Pd; Fe, Pd in Fe(Pd)	I	Fillon (1977) [81.09]
Fe	- 118	- 2.916 (281.5) -	1 1	1,049–1,169 1,069–1,169 α _P -Fe 980–1,038 αFe	6 5 4 (4T)	pc ⁶¹ (3 mm)	⁵⁵ Fe, vapour deposition; residual activity	2 examples			81.01	Borg (1960) [81.10]
Fe	(900) 800 ⁺	3.130 (302.2) -	1 1	₋₁ -1,163 α _p -Fe 1,023 α _c -Fe	1 3	pc 3N8	⁵⁵ Fe; absorption		⁺ Present approximation	Fe in Fe(X), X=Sn, Sb, $c(X) \leq$ 0.03%	1 1	Amonenko (1964) [81.11]
Не	5.4	2.615 (252.5)	1	1,082–1,162 (0.62) α _ν -Fe	9	pc 3N2	⁵⁵ Fe, vapour deposition; Kryukov method	No			81.01	Angers (1968) [81.12]
Fe	I	I	I	1,168, 1,169 α _p -Fe	4 (2T)	pc > 3N5	⁵⁹ Fe, ⁵² Fe, electroplated; grinder	2 examples		Fe in δ -Fe and γ -Fe; $E \approx$ 0.44	81.01	Walter (1969) [81.05]
Fe	1 1	1 1	1 1	1,142 a _p -Fe 993, 1,043 a _r -Fe	2 (1T) (2T)	pc (3–4 mm) 5N	⁵⁹ Fe, ⁵⁵ Fe, electroplated; lathe and microtome	2 examples	$\begin{array}{c} D(1,142\mathrm{K}) = \\ 1.26\times \\ 10^{-15}, \\ D(1,043\mathrm{K}) = \\ 7.35\times \\ 10^{-17}, \\ D(993\mathrm{K}) = \\ 2.12\times \\ 10^{-17}\mathrm{m^2s^{-1}} \end{array}$	Fe in ô-Fe and 7-Fe; E=0.40-0.69	1 1	Graham (1969) [81.06]

Hettich (1977) [81.13]	Geise (1987) [81.14]	lijima (1988) [81.15]	Lübbehusen (1990) [81.16]	Bondy (1971) [81.17]	Eguchi (1973) [81.18]	Akimova (1983) [81.19]	Bergner (1993) [81.20]
81.01	81.01	81.01 81.01	81.01 81.01	1 1	1 1	- 81.02	81.02 81.02 81.02
	V in γ-Fe and α-Fe	E=0.46-0.60			Ag in Ni		
Fit according to Eq. (02.19) with $\alpha=0.16$		Fit according to Eq. (02.19) with α=0.156	Fit according to Eq. (02.19) with $\alpha=0.40$	*Valid for the whole <i>T</i> -range	Erroneous thermal expansion correction	*Valid for α -+ γ -phase; +Present approximation	Fit according to Eq. (02.19) with $\alpha=0.16$
Several examples	3 examples	Several examples	Several examples	2 examples (partly erfc- solution)	4 examples ⁸⁴	1	
⁵⁹ Fe, vapour deposition; IBS	⁵⁹ Fe, electroplated; microtome	⁵⁹ Fe, ⁵⁵ Fe, electroplated; IBS	⁵⁹ Fe, vapour deposition; microtome and IBS	¹¹⁰ Ag, vapour deposition; serial sectioning	¹¹⁰ Ag, electroplated; residual activity	Al; X-ray diffraction method	Al; EPMA, Fe (1.5% Al)/Fe/Fe (1.5% Al), (den Broeder, Hall)
Pc 5N, 3N8	pc (0.3 mm) 3N7	pc 3N7	sc 3N8	pc ⁶¹	pc 3N7	pc ⁶¹	3N SN
14 (7T)	8 (6T)	7 14	8 14	4 1	13 (7T) (4T)	6 6 12	$\begin{array}{c} 13^{51}\\ (10T)\\ 7^{51}\\ 4^{51}\end{array}$
784–1,017 (0.50) α _f -Fe	1,067–1,169 (0.62) &Fe	^π ρ-2-1,148 α _p -Fe 766-1,042 ~-Fe	α _r -1.1163 1,054–1,163 α _p -Fe 755–1,032 α _r -Fe	1,081–1,161 α,-Fe 1,021 αFe	1,053–1,173 α _p -Fe 973–1,033 α _c -Fe	1,003–1,673 1,223–1,673 ₇ -Fe 1,048–1,183 2,-Fe	$\begin{array}{c} 1,230-1,473\\ (0,75)\\ \gamma-Fe\\ 1,064-1,183\\ \alpha_p-Fe\\ 940-1,043\\ \alpha_r-Fe\\ \alpha_r-Fe \end{array}$
I	I	I	I	1 1	1 1	1 1 1	1 1 1
2.53 ²⁴ (244.3)	2.917 (281.6)	2.596 ²⁴ (250.6)	2.47 ²⁴ (238.5)	2.992* (288.9) -	2.684 (259.2) 2.879 (278.0)	2.369* (228.2) 2.652 ⁺ (256.1)	2.662 (257) 2.499 ²⁴ (241.3)
1.02 ²⁴	121	2.76 ²⁴	0.66 ²⁴	y diffusion 1,950* -	38 230	1.8^{*} 33^{+}	0.22 5.35 ²⁴
e I	e	e	e	mpurit Ag	48	7	AI

(L)	(2a)	(2b)	(3)	(4)	(5)	(6)	(2)	(8)	(6)	(10)	(LL)	(12)
×	D^{0} (10^{-4} m ² s ⁻	Q (eV) and (k) mole ^{-1})	$\frac{D (T_m)}{(10^{-12} m^2 s^{-1})}$	au-range (K) (au/ au_m)	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
As	0.58	2.554 (246.6)	I	1,323-1,523 (0.79)	ß	pc^{61} (~2mm)	As; EPMA, Fe/Fe (0.6% As) (Matano)	All (probability plot)			81.02	Božić (1976) [81.21]
As	0.019 ²⁴	1.947 ²⁴ (188)	I	у-ге 673-923 0.44) ¤ _г -Fe	751	pc (0.5 mm) 4N	As, implanted; RBS and HIRBS	All (marked scatter)	Fit to Eq. (02.19) with α =0.2 ⁺ (⁺ present approxi-		81.02	Pérez [81.22]
Αu	0.81	3.004 (290)	I	1,263–1,653 (0.80) ^{n_ERa}	7 ⁵¹	pc (2–3 mm) 4N5	Au; EPMA, Fe/Fe (X% Au) (Sauer, Freice)		X=1; 2.2	<i>p</i> -dependence of D	81.03	Yamazaki (2004) [81.23]
Au	- 31	2.706 (261.3) -	1 1	, τ. 1,055-1,174 α _p -Fe 972-1,034 ~-Fo	4+ 6	pc (2 mm) 5N	¹⁹⁵ Au, electroplated; residual activity	No	⁺ Present fit of $\alpha_{\rm f}$ -Fe data to Eq. (02.19)	Co, Ni in α-Fe	81.03 81.03	Borg (1963) [81.24]
Be	(0.1) 0.332^+	(2.498) (241.2) 2.650 ⁺	I	urre 1,373-1,623 (0.83) γ-Fe	10 (5T)	pc 3N	⁷ Be, dried-on from salt solution ⁷³ ; residual activity	No	*Tresent least squares fit	Be in Ni	81.03 81.03	Grigoryev (1968) [81.25]
Co	ភ.ភ	(255.2) 2.654 (256.2)	23	1,669–1,775 (0.95) ô-Fe	Ŋ	pc ⁶¹	⁶⁰ Co, vapour deposition; lathe and residual	All (probability plot)		Fe in ô-Fe	81.04	Borg (1963) [81.02]
Co	6.38	2.663 (257.1)	25	1,702–1,794 (0.96) Å Eo	9 (5T)	pc 3N5	acuvity ⁶⁰ Co, electroplated; lathe and residual	1 example	Some tabulated data had to be	Fe in δ -Fe and α -Fe, C_0 in α E ₀	81.04	James (1966) [81.04]
C	(1.25) 1.35^+	3.161 (305.2)	I	0-1-5 1,478–1,535 (0.83) *-Fa	6	pc 3N8	60Co, electroplated; lathe	All	⁺ Present approximation	gb-diffusion	81.04	Suzuoka (1961) [81.26]
Co	(1.0) 1.18^+	3.127 (301.9)	I	7-1-0 1,409-1,658 (0.85) γ-Fe	16 (14T)	pc 5N	Co; diffusion couple and thin film; EPMA (Hall)	2 examples	⁺ Present approximation	Ni in Fe; Fe, Ni in Co; Co, Fe	81.04	Badia (1969) [81.27]
Co	- 118	2.962 (286.0) -	1 1	1,045–1,178 α _p -Fe 963–1,034 α _f -Fe	5 13	pc (2 mm) 5N	⁶⁰ Co, vapour deposition; residual activity	No		arını Au, Ni in ¢-Fe	81.04 81.04	Borg (1963) [81.24]

Table 8.1 (Continued)

Sato (1964) [81.28]	James (1966) [81.04]	Mehrer (1983) [81.29]	lijima (1993) [81.31]	Bowen (1970) [81.32]	Huntz (1967) [81.33]	Bowen (1970) [81.32]	Alberry (1974) [81.34]	Lee (1990) [81.35]	Speich (1966) [81.36]	Rothman (1968) [81.37]
I	1 1	81.04 81.04	81.04 81.04	I ay	I	۱ ۳	I	81.05 81.05	81.06	81.06
	Co in ô-Fe, Fe in <i>x</i> -Fe and ô-Fe	a tabulated in ef. [81.30]	suming $E = 0.65-0.52$ $p_{p}(Co) = D_{p}(Fe)$ $nd \alpha = 0.23$ in n (02.19)	Tr in α-Fe, Hf, V in α-Fe and v-Fe	nounced data atter	Cr in γ -Fe, Hf, V in γ -Fe and α -Fe (2% V)	Cr in γ -Fe; Mo, W in γ -Fe and α -Fe	o Eq. (02.19) ith α=0.133	Cu in <i>a</i> -Fe	ssent Cu in ¤ _p -Fe pproximation
(gb tion ed)	ì	s Dat R	s * As TE a D		Pro			Fit 1 s w		a] ⁺ Pre
1 example contribu eliminat	No	4 example	Several example	1 example	No	No	No	Several example		3 example
⁶⁰ Co, electroplated; lathe	⁶⁰ Co, electroplated; lathe and residual activity	⁵⁷ Co, ⁵⁸ Co, vapour deposition; IBS	60Co, ⁵⁷ Co, electroplated; radio-frequency sputtering	⁵¹ Cr, dried-on from salt solution; residual activity	⁵¹ Cr, dried-on from salt solution; residual activity	⁵¹ Cr, dried-on from salt solution; residual activity	Cr; EPMA, Fe/Fe (1-27% Cr) (Boltzmann- Matano, Grube)	⁵¹ Cr, amono of the complete of the completeo	Cu; EPMA	⁶⁴ Cu, vapour deposition; grinder
pc (3mm) ∼3N	pc 3N5	sc 4N7	pc > 3N5	pc 3N8	pc (0.6 mm) 3N5	pc 3N8	pc (0.4 mm) ∼3N	pc >3N5	pc ∼3N	pc ⁶¹
3 ⁵¹	4 (3T) 3	6 17 (16T)	(101) 6 11	10^{51}	10 ⁵¹	4^{51}	15 ⁵¹	15 15 (14T)	351	6 (3T)
1,105-1,161 α _p -Fe	1,081–1,157 α _p -Fe 956–1,041	α _f -Fe 1,059–1,164 α _P -Fe 786–1,034 ~-Fa	α _F re 1,053–1,173 α _P -Fe 859–1,043 α _c -Fe	1,233–1,669 (0.80) v-Fe	,	1,070–1,150 α _p -Fe	1,043–1,183 α _p -Fe	1,049–1,174 α _P -Fe 885–1,037 αFe	0.69) 1,202−1,293 0.69) v-Fe	1,558–1,641 (0.88) <i>γ</i> -Fe
I	1 1	1 1	1 1	1	I	I	I	1	I	I
2.702 (260.9)	2.663 (257.1) (2.697)	(260.4) 2.50 (241.4) -	2.60* (251) (3.20)* (309)	3.023 (291.8)	2.493 (240.8)	2.598 (250.8)	2.483 (239 <i>.</i> 7)	2.769 ²⁴ (267.4)	3.057 (295.2)	3.21 ⁺ (309.9)
9.5	6.38 (7.19)		2.76 -	10.8	2.53	8.52	2.2	37.3 ²⁴	1.8	3.8+
Co	Co	0	00	Ċ.	L.	-L	5	ð	Cu	Cu

(1)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12)
×	D ⁰ (10 ⁻⁴ m ² s ⁻	Q (eV) and $^{-1}$) (kJ mole ^{-1})	$D (T_m)$ ($10^{-12} m^2 s^{-1}$)	${\cal T}$ -range (K) $({ ilde T}/{\cal T}_{m})$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Си	1.9	3.062 (295.6)	I	1,203-1,283 (0.69)	3^{51}	pc ⁶¹	Cu; EPMA Cu/Fe couples (Matano)	No			81.06	Tsuji (1974)[81.38]
Си	0.19	2.823 (272.6)	I	ү-ге 1,198–1,323 (0.70)	4	pc 4N8	Cu, vapour deposition (4μm film); EPMA	No		Cu in α_p -Fe	81.06	Salje (1977) [81.39]
Си	4.16	3.159 (305.0)	I	ү-ге 1,378–1,483 (0.79) Т.	Ŋ	pc 3N7	64Cu, chemical deposition; residual	All ⁸³		gb-diffusion	I	Majima (1977) [81.40]
Cu	8.6	2.589 (250.0) -	1 1	7-re 1,050–1,135 α _p -Fe 973–1,023	4^{51} 3^{51}	Pc ∼3N	acuvity Cu; EPMA			Cu in γ -Fe	81.06 81.06	Speich (1966) [81.36]
Си	3.35+	2.524+	I	α _f -Fe 1,128–1,175	3	pc ⁶¹	64Cu, vapour	No	⁺ Present	Cu in γ -Fe	81.06	Rothman (1968)
Cu	5.9*	(243.7) 2.559* (247.1)	I	α ^{p-re} 1,069–1,143 α _p -Fe 981–1,028	5^{51} 3^{51}	Pc ∼3N	deposition; grinder ⁶⁴ Cu, electroplated; residual activity	No	approximation *Valid for the whole T -range $(\alpha_p$ -plus		81.06 -	[51.37] Lazarev (1970) [81.41]
Си	(300)*	(2.940)* (283.9)	I	α _f -Fe 1,045–1,173 α _p -Fe	17 (11T)	sc 4N8	Cu, vapour deposition (4 µm film); EPMA	1 example $(c-x)$	α _f -phase) *Fit to Eq. (02.19) using	Cu in γ -Fe	81.06	Salje (1977) [81.39]
	54+	2.778 ⁺ (268.2)		963–1,024 $\alpha_{\rm f}$ -Fe	9 (5T)				⁺ present fit to Eq. (02.19)		81.06	
Η	(9×10^{4})	(4.900) (473.1)	I	1,438-1,593 (0.84)	3 ⁵¹	pc ∼3N6	¹⁸¹ Hf, electroplated; residual activity	No	using a=0.09	Fe, Nb in γ -Fe	I	Sparke (1965) [81.42]
Щ	(3,600)	(4.219) (407.4)	I	ү-ге 1,371–1,628 (0.83) ү-Fe	551	pc 3N8	¹⁸¹ Hf, dried-on from salt solution; residual activity	No		Cr, V in γ -Fe and α -Fe (2% V)	I	Bowen (1970) [81.32]

Table 8.1 (Continued)

Kirkaldy (1973) [81.43]	Nohara (1971) [81.44]			Kirkaldy (1973) [81.43]	Lübbehusen (1984) [81.45]	Nohara (1976) [81.46]		Nitta (2002) [81.47]	Sparke (1965) [81.42]	Kurokawa (1983) [81.48]
81.07	81.07	81.07	81.07	81.07	81.07	81.08	I I	81.08 81.08	81.09	81.09
Mn in α_p -Fe	Mn in Fe(Mn)			Mn in ô-Fe		Mo, Fe in Fe(Mo)			Fe, Hf in γ -Fe	Nb in Fe(Mn) and Fe(Si)
*Fit together with the α_{p} -	⁺ Present fit to the depicted data;	thermal expansion correction		*Fit together with the ô-phase		The <i>D</i> -values for α-Fe are about a factor	of two smaller than those of Ref. [81.47]	Fit to Eq. (02.19) with $\alpha = 0.074$	⁺ Present fit to the depicted data	*Present approximation *Marked gb contributions at lower <i>T</i>
1 example (probability plot)	No			No		No		Several examples	OU	1 example (gb-tail)
Mn; EPMA Fe/Fe (2% Mn) (D independent of c(Mn))	⁵⁴ Min, electroplated; residual activity			Mn; EPMA Fe/Fe (2% Mn) (D independent of	⁵⁴ Mn, vapour deposition; mirrotome	99 Mo; residual activity		⁹⁹ Mo, electroplated; radio-frequency sputtering and IBS	⁹⁵ Nb, electroplated; residual activity	⁹⁵ Nlb, ⁹⁴ Nlb, electroplated; serial sectioning
pc ⁶¹	pc 3N7			pc ⁶¹	sc 3N8	pc 3N7		pc (3–5 mm) 4N5	$\sim 3N6$	pc 4N
с,	13 ⁵¹ (9T)	8 ⁵¹ (4T)	8 ⁵¹ (4T)	5 ⁵¹ (4T)	~	9 ⁵¹ (8T)	6 ⁵¹ (5T) 8 ⁵¹ (6T)	(8T) 12	5 ⁵¹	·9
1,719–1,767 (0.96) ð-Fe	1,201–1,581 (0.77) γ-Fe	1,060–1,177 α _p -Fe	981–1,029 ″~Fe	ατ.174 1,067–1,174 α _p -Fe	1,048-1,169 α _p -Fe	1,217–1,573 (0.77) ^{11-Fie}	7-1- 1,047-1,171 α _p -Fe 983-1,033 α-Fe	1,050–1,163 α _p -Fe 833-1,041 α ₆ -Fe	1,435–1,607 (0.81) γ-Fe	1,221–1,474 (0.74) γ-Fe
26	I	I	I	1	1	I	1 1	1 1	I	I
2.326* (224.6)	(2.710) (261.7) 2.494 ⁺ (240.8)	(2.277) (2.19.8) 2.105 ⁺	(203.42) 2.420 (733.6)	(224.6)	2.576 (248.7)	3.352 (323.7)	2.827 (273.0) 2.949 (784.7)	2.927 ²⁴ (282.6)	(3.569) (344.6) 2.983 ⁺ (788.0)	2.734 (264)
0.76*	(0.16) 0.019^{+}	(0.35) 0.075^{+}	(1.49) 2 0 ⁺	0.76*	8.5	25.1	30.6 45.9	148^{24}	(530) 6.5 ⁺	(0.75) 0.69 ⁺
Mn	Mn			Mn	Мn	Mo		Mo	Nb	Nb

Table 8	1.1 (Continu	(pər										
(1)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12)
×	D ⁰ (10 ⁻⁴ m ² s ^{-;}	Q (eV) and (k) mole ^{-1})	$\frac{D (T_m)}{(10^{-12} m^2 s^{-1})}$	$ au$ -range (K) $(ilde{T}/ au)$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
ЧN	0.83	2.760 (266.5)	I	1,210-1,604 (0.78)	5	pc 3N7	⁹⁵ Nb, dried-on from oxalate solution;	4 examples		gb-diffusion	81.09	Geise (1985) [81.49]
	50.2	2.610 (252)	I	ү-ге 1,059–1,162 « _p -Fe	ۍ م		microtome				81.09	
	I	I	I	993, 1,025 α _f -Fe	2						81.09	
ЧN	*	*	1	833—1,000 ¤ _t -Fe	ى	sc 4N	⁹⁵ Nb, dried-on from salt solution; microtome and grinder	4 examples ⁸⁴	*Fitting parameters acc. to the model of [81.13, 81.55] are presented	gb-diffusion	81.09	Herzig (2002) [81.50]
	50.2 ^{24 +}	2.610 ^{24 +} (252)							⁺ Present approximation using D_p^0 and Q_p from [81.49] and $\alpha=0.1$			
qN	$1,400^{24}$	3.104 ²⁴ (299.7)	I	1,053–1,163 α _p -Fe	10 (8T)	pc 4N5	⁹⁵ Nb, electroplated; radio-frequency	Several examples	Fit to Eq. (02.19) with $\alpha = 0.061$		81.09	Oono (2003) [81.51]
			1	823–1,033 α _f -Fe	10		and magnetron sputtering and IBS	(total penetration plot in the α_{f} -phase $< 0.5 \mu m$)			81.09	
Ż	9.7	2.719 (262.5)	26	1,746–1,767 (0.97) ô-Fe	3 ⁵¹	pc 3N6	Ni; EPMA Fe/Fe (2% Ni) (Grube)				81.10	Moharil (1974) [81.52]
Ż	6.92	3.365 (324.9)	I	1,425-1,673 (0.85) γ -Fe	5 ⁵¹	pc 3N1	⁶³ Ni, electroplated; absorption	No		Ni in Co and Ni; Ni in Fe(Ni)	81.10	MacEwan (1959) [81.53]

Ú 10

Badia (1969) [81.27]	Hirano (1961) [81.54]	Borg (1963) [81.24]	Čermák (1989) [81.55]		Seibel (1963) [81.56, 81.57]	Matsuyama (1983) [81.58]
81.10	81.10 81.10	81.10 81.10	81.10 81.10	81.10	81.11 81.11	81.11 81.11
Co in Fe; Fe, Ni in Co; Co, Fe in Ni	Ni in <i>γ-</i> Fe	Au, Cu in ¤-Fe				gb-diffusion; P in Fe(P)
				Present fit for z -Fe and δ -Fe to the data of [81.53, 81.55, 81.25, 81.25, 81.25, 81.25, 81.25, 81.25, 81.25, 81.25, 81.25, 81.56] e.cording to Eq. (02.19) with z =0.12	⁺ Present fit for the depicted data	*Present approximative fit to the depicted data according to Eq. (02.19) with z=0.14
2 examples	3 examples	No	All		1 example (probability plot)	No
Ni, diffusion couple and thin film; EPMA (Hall)	⁶³ Ni, electroplated; residual activity and absorption	⁶³ Ni, vapour deposition; grinder	⁶³ Ni, vapour deposition; microtome		³² P, diffusion couple; residual activity	³² P, dried-on from salt solution; residual activity
5N	sc Dc 3N7	pc (2 mm) 5N	5N		pc 3N7	pc ⁶¹ (0.5 mm)
13 (10T)	12 (5T) 8	(41) 6	4 9 ((6T)	(46)	3 ⁵¹ (2T) 6 ⁵¹	$\begin{array}{c} 4^{51} \\ (3T) \\ 3^{51} \end{array}$
1,413–1,633 (0.84) γ-Fe	1,053–1,173 α _P -Fe 873–1,023 2. ^{E2}	αFre 1,155–1,173 α _p -Fe 973–1,023 α~Fe	α, τ. τ. 1,048–1,160 α _P -Fe αFe	1,746-1,767 ð-Fe and 788-1,173 ø-Fe	1,679, 1,723 δ -Fe 1,553-1,623 (0.88) 0Fe	1,056–1,153 \$p-Fe 932–1,019 \$a_Fe
I	1 1	I I	1 1	26	I	1 1 1
3.252 (314.0)	2.428 (234.5) 2.546	(249.0) 2.684 (259.2) -	1 1	2.50 ²⁴ (241.4)	2.33 ⁺ (225.0) 3.027 (292.3)	2.807 (271) 343.9 (332) 2.71 ²⁴⁺ (261.7)
3.0	1.3 1.4	9.9	1 1	2.3 ²⁴	2.3 ⁺ (28.3) 38 ⁺	287 1.38 × 10 ⁵ 100 ²⁴⁺
ïX	ïZ	Ņ	Ņ	Z	4	<u>د</u>

(L)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(OI)	(LL)	(12)
×	D^{0} (10 ⁻⁴ m ² s ⁻¹	Q (eV) and (k) mole ^{-1})	$D (T_m)$ ($10^{-12} m^2 s^{-1}$)	au-range (K) $(ilde{T}/ au^{})$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Pd	(0.41) 0.48^+	2.910 (281.0)	1	1,373–1,523 (0.80) γ-Fe	4	pc 3N7	¹⁰³ Pd, electroplated; grinder	No	⁺ Present approximation	Fe in Fe, Fe, Pd in Pd; Fe, Pd in Fe(Pd)	81.12	Fillon (1977) [81.09]
Pt	(2.7) 1.2 ⁺	(3.066) (296.0) 2.95 ⁺ (284.8)	I	1,183–1,533 (0.75) γ-Fe	σ	pc 4N	¹⁹³ Pt, electroplated; residual activity	°Z	⁺ Present approxi- mation, disrega- rdia D(1.183 K)	Pt in Pt, Co, Ni	81.12	Million (1973) [81.59]
S	(1.35)*	(2.10)* (202.7)	(195)	1,673–1,730 (0.94) ô-Fe	4 ⁵¹	pc 3N7	³⁵ S, diffusion couple; residual activity	1 example (probability plot)	*Fit for &- plus ô-Fe together with the data		81.11	Seibel (1962) [81.60, 81.57]
	2.42	2.316 (223.6)	I	1,524–1,626 (0.87) ^{1,-Fie}	7 ⁵¹ (6T)			Ì	of Ref. [81.95]		81.11	
S	0.5	2.168 (209.4)	I	1,214–1,306 (0.70) 1,Fe	12 ⁵¹ (4T)	pc ⁶¹	H ₂ /H ₂ S gas mixture; resistivity change	I		S in α-Fe, Ag, Cu, Ni	81.11	Wang (1970) [81.61]
S	1.7	2.298 (221.9)	I	7-15 1,240–1,525 (0.76) 7-Fe	5 ⁵¹	pc (0.1 mm) ∞3N5	³⁵ S, deposition of FeS (<1 µm); residual activity	1 example ^{82,84}		gb-diffusion	81.11	Hoshino (1971) [81.62]
S	(2.7) 0.4^{+}	(2.125) (205.2) 1.96 ⁺	1	, τ. 1,050–1,150 α _p -Fe	12 ⁵¹ (5T)	pc ⁶¹	H ₂ /H ₂ S gas mixture; resistivity change	I	⁺ Present fit to the depicted data	S in ₇ -Fe, Ag, Cu, Ni	81.11	Wang (1970) [81.61]
S	34.6*	(109.5) 2.398* (231.5)	1 1	1,073-1,173 $\alpha_{\rm P}$ -Fe 973-1,033	3^{51}_{51}	pc >4N	³⁵ S, gas mixture; residual activity	No	*Valid for the whole &-Fe range		1 1	Gruzin (1972) [81.63]
S	2×10^7 1.56^*	3.6 (347.6) 2.1 [*] (202.8)	I	α _f -Fe 928–1,003 α _f -Fe	52	sc ⁶¹	S; surface segregation kinetics studied with Auger electron spectroscopy	I	*Fit to Eq. (02.19) with $\alpha = 0.3$		I	Arabczyk (1986) [81.64]

Table 8.1 (Continued)

	Bruggeman (1975) [81.65]	Nishida (1977) [81.66]	Myers (1978) [81.67] Schröder (1988) [81.68]	Pérez (2005) [81.69]	Foucault-Villard (1980) [81.70]	Bergner (1989) [81.71]	Kimura (1986) [81.72]
81.11	81.05 81.05	81.05 81.05	81.05	81.05 81.05 81.05	1 1	81.13 -	81.13
Present fit for α -Fe plus δ -Fe to the data of [81.60, 81.61]	Sb in Fe (0.5% Mo)	⁺ Present approximation for c(Sb)=0	*Valid for T > 1,080 K; +Present approximation	for the whole α_p -range Fit to Eq. (02.19) with α =0.2	Pronounced data scatter		
	1 example	No	1 example	Several examples (total pp <1 um)	No	2 examples (c-x)	Several examples
	¹²⁴ Sb, electroplated; residual activity	Sb; EPMA Fe/Fe (1– 4% Sb) (Boltzmann– Matano)	Sb, implanted; NRA Sb, vapour-solid diffusion couple; EPMA (Matano)	Sb, vapour deposition and implantation; RBS, HIRBS	⁷⁵ Se; out-diffusion kinetics from dilute Fe(Se) alloys; residual activity	Si; EPMA Fe (2% Si)/ Fe/Fe (7% Si) (Matano, Grube)	¹¹³ Sn, dried-on from salt solution; grinder
	sc ⁶¹ pc ⁶¹ (0.5–1 mm)	pc (0.5–1 mm) ~3N8	pc ⁶¹ (0.1 mm) sc ⁶¹	pc (0.5 mm) 4N	4N	3N5	pc (6 mm) ~3N5
(16) (9T)	8^{51} 4^{51}	3^{51} 2^{51}	53 3	9 12	11 8 8 (77)	6 (4T) 2	22 (19T)
1,673-1,730 δ -Fe and 1,050-1,150 α_{2} -Fe	αp τ2 1,058-1,150 αp-Fe 991-1,036	α _г ге 1,073-1,173 α _P -Fe 973, 1,023 «-Fe	$\alpha_{\rm p}^{\rm rre}$ $\alpha_{\rm p}^{\rm F}$ 1,046-1,176 $\alpha_{\rm p}^{\rm -Fe}$	971–1,041 $\alpha_{\rm F}$ Fe 1,053–1,073 $\alpha_{\rm P}$ -Fe 695–1,023 $\alpha_{\rm F}$ Fe	1,326–1,643 (0.82) 7-Fe 1,102–1,175 α-Fe	1,273–1,463 (0.75) 7-Fe 1,133, 1,173 ∞Fe	1,196-1,653 (0.79) γ -Fe
205	1 1	1 1	1 1	1 1	1 1	1 1	I
2.0 44 (197.4)	2.796 (270) -	2.732 (263.8) -	2.796 (270) (2.646)* (255.5) 2.76 ⁺ (266.5)	– 2.092 ²⁴ (202)	2.206 (213) -	2.517 (243.0) (2.754) (229.1)	2.711 (261.7)
1.0	- 440	- 260 ⁺ -	80 (70.9)* 220 ⁺	- 0.13 ²⁴	0.045	0.07 (1.7)	0.845
S	Sb	Sb	Sb Sb	Sb	Se	Si	Sn

	-											
(L)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(01)	(11)	(12)
×	D ⁰ (10 ⁻⁴ m ² s ⁻	Q (eV) and (k) $(k) mole^{-1}$	$\frac{D (T_m)}{(10^{-12} m^2 s^{-1})}$	au-range (K) $(ilde{T}/ au^{ m m})$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Sn	- 2.4	- 2.298 (221.9)	I	1,053–1,183 1,073–1,183 α _p -Fe	4^{51}	pc ⁶¹	¹¹³ Sn, electroplated; residual activity	No			81.13	Treheux (1972) [81.73]
Sn	5.4 800	2.407 (232.4) 2.98	1 1	973–1,033 α _f -Fe 773–923	5^{51} 4^{51}	pc ⁶¹	Sn, implanted; RBS	3 examples			81.13 -	Myers (1984)
Sn	6.1×10^4 2.6×10^4	(287.7) 3.277 (316.4) 3.252	1 1	α _f -Fe 896–1,023 α _f -Fe 720–887	5 ⁵¹ 11 ⁵¹	(>0.1 mm) pc ~3mm) ~3N6	¹¹³ Sn ⁷² , residual activity; segregation kinetics,	No			81.13 -	[81.74] Hennesen (1984) [81.75]
Sn	- 0.075 ^{24 +}	(190)	1 1	1,048–1,163 α _P -Fe 673–1,023 αFe	3	Fe(2% Sn) Pc (0.5 mm) 4N	spectroscopy ¹¹³ Sn, dried-on from salt solution; grinder; Sn, implanted and	All	Fit to Eq. (02.19) with α =0.232; "Present approximation		81.13 81 13 81 13	Torres (2000) [81.76]
Та	67.2 2.75×10^4	3.304 (319) 3.356	1 1	1,420–1,620 (0.84) γ -Fe 1,099–1,167	15^{51} 4^{51}	pc ~3N	HIRBS, RBS Ta; EPMA Fe/Fe (X% Ta) (Grube)	No	Pronounced data scatter; X=0.17, 0.05	Nb in <i>γ-</i> Fe	1 1	Shaikh (1990) [81.77]
Ξ	$2,100^{24}$	(324) 3.037 ²⁴ (293.2)	1 1	α _p -Fe 1,053–1,174 α _p -Fe 948–1,042 2 ²²	6 6	sc 5N	⁴⁴ Ti, dried-on from salt solution; microtome	All	Fit to Eq. (02.19) with α =0.079		81.14 81.14	Klugkist (1995) [81.78]
U	(7×10^{-5})	(1.38) (133.2)	I	α _f -re 1,223–1,348 (0.71) γ-Fe	4	pc 2N7	U (natural), vapour deposition; fission fragment	No		U in β -Ti	I	de Keroulas (1967) [81.79]
>	(0.28) 0.82^+	2.736 (264.2)	1	1,376–1,627 (0.83) γ-Fe	6 ⁵¹	pc 3N7	raduography ⁴⁸ V, dried-on from salt solution; residual activity	No		Cr, Hf in γ -Fe; Cr in α -Fe; Hf, V in α -Fe (2% V)	1	Bowen (1970) [81.32]

Table 8.1 (Continued)

Geise (1987) [81.14]		Alberry (1974) [81.34]	Růžičková (1981) [81.80]	Kučera (1969) [81.81]	Alberry (1974) [81.34]	Takemoto (2007) [81.82]	Budurov (1973) [81.83]	Richter (1981) [81.84]
81.15	81.15	I	1	81.14	81.14	81.14 81.14	81.06	81.06 81.06
Fe in α-Fe		W in α-Fe, Cr, Mo in γ-Fe and α-Fe	W in Co, Ni	Mo, V in α-Fe; Mo, V, W in α-Fe(Cr)	W in γ-Fe, Cr, Mo in γ-Fe and α-Fe			
		*The <i>D</i> -values obtained in [81.80] and [81.34] differ by a factor of ~ 3	*The <i>D</i> -values obtained in [81.34] and [81.80] differ by a factor of ~ 3			Fit to Eq. (02.19) with α =0.086 *Present approximation	*Present extrapolation to c=0	Fit of $D(c_{Zn} = 0)$ to Eq. (02.19) with $\alpha = 0.118$ (best fit with $\alpha = 0.11$)
Several examples		No	No	1 example (gb contribution eliminated)	No	Several examples	No	No
⁴⁸ V, electroplated; microtome		W; EPMA Fe/Fe (1–10% W) (Boltzmann– Matano, Grube)	¹⁸⁵ W, electroplated; residual activity	¹⁸⁵ W, electroplated; residual activity	W; EPMA Fe/Fe (1-10% W) (Boltzmann- Matano, Grube)	¹⁸¹ W, electroplated; magnetron, radio- frequency and ion- beam sputtering (nec)	Zn; EPMA Fe/Fe (3% Zn) (Boltzmann- Matano)	Zn (vapour); EPMA
pc (0.3 mm) 3N7		pc (0.4 mm) ~3N	\sim^{3N7}	pc ~2N5	⊳c ~3N7	pc (3-4 mm) 4N	pc (2 mm) 4N	4N8
Ŋ	Ŋ	13 ⁵¹	11 (6T)	Ŋ	4 ⁵¹	11 (10T) 12 (11T)	Ŋ	10
1,210-1,607 (0.78) γ -Fe	1,058-1,172 α _n -Fe	1,580–1,640 (0.83) γ-Fe	1,258–1,578 (0.78) γ-Fe	1,048–1,148 α _p -Fe	1,090-1,166 α _p -Fe	1,053–1,173 α _p -Fe 833–1,035 α _f -Fe	1,273-1,425 (0.74) v-Fe	1,043-1,169 α_{p} -Fe 848-1,039 α_{f} -Fe
I	I	I	1	I	I	1 1	I	1 1
2.833 (273.5)	2.838 (274)	(2.770)* (267.4)	(2.817)* (272)	2.389 (230.7)	2.474 (238.9)	2.972 ²⁴ (287)	2.69 ⁺ (259.7)	2.720 ²⁴ (262.6)
0.62	124	(0.13)*	(0.509)*	0.29	1.1	150 ²⁴	0.22^{+}	60 ²⁴
>		8	≥	M	A	X	Zn	Zn

(1)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(01)	(11)	(12)
×	D ⁰ (10 ⁻⁴ m ² s ⁻¹	Q (eV) and) (kJ mole ⁻¹)	$D(T_m)$ ($10^{-12} m^2 s^{-1}$)	T-range (K) (Ť/T _m)	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Self-di <u>f</u> Co	fusion 0.37	2.905 (280.5)	0.19	1,323–1,523 (0.80)	σ	pc 2N7	⁶⁰ Co, vapour deposition; absorption	1			82.01	Nix (1951) [82.01]
Co	0.55 [×]	2.99 [×] (288.7)	0.16	896–1,745 (0.75)	26 (24T)	pc 4N	⁶⁰ Co, ⁵⁷ Co, electroplated; lathe and sputter	Several examples, gb tails at lower 7 ⁸³	^x Forced fit to the curved Arrhenius plot	$E \approx 0.67$ (1,451– 1,745 K)	82.01	Bussmann (1979) [82.02]
Co	0.146^{21} $40,400^{21\times}$	2.796 ^{21×} (270) 4.599 ^{21×}	0.47	923–1,743 (0.75)	44 (38T)	sc >5N	⁶⁰ Co, ⁵⁷ Co, electroplated; lathe and sputter	several examples	^x Two-exponential fit combined with Eq. (02.19)	E=0.70-0.75 (1,419- 1,027 K)	82.01	Lee (1993) [82.03]
Co	0.235 68.5	2.915 2.915 (281.5) 3.82 (368.8)	0.21	(896–1,745)	(25)		Sumonas		Two-exponential fit to the data of Ref. [82.02]; Have-evenmential fit		82.01	Neumann (2001) [82.04]
	0.36 234	(2.97 (286.8) 3.84 (370.8)	0.39	(923–1,743)	(44)				[82.03]			

(References, see page 312)

Table 8.2 Diffusion in cobalt

Impurit	v diffusion										
Ċ	(0.084) ^x	(2.628) ^x (253.7)		1,273–1,573 (0.80)	ъ	pc 2N7	Cr; EPMA, Co/Co (15.2% Cr) (Grube)	No	^x \tilde{D} valid for 7.6 at % Cr	Mo, V, W in Co; – Cr, Mo, V, W in Ni	Davin (1963) [82.05]
Fe	0.21	2.719 (262.5)	0.37	1,377–1,576 (0.84)	ю	pc 3N	⁵⁵ Fe, electroplated; serial sectioning	No		Co in Co 82.02	Mead (1955) [82.06]
Fe	(0.11)	(2.624)) (253.3)		1,409-1,629 (0.86)	9 (6T)	pc 5N	Fe; EPMA, Co/Fe (Hall)	No	$^{\times}D^{0}$ and Q from [82.06], fit to the	Ni in Co; Co, 82.02 Ni in Fe; Co,	Badia (1969) [82.07]
	0.21^{\times}	2.719 [×] (262.5)	0.37						experimental data	Fe in Ni	
Мn	(0.011)	(2.255)		1,424–1,519 (0,83)	8 (5T)	pc (4–5 mm)	⁵⁴ Mn, electroplated; lathe	2 examples ⁸²	⁺ Present annrovimation for	Mn in Co(Mn) –	lijima (1977) [82-08]
				> T _C		3N5			the entire <i>T</i> -range		[00:20]
	(0.0315)	(2.407) (232.4)		1,133–1,378 (0.71)	11 (6T)				(within the error limits no influence		
	0.093^{+}	2.524 ⁺ (243.7)	0.60	 ¹, ¹C 1,133–1,519 (0.75) 					of the priase transition on D recognizable; see introduction page)		
Mo	(0.231) ^x	(2.723) ^x (262.9)		1,273–1,573 (0.80)	Ŋ	pc 2N7	Mo; EPMA, Co/Co (9.6% Mo) (Grube)	No	$^{x}\tilde{D}$ valid for 4.8 at % Mo	Cr, V, W in Co; – Cr, Mo, V, W in Ni	Davin (1963) [82.05]
Ņ	(1.25)	3.127		1,425-1,673	5^{51}	pc	⁶³ Ni, electroplated;	I	⁺ Present fit to the	Ni in Ni, Fe –	MacEwan
	2.63^{+}	(301.9)	0.32^{+}	(0.88)		2N5	absorption		depicted data		(1959) [82.09]
Ņ	(0.4)	2.923	0.20	1,409–1,629	11	pc	Ni; EPMA, vapour	I	⁺ Present	Fe in Co; Co, 82.02	Badia (1969)
	0.43 ⁺	(282.2)		(0.85)		5N	deposition (50– 100 nm) and Co/Ni (Hall)		approximation	Ni in Fe; Co, Fe in Ni	[82.07]
Pt	0.65	2.892 (279.3)		1,354-1,481 (0.80)	6 (3T)	pc 4N	¹⁹³ Pt, electroplated; residual activity	No		Pt in Fe, Ni –	Million (1973) [82.10]
s	(1.3)	(2.342)		1,423-1,523	ŝ	pc	³⁵ S; residual activity	No	⁺ Present	gb-diffusion –	Pavlyuchenko
		(226.1)		(0.83)		4N			approximation		(1964) [82.11]
	0.69^{+}	2.248 ⁺ (217.0)	27+								

Table £	3.2 (Continu	ed)										
(L)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(01)	(LL)	(12)
×	D^0 (10 ⁻⁴ m ² s ⁻¹	Q (eV) and) (kJ mole ⁻¹)	$D(T_m)$ ($10^{-12} m^2 s^{-1}$)	$ au$ -range (K) $(ilde{T}/ au_{ m m})$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
λ	(0.021) ^x (0.016 ⁺)	(2.298) ^x (221.9)		1,273–1,573 (0.80)	Ŋ	pc 2N7	V; EPMA, Co/Co (14.8% V) (Grube)	No	^x Ďvalid for 7.4 at % V +Present approximation	Cr, Mo, W in Co; Cr, Mo, V, W in Ni	I	Davin (1963) [82.05]
>	I	I		1,273–1,563 (0.80)	14 (7T)	pc 3N8	⁴⁸ V, dried-on from salt solution; residual activity	No	Marked magnetic diffusion anomaly observed (see		82.03	Kučera (1986) [82.12]
X	0.351*	2.922* (282.2)		1,258–1,578 (0.80)	12 (6T)	pc 3N7	¹⁸⁵ W; electroplated; residual activity	No	*Valid for $T > T_C$ marked magnetic diffusion anomaly observed (see introduction name)	W in <i>γ</i> -Fe and Ni	82.03	Růžičková (1981) [82.13]
Zn	(0.32 ⁺)	(2.66 ⁺) (257)		1,248–1,471 (0.77)	4	pc ⁶¹	Zn; EPMA, Co/Co (2-17% Zn) (Boltzmann-Matano)	No	⁺ Present rough extrapolation to 0% Zn		I	Budurov (1973) [82.14]
Zn	(0.08) (0.54^{+})	(2.637) (254.6) (2.89 ⁺) (779)		1,413-1,513 (0.83) $>T_{\rm C}$	4	sc ⁶¹	⁶⁵ Zn, electroplated; residual activity	No	⁺ Present approximation; for the magnetic	Fe in Co; Fe in Co(Fe)	I	Bristoti (1974) [82.15]
	(0.12)	(2.762) (2.66.7)		1,173–1,388 (0.72)	5				see introduction			
	(0.145 ⁺)	(2.80 ⁺) (270.5)		$< T_{\rm C}$)			

3.3 Self-	-diffusion an	nd impurity c	diffusion in irid	lium					-	Referenc	es, see page 313)
	(2b)	(3)	(4)	(2)	(9)	(2)	(8)	(6)	(01)	(LL)	(12)
-4 m ² s ⁻¹	Q (eV) and (k) (k) mole ⁻¹)	$D(T_m)$ (10 ⁻¹² m ² s ⁻¹)	$ au$ -range (K) $(ilde{T}/ au)$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
9	4.545 (438.8)	0.13	2,092–2,664 (0.88)	7 (6T)	sc 3N	¹⁹² Ir, sputter deposition: zrinder	All*	*D corrected for vapourization loss		83.01	Arkhipova (1986) [83.01]
6	4.383 (432.2)		1,373–1,898 (0.60)	13 (9T)	sc 4N	Au, in-diffusion from the gas phase*: SIMS	4 examples (deviations	*Investigated in UHV		83.02	Ermakov (2001) [83.02]
						-	from linearity in $\ln c - x^2$)				
1	4.065		1,544–1,783	2	sc	Co, in-diffusion from	Π	*Investigated in UHV,	Fe, Rh in Ir	83.02	Ermakov
	(392.5)		(0.61)		4N	the gasphase*; SIMS		simultaneous diffusion with Fe and Rh			(2004) [83.03]
	I		1,473-2,073	7	sc	Fe, in-diffusion from	3 examples	*Investigated in UHV,	Co, Rh in Ir	I	Ermakov
			(0.65)		4N	the gasphase*; SIMS		simultaneous diffusion with Co and Rh; pronounced data scatter			(2004) [83.03]
	I		1,473–2,073	6	sc	Rh, in-diffusion from	3 examples	*Investigated in UHV,	Co, Fe in Ir	I	Ermakov
			(0.65)		4N	the gasphase*; SIMS		simultaneous diffusion with Co and Fe; pronounced data scatter			(2004) [83.03]

Diffusion in nickel	
Table 8.4	

(References, see page 313)

D ⁰ (10 ⁻⁴ m ² s <i>elf-diffusion</i> ii 1.27 ii 0.40	Q (eV) and (I- IkI mole -1)	(T)									
slf-diffusion li 1.27 li 0.40	1	$U(1_m)$ (10^{-12} m ² s ⁻¹)	$ au$ -range (K) $(ilde{T}/ au^{ ext{m}})$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
li 0.40	2.897 (279.7)	0.45	1,151–1,521 (0.77)	15	pc (~1mm)	⁶³ Ni, electroplated; absorption and	2 examples			I	Hoffman (1956) [84.01]
	2.767 (267.1)	0.34	1,373–1,448 (0.82)	Ŋ	~3N Pc ~4N	residual activity ⁶³ Ni, vapour deposition; grinder	No		Ni in Au; Ni in Ni(Au)	I	Reynolds (1957) [84.02]
li –	I		1,303–1,673	13^{51} (8T)	pc 3N2	⁶³ Ni, electroplated; grinder and residual	3 examples	gb-contribution below 1,425 K	(EPMA)	I	MacEwan (1959) [84.03]
3.36	3.027 (292.3)	0.50	1,425–1,673 (0.90)	11 ⁵¹ (6T)		activity					
li 5.12	(297.3)	0.53	1,425–1,673 (0 90)	551	pc	⁶³ Ni, electroplated; absorption	No		Ni in Co and ^{1,-Fe}	I	MacEwan (1959) [84 04]
Ji 1.7	2.953 (285.1)		973–1,373 (0.68)	6	pc 3N8	⁶³ Ni, electroplated; residual activity	No		Co in Ni, Co, Ni in Co; Co, Ni in Co(Ni)	I	Hirano (1961) [84.05, 84.06]
li – 2.59	- 3.014	0.42	1,202–1,576 1.358–1.576	16 (8T) 10	pc 3N8	⁶³ Ni, electroplated; serial sectioning (chemical polishing)	2 examples			I	Shinyaev (1963) [84.07]
li 1.9	(291.0) 2.949 (284.7)	0.47	(0.85) 1,315–1,677 (0.87)	(5T) 13	pc (1–4 mm)	⁶³ Ni; lathe	1 example (slight NSE)		Cr in Ni; Ni, Cr in Ni(Cr)	I	Monma (1964) [84.08]
li 1.77	2.955 (285.3)	0.42	1,253–1,670 (0.85)	20	>3N5 sc 5N	⁶³ Ni, electroplated; grinder and residual	2 examples			84.01	Bakker (1968) [84.09]
li 1.33	2.91 (281.0) 2.054		815–1,195 (0.58) 1-226-1-672	10	sc 4N7	actuvity ⁶³ Ni, sputter deposition; IBS ⁶³ Ni: <u>Aloctroalistod</u> .	All			84.01	Maier (1976) [84.10]
li 0.85 ²¹ 1,350 ²¹	2.372-1 2.85.2) 2.872-1 (277.1) 4.15 ²¹ (400.7)	0.47	(0.87) (879–1,670)	+ (28)	3N8	an, electroplated, lathe	THE	Two-exponential fit to the data of [84.09, 84.10]		84.01	viaunurov (1978) [84.11] Neumann (1986) [84.12]

	Treheux (1976) [84.13]		Vladimirov (1978) [84.14]	Swalin (1956) [84.15]	Gust (1981) [84.16]	Vladimirov	Kurtz (1955) [84 18]		Chatterjee (1968) [84.19]		Grigoryev (1968) [84.20]	Paul (1971)	[17:40]	Hirano (1962) [84.06]	279
	I		84.02	84.03	84.03	84.04	I		I		I	I		1	
	gb-diffusion		gb-diffusion	Mn, Ti, W in Ni			Au in Ni(Au)		gb-diffusion		Be in γ -Fe	Nd in Ni;	gp-airtusion	Ni in Ni, Co, Ni in Co; Co Ni in Co(Ni)	
				$^{*}\widetilde{D}_{}$ valid for 0-0.7 at % Al			⁺ Present fit to the demicted data:	marked gb contributions cannot be excluded	*Valid for sc samples	⁺ Present fit to the depicted data	⁺ Present approximation disregarding the lowest T				
	1 example ⁸⁴		All (partly corrected for vapouri- zation loss of tracers)	No	1 example	All	1 example		1 example		3 examples	2 examples	(gp talls)	No	
	¹¹⁰ Ag, electroplated; residual activity	`	¹¹⁰ Ag, ¹⁰⁵ Ag, electroplated; lathe and residual activity	Al, pressure-welded diffusion couples, Ni/Ni (0.7% Al); lathe, spectrophotometry (Grube)	Al, vapour deposition; SIMS	⁷³ As, vapour denocition: lathe	ueposituoti, iaute ¹⁹⁸ Au, vapour denosition:	autoradiography	¹⁹⁸ Au, electroplated; lathe		⁷ Be, dried-on from salt solution; residual activity	¹⁴¹ Ce, vapour	deposition; residual activity	⁶⁰ Co, electroplated; residual activity	
	sc 4N	pc 2N3	sc 3N8	pc (0.5– 2N8	sc 4N	SC 3NIR	pc (4 mm)	3N8	sc 5N,	bc	3N	pc	(4 mm) 4N	pc 3N8	
	3^{51}	9 ⁵¹	13	Q	7 (5T)	10 (0T)	3^{51}		5^{51*}		10 (5T) 8 (4T)	10 10	(16)	6	
	1,183–1,303 (0.72)	1,110-1,323 (0.70)	1,297–1,693 (0.87)	1,372–1,553 (0.85)	914–1,212 (0.62)	1,239–1,634	(0.00) 1,068–1,378 (0.71)		1,026–1,325 (0.68)		1,293–1,673 (0.86) 1,473–1,673 (0 91)	973–1,370	(0.00)	1,021–1,465 (0.72)	
			3.2	1.5		3.4					(2.7) (3.0) ⁺				
ис	2.923 (282.2)	(2.923) (282.2)	2.894 (279.4)	2.775* (268.0)	2.693 (260)	2.608 (751 a)	(2.819) (2.819) (777-7)	(3.00) ⁺ (289.7)	(2.385)* (230.3)	$(2.27)^{*+}$ (219.2)	(2.004) (193.4) $(2.263)^+$ (2.18.5)	(2.637)	(0.402)	2.806 (270.9)	
rity diffusic	8.25	(22.4)	8.94	1.87*	1.0	1.39	(2.0)	+(06)	(0.02)*	(0.021)*+	(0.019) $(0.118)^+$	(0.66)		0.75	
Impu	Ag		Ag	F	M	\mathbf{As}	Αu		Au		Be	Ce		C	

(12)	Reference	McCoy (1963) [84.22]	Hässner (1965) [84.23]	Badia (1969) [84.24]	Million (1972) [84.25]	Vladimirov (1978) [84.11] Jung (1992)	[84.26]	Monma (1964) [84.08]	Růžičková (1981) [84.27]
(11)	Figure	84.05	I	I I	I	84.05 84.05	84.05	1	I
(10)	Also studied		Ni in Ni, Co, Ni in Co; Co	Fe in Ni; Fe, N in Co; Co, N	ın Fe Co in Ni(Co)	Ni, W in Ni Cr, Ti in Ni		Ni in Ni; Ni, Ci in Ni(Cr)	Cr in γ -Fe; Ni, Cr in Ni(Cr),
(6)	Further remarks	⁺ Present calculation					Present fit to the data of [84.11, 84.22, 84.261	[07:10	
(8)	Remarks on the pp	2 examples	No	No	No	All No		1 example (slight NSE, 40μm sections)	No
(2)	Experimental method	⁶⁰ Co, electroplated; lathe	⁶⁰ Co, electroplated ⁷³ ; residual activity	Co, diffusion couple Ni/Co; EPMA (Hall)	⁵⁷ Co, electroplated; absorption and	residual activity ⁵⁷ Co, electroplated; lathe Co; EPMA, Ni/Ni	(4.85% Co) (Boltzmann– Matano, Hall)	⁵¹ Cr; lathe	⁵¹ Cr, electroplated; residual activity
(9)	Material, purity	$pc \sim 2N8$	pc 2N8	5N	pc 4N	sc 3N8 pc	3N7	pc (1-4 mm) >3N5	3N 3N
(5)	No. of data points	2	10 ⁵¹ (5T)	6	6 ⁵¹	$\begin{array}{c} 13 \\ (10T) \\ 10^{51} \end{array}$	(25)	6	5
(4)	T-range (K) (\tilde{T}/T_m)	1,368, 1,466	1,430–1,644 (0.89)	1,409–1,643 (0.88)	855–1,255 (0.61)	1,335–1,696 (0.88) 1,323–1,648	(0.86) (1,323–1,696) (0.87)	1,373–1,541 (0.84)	1,223–1,423 (0.77)
(3)	$D(T_m)$ (10 ⁻¹² m ² s ⁻¹)		0.68	0.42		0.67 0.54	0.61	0.64	
(2b)	Q (eV) and) (kJ mole ⁻¹)	(2.875) (277.6) 2.837^{+}	(274.0) 2.814 (271.7)	2.793 (269.6)	2.749 (265.5)	2.953 (285.1) 2.921	(282) 2.937 (283.6)	2.823 (272.6)	3.025 (292.1)
(2a)	D ⁰ (10 ⁻⁴ m ² s ⁻¹)	- 0.98 ⁺	1.11	0.59	0.55	2.77 1.8	2.26	1.1	8.52
Ξ	×	Co	Co	Co	Co	C C	Co	C	ŗ

Table 8.4 (Continued)

) 3N7 (5.06% Cr) [84.26] (Boltzmann- Matano, Hall)	7–1,632 5 pc ⁶⁴ Cu; lathe 1 example Cu in Cu; Ni, – Monma (1964)) (1–4 mm) (40 µm Cu in Ni(Cu) [84.28] > 3N5 sections)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-1,323 6 sc Cu, vapour deposition 1 example - Helfmeier) 5N (1-2 \mum film); EPMA (1970) [84.30] (1970) [84.30]	D-1,613 16 pc Cu; serial sectioning, 3 examples 84.02 Taguchi (1984) 10 13T (1-3 mm) atomic absorption [84.31] 134.03 730.5 <th< th=""><th>3-1,629 9 pc Fe, diffusion couple No *Present Co in Ni; Fe, Ni 84.04 Badia (1969)) (6T) 5N Ni / Fe; EPMA (Hall) approximation in Co; Ni, Co [84.24]</th><th>in Fe</th><th>3-1,669 9 sc ³⁹Fe, electroplated; 1 example Fe in Ni(Fe) 84.04 Bakker (1971) 5N erinder (Japping) [84.32]</th><th>1,676 12 sc ⁶⁸Ge, implanted; 4 examples ⁺Present 84.07 Mantl (1983) 1 (117) 4N errinder and IBS approximation 184.33</th><th>4N6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</th><th>D-1,598 10⁵¹ pc Ge; EPMA, Ni/Ni No In, W in Ni 84.07 Takahashi () 3N7 (5.19% Ge) (Matano, (1996) [84.34] (1996) [84.34] () Hall) (1996) [84.34] (1996) [84.34]</th><th>) 2-1,423 6 pc Hf; EPMA, Ni/Ni 1 example 'Present 84.08 Bergner (1972)) 4N $(0.3\% \text{ Hf})/\text{Ni}(4.5\% \text{ (probability approximation [84.35]} Hf)$ Hf) $H(0)$ $*\tilde{D}$ valid for 0.15 at $\% \text{ Hf}$</th><th>Hold Set ¹¹⁴In, sputter All 84.03 Vladimirov (1978) (8T) 3N8 deposition; lathe (1978) [84.36]</th><th>1,513 16 sc In, vapour deposition; 1 example⁸⁵ Marked data scatter 84.03 Gust (1981)) (12T) 4N SIMS [84.37]</th><th>-1,659) (22) Two-exponential fit to 84.03 Neumann the data of [84.36, (1988) [84.38] 84.37] 84.37]</th></th<>	3-1,629 9 pc Fe, diffusion couple No *Present Co in Ni; Fe, Ni 84.04 Badia (1969)) (6T) 5N Ni / Fe; EPMA (Hall) approximation in Co; Ni, Co [84.24]	in Fe	3-1,669 9 sc ³⁹ Fe, electroplated; 1 example Fe in Ni(Fe) 84.04 Bakker (1971) 5N erinder (Japping) [84.32]	1,676 12 sc ⁶⁸ Ge, implanted; 4 examples ⁺ Present 84.07 Mantl (1983) 1 (117) 4N errinder and IBS approximation 184.33	4N6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	D-1,598 10 ⁵¹ pc Ge; EPMA, Ni/Ni No In, W in Ni 84.07 Takahashi () 3N7 (5.19% Ge) (Matano, (1996) [84.34] (1996) [84.34] () Hall) (1996) [84.34] (1996) [84.34]) 2-1,423 6 pc Hf; EPMA, Ni/Ni 1 example 'Present 84.08 Bergner (1972)) 4N $(0.3\% \text{ Hf})/\text{Ni}(4.5\% \text{ (probability approximation [84.35]} Hf)$ Hf) $H(0)$ $*\tilde{D}$ valid for 0.15 at $\% \text{ Hf}$	Hold Set ¹¹⁴ In, sputter All 84.03 Vladimirov (1978) (8T) 3N8 deposition; lathe (1978) [84.36]	1,513 16 sc In, vapour deposition; 1 example ⁸⁵ Marked data scatter 84.03 Gust (1981)) (12T) 4N SIMS [84.37]	-1,659) (22) Two-exponential fit to 84.03 Neumann the data of [84.36, (1988) [84.38] 84.37] 84.37]
3N/ (5.06% C (Boltzma Matano,	pc ⁶⁴ Cu; lathe (1–4 mm) > 3N5	pc ⁶⁴ Cu, elect (~3 mm) residual 3N5	sc Cu, vapou 5N (1–2μm	pc Cu; serial : (1–3 mm) atomic a 3N5 analysis	pc Fe, diffusic 5N Ni/Fe; E		sc ⁵⁹ Fe, electr 5N grinder	sc ⁶⁸ Ge, impl 4N grinder	4N6	pc Ge; EPMA 3N7 (5.19% C Hall)	pc Hf; EPMA 4N (0.3% H Hf)	sc ¹¹⁴ In, sputt 3N8 depositi	sc In, vapour 4N SIMS	
7 (5.C (Bo Ma	⁶⁴ Cu; 1 mm) N5	3 mm) resi	Cu, v (1-)	Su; so Smm) ato S ana	Fe, di Ni,		⁵⁹ Fe, erii	esGe, erii	, ,	7 Ge; E (5.1 Ha	Hf; E (0.3 Hf)	3 def	In, va SIN	
.86)	327–1,632 5 .86)	123–1,323 5 .71)	04 8- 1,323 6 .69)	080–1,613 16 .78) (13T)	409–1,629 9 .88) (6T)		478–1,669 9 .91)	40–1,676 12 .76) (11T)		373–1,598 10 ⁵¹ .86)	023-1,423 6 .71)	274–1,659 9 .85) (8T)	77–1,513 16 .66) (12T)	89–1,659) (22)
9	0.90 1,	1, (0)	(0)	1.2 (0	1, (0	0.75^{+}	0.73 1,	26	2.3+	2.1 1,	.10	4.6 1, (0	20	5.1 (7
(289)	2.676 (258.3)	2.645 (255.4)	2.646 (255.5)	2.641 (255)	(2.619) (252.9)	2.773^+ (267.7)	2.79 (269.4)	(264)	2.776^+ (268)	2.776 (268)	2.645* (255.4)	2.801 (270.4)	2.589 (250)	$\begin{array}{ccc} 2.60^{21} \\ (251.0) \\ 4 & 21 \\ 4.12^{21} \\ (397.8) \end{array}$
	Cu 0.57	Cu (0.724) 0.66 ⁺	Cu 0.27	Cu 0.61	^д е (0.22)	0.92^{+}	⁷ e 1.0	Ge (2.1)	2.9+	Ge 2.6	Hf (2.65)* 2.76 ⁺	n 6.78	n 1.1	in 1.26^{21} 1.9×10^{4}

Table 8.4 (C	ontinued)										
(1) (2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(LL)	(12)
X D ⁰ (10 ⁻⁴ m	$\begin{array}{c} Q \ (eV) \ and \\ s^{-1} \end{array} (k) \ mole^{-1} \end{array}$	$D(T_m)$ ($10^{-12} m^2 s^{-1}$)	$ au$ -range (K) $(ilde{T}/ au_{ m m})$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
In 1.9	2.641 (255)	3.7	1,323–1,548 (0.83)	10^{51}	pc 3N7	In; EPMA, Ni/Ni (0.9% In) (Matano, Hall)	1 example (probability nlot)		Ge, W in Ni	84.03	Takahashi (1996) [84.34]
Ir 1.11*	3.21 <i>7</i> * (310.6)	0.046	1,173–1,573 (0.79)	ы	pc (>0.5 mm) 3N8	Ir, EPMA, Ni/Ni (3.28% Ir) (Boltzmann- Matano, Sauer- Freise)	No	* \widetilde{D} , average for 0–3.28 at % Ir	Pd, Pt, Rh, Ru in Ni	84.05	Karunaratse (2003) [84.39]
Mg 6.32*	2.765* (267)		1,145–1,400 (0.74)	~	pc 3N	Mg; EPMA, Ni/Ni (0.08% Mg)	2 examples (probability nlot)	$^{*}\widetilde{D}$ valid for 0.04 at % Mg		I	Bergner (1981) [84.40]
Mn 7.5*	2.910* (280.9)	2.4	1,376–1,566 (0.85)	Q	pc (0.5– ~2N8	Mn, pressure welded diffusion couples, Ni/Ni (1.7–4.0% Mn); lathe, spectrophotometry (Gruhe)	No	$^{*}\tilde{D}$, valid for 0-4 at % Min	Al, Ti, W in Ni	84.09	Swalin (1956) [84.15]
Mo 1.3	2.931 (283)	0.37	1,323–1,623 (0.85)	7 ⁵¹	pc 3N7	Mo; EPMA, Ni/Ni (2.97% Mo) (Matano, Hall)	No		Pt in Ni; Mo, Pt in Ni ₃ Al	84.06	Minamino (1997) [84.41]
Mo 1.15*	2.913* (281.3)	0.36	1,173–1,573 (0.79)	n	pc 3N8	Mo; EPMA, Ni/Ni (6.5% Mo) (Boltzmann- Matano, den Brooder)	No	*D, average for 0-6.5 at % Mo	Nb in Ni	84.06	Karunaratse (2005) [84.42]
Nb 1.3	2.710	1.6	1,116–1,527 (0.76)	6 ⁵¹	pc 4N	Nb; EPMA, diffusion	No	*Nb concentration not renorted	Hf, Ta, Ti, W. Zr in Ni	84.10	Bergner (1977) [84 43]
Nb 0.88*	2.662*	1.5	1,173-1,500 (0.77)	ى ا	pc 3N8	Nb; EPMA, Ni/Ni (3% Nb) (Boltzmann- Matano, den Broeder)	No	* \tilde{D} , average for 0–3 at % Nb	Mo in Ni	84.10	Karunaratse (2005) [84.42]

Paul (1971) [84.21]	Karunaratse (2003) [84.39]	Minamino (1997) [84.41]	Karunaratse (2003) [84.39]	Blechet (1968) [84.44]	Karunaratse (2000) [84.45]	Karunaratse (2003) [84.39]	Karunaratse (2003) [84.39]	Vladimirov (1975) [84.46] Arbuzov (1980) [84.47]
I	84.11	84.05	84.05	I	I	84.11	84.11	84.12 84.12
Ce in Ni; gb-diffusion	Ir, Pt, Rh, Ru in Ni	Mo in Ni; Mo, Pt in Ni ₃ Al	Ir, Pd, Rh, Ru in Ni	c _s =40-80 ppma (1,300- 1,400 K)	Ta, W in Ni	Ir, Pd, Pt, Ru in Ni	Ir, Pd, Pt, Rh in Ni	c _s (1,173K)= 350 ppma
	$^{*}\tilde{D}$, average for 0–5.78 at % Pd		$^{*}\tilde{D}$, average for 0–3.24 at % Pt	+Present approximation; marked gb contributions cannot be excluded	$^{*}\widetilde{D}$, average for 0–3 at % Re	$^{*}\tilde{D}$, average for $0-6$ at % Rh	X=2.97; 6.06, * \widetilde{D} , average for 0-2.97 at % Ru *Resp. for 0-6.06 at % Ru	
2 examples (gb tails)	No	No	No	4 examples (<i>c</i> - <i>x</i>), erfc- solution	No	No	No	- All
¹⁴⁷ Nd, vapour deposition; residual activity	Pd; EPMA, Ni/Ni (5.78% Pd) (Boltzmann- Matano, Sauer- Freise)	Pt; EPMA, Ni/Ni (3.01% Pt) (Matano, Hall)	Pt, EPMA, Ni/Ni (3.24% Pt) (Boltzmann– Matano, Sauer– Freise)	Pu ⁷¹ , diffusion couple; autoradiography	Re; EPMA, Ni/Ni (3% Re) (Boltzmann- Matano, Sauer- Freise)	Rh; EPMA, Ni/Ni (5.96% Rh) (Boltzmann- Matano, Sauer- Freise)	Ru; EPMA, Ni/Ni (X% Ru) (Boltzmann– Matano, Sauer– Freise)	³⁵ S, vapour deposition; lathe ³⁵ S, sulphurization of Ni foils; absorption
pc (4mm) 4N	pc (>0.5 mm) 3N8	pc 3N7	pc (>0.5 mm) 3N8	~ 3N	pc (>0.5 mm) 3N8	pc (>0.5 mm) 3N8	pc (>0.5 mm) 3N8	sc 3N8 sc ⁶¹
10 (9T)	Ŋ	7 ⁵¹	Ŋ	Ŋ	5 ⁵¹	Ŋ	വ വ	19 (18T) 7 (6T)
973–1,373 (0.68)	1,173–1,573 (0.79)	1,323–1,623 (0.85)	1,173-1,573 (0.79)	1,298-1,398 (0.78)	1,173–1,573 (0.79)	1,173-1,573 (0.79)	1,173-1,573 (0.79)	1,078-1,495 (0.74) 1,153-1,331 (0.72)
	0.65	0.12	0.15		0.016	0.20	0.16	
(2.594) (250.5)	2.752* (265.7)	2.900 (280)	3.016* (291.2)	(215.6)	2.641* (255)	2.959* (285.7)	3.142 (303.4) (2.991)× (288.8)	2.268 (219.0) -
(0.44)	0.69*	0.35	0.92*	(0.17) (0.21 ⁺)	$8.2 \times 10^{-3*}$	0.87*	2.48* (0.62)×	1.40 -
Nd	Рд	Ρŧ	12	Pu	Re	Rh	Ru	s s

Table	. 8.4 (Conti	(pənu										
(1)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12)
×	D^{0} (10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (kJ mole ⁻¹)	$D(T_m)$ ($10^{-12} m^2 s^{-1}$)	au-range (K) $({ ilde T}/{ au})$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Sb	3.85	2.735	4.1	1,203–1,674 (0 82)	12	SC 3NIQ	¹²⁵ Sb, electroplated;	All			84.09	Vladimirov
ß	1.5*	(258.3) (258.3)	2.3	(0.86) (0.86)	5 ⁵¹	pc pc (0.5- ~2N8	Si, pressure welded diffusion couples, Ni/Ni (<1% Si); lathe, spectrophotometry	No.	$*\widetilde{D}$ valid for 0–1 at % Si	Mg, Mo in Ni	I	(1270) 104-40) Swalin (1957) [84.49]
Sn	4.56	2.767	3.9	1,242–1,642 (0 83)	11 (10T)	SC 3NIR	(Grube) ¹¹³ Sn, electroplated; 15tho	1 example			84.07	Vladimirov (1070) [84 50]
Та	0.4	(257 5)	0.66	(0.00) 1,117–1,532 (0.77)	(101) 6 ⁵¹	pc 4N	Ta; EPMA, diffusion	No	*Ta concentration not renorted	Hf, Nb, Ti, W, Zr in Ni	84.10	Bergner (1977) [84 43]
Ta	0.219*	2.600* (251)	0.57	1,173-1,573 (0.79)	5 ⁵¹	pc (> 0.5 mm) 3N8	Ta; EPMA, Ni/Ni (3% Ta) (Boltzmann- Matano, Sauer- Freise)	No	* \tilde{D} , average for 0–3 at % Ta	Re, W in Ni	84.10	Karunaratse (2000) [84.45]
Те	- 2.6	- 2.631 0.54)	5.5	(958–1,553) 1,135–1,553 (0.78)	5	sc 4N	¹²³ Te, vapour deposition;	3 examples		gb-diffusion	84.12	Neuhaus (1989) [84.51]
Ξ	0.86*	2.663* (257.1)	1.5	1,377–1,555 (0.85)	9	pc (0.5– ~2N8	Ti, pressure welded diffusion couples, Ni/Ni (0.9% Ti); lathe, spectrophotometry	1 example (probability plot)	*D, valid for 0–0.9 at % Ti	Al, Mn, W in Ni	84.08	Swalin (1956) [84.15]
Ë	(1.4) 7.3 ⁺	(2.732) (263.8) 2.911 ⁺ (281.0)		1,025–1,424 (0.70)	7 ⁵¹	pc 4N	(Grube) Ti; EPMA, diffusion couple*	No	⁺ Present fit to the depicted data; *Ti concentration not reported. *See also Ref. [84.35]	Hf, Nb, Ta, W, Zr in Ni	84.08	Bergner (1977) [84.43] [×]

Jung (1992) [84.26]	Zanghi (1971) [84.52]	Murarka (1968) [84.53]	Monma (1964) [84.54]	Vladimirov (1978) [84.11]	Takahashi (1996) [84.34]	Yamamoto (1979) [84.55]	Bergner (1977) [84.43]
84.08	I	I	I	84.06	84.06	I	I
Co, Cr in Ti		V in Al	Ni, W in Ni(W)	Ni, Co in Ni	Ge, In in Ni		Hf, Nb, Ta, Ti, W in Ni
			⁺ Present approximation			*Extrapolated to X=0 ×X=45; 40 +Present fit to the depicted data	I
No	1 example	1 example	1 example (40μm sections)	All	No	No	No
Ti; EPMA, Ni/Ni (3.41% Ti) (Boltzmann- Matano, Hall)	U ⁷¹ , vapour deposition ⁷³ ; fissiography	⁴⁸ V, dried-on from salt solution; residual activity	¹⁸⁵ W; lathe	¹⁸¹ W, electroplated; lathe	W; EPMA, Ni/Ni (1.94% W) (Matano, Hall)	Zn; EPMA, Ni/Ni (X% Zn) ^x (Boltzmann– Matano)	95 Zr ⁷² , microtome
pc 3N7	pc 4N8	pc 4N	pc (1-4 mm) > 3N5	sc 3N8	pc 3N7	pc 3N5	pc 4N
10^{51}	10 (5T)	~	ى د	11 (9T)	9 ⁵¹	6 ⁵¹	52
1,323-1,648 (0.86)	1,248–1,348 (0.75)	1,073–1,573 (0.77)	1,373–1,568 (0.85)	1,346–1,668 (0.87)	1,423–1,623 (0.88)	1,123–1,323 (0.71)	Not reported
2.0			0.16^{+}	0.14	0.15		
2.848 (275)	2.446 (236.2)	2.884 (278.4)	3.101 (299.4)	3.192 (308.2)	3.138 (303)	2.859* (276)	2.754 (265.9)
4.1	1.0	0.87	(2.0) 1.8 ⁺	2.87	2.1	(2.8)* 2.56 ⁺	6.1
Ξ	D	>	M	Μ	A	Zn	Zr

Table	8.5 Sel	f-diffusion ar	a impurity a	liffusion in pal	lladium					(R	eference	ss, see page 315)
(L)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12)
×	D ⁰ (10 ⁻⁴ m ² s ⁻	$Q (eV) and (kJ mole^{-1})$	$D(T_m)$ (10^{-12} m ² s ⁻¹)	$ au$ -range (K) $(ilde{T}/ au)$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Pd	0.205	2.758 (266.3)	0.49	1,330–1,776 (0.85)	20 (10T)	sc 5N	¹⁰³ Pd, ¹¹² Pd, electroplated ⁷³ ; lathe	Numerous examples		$E \approx 0.81$ (1,726, 1776K)	85.01	Peterson (1964) [85.01]
Р	(0.04) 0.045 ⁺	2.585 (249.6)		1,373–1,523 (0.79)	4	pc 3N5	¹⁰³ Pd, electroplated; grinder	No	⁺ Present approximation	Fe in Pd; Fe, Pd in Fe; Fe, Pd in Pd(Fe)	I	Fillon (1977) [85.02]
Fe	(0.18) 0.206^{+}	2.693 (260.0)		1,373–1,523 (0.79)	4	pc 3N5	⁵⁹ Fe, electroplated; grinder	No	⁺ Present approximation	Pd in Pd; Fe, Pd in Fe; Fe, Pd in Pd(Fe)	85.01	Fillon (1977) [85.02]

Table	8.6 Diffu	sion in plat	inum							(R	eference	s, see page 316)
(L)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12)
×	D^{0} (10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (kJ mole ⁻¹)	$D(T_m)$ ($10^{-12} m^2 s^{-1}$)	au-range (K) $(ilde{T}/ au^{ m m})$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
<i>Self</i> -, Pt	diffusion (0.33) 0.37 ⁺	2.958 (285.6)	1.8	1,598–1,873 (0.85)	ъ	pc 4N	¹⁹³ Pt, ¹⁹⁵ Pt, ¹⁹⁷ Pt (neutron irradiated pure Pt); serial		⁺ Present approximation		86.01	Kidson (1957) [86.01]
Pt	0.22	2.89 (279.0)	1.6	1,523–1,998 (0.86)	10	pc (>1 mm) EN	sectioning ¹⁹⁵ Pt, electroplated; absorption				86.01	Cattaneo (1962) [86.02]
Pt	0.05 0.06 ²¹ (0.6–6) ²¹	2.67 (257.8) 2.690 ²¹ (3.78– 3.378–		850–1,265 (0.52)	6	sc 84N	¹⁹⁷ Pt, sputter deposition ^x , IBS	IIA	*Simultaneous diffusion of Pt and Au; two-exponential fit to the data of [86.01–86.03]	Au in Pt	86.01	Rein (1978) [86.03]
Pt	0.034^{21} 88.6^{21}	4.02) (365–388) 2.64 ²¹ (254.9) 4.05 ²¹ (391.0)	1.9	(850–1,998)	(24)				Two-exponential fit to the data of [86.01– 86.03]		86.01	Neumann (1986) [86.04]

Table	8.6 (Conti	(pənu										
(L)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(01)	(11)	(12)
×	D ⁰ (10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (kJ mole ⁻¹)	$D(T_m)$ (10^{-12} m ² s ⁻¹)	au-range (K) $(ilde{T}/ au)$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Impi Ag	urity diffusion 0.13*	2.673* (258.1)	3.3	1,473–1,873 (0.82)	ĸ	pc (1.5 mm)	Ag; EPMA, Pt/Pt (4.3% Ag)	1 example (probability	$^{*}\widetilde{D}$ valid for 2.15 at % Ag	Al, Fe in Pt	I	Bergner (1978) [86.05]
Al	$1.3\cdot 10^{-3*}$	2.005* (193.6)		1,373–1,873 (0.79)	4	pc (1.5 mm)	Al; EPMA, Pt/Pt (7% Al)	1 example (probability	$^{*}\!\widetilde{D}$ valid for 3.5 at % Al	Ag, Fe in Pt	I	Bergner (1978) [86.05]
Чи	(0.13) 0.15^+	2.61 (252.0)		850-1,265 (0.52)	6	sc 4N	¹⁹⁹ Au, sputter deposition [*] , IBS	Gord	^x Simultaneous diffusion of Au and Pt; ⁺ Present	Pt in Pt	86.02	Rein (1978) [86.03]
									approximation disregarding D(1,080 K)			
C	I	I		1,023–1,323	26 (7T)	pc ($\sim 0.5 \text{ mm}$)	⁵⁷ Co, electroplated; absorption		Considerable gb contributions		I	Kučera (1968) [86.06]
	(19.6)	(3.218) (310.7)		1,173-1,323 (0.61)	12 (4T)	3N 4N						
Не	0.025*	2.521* (243.4)		1,373–1,673 (0.75)	4	pc (1.5 mm) 4N	Fe; EPMA, Pt/Pt (6.8% Fe)	1 example (probability plot)	* \widetilde{D} valid for 3.4 at % Fe	Ag, Al in Pt	1	Bergner (1978) [86.05]

Fig. 81.01 (A) Self-diffusion in iron. ×, Buffington [81.01]; ◆, Graham [81.03]; ◇, James [81.04]; △, Walter [81.05]; ▲, Heumann [81.08]; ▼, Borg [81.10]; +, Angers [81.12]; ●, Hettich [81.13]; ∇, Geise [81.14]; ○, Iijima [81.15]; □ and ■, Lübbehusen [81.16]; *, Ivantsov [81.07]. For fitting lines, see detail figures. (B) (Detail). Self-diffusion in δ- and γ-iron. ×, Buffington [81.01]; ◆, Graham [81.03]; ◇, James [81.04]; △, Walter [81.05]; ▲, Heumann [81.08]; *, Ivantsov [81.07]. For fitting line for δ-iron using D^0 =6.6 × 10⁻⁴ m²s⁻¹, Q=2.676 eV. Fitting line for γ-iron according to [81.08]. (C) (Detail). Self-diffusion in α_p -iron. Discrepancy between macrosectioning and sputtering data. Macrosectioning: △, Walter [81.05]; ▼, Borg [81.10]; ∇, Geise [81.14]; □, Lübbehusen [81.16]; sputtering: ■, Lübbehusen [81.16]; ○, Iijima [81.15]. Fitting line for macrosectioning data according to [81.04]; ∧, Walter [81.05]; ▼, Borg [81.10]; ∇, Geise [81.14]; □, Lübbehusen [81.16]; ∞, Walter [81.05]; ▼, Borg [81.12]; ●, Hettich [81.13]; ∇, Geise [81.14]; ○, Iijima [81.15]; □ and ■, Lübbehusen [81.16]. Fitting line for α_{r^-} plus α_p -iron according to [81.14]; ○, Iijima [81.15]; □ and ■, Lübbehusen [81.16]. Fitting line for α_{r^-} plus α_p -iron according to [81.14]; ○, Iijima [81.15]; □ and ■, Lübbehusen [81.16]. Fitting line for α_{r^-} plus α_p -iron according to [81.14]; ○, Iijima [81.15]; □ and ■, Lübbehusen [81.16]. Fitting line for α_{r^-} plus α_p -iron according to [81.14].

Fig. 81.01 (Continued)

Fig. 81.02 Impurity diffusion in iron. Al in γ - and α -Fe: \diamond , Akimova [81.19]; \bigcirc , Bergner [81.20]. Fitting line for γ -iron according to [81.20]. Tentative fitting line for α -Fe using D_p^0 =14 × 10⁻⁴ m² s⁻¹, Q_p =2.58 eV, α =0.16. As in γ - and α -Fe: \Box , Božić [81.21]; Δ , Pérez [81.22].

Fig. 81.03 Impurity diffusion in iron. Au in γ -Fe: \Box , Yamazaki [81.23]; Au in α -Fe: \bigcirc , Borg [81.24]; Be in γ -Fe: Δ , Grigoryev [81.25].

Fig. 81.04 (A) Impurity diffusion in iron. Co in δ -Fe: \Box , Borg [81.02]; \bigcirc , James [81.04]. Fitting line using $D^0=23.4 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}$, Q=2.869 eV; Co in γ -Fe: Δ , Suzuoka [81.26]; ∇ , Badia [81.27]. Fitting line using $D^0=1.12 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}$, Q=3.127 eV. Co in α -Fe: \Box , Borg [81.24]; \diamondsuit , Mehrer [81.29]; \bullet , Iijima [81.31]. Fitting line: for α_p -Fe according to [81.24], for α_r -Fe according to [81.31]. (B) (Detail) Impurity diffusion in δ and γ -iron; Co in δ -Fe: \Box , Borg [81.02]; \bigcirc , James [81.04]. Fitting line using $D^0=23.4 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}$, Q=2.869 eV. Co in γ -Fe: Δ , Suzuoka [81.26]; ∇ , Badia [81.27]. Fitting line using $D^0=1.12 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}$, Q=3.127 eV. The fitting lines of Co and Fe in δ -Fe nearly coincide. (C) (Detail) Impurity diffusion in α -iron. Co in α -Fe: \Box , Borg [81.24]; \diamondsuit , Mehrer [81.29]; \bullet , Iijima [81.31]. Fitting line: for α_p -Fe according to [81.24], for α_r -Fe according to [81.24]; \diamondsuit , Mehrer [81.29]; \bullet , Iijima [81.31]. Fitting line: for α_p -Fe according to [81.24], for α_r -Fe according to [81.24]; \diamondsuit , Mehrer [81.29]; \bullet , Iijima [81.31]. Fitting line: for α_p -Fe according to [81.24], for α_r -Fe according to [81.31].

Fig. 81.04 (Continued)

Fig. 81.05 Impurity diffusion in α -iron. Cr in α -Fe: \Box , Lee [81.35]; fitting line for α_p -Fe according to [81.35]; for α_f -Fe according to Eq. (02.19); Sb in α -Fe: \bigcirc , Bruggeman [81.65]; \blacksquare , Nishida [81.66]; \bullet , Myers [81.67]; Δ , Schröder [81.68]; ∇ , Pérez [81.69]. Fitting line for α_p -Fe using D^0 =220 × 10⁻⁴ m² s⁻¹, Q=2.76 eV, for α_f -Fe according to [81.69].

Fig. 81.06 Impurity diffusion in iron. Cu in γ -Fe: \Box , Speich [81.36]; \bigcirc , Rothman [81.37]; Δ , Tsuji [81.38]; ∇ , Salje [81.39]. Fitting line using $D^0=0.21 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}$, Q=2.823 eV. Cu in α -Fe: \Box , Speich [81.36]; \bigcirc , Rothman [81.37]; \diamondsuit , Lazarev [81.41]; ∇ , Salje [81.39]. Fitting line using D_p^0 =54 × 10⁻⁴ m² s⁻¹, Q=2.778 eV, $\alpha=0.09$; Zn in γ -Fe: \bullet , Budurov [81.83]; Zn in α -Fe: \blacksquare , Richter [81.84]; fitting line according to [81.84] with $\alpha=0.11$.

Fig. 81.07 Impurity diffusion in iron. Mn in δ -Fe: \Box , Kirkaldy [81.43]; Mn in γ -Fe: Δ , Nohara [81.44]; Mn in α -Fe: \Box , Kirkaldy [81.43]; \bigcirc , Lübbehusen [81.45]. Fitting line using D^0 =0.73 \times 10⁻⁴ m² s⁻¹, Q=2.326 eV, α =0.013.

Fig. 81.08 Impurity diffusion in iron. Mo in γ -Fe: \Box , Nohara [81.46]; Mo in α -Fe: \bigcirc , Nitta [81.47].

Fig. 81.09 Impurity diffusion in iron. Nb in γ -Fe: \Box , Sparke [81.42]; Δ , Kurokawa [81.48]; \bigcirc , Geise [81.49]. Fitting line according to [81.49]. Nb in α -Fe: (microsectioning) \diamondsuit , Oono [81.51]. Fitting line according to Eq. (02.19) with α =0.061 [81.51]; (macrosectioning) \blacksquare , Herzig [81.50]. Fitting line according to [81.50] with α =0.1. For Fe in α_p -Fe the fitting lines for macrosectioning and sputter data are shown.

Fig. 81.10 (A) Impurity diffusion in iron. Ni in δ -Fe: \Box , Moharil [81.52]; Ni in γ -Fe: Δ , McEwan [81.53]; ∇ , Badia [81.27]. Fitting line according to [81.27]; Ni in α -Fe: \bigcirc , Hirano [81.54]; \blacksquare , Borg [81.24]; \diamondsuit , Čermák [81.55]. Fitting line: fit to α -Fe and δ -Fe to according to Eq. (02.19) using D^0 =2.3 × 10⁻⁴ m² s⁻¹, Q=2.5 eV and α =0.12. (B) (Detail) Impurity diffusion in α -iron. Ni in α -Fe: \bigcirc , Hirano [81.54]; \blacksquare , Borg [81.24]; \diamondsuit , Čermák [81.55]. Fitting line: fit to α -Fe and δ -Fe according to Eq. (02.19) using D^0 =2.3 × 10⁻⁴ m² s⁻¹, Q=2.5 eV and α =0.12.

Fig. 81.11 Impurity diffusion in iron. P in δ - and γ -Fe: \Box , Seibel [81.56, 81.57]; P in α -Fe: \diamond , Matsuyama [81.58]; S in δ - and γ -Fe: \bigcirc , Seibel [81.60, 81.58]; S in γ -Fe: Δ , Wang [81.61]; ∇ , Hoshino [81.62]. Fitting line using D^0 =2.5 × 10⁻⁴m² s⁻¹, Q=2.31 eV. S in α -Fe: Wang [81.61]. Fitting line to α -Fe and δ -Fe: fit using D^0 =1.0 × 10⁻⁴ m² s⁻¹, Q=2.044 eV.

Fig. 81.12 Impurity diffusion in iron. Pd in γ -Fe: \Box , Fillon [81.09]; Pt in γ -Fe: \bigcirc , Million [81.59].

Fig. 81.13 Impurity diffusion in iron. Si in γ -Fe: \blacksquare , Bergner [81.71]; Sn in γ -Fe: \Box , Kimura [81.72]; Sn in α -Fe: Δ , Treheux [81.73]; ∇ , Hennesen [81.75]; \bigcirc , Torres [81.76]. Fitting line for α -Fe according to [81.76].

Fig. 81.14 Impurity diffusion in iron. Ti in α -Fe: \Box , Klugkist [81.78]. W in α -Fe: Δ , Kučera [81.81]; ∇ , Alberry [81.34]; \bigcirc , Takemoto [81.82]. Fitting line according to [81.83] with α =0.078.

Fig. 81.15 Impurity diffusion in iron. V in γ - and α -Fe: \Box , Geise [81.14].

Fig. 82.01 Self-diffusion in cobalt. ●, Nix [82.01]; ○, (lathe sectioning) and □, (sputter sectioning) Bussmann [82.02]; ∇ , (lathe sectioning) and Δ , (sputter sectioning) Lee [82.03]. Fitting line: two-exponential fit according to Neumann [82.04], using the average parameter set D_1^{0} =0.3 × 10⁻⁴ m² s⁻¹, Q_1 =2.943 eV, D_2^{0} =150 × 10⁻⁴ m² s⁻¹, Q_2 =3.82 eV, $D(T_m)$ =3.1 × 10⁻¹³ m² s⁻¹.

Fig. 82.02 Impurity diffusion in cobalt. Fe in Co: \Box , Mead [82.06]; \bigcirc , Badia [82.07]. Fitting line according to [82.06]; Ni in Co: Δ , Badia [82.07].

Fig. 82.03 Impurity diffusion in cobalt. V in Co: \Box , Kučera [82.12]. Fitting line: eye-fit using D^0 =1.0 × 10⁻⁴ m² s⁻¹, Q=2.90 eV. W in Co: \bigcirc , Růžičková [82.13]. Fitting line: eye-fit using D^0 =6.6 × 10⁻⁴ m² s⁻¹, Q=3.32 eV.

Fig. 83.01 Self-diffusion in iridium.

, Arkhipova [83.01].

Fig. 83.02 Impurity diffusion in iridium. Au in Ir: □, Ermakov [83.02]; Co in Ir: ○, Ermakov [83.03].

Fig. 84.01 (A) Self-diffusion in nickel. \Box , Bakker [84.09]; \bigcirc , Maier [84.10]; \triangle , Vladimirov [84.11]. Fitting line: two-exponential fit according to Neumann [84.12]. (B) Detail. Self-diffusion in nickel; \Box , Bakker [84.09]; \triangle , Vladimirov [84.11]. Fitting line: two-exponential fit according to Neumann [84.12].

Fig. 84.02 Impurity diffusion in nickel. Ag in Ni: \Box , Vladimirov [84.14]; Cu in Ni: \bigcirc , Anand [84.29]; Δ , Taguchi [84.31]. Fitting line according to [84.31].

Fig. 84.03 Impurity diffusion in nickel. Al in Ni: \Box , Swalin [84.15]; \diamond , Gust [84.16]; fitting line according to [84.16]; In in Ni: Δ , Vladimirov [84.36]; ∇ , Gust [84.37]; \bigcirc , Takahashi [84.34]. Fitting line: two-exponential fit according to Neumann [84.38].

Fig. 84.04 Impurity diffusion in nickel. As in Ni: \Box , Vladimirov [84.17]; Fe in Ni: \bigcirc , Badia [84.24]; Δ , Bakker [84.32]. Fitting line according to [84.32].

Fig. 84.05 Impurity diffusion in nickel. Co in Ni: \Box , Vladimirov [84.11]; \bigcirc , Jung [84.26]; \blacktriangle , McCoy [84.22]. Fitting line using $D^0=2.26 \times 10^{-5} \text{ m}^2 \text{ s}^{-1}$, Q=2.937 eV. Ir in Ni: \diamondsuit , Karunaratse [84.39]; Pt in Ni: \triangle , Minamino [84.41]; ∇ , Karunaratse [84.39]. Fitting line according to [84.41].

Fig. 84.06 Impurity diffusion in nickel. Cr in Ni: \Box , Jung [84.26]; Mo in Ni: \bigcirc , Minamino [84.41]; \diamondsuit , Karunaratse [84.42]. Fitting line according to [84.41]. W in Ni: \triangle , Vladimirov [84.11]; ∇ , Takahashi [84.34]. Fitting line according to [84.11].

Fig. 84.07 Impurity diffusion in nickel. Ge in Ni: \Box , Mantl [84.33]; \bigcirc , Takahashi [84.34]. Fitting line using D^0 =2.7 × 10⁻⁴ m² s⁻¹, Q=2.68 eV. Sn in Ni: Δ , Vladimirov [84.50].

Fig. 84.08 Impurity diffusion in nickel. Hf in Ni: \Box , Bergner [84.35]; Ti in Ni: Δ , Swalin [84.15]; ∇ , Bergner [84.43]; \bigcirc , Jung [84.26]. Fitting line according to [84.26].

Fig. 84.09 Impurity diffusion in nickel. Mn in Ni: □, Swalin [84.15]; Sb in Ni: ○, Vladimirov [84.48].

Fig. 84.10 Impurity diffusion in nickel. Nb in Ni: \Box , Bergner [84.43]; \bigcirc , Karunaratse [84.42]. Fitting line according to [84.42]; Ta in Ni: Δ , Bergner [84.43]; ∇ , Karunaratse [84.45]. Fitting line using $D^0=0.3 \times 10^{-4} \times m^2 \times s^{-1}$, Q=2.64 eV.

Fig. 84.11 Impurity diffusion in nickel. Pd in Ni: \Box , Karunaratse [84.39]; Rh in Ni: \bigcirc , Karunaratse [84.39]; Ru in Ni: Δ , Karunaratse [84.39].

Fig. 84.12 Impurity diffusion in nickel. S in Ni: \Box , Vladimirov [84.46]; \bigcirc , Arbuzov [84.47]. Fitting line according to [84.46]. Te in Ni: Δ , Neuhaus [84.51].

Fig. 85.01 Self-diffusion and impurity diffusion in palladium. Pd in Pd: \Box , Peterson [85.01]; Fe in Pd: \bigcirc , Fillon [85.02].

Fig. 86.01 Self-diffusion in platinum. \Box , Kidson [86.01]; \bigcirc , Cattaneo [86.02]; Δ , Rein [86.03]. Fitting line: two-exponential fit according to Neumann [86.04].

Fig. 86.02 Impurity diffusion in platinum. Au in Pt:

, Rein [86.03].

REFERENCES

References to Chapter 8.0

- [80.01] J. Kučera, Czech. J. Phys. B 29 (1979) 797.
- [80.02] F. Dyment, S. Balart, C. Lugo, R.A. Pérez, N. Di Lalla, M.J. Iribarren, Defect and Diffusion Forum 237–240 (2005) 402.
- [80.03] V.I. Shalayev, I.B. Trachenko, V.A. Pavlov, N.I. Timofeyev, A.V. Guchshina, Fiz. Met. Metalloved. 29 (1970) 1061; Phys. Met. Metallogr. 29 (5) (1970) 170 (English transl.).

References to Chapter 8.1

- [81.01] F.S. Buffington, K. Hirano, M. Cohen, Acta Metall. 9 (1961) 434.
- [81.02] R.J. Borg, D.Y.F. Lai, O.H. Krikorian, Acta Metall. 11 (1963) 867.
- [81.03] D. Graham, D.H. Tomlin, Phil. Mag. 8 (1963) 1581.
- [81.04] D.W. James, G.M. Leak, Phil. Mag. 14 (1966) 701.
- [81.05] C.M. Walter, N.L. Peterson, Phys. Rev. 178 (1969) 922.
- [81.06] D. Graham, J. Appl. Phys. 40 (1969) 2386.
- [81.07] I.G. Ivantsov, A.M. Blinkin, Fiz. Met. Metalloved. 22 (1966) 876; Phys. Met. Metallogr. 22 (6) (1966) 68 (English transl.).
- [81.08] Th. Heumann, R. Imm, J. Phys. Chem. Sol. 29 (1968) 1613.
- [81.09] J. Fillon, D. Calais, J. Phys. Chem. Sol. 38 (1977) 81.
- [81.10] R.J. Borg, C.E. Birchenall, Trans. AIME 218 (1960) 980.
- [81.11] V.M. Amonenko, A.M. Blinkin, I.G. Ivantsov, Fiz. Met. Metalloved. 17 (1964) 56; Phys. Met. Metallogr. 17 (1) (1964) 54 (English transl.).
- [81.12] R. Angers, F. Claisse, Can. Metall. Quart. 7 (2), (1968) 73.
- [81.13] G. Hettich, H. Mehrer, K. Maier, Scr. Metall. 11 (1977) 795.
- [81.14] J. Geise, Ch. Herzig, Z. Metallk. 78 (1987) 291.
- [81.15] Y. Iijima, K. Kimura, K. Hirano, Acta Metall 36 (1988) 2811.
- [81.16] M. Lübbehusen, H. Mehrer, Acta Metall. Mater. 38 (1990) 283.
- [81.17] A. Bondy, V. Lévy, C.R. Acad. Sci. Paris 272C (1971) 19.
- [81.18] T. Eguchi, Y. Iijima, K. Hirano, Crystal Latt. Defects 4 (1973) 265.
- [81.19] I.A. Akimova, V.M. Mironov, A.V. Pokoyev, Fiz. Met. Metalloved. 56 (1983) 1225; Phys. Met. Metallogr. 56 (6) (1983) 175 (English transl.).
- [81.20] D. Bergner, Y. Khaddour, Defect and Diffusion Forum 95–98 (1993) 709.
- [81.21] B.I. Božić, R.J. Lučić, J. Mater. Sci. 11 (1976) 887.
- [81.22] R.A. Pérez, D.N. Torres, F. Dyment, M. Weissman, Defect and Diffusion Forum 237–240 (2005) 462.
- [81.23] Y. Yamazaki, Y. Iijima, M. Okada, Acta Mater. 52 (2004) 1247; Defect and Diffusion Forum 233-234 (2004) 115
- [81.24] R.J. Borg, D.Y.F. Lai, Acta Metall. 11 (1963) 861.
- [81.25] G.V. Grigoryev, L.V. Pavlinov, Fiz. Met. Metalloved. 25 (1968) 836; Phys. Met. Metallogr. 25 (5) (1968) 79 (English transl.).
- [81.26] T. Suzuoka, Trans. Jpn. Inst. Metals 2 (1961) 176.
- [81.27] M. Badia, A. Vignes, Acta Metall. 17 (1969) 177.
- [81.28] K. Sato, Trans. Jpn. Inst. Metals 5 (1964) 91.
- [81.29] H. Mehrer, D. Höpfel, G. Hettich, in: DIMETA 82, Diffusion in Metals and Alloys, Eds. F.J. Kedves, D.L. Beke, Trans. Tech. Publ., Switzerland (1983), p. 360.
- [81.30] J. Kučera, L. Kozak, H. Mehrer, Phys. Stat. Sol. (a) 81 (1984) 497.
- [81.31] Y. Iijima, K. Kimura, C.G. Lee, K. Hirano, Mater. Trans. Jpn. Inst. Metals 34 (1993) 20.
- [81.32] A.W. Bowen, G.M. Leak, Metall. Trans. 1 (1970) 1695.
- [81.33] A.M. Huntz, M. Aucouturier, P. Lacombe, C.R. Acad. Sci. Paris 265C (1967) 554.

- [81.34] P.J. Alberry, C.W. Haworth, Met. Sci. 8 (1974) 407.
- [81.35] C.G. Lee, Y. Iijima, T. Hiratani, K. Hirano, Mater. Trans. Jpn. Inst. Metals 31 (1990) 255.
- [81.36] G.R. Speich, J.A. Gula, R.M. Fisher, in: *The Electron Microprobe*, Eds. T.D. McKinley, K.F. Heinrich, D.B. Wittry, Wiley, New York (1966), p. 525.
- [81.37] S.J. Rothman, N.L. Peterson, C.M. Walter, L.J. Nowicki, J. Appl. Phys. 39 (1968) 5041.
- [81.38] S. Tsuji, K. Yamanaka, J. Jpn. Inst. Metals 38 (1974) 415.
- [81.39] G. Salje, M. Feller-Kniepmeier, J. Appl. Phys. 48 (1977) 1833.
- [81.40] K. Majima, H. Mitani, J. Jpn. Inst. Metals 41 (1977) 1207; Trans. Jpn. Inst. Metals 19 (1978) 663.
- [81.41] V.A. Lazarev, V.M. Golikov, Fiz. Met. Metalloved. 29 (1970) 598; Phys. Met. Metallogr. 29 (3) (1970) 154 (English transl.).
- [81.42] B. Sparke, D.W. James, G.M. Leak, J. Iron Steel Inst. 203 (1965) 152.
- [81.43] J.S. Kirkaldy, P.N. Smith, R.C. Sharma, Metall. Trans. 4 (1973) 624.
- [81.44] K. Nohara, K. Hirano, Trans. Iron Steel Inst. Jpn. (Suppl.) 11 (1971) 1267.
- [81.45] M. Lübbehusen, Diploma work, Univ. Münster (1984), unpublished; from Ref. [81.78].
- [81.46] K. Nohara, K. Hirano, J. Jpn. Inst. Metals 40 (1976) 1053.
- [81.47] H. Nitta, Y. Yamamoto, R. Kanno, K. Takasawa, T. Iida, Y. Yamazaki, S. Ogu, Y. Iijima, Acta Mater. 50 (2002) 4117.
- [81.48] S. Kurokawa, J.E. Ruzzante, A.M. Hey, F. Dyment, Met. Sci. 17 (1983) 433.
- [81.49] J. Geise, Ch. Herzig, Z. Metallk. 76 (1985) 622.
- [81.50] Ch. Herzig, J. Geise, S.V. Divinski, Z. Metallk. 93 (2002) 1180.
- [81.51] N. Oono, H. Nitta, Y. Iijima, Mater. Trans. Jpn. Inst. Metals 44 (2003) 2078.
- [81.52] D.B. Moharil, I. Jin, G.R. Purdy, Metall. Trans. 5 (1974) 59.
- [81.53] J.R. MacEwan, J.U. MacEwan, L. Yaffe, Can. J. Chem. 37 (1959) 1629.
- [81.54] K. Hirano, M. Cohen, B.L. Averbach, Acta Metall. 9 (1961) 440.
- [81.55] J. Čermák, M. Lübbehusen, H. Mehrer, Z. Metallk. 80 (1989) 213.
- [81.56] G. Seibel, C.R. Acad. Sci. Paris 256 (1963) 4661.
- [81.57] G. Seibel, Mém. Sci. Rev. Métall. 61 (1964) 413.
- [81.58] T. Matsuyama, H. Hosokawa, H. Suto, Trans. Jpn. Inst. Metals 24 (1983) 594.
- [81.59] B. Million, J. Kučera, Kovové Mater. 11 (1973) 300.
- [81.60] G. Seibel, C.R. Acad. Sci. Paris 255 (1962) 3182.
- [81.61] S.J. Wang, H.J. Grabke, Z. Metallk. 61 (1970) 597.
- [81.62] A. Hoshino, T. Araki, Trans. Natl. Res. Inst. Metals 13 (1971) 99.
- [81.63] P.L. Gruzin, V.V. Mural, A.P. Fokin, Fiz. Met. Metalloved. 34 (1972) 1326; Phys. Met. Metallogr. 34 (6) (1972) 209 (English transl.).
- [81.64] W. Arabczyk, M. Militzer, H.J. Müssig, J. Wieting, Scr. Metall. 20 (1986) 1549.
- [81.65] G.A. Bruggeman, J.A. Roberts, Metall. Trans. 6A (1975) 755.
- [81.66] K. Nishida, H. Murohashi, T. Yamamoto, J. Jpn. Inst. Metals 41 (1977) 1101.
- [81.67] S.M. Myers, H.J. Rack, J. Appl. Phys. 49 (1978) 3246.
- [81.68] A. Schröder, M. Feller-Kniepmeier, Phys. Stat. Sol. (a) 110 (1988) 107.
- [81.69] R.A. Pérez, D.N. Torres, F. Dyment, Appl. Phys. A 81 (2005) 787.
- [81.70] M. Foucault-Villard, P. Benaben, J. Le Coze, C.R. Acad. Sci. Paris 291C (1980) 169.
- [81.71] D. Bergner, Y. Khaddour, S. Lörx, Defect and Diffusion Forum 66-69 (1989) 1407.
- [81.72] K. Kimura, Y. Iijima, K. Hirano, Trans. Jpn. Inst. Metals 27 (1986) 1.
- [81.73] D. Treheux, D. Marchive, J. Delagrange, P. Guiraldenq, C. R. Acad. Sci. Paris 274C (1972) 1260.
- [81.74] S.M. Myers, in: Nontraditional Methods in Diffusion, Eds. G.E. Murch, H.K. Birnbaum, J.R. Cost, Metall. Soc. AIME, Warrendale (1984), p. 137.
- [81.75] K. Hennesen, H. Keller, H. Viefhaus, Scr. Metall. 18 (1984) 1319.
- [81.76] D.N. Torres, R.A. Pérez, F. Dyment, Acta Mater. 48 (2000) 2925.
- [81.77] O.A. Shaikh, Mater. Sci. Technol. 6 (1990) 1177.
- [81.78] P. Klugkist, Ch. Herzig, Phys. Stat. Sol. (a) 148 (1995) 413.
- [81.79] F. de Keroulas, J. Mory, Y. Quéré, J. Nucl. Mater. 22 (1967) 276.
- [81.80] J. Růžičková, B. Million, J. Kučera, Kovové Mater. 19 (1981) 3.

[81.81] J. Kučera, B. Million, K. Ciha, Kovové Mater. 7 (1969) 97.

- [81.82] S. Takemoto, H. Nitta, Y. Iijima, Y. Yamazaki, Phil. Mag. 87 (2007) 1619.
- [81.83] S. Budurov, P. Kovatchev, Z. Kamenova, Z. Metallk. 64 (1973) 652.
- [81.84] I. Richter, M. Feller-Kniepmeier, Phys. Stat. Sol. (a) 68 (1981) 289.

Further Investigations

γ-iron

- Fe [81.85] P.L. Gruzin, Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk (3) (1953) 383.
- Fe [81.86] A.A. Zhukhovitskii, V.A. Geodakyan, Zh. Fiz. Khim. 29 (1955) 1334.
- Fe see Ref. [81.03].
- Fe see Ref. [81.42].
- Fe [81.87] A. Heiming, K.H. Steinmetz, G. Vogl, Y. Yoshida, J. Phys. F: Metal Phys. 18 (1988) 1491; QMS.
- Al [81.88] J. Hirvonen, J. Räisänen, J. Appl. Phys. 53 (1982) 3314; NRA.
- Al [81.89] O. Taguchi, M. Hagiwara, Y. Yamazaki, Y. Iijima, Defect and Diffusion Forum **194–199** (2001) 91; absorptiometry.
- Co [81.90] K. Hirano, M. Cohen, Trans. Jpn. Inst. Metals 13 (1972) 96.
- Cr see Ref. [81.34].
- Cr [81.91] A.M. Huntz, P. Guiraldenq, M. Aucouturier, P. Lacombe, Mém. Sci. Rev. Mét. 66 (1969) 85. Cu see Ref. [81.89].
- Mo see Ref. [81.34].
- Nb see Ref. [81.77].
- Ni see Ref. [81.54].
- $\begin{array}{cccc} \text{INI} & \text{See KeI. [01.04].} \\ \text{NI: [01.02] II Caldatain DE II} \end{array}$
- Ni [81.92] J.I. Goldstein, R.E. Hanneman, R.E. Ogilvie, Trans. AIME 233 (1965) 812.
 Ni [81.93] Y. Hanatate, K. Majima, H. Mitani, J. Jpn. Inst. Metals 41 (1977) 1211; Trans. Jpn. Inst. Metals 19 (1978) 669.
- P [81.94] P.L. Gruzin, V.V. Minal, Fiz. Met. Metalloved. **16** (1963) 551; Phys. Met. Metallogr. **16** (4) (1963) 50 (English transl.).
- S [81.95] N.G. Ainslie, A.U. Seyboldt, J. Iron Steel Inst. 194 (1960) 341.
- S [81.96] V.V. Mural, A.P. Fokin, Metalloved. Termichesk. Obrab. Met. (6) (1978) 67.

α-iron

- Fe see Ref. [81.01].
- Fe see Ref. [81.03].
- Fe see Ref. [81.04].
- Fe see Ref. [81.06].
- Fe [81.97] J. Kučera, B. Million, J. Růičkov, V. Foldyna, A. Jakobová, Acta Metall. 22 (1974) 135.
- Co [81.98] K. Hirano, Y. Iijima, Defect and Diffusion Forum **66–69** (1989) 1039; precursor to Ref. [81.31].
- Cr see Ref. [81.98]; precursor to Ref. [81.35].
- Cr [81.99] R. Braun, M. Feller-Kniepmeier, Phys. Stat. Sol. (a) 90 (1985) 553; EPMA.
- Cu [81.100] C.G. Lee, J.H. Lee, B.S. Lee, Y.I. Lee, T. Shimozaki, T. Okina, Defect and Diffusion Forum 237–240 (2005) 266; Laser induced break-down spectroscopy.
- Mn [81.101] V. Irmer, M. Feller-Kniepmeier, J. Phys. Chem. Sol. 33 (1972) 2141.
- Mo see Ref. [81.34].
- P see Ref. [81.94].
- P [81.102] P.L. Gruzin, V.V. Mural, A.P. Fokin, Fiz. Met. Metalloved. 17 (1964) 384.
- Sb [81.103] R.A. Pérez, D.N. Torres, M. Weissman, F. Dyment, Defect and Diffusion Forum **194–199** (2001) 97; precursor to [81.69].
- V see Ref. [81.81].

References to Chapter 8.2

[82.01] F.C. Nix, F.E. Jaumot, Phys. Rev. 82 (1951) 72.

[82.02] W. Bussmann, Ch. Herzig, W. Rempp, K. Maier, H. Mehrer, Phys. Stat. Sol. (a) 56 (1979) 87.

- [82.03] C.G. Lee, Y. Iijima, K. Hirano, Defect and Diffusion Forum 95-98 (1993) 723.
- [82.04] G. Neumann, V. Tölle, C. Tuijn, Physica B 304 (2001) 298.
- [82.05] A. Davin, V. Leroy, D. Coutsouradis, L. Habraken, Kobalt 19 (1963) 51; Mém. Sci. Rev. Métall. 60 (1963) 275.
- [82.06] H.W. Mead, C.E. Birchenall, Trans. AIME 203 (1955) 994.
- [82.07] M. Badia, A. Vignes, Acta Metall. 17 (1969) 177; see also Ref. [82.21].
- [82.08] Y. Iijima, K. Hirano, O. Taguchi, Phil. Mag. 35 (1977) 229.
- [82.09] J.R. MacEwan, J.U. MacEwan, L. Yaffe, Can. J. Chem. 37 (1959) 1629.
- [82.10] B. Million, J. Kučera, Kovové Mater. 4 (1973) 300.
- [82.11] M.M. Pavlyuchenko, I.F. Kononyuk, Dokl. Akad. Nauk Belorussk. SSR 8 (1964) 157.
- [82.12] J. Kučera, B. Million, J. Růžičková, Phys. Stat. Sol. (a) 96 (1986) 177.
- [82.13] J. Růžičková, B. Million, J. Kučera, Kovové Mater. 19 (1981) 3.
- [82.14] St. Budurov, P. Kovatchev, Z. Kamenova, Z. Metallk. 64 (1973) 377.
- [82.15] A. Bristoti, A.R. Wazzan, Rev. Brasil. Fis. 4 (1974) 1.

Further Investigations

- Co [82.16] R.C. Ruder, C.E. Birchenall, Trans. AIME 191 (1951) 142; absorption.
- Co [82.17] P.L. Gruzin, Dokl. Akad. Nauk 86 (1952) 289.
- Co see Ref. [82.06]
- Co [82.18] S.D. Gertsriken, T.K. Yatsenko, L.F. Slastnikov, Voprosy Fiz. Met. Metalloved. 9 (1959) 154.
- Co [82.19] K. Hirano, R.P. Agarwala, B.L. Averbach, M. Cohen, J. Appl. Phys. 33 (1962) 3049.
- Co [82.20] A. Hässner, W. Lange, Phys. Stat. Sol. 8 (1965) 77.
- Co [82.21] B. Million, J. Kučera, Acta Metall. 17 (1969) 339.
- Co [82.22] M. Badia, Thesis, Univ. Nancy (1969).
- Fe [82.23] M. Aucouturier, M.P.R. de Castro, P. Lacombe, Acta Metall. **13** (1965) 125; see also Kobalt **28** (1965) 1.
- Fe see Ref. [82.14].
- Ni see Ref [82.18].
- Ni see Ref. [82.19].
- Ni [82.24] B. Million, J. Kučera, Czech. J. Phys. B 21 (1971) 161.
- W see [82.05].

References to Chapter 8.3

- [83.01] N.K. Arkhipova, S.M. Klotsman, I.P. Polikarpova, A.N. Timofeyev, O.P. Shepatkovskiy, Fiz. Met. Metalloved. 62 (1986) 1181; Phys. Met. Metallogr. 62 (6) (1986) 127 (English transl.).
- [83.02] A.V. Ermakov, S.M. Klotsman, S.A. Matveyev, G.N. Tatarinova, A.N. Timofeyev, V.K. Rudenko, N.I. Timofeyev, Fiz. Met. Metalloved. 92 (2), (2001) 87; Phys. Met. Metallogr. 92 (2001) 185 (English transl.).
- [83.03] A.V. Ermakov, S.M. Klotsman, S.A. Matveyev, G.N. Tatarinova, A.N. Timofeyev, G.F. Kuzmenko, V.K. Rudenko, N.I. Timofeyev, Fiz. Met. Metalloved. 97 (5), (2004) 82; Phys. Met. Metallogr. 97 (2004) 507 (English transl.).

References to Chapter 8.4

- [84.01] R.E. Hoffman, F.W. Pikus, R.A. Ward, Trans. AIME 206 (1956) 483.
- [84.02] J.E. Reynolds, B.L. Averbach, M. Cohen, Acta Metall. 5 (1957) 29.
- [84.03] J.R. MacEwan, J.U. MacEwan, L. Yaffe, Can. J. Chem. 37 (1959) 1623.
- [84.04] J.R. MacEwan, J.U. MacEwan, L. Yaffe, Can. J. Chem. 37 (1959) 1629.
- [84.05] K. Hirano, M. Cohen, B.L. Averbach, Trans. ASM 53 (1961) 910.
- [84.06] K. Hirano, R.P. Agarwala, B.L. Averbach, M. Cohen, J. Appl. Phys. 33 (1962) 3049.
- [84.07] A.Ya. Shinyayev, Fiz. Met. Metalloved. 15 (1963) 100.
- [84.08] K. Monma, H. Suto, H. Oikawa, J. Jpn. Inst. Metals 28 (1964) 188.

- [84.09] H. Bakker, Phys. Stat. Sol. 28 (1968) 569.
- [84.10] K. Maier, H. Mehrer, E. Lessmann, W. Schüle, Phys. Stat. Sol. (b) 78 (1976) 689.
- [84.11] A.B. Vladimirov, V.N. Kaygorodov, S.M. Klotsman, I.Sh. Trakhtenberg, Fiz. Met. Metalloved. 46 (1978) 1232; Phys. Met. Metallogr. 46 (6) (1978) 94 (English transl.).
- [84.12] G. Neumann, V. Tölle, Phil. Mag. A 54 (1986) 619.
- [84.13] D. Treheux, A. Heurtel, P. Guiraldenq, Acta Metall. 24 (1976) 503.
- [84.14] A.B. Vladimirov, V.N. Kaygorodov, S.M. Klotsman, I.Sh. Trakhtenberg, Fiz. Met. Metalloved. 45 (1978) 1015; Phys. Met. Metallogr. 45 (5) (1978) 100 (English transl.).
- [84.15] R.A. Swalin, A. Martin, Trans. AIME 206 (1956) 567.
- [84.16] W. Gust, M.B. Hintz, A. Lodding, H. Odelius, B. Predel, Phys. Stat. Sol. (a) 64 (1981) 187.
- [84.17] A.B. Vladimirov, S.M. Klotsman, I.Sh. Trakhtenberg, Fiz. Met. Metalloved. 48 (1979) 1113; Phys. Met. Metallogr. 48 (5) (1979) 193 (English transl.).
- [84.18] A.D. Kurtz, B.L. Averbach, M. Cohen, Acta Metall. 3 (1955) 442.
- [84.19] A. Chatterjee, D.J. Fabian, J. Inst. Metals 96 (1968) 186.
- [84.20] G.V. Grigoryev, L.V. Pavlinov, Fiz. Met. Metalloved. 25 (1968) 836; Phys. Met. Metallogr. 25 (5) (1968) 79 (English transl.).
- [84.21] A.R. Paul, R.P. Agarwala, Metall. Trans. 2 (1971) 2691.
- [84.22] H.E. McCoy, J.F. Murdock, Trans. Quart. 56 (1963) 11.
- [84.23] A. Hässner, W. Lange, Phys. Stat. Sol. 8 (1965) 77.
- [84.24] M. Badia, A. Vignes, Acta Metall. 17 (1969) 177.
- [84.25] B. Million, Z. Metallk. 63 (1972) 484.
- [84.26] S.B. Jung, T. Yamane, Y. Minamino, K. Hirao, H. Araki, S. Saji, J. Mater. Sci. Lett. 11 (1992) 1333.
- [84.27] J. Růžičková, B. Million, Mater. Sci. Eng. 50 (1981) 59.
- [84.28] K. Monma, H. Suto, H. Oikawa, J. Jpn. Inst. Metals 28 (1964) 192.
- [84.29] M.S. Anand, S.P. Murarka, R.P. Agarwala, J. Appl. Phys. 36 (1965) 3860.
- [84.30] H. Helfmeier, M. Feller-Kniepmeier, J. Appl. Phys. 41 (1970) 3202.
- [84.31] O. Taguchi, Y. Iijima, K. Hirano, J. Jpn. Inst. Metals 48 (1984) 20.
- [84.32] H. Bakker, J. Backus, F. Waals, Phys. Stat. Sol. (b) 45 (1971) 633.
- [84.33] S. Mantl, S.J. Rothman, L.J. Nowicki, J.L. Lerner, J. Phys. F: Metal Phys. 13 (1983) 1441.
- [84.34] T. Takahashi, Y. Minamino, T. Asada, S.B. Jung, T. Yamane, J. High-Temp. Soc. 22 (1996) 121.
- [84.35] D. Bergner, Kristall und Technik 7 (1972) 651.
- [84.36] A.B. Vladimirov, V.N. Kaygorodov, S.M. Klotsman, I.Sh. Trakhtenberg, Fiz. Met. Metalloved. 45 (1978) 1301; Phys. Met. Metallogr. 45 (6) (1978) 160 (English transl.).
- [84.37] W. Gust, M.B. Hintz, A. Lodding, H. Odelius, B. Predel, Acta Metall. 30 (1982) 75.
- [84.38] G. Neumann, V. Tölle, Phil. Mag. A 57 (1988) 621.
- [84.39] M.S.A. Karunaratse, R.C. Reed, Acta Mater. 51 (2003) 2905.
- [84.40] D. Bergner, A. Meier, Microchim. Acta Suppl. 9 (1981) 99.
- [84.41] Y. Minamino, H. Yoshida, S.B. Jung, K. Hirao, T. Yamane, Defect and Diffusion Forum 143–147 (1997) 257.
- [84.42] M.S.A. Karunaratse, R.C. Reed, Defect and Diffusion Forum 237-240 (2005) 420.
- [84.43] D. Bergner, Habilitation Thesis, Bergakademie Freiberg, Germany (1977).
- [84.44] J.J. Blechet, A. van Craeynest, D. Calais, J. Nucl. Mater. 28 (1968) 177.
- [84.45] M.S.A. Karunaratse, P. Carter, R.C. Reed, Mater. Sci. Eng. A 281 (2000) 229.
- [84.46] A.B. Vladimirov, V.N. Kaygorodov, S.M. Klotsman, I.Sh. Trakhtenberg, Fiz. Met. Metalloved. 39 (1975) 319; Phys. Met. Metallogr. 39 (2) (1975) 82 (English transl.).
- [84.47] V.L. Arbuzov, A.B. Vladimirov, S.Ye. Danilov, S.M. Klotsman, I. Sh. Trakhtenberg, Fiz. Met. Metalloved. 49 (1980) 356; Phys. Met. Metallogr. 49 (2) (1980) 113 (English transl.).
- [84.48] A.B. Vladimirov, V.N. Kaygorodov, S.M. Klotsman, I.Sh. Trakhtenberg, Fiz. Met. Metalloved. 41 (1976) 429; Phys. Met. Metallogr. 41 (2) (1976) 181 (English transl.).
- [84.49] R.A. Swalin, A. Martin, R. Olson, Trans. AIME 209 (1957) 936.
- [84.50] A.B. Vladimirov, V.N. Kaygorodov, S.M. Klotsman, I.Sh. Trakhtenberg, Fiz. Met. Metalloved. 48 (1979) 352, Phys. Met. Metallogr. 48 (2) (1979) 107 (English transl.).
- [84.51] P. Neuhaus, Ch. Herzig, Z. Metallk. 80 (1989) 220.

- [84.52] J.P. Zanghi, A. van Craeynest, D. Calais, J. Nucl. Mater. 39 (1971) 133; Mém. Sci. Rev. Métall. 69 (1972) 73.
- [84.53] S.P. Murarka, M.S. Anand, R.P. Agarwala, Acta Metall. 16 (1968) 69.
- [84.54] K. Monma, H. Suto, H. Oikawa, J. Jpn. Inst. Metals 28 (1964) 197.
- [84.55] T. Yamamoto, T. Takashima, K. Nishida, J. Jpn. Inst. Metals 43 (1979) 1196.

Further Investigations

- Ni [84.56] A. Messner, R. Benson, J.E. Dorn, Trans. ASM 53 (1961) 227; absorption
- Ni [84.57] G.B. Fedorov, V.M. Raetskii, E.A. Smirnov, Met. Metalloved. Chist. Met., Sb. Nauchn. Rabot (3) (1961) 203.
- Ni [84.58] A.R. Wazzan, J.E. Dorn, J. Appl. Phys. 36 (1965) 222; absorption
- Ni see Ref. [84.23].
- Ni [84.59] I.G. Ivantsov, Fiz. Met. Metalloved. 22 (1966) 725; Phys. Met. Metallogr. 22 (5) (1966) 77 (English transl.); absorption.
- Ni [84.60] V.M. Amonenko, I.G. Ivantsov, A.M. Blinkin, Fiz. Met. Metalloved. **27** (1969) 466; Phys. Met. Metallogr. **27** (3) (1969) 83 (English transl.); absorption.
- Ni [84.61] B. Million, J. Kučera, Czech. J. Phys. B 21 (1971) 161.
- Ni [84.62] M.B. Bronfin, G.S. Bulatov, I.A. Drugova, Fiz. Met. Metalloved. **40** (1975) 363; Phys. Met. Metallogr. **40** (2) (1975) 115 (English transl.); absorption
- Ni [84.63] M. Feller-Kniepmeier, H. Helfmeier, Z. Metallk. 67 (1976) 533; absorption.
- Ni [84.64] B. Million, J. Růžičková, J. Velišek, J. Vřeštal, Mater. Sci. Eng. 50 (1981) 43.
- Ag [84.65] D. Treheux, A. Heurtel, P. Guiraldenq, C. R. Acad. Sci. Paris **280C** (1975) 1191; precursor to Ref. [84.13].
- Co see Ref. [84.57].
- Co [84.66] M. Badia, A. Vignes, C. R. Acad. Sci. Paris 264C (1967) 858; precursor to Ref. [84.24].
- Cr [84.67] A. Davin, V. Leroy, D. Coutsouradis, L. Habraken, Kobalt **19** (1963) 51; Mém. Sci. Rev. Métall. **60** (1963) 275.
- Fe [84.68] M. Badia, A. Vignes, C. R. Acad. Sci. Paris 264C (1967) 1528; precursor to Ref. [84.24].
- Fe see Ref. [84.64].
- Mg see Ref. [84.49].
- Mo see Ref. [84.49].
- Mo see Ref. [84.67].
- Mo [84.69] Yu.E. Ugaste, V.N. Pimenov, Fiz. Met. Metalloved. **33** (1972) 1034; Phys. Met. Metallogr. **33** (5) (1972) 125 (English transl.); EPMA.
- Mo [84.70] C.P. Heijwegen, G.D. Rieck, Acta Metall. 22 (1974) 1269; EPMA.
- Nb [84.71] R.V. Patil, G.B. Kale, J. Nucl. Mater. 230 (1996) 57; EPMA.
- Pt [84.72] B. Million, J. Kučera, Kovové Mater. 4 (1973) 300.
- S [84.73] S.J. Wang, H.J. Grabke, Z. Metallk. 61 (1970) 597; Resistivity measurement
- Sn [84.74] D. Marchive, D. Duc, M. Treheux, P. Guiraldenq, C. R. Acad. Sci. Paris **280C** (1975) 25. V see Ref. [84.67].
- W see Ref. [84.15].
- W [84.75] H.W. Allison, G.E. Moore, J. Appl. Phys. 29 (1959) 842.
- W see Ref. [84.67].
- W [84.76] D. Bergner, Microchim. Acta Suppl. 3 (1968) 19; see also Ref. [84.43]; EPMA
- W [84.77] J. Růžičková, B. Million, J. Kučera, Met. Mater. 19 (1981) 3; see also Ref. [84.64]
- W see Ref. [84.45].

References to Chapter 8.5

[85.01] N.L. Peterson, Phys. Rev. 136A (1964) A568.

[85.02] J. Fillon, D. Calais, J. Phys. Chem. Sol. 38 (1977) 81.

References to Chapter 8.6

[86.01] G.V. Kidson, R. Ross, in: Proc. Intern. Conf. in Science and Research, Paris, 1 (1957) p. 185.

- [86.02] F. Cattaneo, E. Germagnoli, F. Grasso, Phil. Mag. 7 (1962) 1373.
- [86.03] G. Rein, H. Mehrer, K. Maier, Phys. Stat. Sol. (a) 45 (1978) 253.
- [86.04] G. Neumann, V. Tölle, Phil. Mag. A 54 (1986) 619.
- [86.05] D. Bergner, K. Schwarz, Neue Hütte 23 (1978) 210.
- [86.06] J. Kučera, T. Zemčik, Can. Metall. Quart. 7 (2), (1968) 83.

Self-Diffusion and Impurity Diffusion in Rare Earth Metals

Contents	Tables	
	9.1. Cerium (Ce)	319
	9.2. Praseodymium (Pr)	321
	9.3. Neodymium (Nd)	324
	Europium (Eu)	324
	Gadolinium (Gd)	324
	Erbium (Er)	325
	Ytterbium (Yb)	325
	Figures	
	Cerium	326
	Praseodymium	327
	Neodymium	329
	Europium	330
	Gadolinium	330
	Erbium	331
	Ytterbium	331
	References	332

For **promethium** (Pm), **samarium** (Sm), **terbium** (Tb), **dysprosium** (Dy), **holmium** (Ho), **thulium** (Tm) and **lutetium**(Lu) no data are available. Only self-diffusion was studied in **europium** (Eu), **gadolinium** (Gd) and **ytterbium** (Yb).

In Table 9.0 lattice structure, lattice constants, melting temperature and phase transition of the rare earths are listed.

Metal	c	le .	I	Pr	١	۱d	Eu	Gd	Er	Y	Ъ
Phase	δ	γ	β	α	β	α		β		γ	α
Structure	bcc	fcc	bcc	dhcp ¹	bcc	dhcp ¹	bcc	bcc	hcp	bcc	hcp
T_{ij} (K)	99	92	1,0	068	1,	145		1,538		99	93
$T_{\rm m}$ (K)	1,0)71	1,2	205	1,2	289	1,099	1,585	1,795	1,0)97
<i>a</i> (nm)	0.419	0.516	0.420	0.363	0.418	0.362	0.461	0.410	0.346	0.547	0.387
<i>c</i> (nm)				1.195		1.192			0.576		0.645
c/a				3.29		3.28			1.67		1.67

Table 9.0 Lattice structure, lattice constants *a* and *c*, phase transition (T_{ij}) and melting temperature T_m

 1 In the double-hcp structure the stacking of the close-packed planes is ABACABAC..., compared to the simple hcp structure with an ABAB... stacking.

Table	9.1 Diffusi	on in ceriun	F								(Referenc	es, see page 332)
(L)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(01)	(11)	(12)
×	D^0 (10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (kJ∕mole)	$D(T_{\rm m})$ (10 ⁻¹² m ² s ⁻¹ ,	T-range (K) $(\overline{T}/T_{\rm m})$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
<i>Self</i> - Ce	diffusion 0.012	0.932 (90.0)	49	992-1,044 (0.95)	6	pc 3N	¹⁴¹ Ce, vapour deposition; lathe	3 examples			91.01	Dariel (1971) [91.01]
	0.55	1.587 (153.2)	1	0-رو 801–965 (0.82)	10 (8T)							
Ce	7×10^{-3}	0.878 (84.7)	52	у-Се 1,018–1,064 (0.97) ठे-Се	Ŋ	pc 3N	¹⁴¹ Ce, vapour deposition; lathe and residual	2 examples			91.01	Languille (1973) [91.02]
Ce	I	I		1,003, 1,028 <i>ô</i> -Ce	2	pc 3N	activity ¹⁴¹ Ce, electroplated; lathe	3 examples at high p		$\Delta V/V_0 < 0$	91.01	Languille (1974) for 021
Ce	I	I		930 γ-Се	1*	pc 3N	¹⁴¹ Ce, electroplated; lathe	No	$^*D(930 \text{ K}) =$ 1.09 × $10^{-13} \text{ m}^2 \text{ s}^{-1}$	$\Delta V/V_0 < 0$	I	[91.03] Marbach (1976) [91.04]
Impi Ag	urity diffusion 0.12	0.963 (93.0)	360	996-1,049 (0.95)	6	pc ∼3N	¹¹⁰ Ag, vapour deposition; lathe	1 example		Au in Ce	91.02	Dariel (1972) [91.05]
	0.025	0.915 (88.3)	I	0-CE 853-968 (0.85)	Ч							
Ag	1.4	1.214 (117.2)	I	у-Се 873–973 (0.86) у-Се	4	pc 2N8	¹¹⁰ Ag, precipitated as hydroxide; absorption and	No		Co, Fe in <i>γ</i> -Ce; electrotransport	I	Cathey (1973) [91.06]
Au	0.095	0.889 (85.8)	620	999–1,047 (0.96) <i></i> Се	6	3N 3N	¹⁹⁸ Au, vapour deposition and electronlated: lathe	3 examples (NSE at lower T		Ag in Ce	91.02	Dariel (1972) [91.05]
	4.4×10^{-3}	0.646 (62.4)	I	824–973 (0.84) γ-Ce	Ч			after vapour deposition)				

Table	9.1 (Continu	(pər										
(1)	(2a)	(2b)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
×	D^0 ($10^{-4} \mathrm{m^2}\mathrm{s^{-1}}$)	Q (eV) and (kJ∕mole)	$D(T_{\rm m})$ (10^{-12} m ² s ⁻¹)	T-range (K) (\overline{T}/T_m)	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Co	0.01	0.477 (46.1)	I	823–923 (0.82) ን-Ce	ε	pc 2N8	⁶⁰ Co, precipitated as hydroxide; absorption and lathe			Ag, Fe in ₇ -Ce; electrotransport	I	Cathey (1973) [91.06]
Co	1.2×10^{-3}	0.347 (33.5)	2,800	(1,003–1,071) (0.97) <i>ô</i> -Ce	22	pc ⁶¹	⁶⁰ Co, electroplated; lathe	No (erfc- solutions)		Gd in ô-Ce	I	Marbach (1976) [91.07]
	1.6×10^{-3}	0.369 (35.6)	I	(800–1,000) (0.84) γ-Ce	52							
Fe	3.3×10^{-4}	0.20 (19.2)	I	700–923 (0.76) γ-Ce	4	pc 2N8	⁵⁹ Fe, precipitated as hydroxide; absorption and lathe			Ag, Co in <i>γ</i> -Ce; electrotransport	I	Cathey (1973) [91.06]
Fe	2.0×10^{-3}	0.33 4 (32.2)	5,400	1,004–1,048 (0.96) ô-Ce	6 ⁵¹	pc 3N	⁵⁹ Fe, vapour deposition*; lathe	2 examples	*Simultaneous diffusion of Fe and Mn	Mn in Ce, Pr, Nd; Fe in Pr, Nd	91.02	Dariel (1975) [91.08]
	0.017	0.516 (49.8)	I	876–993 (0.87) ₇ -Ce	10^{51}							
Gd	0.012	1.041 (100.5)	15	(1,003–1,071) (0.97) ô-Ce	23	pc ⁶¹	¹⁵⁹ Gd, electroplated; lathe	No		Co in Ce	I	Marbach (1976) [91.07]
La	0.038	1.062 (102.6)	38	999–1,045 (0.95) ô-Ce	6 ⁵¹	pc 3N5	¹⁴⁰ La, vapour deposition; lathe	2 examples		La in La	91.02	Dariel (1973) [91.09]
Mn	I	I		1,041 ô-Ce	1 ^{51×}	pc 3N	⁵⁴ Mn, vapour deposition*; lathe	No	*Simultaneous diffusion of Fe	Fe in Ce, Pr, Nd; Mn in Pr, Nd	91.02	Dariel (1975) [91.08]
	$4.5 \times 10^{-4+}$	0.532^+ (51.3)	1	887–975 (0.87) γ-Ce	351				and Mn; *D(1,041 K) = 3.10×10^{-10} $m^2 s^{-1}$			

320

; Table 9.1 /Co

Table	9.2 Diffusio	n in praseoc	dymium								(Referend	ces, see page 332)
(1)	(2a)	(2b)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(II)	(12)
×	D ⁰ (10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (kJ∕mole)	$D(T_m)$ (10 ⁻¹² m ² s ⁻¹)	$ au$ -range (K) $(\overline{T}/ au_{ m m})$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Self-ú Pr	liffusion 0.087 -	1.275 (123.1) -	40	$\begin{array}{c} 1,073-1,198\\ (0.94)\\ \beta^{2}\mathrm{Pr}\\ 1,041,1,064^{*}\\ \alpha^{2}\mathrm{Pr}\end{array}$	6 ⁵¹ 2 ⁵¹	pc 3N6	¹⁴² Pr, vapour deposition; lathe	2 examples	*Data depicted in Ref. [92.02]: D(1,064 K) = 1.7×10^{-13} , D(1,041 K) = $1.2 \times$ $1.0^{-13} \text{ m}^2 \text{ s}^{-1}$	Ho, In, La in Pr	92.01	Dariel (1969) [92.01]
Impu Ag	trity diffusion 0.032	0.932 (90.0)	400	1,082-1,194 (0.95) β -Pr	6 ⁵¹	pc 3N3	¹¹⁰ Ag, vapour deposition; lathe	Several examples		Au, Co in Pr	92.02	Dariel (1969) [92.02]
	0.14	1.102 (106.4)	I	885–1,039 (0.80) ~-Pr	6 ⁵¹							
Au	0.033	0.872 (84.2)	750	0.94) 1,075–1,187 (0.94) B-Pr	5 ⁵¹	pc 3N3	¹⁹⁸ Au, vapour deposition; lathe	No		Ag, Co in Pr	92.02	Dariel (1969) [92.02]
	0.043	0.854 (82.5)	I	873–1,014 (0.78) D	4 ⁵¹							
Au	I	I	I	2-11 1,013, 1,053 2-Pr	4* *	sc ⁶¹	¹⁹⁸ Au, vapour deposition; lathe	All (erfc- solution)			92.02	Dariel (1981) [92.03]
Co	- 0.047	- 0.711	I	1,151, 1,192 β -Pr 845-1,036	2^{51*} 4^{51}	pc 3N3	⁶⁰ Co, vapour deposition; lathe	No	* $D(1,036 \text{ K}) = 5.0 \times 10^{-9}$, D(1,151 K) = D(1,151 K) = 0	Ag, Au in Pr	92.03	Dariel (1969) [92.02]
		(68.7)		(0.78) α-Pr					$4.8 imes 10^{-9} { m m^2 s^{-1}}$			

(L)	(2a)	(2b)	(3)	(4)	(2)	(9)	(7)	(8)	(6)	(10)	(III)	(12)
×	D ⁰ (10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (kJ∕mole)	$D(T_m)$ ($10^{-12} m^2 s^{-1}$)	$ au$ -range (K) $(\overline{T}/{T_{ m m}})$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Си	0.057	0.772 (74.5)	3,400	1,086–1,187 (0.94) 8-D+	8	pc 3N	⁶⁴ Cu, vapour deposition; lathe	4 examples (very flat			92.02	Dariel (1971) [92.04]
	0.084	0.785 (75.8)	I	927–1,059 (0.82) 2. Dz	9			/dd				
Fe	4×10^{-3}	0.451 (43.5)	5,200	2-11 1,084–1,179 (0.94) 8 D.	6 ⁵¹	3N	⁵⁹ Fe, vapour deposition; lathe	1 example		Mn in Ce, Nd, Pr; Fe, Mn in Co Md	92.04	Dariel (1975) [92.05]
	2.1×10^{-3}	0.399 (38.5)	I	p-rr 888–1,057 (0.81)	7 ⁵¹							
Но	$9.5 imes 10^{-3}$	1.141 (110.1)	16	∝-гт 1,084–1,177 (0.94)	9 ⁵¹	pc 3N6	¹⁶⁶ Ho, vapour deposition; lathe	No	$^*D(1,006 \text{ K}) = 4.1 \times$	Pr, In, La in Pr	. 92.05	Dariel (1969) [92.01]
	I	I	Ι	β-Pr 1,006 α-Pr	1^{51*}				$10^{-14} \text{m}^2 \text{s}^{-1}$			

Table 9.2 (Continued)

Dariel (1969) [92.01]	Dariel (1969) [92.01]	Dariel (1975) [92.05]	Dariel (1970) [92.06]
92.05	92.05	92.04	92.03
Pr, Ho, La in Pr	Pr, Ho, In in Pr	: Fe in Ce, Nd; Fe, Mn in Ce, Nd	
$^*D(1,039 \text{ K}) =$ 3.0× $10^{-13} \text{ m}^2 \text{ s}^{-1}$	$D(1,042 \text{ K}) = 1.1 \times 10^{-13} \text{ m}^2 \text{ s}^{-1}$	⁺ Present fit to the depicted data *Simultaneous diffusion of Fe and Mn	
No	2 examples	1 example ^x	4 examples
¹¹⁴ ın, vapour deposition; lathe	¹⁴⁰ La, vapour deposition; lathe	⁵⁴ Mn, vapour deposition ⁵ , lathe	⁶⁵ Zn, vapour deposition; lathe
pc 3N6	pc 3N6	pc 3N	pc 3N7
6 ⁵¹ 1 ⁵¹ *	5 ⁵¹ 1 ⁵¹ *	3 ⁵¹ 2 ⁵¹	e/ &
1,075-1,198 (0.94) β -Pr 1,039 α -Pr	1,081–1,191 (0.94) β -Pr 1,042 α -Pr	1,109–1,165 (0.94) β -Pr 929, 1,001 α -Pr	1,095-1,195 (0.95) β -Pr 876-1,040 (0.80) α -Pr
1 55	39	- 250+	800
1.253 (121.0) -	1.115 (107.6) -	0.366 ⁺ (35.3) 0.771 ⁺ (74.5)	1.171 (113.0) 1.075 (103.8)
0.096	0.018 -	$8.5 \times 10^{-5+}$ $5.1 \times 10^{-3+}$	0.63 0.18
F	à	٨'n	'n

e 332)			(2)		5)													
es, see pag	(12)	Reference	Dariel (197 [93.01]		Dariel (197 [93.01]		Fromont (1977) [93.02]	Fromont (1977) [93.02]										
Referenc	(11)	Figure	93.01		93.01		93.02	93.03										
)	(10)	Also studied	Mn in Nd, Ce, Pr; Fe, Mn in Ce, Pr		e Fe in Nd, Ce, Pr; Fe, Mn	in Ce, Pr	Gd in Gd	Eu in Eu										
	(6)	Further remarks			⁺ Present fit to the depicted data	*Simultaneous diffusion of Fe and Mn	⁺ Present approximation	⁺ Present approximation										
	(8)	Remarks on the pp	No		No		2 examples (slight NSE)	3 examples										
	(2)	Experimental method	⁵⁹ Fe, vapour deposition; lathe		⁵⁴ Mn, vapour deposition ^x ; lathe		¹⁵² Eu, electroplated; lathe	¹⁵⁹ Gd, electroplated; lathe										
ytterbium	(9)	Material, purity	pc 3N		pc 3N		pc 2N7	pc 2N5										
neodymium, europium, gadolinium, erbium anc	5)	Vo. of data points	6 ⁵¹	7 ⁵¹	2^{51}	2 ⁵¹	13 (10T)	13 (12T)										
	(4)	T-range (K) 1) (\overline{T}/T_m) 1	1,150–1,220 (0.92) <i>ß</i> -Nd	954-1,124 (0.81) «-Nd	1,148, 1,182 <i>β</i> -Nd	1,028, 1,073 α-Nd	771–1,074 (0.84)	1,549-1,580 (0.99) β -Gd										
	(3)	$D(T_{\rm m})$ (10 ⁻¹² m ² s ⁻¹	4,900	I	$(470)^{+}$	I	16.5^{+}	34^{+}										
	(2b)	Q (eV) and (kJ∕mole)	0.590 (56.9)	0.529 (51.1)	$(1.343)^+$ (129.7)	$(0.789)^+$ (76.2)	1.492 (144.0)	1.418 (136.9)										
Diffusion in 1	(2a)	D^{0} (10 ⁻⁴ m ² s ⁻¹)	0.01	$4.6 imes 10^{-3}$	$(0.84)^{+}$	$(4.2 \times 10^{-3})^+$	(1.0) 1.15^+	$(0.01)^{+}$										
Table 9.3	(1)	×	Fe in Nd		Mn in Nd		Eu in Eu	Gd in Gd										
Spedding	(1972)	[93.03]		Dariel (1979)	[93.04]			Fromont	(1974)	[93.05]					Fromont	(1975)	[93.06]	
-----------------------------------	----------	-------------	---------	-----------------------------	-------------	---------------------------	--------	-----------------------------------	-------------	--------------	----------	---------	-------------	---------	-----------------------------------	---------	---------	--
93.04				93.04				93.05							I			
				o the	ata			o the	ata						$\Delta V/V_0 = 0.59$			
				⁺ Present fit to	depicted di			⁺ Present fit to	depicted di						a			
Several	examples			1 example	(erfc-	solution)		No							No			
¹⁶⁹ Er, electroplated;	grinder			¹⁶⁸ Er; lathe				¹⁶⁹ Yb, electroplated;	grinder						¹⁶⁹ Yb, electroplated;	grinder		
sc	3N			sc	3N			bc	3N						bc	3N		
10	(1 6)	8	(7 T)	3^{51}		3^{51}		10^{51}			6^{51}				С			
1,475–1,685	(0.88)	1,475-1,659	(0.87)	1,269-1,476	(0.76)			996-1,076	(0.94)	γ -Yb	813–983	(0.82)	a-Yb		1,003-1,073	(0.95)	γ-Yb	
0.71		0.62						21							I			
3.134	(302.6)	3.124	(301.7)	1.03	(99.4)	0.66	(63.7)	1.253	(121.0)		(1.520)	(146.8)	1.625^{+}	(156.9)	I			
$\perp 4.51$		// 3.71		$\perp 2.06 \times 10^{-2}$		$// 4.45 \times 10^{-3+}$		0.12			(0.034)		0.137^{+}		I			
Er in	Er			Au in	Er			Yb in	ЧЪ						Yb in	Yb		

Fig. 91.01 Self-diffusion in cerium. \Box (δ) and \blacksquare (γ), Dariel [91.01]; \diamond (δ), Languille [91.02]; \bullet (δ), Languille [91.03]. Fitting line to δ -Ce according to [91.01].

Fig. 91.02 Impurity diffusion in cerium. Ag in Ce: \Box (δ) and \blacksquare (γ), Dariel [91.05]; Au in Ce: \Diamond (δ) and \blacklozenge (γ), Dariel [91.05]; Fe in Ce: \bigcirc (δ) and \blacklozenge (γ), Dariel [91.08]; La in Ce: \triangle (δ) Dariel [91.09]; Mn in Ce: ∇ (γ) Dariel [91.08].

Fig. 92.01 Self-diffusion in β -praseodymium. \Box , Dariel [92.01].

Fig. 92.02 Impurity diffusion in praseodymium, Ag in Pr: \Box (β) and \blacksquare (α), Dariel [92.02]; Au in Pr: \diamond (β) and \blacklozenge (α), Dariel [92.02]; \triangle (\bot) and ∇ (//), Dariel [92.03]; Cu in Pr: \bigcirc (β) and \blacklozenge (α), Dariel [92.04].

Fig. 92.03 Impurity diffusion in praseodymium. Co in Pr: \Box (β) and \blacksquare (α) Dariel [92.02]; Zn in Pr: \bigcirc (β) and \blacklozenge (α) Dariel [92.06].

Fig. 92.04 Impurity diffusion in praseodymium. Fe in Pr: \Box (β) and \blacksquare (α) Dariel [92.05]; Mn in Pr: \bigcirc (β) and \blacklozenge (α) Dariel [92.05].

Fig. 92.05 Impurity diffusion in praseodymium. Ho in Pr: \Box Dariel [92.01]; In in Pr: \bigcirc Dariel [92.01]; La in Pr: \diamondsuit Dariel [92.01].

Fig. 93.01 Impurity diffusion in neodymium. Fe in Nd: \Box (β) and \blacksquare (α) Dariel [93.01]; Mn in Nd: \bigcirc (β) and \blacklozenge (α) Dariel [93.01].

Fig. 93.02 Self-diffusion in europium. □, Fromont [93.02].

Fig. 93.03 Self-diffusion in gadolinium. □, Fromont [93.02].

Fig. 93.04 Self-diffusion and impurity diffusion in erbium. Er in Er: \Box and \Diamond , Spedding [93.03]; Au in Er: \triangle and ∇ , Dariel [93.04].

Fig. 93.05 Self-diffusion in ytterbium. \Box (γ) and \blacksquare (α), Fromont [93.05].

REFERENCES

References to Chapter 9.1

- [91.01] M.P. Dariel, D. Dayan, A. Languille, Phys. Rev. B 4 (1971) 4348.
- [91.02] A. Languille, M.P. Dariel, D. Calais, B. Coqblin, Mém. Sci. Rev. Métall. 70 (1973) 241.
- [91.03] A. Languille, D. Calais, M. Fromont, J. Phys. Chem. Sol. 35 (1974) 1373.
- [91.04] G. Marbach, M. Fromont, D. Calais, J. Phys. Chem. Sol. 37 (1976) 689.
- [91.05] M.P. Dariel, D. Dayan, D. Calais, Phys. Stat. Sol. (a) 10 (1972) 113.
- [91.06] W.N. Cathey, J.E. Murphy, J.R. Woodyard, Metall. Trans. A 4 (1973) 1463.
- [91.07] G. Marbach, C. Charrissoux, C. Janot, La Diffusion dans les Milieux Condensés Théorie et Applications, Proc. Colloque de Métallurgie, CEN Saclay, Vol. 1 (1976) 119.
- [91.08] M.P. Dariel, Acta Metall. 23 (1975) 473.
- [91.09] M.P. Dariel, Phil. Mag. 28 (1973) 915.

References to Chapter 9.2

[92.01] M.P. Dariel, G. Erez, G.M.J. Schmidt, Phil. Mag. 19 (1969) 1045.

- [92.02] M.P. Dariel, G. Erez, G.M.J. Schmidt, J. Appl. Phys. 40 (1969) 2746.
- [92.03] M.P. Dariel, O.D. McMasters, K.A. Gschneider, Phys. Stat. Sol. (a) 63 (1981) 329.
- [92.04] M.P. Dariel, J. Appl. Phys. 42 (1971) 2251.
- [92.05] M.P. Dariel, Acta Metall. 23 (1975) 473.
- [92.06] M.P. Dariel, Phil. Mag. 22 (1970) 563.

References to Chapter 9.3

[93.01] M.P. Dariel, Acta Metall. 23 (1975) 473.

- [93.02] M. Fromont, G. Marbach, J. Phys. Chem. Sol. 38 (1977) 27.
- [93.03] F.H. Spedding, K. Shiba, J. Chem. Phys. 57 (1972) 612.
- [93.04] M.P. Dariel, L. Kornblit, B.J. Beaudry, K.A. Gschneider, Phys. Rev. B 20 (1979) 3949.
- [93.05] M. Fromont, A. Languille, D. Calais, J. Phys. Chem. Sol. 35 (1974) 1367.

[93.06] M. Fromont, J. Phys. Chem. Sol. 36 (1975) 1397.

CHAPTER 10

Self-Diffusion and Impurity Diffusion in Actinide Metals

Contents	Tables	
	10.1. Thorium (Th)	334
	10.2. Uranium (U)	336
	10.3. Plutonium (Pu)	339
	Figures	
	Thorium	341
	Uranium	343
	Plutonium	346
	References	348

For protactinium (Pa) and trans-uranium metals (except Pu) no data are available.

In bcc γ -U and ε -Pu abnormally high self-diffusivity is observed, similar to that in bcc β -Ti, β -Zr and β -Hf.

The orthorhombic α -U consists of corrugulated layers of atoms, with the layers parallel to the (010) plane and the corrugations parallel to the [100] axis. The interatomic distances in the corrugated planes are 0.276 and 0.285 nm, respectively, and 0.326 and 0.332 nm between the corrugated planes, respectively. This leads to a strong anisotropy of the diffusivity resulting in $D[100] \approx D[001] \gg D[010]$. Furthermore, the diffusivity in perfect single crystals is smaller than that in crystals with mosaic structure.

In Table 10.0 lattice structure, lattice constant, phase transition and melting temperature of actinide metals are listed.

Table 10.0 Lattice structure, lattice constant *a*, phase transition (T_{ij}) and melting temperature T_m

Metal	-	Th		U				F	u		
Phase	β	α	γ	β	α	3	δ'	δ		γ	β
Structure	bcc	fcc	bcc	trig ¹	orh ²	bcc	bct	fcc		orh ²	mcl ³
T _{ij} (K)	1,	613	1,04	48	941	753	730)	588	480)
$T_{\rm m}$ (K)	2,	028		1,40	5			913	3		
<i>a</i> (nm)	0.416	0.508	0.347		4	0.364		0.4	64		

¹trig = trigonal, ²orh = orthorhombic, ³mcl = monoclinic, ⁴explanation in text.

thorium	
.⊆	
Diffusion	
10.1	
ble	

334

Table	10.1 Diffusic	on in thorit	Ę							(Refere	nces, s	ee page 348)
(I)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(DL)	(LL)	(12)
×	D ⁰ (10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (kJ∕mole)	$D(T_m)$ (10 ⁻¹² m ² s ⁻¹)	T-range (K) (\overline{T}/T_m)	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Self-di Th	iffusion (395)	(3.105) (299.8)		998-1,140 (0.53)	8 ⁵¹	pc ~ 2N8	²²⁸ Th, vapour deposition; non-	oN .	⁺ Present fit to the depicted	Pa, U in <i>«</i> -Th	101.01	Schmitz (1967)
	1,300 ⁺	3.22 ⁺ (311)	I	a-Th			destructive <i>α</i> -spectroscopy		data			[101.01]
Impur Co	<i>ity diffusion</i> (4×10^{-3}) $3.6 \times 10^{-3} +$	0.677 (65.3)	7,500+	1,703–1,898 (0.89) <i>b</i> -Th	4	pc 3N5	Co; diffusion couple, Th/Th (0.057% Co):	No	⁺ Present approximation	Fe, Ni in <i>z</i> -Th and β -Th; electrotransport	101.02	Weins (1979) [101.02]
	5×10^{-4}	0.572 (55.3)	I	1,238–1,613 (0.70) ~-Th	9		spark source mass				I	
C	7.4×10^{-3}	0.867 (83.7)	1	a-11, 1,173–1,605 (0,68) a-Th	6	pc ~3N	operuoscopy Co; diffusion couple, Th/Th (0.05% Co); scanning laser mass	No			101.02	Axtell (1989) [101.03]
Fe	(4×10^{-3}) $4.3 \times 10^{-3+}$	0.742 (71.6)	6,200 ⁺	1,703–1,898 (0.89) ß-Th	4	pc 3N5	spectroscopy Fe; diffusion couple, Th/Th (0.038% Fe):	No	⁺ Present approximation	Co, Ni in α -Th and β -Th; electrotransport	101.02	Weins (1979) [101.02]
	5×10^{-3}	0.837 (80.8)	I	1,238–1,613 (0.70) &-Th	6		spark source mass spectroscopy			- - 		
Щ	23+	3.13 ⁺ (302)	38 ₊	1,693, 1,963 (0.90) β-Th	κ,	pc ⁶¹	¹⁸¹ H; serial sectioning	АЛ	⁺ Present calculation * $D(1,693 \text{ K})$ = 1.09 × 10 ⁻¹² , D(1,963 K) = 2.09 × 10 ⁻¹¹ m ² s ⁻¹	Several impurities in ₇ -U	101.04	Rothman (1965) [101.04]
Mo	15.1	2.337 (216)		1,698–1,873 (0.88) β-Th	4	$\sim 3N7$	Mo; diffusion couple, Th/Th (0.02% Mo); scanning laser mass spectroscopy (Gruhe)	No		Re, W, Zr in β -Th; electrotransport	101.04	Schmidt (1984) [101.05]
^q N	0.50	2.090 (201.8)	320	1,643-1,933 (0.88) β-Th	4	pc ∼3N7	Nb; diffusion couple, Th/Th (70 ppma Nb); spark source mass spectroscopy	No		Ta, V in β-Th; electrotransport	101.05	Schmidt (1978) [101.06]

Weins (1979) [101.02]		Schmitz (1967) [101.01]	Schmidt (1984) [101.05]	Schmidt (1978) [101.06]	Schmitz (1967) [101.01]	Schmidt (1978) [101.06]	Schmidt (1984) [101.05]	Schmidt (1984) [101.05]
101.02	101.03	101.01	101.05	101.05	101.01	101.05	101.04	I
Co, Fe in α -Th and β -Th; electrotransmort		Th, U in ∞-Th	Mo, W, Zr in β -Th; electrotransport	Nb, V in β-Th; electrotransport	Th, Pa in &-Th	Nb, Ta in β-Th; electrotransport	Mo, Re, Zr in β -Th; electrotransport	Mo, Re, W in β -Th; electrotransport
⁺ Present approximation; *Pronomod	data scatter				⁺ Present rough fit to the depicted data	⁺ Present approximation	⁺ Present approximation	
No		No	No	No	No	No	No	No
Ni; diffusion couple, Th/Th (0.038% Ni):	spark source mass	²³¹ Pa, vapour deposition; non-destructive &-spectroscopy	Re; diffusion couple, Th/Th (0.01% Re); scanning laser mass spectroscopy (Grube)	Ta; diffusion couple, Th/Th (30 ppma Ta); spark source mass spectroscopy	²³³ U, vapour deposition; non-destructive <i>a</i> -spectroscopy	V; diffusion couple, Th/Th (0.013% V); spark source mass spectroscopv	W; diffusion couple, Th/Th (0.01% W); scanning laser mass spectroscopy (Grube)	Zr; diffusion couple, Th/Th (0.02% Zr); scanning laser mass spectroscopy (Grube)
					~			
pc 3N5		pc ∼2N8	~ 3N7	Pc ∼3N7	pc ∼2N8	pc ∼3N7	~ 3N7	~ 3N7
4* pc 3N5	9	8 ⁵¹ pc ~2N8	4 pc ~3N7	4 pc ∼3N7	11 ⁵¹ pc ~2N8	4 pc ∼3N7	4 pc ~3N7	2 pc ~3N7
1,703–1,898 4* pc (0.89) 3N5 <i>β</i> -Th	1,238-1,613 6 (0,70) 2-Th	$\begin{array}{cccc} 1,040-1,184 & 8^{51} & pc \\ (0.55) & & \sim 2N8 \\ z^{-}Th & & \end{array}$	1,663-1,943 4 pc (0.89) ~ 3N7 β-Th	1,648–1,933 4 pc (0.88) $\sim 3N7$ β -Th	963-1,149 11^{51} pc (0.52) $\sim 2NS$ α -Th	1,653-1,939 4 pc (0.89) β -Th $\sim 3N7$	1,683−1,818 4 pc (0.86) ~ 3N7 β-Th	1,773, 1,873 2 Pc (0.90) $\sim 3N7$ β -Th
1,703–1,898 4* pc (0.89) 3N5 <i>b</i> -Th	- 1,238-1,613 6 (0.70) z-Th	- 1,040-1,184 8 ⁵¹ pc (0.55) ~ 2N8 ∞-Th	2,800 1,663-1,943 4 pc (0.89) β -Th β -Th	210 1,648-1,933 4 pc (0.88) $\sim 3N7$ β -Th	963-1,149 11 ⁵¹ pc (0.52) ~2NS - 2NE	820 1,653-1,939 4 pc (0.89) $\sim 3N7$ β -Th	1,683–1,818 4 pc (0.86) β -Th $\sim 3N7$	1,773, 1,873, 2 pc (0.90) β -Th β -Th
0.395 1,703-1,898 4* pc (38.1) (0.89) 3N5 <i>b</i> -Th	0.807 - 1.238-1,613 6 (77.9) (0.70) 2-Th	3.239 - 1,040-1,184 8 ⁵¹ pc (312.8) (0.55) ~ 2N8 2~Th	0.87 2.800 1.663–1.943 4 pc (84) (0.89) $\sim 3N7$ β -Th	2.181 210 $1,648-1,933$ 4 pc (210.6) (0.88) $\sim 3N7$ β -Th	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.344 1.653-1,939 4 pc (129.8) 820 (0.89) $\sim 3N7$ β -Th	1.657 1.683–1,818 4 pc (160) (0.86) β -Th $\sim 3N7$	3.977 $1_{\rm J}$ 773 $1_{\rm S}$ 73 2 pc (3.84) (0.90) $\beta_{\rm T}$ Th $\beta_{\rm T}$ Th
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(4×10^{-3}) 0.807 - 1,238-1,613 6 3.7×10^{-3} + (77.9) (0.70) z-Th	126 3.239 - 1,040-1,184 8 ⁵¹ pc (312.8) - (0.55) ~2N8 x-Th	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.57 2.181 210 1,648–1,933 4 pc (210.6) (0.88) $\sim 3N7$ β -Th	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.73 × 10 ⁴ 3.977 1,773 , 1,873 2 pc (384) (384) (0.90) \sim 3N7 ρ Th

uranium
.⊆
Diffusion
Ч
9
Table

348)	
page	
see	
(References,	

336

(12)	Reference	Bochvar (1958) [102.01]	Adda (1959) [102.02]	Rothman (1960) [102.03]		Adda (1959) [102.04]	Rothman (1961) [102.05]	Adda (1962) [102.06]
(L)	Figure	102.01	102.01	102.01		102.01	I	102.01
(01)	Also studied							
(6)	Further remarks				×Fit to the data of [102.01–102.03]		Marked data scatter	⁺ Present approximation
(8)	Remarks on the pp		Several examples (probability plot)	All		No	All (non-linear in $\ln c - x^2$)	2 examples (probability plot)
(2)	Experimental method	²³³ U, vapour 1) deposition; serial	sectioning ²³⁵ U, diffusion couple of natural U and U enriched With 20% ²³⁵ U; residual <i>z</i> -	activity ²³⁵ U (enriched to 93%), sputter deposition; lathe		²³⁴ U (enriched), diffusion couple of natural U and U enriched with ²³⁴ U; residual	²³⁵ U, sputter and vapour deposition;	 ²⁴⁴Ui diffusion ²⁴Ui diffusion couple Of natural U and U enriched with ²³⁴U; residual α-activity
(9)	Material, purity	pc ⁶¹ (0.1–0.3mm	pc ∼ 2N8	pc ~3N5		pc ⁶¹	pc ~3N7	pc ⁶¹
(2)	No. of data points	4	ى	551	(15)	4	5 (4T)	4
(4)	T-range (K) $(\overline{T}/T_{\mathrm{m}})$	1,073–1,323 (0.85) _? -U	1,073–1,313 (0.85) γ-U	1,077–1,343 (0.86) γ-U	1,073–1,343	973−1,028 (0.71) β-U	951–1,033 (0.71) β-U	853-923 (0.63) ¤-U
(3)	$D(T_m)$ (10 ⁻¹² m ² s ⁻¹)	ຮ	ر . ت.	8.6	8.4	1	I	1
(2b)	Q (eV) and (kJ∕mole)	1.154 (111.4)	1.193 (115.1)	1.236 (119.3)	1.149 [×] (111.0)	1.821 (175.9)	I	1.735 (167.5)
(2a)	D ⁰ (10 ⁻⁴ m ² s ⁻¹)	diffusion 1.17 × 10 ⁻³	1.8×10^{-3}	2.33×10^{-3}	$1.12 imes 10^{-3\kappa}$	0.0135	I	(2×10^{-3}) $1.8 \times 10^{-3+}$
(I)	×	Self-1 U	C	D		C	n	C

Rothman (1962) [102.07]	Bochvar (1965) [102.08]	Rothman (1966) [102.09]	Rothman (1961) [102.10]	Peterson (1964) [102.11]	Dariel (1970) [102.12]	Peterson (1964) [102.11]	Rothman (1962) [102.13]	Dariel (1970) [102.12]
102.01	102.01	102.01	102.02	102.03	102.04	102.03	I	I
				Cr, Cu, Fe, Mn, Nb, Ni in γ-U; U in U(Co)	Cr in β-U	Co, Cu, Fe, Mn, Nb, Ni in γ -U; U in U(Co)	Fe in β-U	Co in <i>β</i> -U
* $D[100] = D[001]$ = 1.95 × 10 ⁻¹⁷ m ² s ⁻¹ , $D[010] \ll D[100]$ (see introduction	*Different orientations, D[001] = 2.1 × 10 ⁻¹⁷ , $D[010] \leq$ $10^{-18} m^2 s^{-1}$ (see introduction mage)	$^{\rm x}$ Corrected value *Mosaic structure and perfect crystals; $D[100] \approx D[001]$ >> $D[010]$ (see introduction page)		*Forced fit to the curved Arrhenius plot		*Forced fit to the curved Arrhenius plot	D_{17}^{*} (1,021 K) = 1.77 × 10 ⁻¹³ m ² s ⁻¹	Extreme data scatter, possibly caused by anisotropic diffusivity, <i>D</i> values are ranging from $\sim 3 \times 10^{-14}$ to $\sim 2 \times 10^{-13} \text{ m}^2 \text{ s}^{-1}$
All	No	All (pronounced dislocation tails for D[010])	2 examples	No	3 examples	No	1 example	2 examples
²³⁵ U, vapour deposition; grinder	 ²³³U, vapour deposition, electrolytical sectioning, residual z- activity, autoradiograph 	²³⁵ U, vapour deposition; lathe and grinder	Au ⁷¹ , vapour deposition ⁷³ ; lathe	⁶⁰ Co, vapour deposition ⁷³ ; lathe	⁶⁰ Co, vapour deposition; lathe	⁵¹ Cr, vapour deposition; lathe	⁵¹ Cr, vapour deposition; lathe	⁵¹ Cr, vapour deposition ⁷³ , lathe
sc ⁶¹ (mosaic structure)	sc pc ~3N	sc ⁶¹ *	pc 3N	pc 4N	pc 3N8	pc 4N	$\sim^{ m Pc}$	pc 3N8
3* (1 T)	8* (1 T)	9 (2T)	10 (5T)	15 (8T)	9	12 (7T)	1*	10 (8T)
898 2-U	913 &-U	860, 926 &-U	1,058–1,280 (0.83) ₇ -U	1,056–1,262 (0.82) γ-U	965–1,036 (0.71) <i>B</i> -U	1,070–1,310 (0.85) _? -U	1,021 β-U	943-1,038 (0.70) β-U
1	1	1	9.1		I		I	I
1	I	1.908 (184.2)	1.318 (127.3)	0.545* (52.6)	1.190 (114.9)	1.061* (102.4)	I	I
۲ م	- D	U 9.3 × 10 ^{-3 ×}	Impurity diffusion Au 4.86 × 10 ⁻³	Co $3.51 \times 10^{-4*}$	Co 0.015	Cr $5.47 \times 10^{-3*}$	Cr -	۰ Č

(L)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(ol)	(11)	(12)
×	D ⁰ (10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (kJ∕mole)	$D(T_m)$ ($10^{-12}m^2s^{-1}$)	T-range (K) (\overline{T}/T_{m})	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Cu	$1.96 \times 10^{-3*}$	1.043* (100.7)		1,060–1,310 (0.84) γ-U	14 (7T)	pc 4N	⁶⁴ Cu, vapour deposition ⁷³ ; lathe	2 examples	*Forced fit to the curved Arrhenius	Co, Cr, Fe, Mn, Nb, Ni in <i>p</i> -U;	102.03	Peterson (1964) [102.11]
Fe	$2.69 imes 10^{-4*}$	0.521* (52.9)		1,060–1,263 (0.83) ₇ -U	12 (6T)	pc 4N	⁵⁹ Fe, vapour deposition ⁷³ ; lathe	No	Florced fit to the curved Arrhenius alot	U III U(C0) Co, Cr, Cu, Mn, Nb, Ni in γ -U; U1 in 11(Co)	102.03	Peterson (1964) [102.11]
Fe	I	I	I	984, 1,033 β-U	4* (2T)	pc ~4N	⁵⁹ Fe, vapour deposition; lathe	All	$^{*}D(94 \text{ K}) \approx$ 9×10^{-13} , $D(1,033 \text{ K}) \approx$ $2.5 \times 10^{-12} \text{ m}^2 \text{ s}^{-1}$	Cr in β-U	I	Rothman (1962) [102.13]
Fe	I	I	I	918 α-U	*	pc ⁶¹	Fe; D determined from precipitate dissolution	1	$^{*}D(918 \text{ K}) \approx$ $3 \times 10^{-14} \text{ m}^{2} \text{s}^{-1}$		I	Stelly (1972) [102.14]
Mn	(1.81×10^{-4}) 2.14×10^{-4} +	(0.602) (58.1) 0.615 ⁺ (59.4)		1,060–1,212 (0.81) γ-U	6 (4T)	pc 4N	⁵⁴ Mn, vapour deposition of Fe and n- irradiation, Fe(n.n) ⁷³ : lathe	No	*Present approximation	Co, Cr, Cu, Fe, Nb, Ni in ₇ -U; U in U(Co)	102.03	Peterson (1964) [102.11]
dN N	0.0487	1.719 (166.0)	3.3	1,064–1,375 (0.87) γ-U	16 (8T)	pc 4N	⁹⁵ Nb, dried-on from oxalate solution ⁷³ ; lathe	No		Co, Cr, Cu, Fe, Mn, Ni in <i>γ</i> -U; U in U(Co)	102.02	Peterson (1964) [102.11]
ïŻ	5.36×10^{-4}	0.679 (65.6)		1,060–1,312 (0.84) γ-U	14 (7T)	pc 4N	⁶³ Ni, vapour deposition ⁷³ ; lathe	No		Co, Cr, Cu, Fe, Mn, Nb in γ -U; U in U(Co)	102.03	Peterson (1964) [102.11]
Pu	$(1.7 imes 10^{-8})$ $1.7 imes 10^{-8}$ +	(0.597) (57.7) 0.554^+ (53.5)	I	683–813 (0.53) α-U	4	pc ~2N8	Pu; EPMA, U/U (17.5% Pu) (Matano, Hall)	No	⁺ Present approximation		I	Dupuy (1965) [102.15]
Zr	(1.6×10^{-7})	(0.707) (68.2)		1,073–1,323 (0.85) γ-U	4	pc ⁶¹	95Zr; residual activity	No		U in β-Zr; U, Zr in U(Zr)	I	Fedorov (1968) [102.16]

Table	10.3 Diffusi	ion in pluto	nium							(Referen	nces, see	e page 348)
(L)	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(01)	(II)	(12)
×	D ⁰ (10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (kJ∕mole)	$D(T_m)$ (10^{-12} m ² s ⁻¹)	T -range (K) (\overline{T}/T_m)	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
Self-d	iffusion											
Pu	0.022	0.802 (77.5)	82	773-885 (0.91) e-Pu	ず	pc ⁶¹	 ²⁴⁰Pu, diffusion couple containing 1% and 8% ²⁴⁰Pu; residual activity 	All (probability plot)			103.01	Dupuy (1968) [103.01]
Pu	(0.003)* 0.005 [×]	(0.681)* (65.7)		788–849 (0.90) s-Pu	4	3Nc	 ²⁴⁰Pu, diffusion couple containing 0.94% and 9.4% 2⁴⁰Pu; residual activity 	All (probability plot)	*Erroneous thermal expansion correction; *Corrected value;	$\Delta V/V_0 = -0.34$ (anomalous pressure dependence of D)	103.01	Cornet (1971) [103.02]
	$3.75 \times 10^{-3+}$	0.681^+ (65.7)	65+				6		the not "corrected" D-values			
Pu	(4.5×10^{-3}) 0.0122^+	(0.693) (66.9) 0.760 ⁺	77+	765–886 (0.90) ɛ-Pu	Ŋ	pc 3N	²³⁸ Pu, vapour deposition; grinder	1 example	*Present approximation		103.01	Wade (1978) [103.03]
	(5.3×10^{32})	(73.4) (6.10) (589)	I	730–750 (0.81) <i>ð</i> '-Pu	ß			No			103.01	
Pu	4.5×10^{-3}	1.032 (99.7)	I	623-714 (0.73) ô-Pu	11 ⁵¹ (7T)	pc ⁶¹	²³⁸ Pu (enriched), diffusion courde: lathe	1 example (probability plot)			I	Tate (1964) [103.04]
Pu	(0.517) 0.50^{+}	1.309 (126.4)	I	594–715 (0.72) δ-Pu	~	pc 3N	²³⁸ Pu, vapour deposition; grinder	1 example	⁺ Present approximation	gb diffusion in γ-Pu and β-Pu (deduced	103.01	Wade (1978) [103.03]
	0.38	1.226 (118.4)	1	484–544 (0.56) γ-Pu	4		5	2 examples (gb tails)		from two linear branches in	103.01	
	(0.0169) 0.018^{+}	1.119 (108.0)	I	409–454 (0.47) β-Pu	e					$\ln c - x^2)$	103.01	

Self-Diffusion and Impurity Diffusion in Actinide Metals

339

U	10.3 (Continu	(pər										
	(2a)	(2b)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(IL)	(12)
	D ⁰ (10 ⁻⁴ m ² s ⁻¹)	Q (eV) and (kJ/mole)	$D(T_m)$ (10 ⁻¹² m ² s ⁻¹)	au-range (K) $(\overline{T}/ au_{ m m})$	No. of data points	Material, purity	Experimental method	Remarks on the pp	Further remarks	Also studied	Figure	Reference
5. ⁻	ity diffusion 4.9×10^{-5}	0.416 (40.2)	26	772–884 (0.91) ɛ-Pu	4	pc ⁶¹	¹¹⁰ Ag, vapour deposition; grinder	1 example ⁸¹	Erroneous thermal expansion correction		103.02	Charissoux (1976) [103.05]
	I	I	1	695 ô-Pu	1 ^x			No	$^{x}D(695 \text{ K})$ = 1.0 × 10 ⁻¹⁴ m ² s ⁻¹ (not "corrected" <i>D</i> -value)		103.03	
	5.7 × 10 ⁻⁵	0.447 (43.1) -	- 19	788–887 (0.92) 8-Pu 713 ô-Pu	1 × 4	pc ⁶¹	¹⁹⁶ Au, vapour deposition; grinder	1 example No	Erromeous thermal expansion correction; $x_D(713 \text{ K})$ = $2.2 \times 10^{-14} \text{ m}^2 \text{ s}^{-1}$ (not "corrected"		103.02 103.03	Charissoux (1976) [103.05]
	(1.4×10^{-3}) $1.5 \times 10^{-3+}$	0.429 (41.5)	640	757–894 (0.90) ε-Pu	4	pc ⁶¹	⁶⁰ Co, vapour deposition; grinder	1 example	L-value) Erroneous thermal expansion correction "Present		103.02	Charissoux (1975) [103.06]
	0.012 0.001*	0.551 (53.2) 0.533* (51.5)	- 110	617–699 (0.72) 5-Pu 753–853 (0.88) ٤-Pu	ഹവ	pc ⁶¹	⁶⁰ Co, vapour deposition; grinder Cu, diffusion couple (Matano)	1 example ⁸¹ ×	where the second secon		103.03 103.02	Charissoux (1975) [103.07] Charissoux (1976) [103.05]
									from [103.08]			

Fig. 101.01 Self-diffusion and impurity diffusion in α -thorium. Th in α -Th: \Box , Schmitz [101.01]; Pa in α -Th: \bigcirc , Schmitz [101.01]; U in α -Th: \triangle , Schmitz [101.01].

Fig. 101.02 Impurity diffusion in α - and β -thorium. Co in β -Th: \Box , Weins [101.02]; Fe in β -Th: \bigcirc , Weins [101.02]; Ni in β -Th: \triangle , Weins [101.02]; Co in α -Th: \blacksquare , Axtell [101.03]; Fe in α -Th: \bigcirc , Weins [101.02]; Ni in α -Th: Weins [101.02] (only fitting line, see Fig. 101.03).

Fig. 101.03 Impurity diffusion in α -thorium. Ni: \Box , Weins [101.02].

Fig. 101.04 Impurity diffusion in β -thorium. Hf: \Box , Rothman [101.04]; Mo: \bigcirc , Schmidt [101.05]; W: \triangle , Schmidt [101.05]. No self-diffusion data available.

Fig. 101.05 Impurity diffusion in β -thorium. Nb: \Box , Schmidt [101.06]; Re: \bigcirc , Schmidt [101.05]; Ta: \triangle , Schmidt [101.06]; V: \diamondsuit , Schmidt [101.06]. No self-diffusion data available.

Fig. 102.01 Self-diffusion in uranium. U in γ -U: \diamond , Bochvar [102.01]; \bullet , Adda [102.02]; \bigcirc , Rothman [102.03]. Fitting line using $D^0 = 1.12 \times 10^{-7} \text{m}^2 \text{s}^{-1}$, Q = 1.149 eV. U in β -U: \bullet , Adda [102.04]; U in α -U: \bullet , Adda [102.06] (polycrystals), in single crystals with mosaic structure: \bigcirc [100], \Box [001], in "perfect" single crystals: ∇ [100], \triangle [001], Rothman [102.07, 102.09]; \bullet , Bochvar [102.08]. Fitting line for D[100] (mosaic structure) according to [102.09].

Fig. 102.02 Impurity diffusion in γ -uranium. Au in γ -U: \Box , Rothman [102.10]; Nb in γ -U: \bigcirc , Peterson [102.11].

Fig. 102.03 Impurity diffusion in γ -uranium. Co in γ -U: \Box , Peterson [102.11]; Cr in γ -U: \bigcirc , Peterson [102.11]; Cu in γ -U: \triangle , Peterson [102.11]; Fe in γ -U: \diamondsuit , Peterson [102.11]; Mn in γ -U: ∇ , Peterson [102.11]; Ni in γ -U: \blacktriangle , Peterson [102.11].

Fig. 102.04 Impurity diffusion in β -uranium. Co in β -U: \Box , Dariel [102.12].

Fig. 103.01 (A) Self-diffusion in plutonium. Pu in ε -Pu: \Box , Dupuy [103.01]; \bigcirc , Cornet [103.02]; \triangle , Wade [103.03]. Fitting line according to [103.01]. Pu in δ '-Pu, δ -Pu, γ -Pu, β -Pu: \triangle , Wade [103.03]. (B) (Detail) Self-diffusion in plutonium. Pu in ε -Pu: \Box , Dupuy [103.01]; \bigcirc , Cornet [103.02]; \triangle , Wade [103.03]. Fitting line according to [103.01].

Fig. 103.02 Impurity diffusion in ε -plutonium. Ag in ε -Pu: \Box , Charissoux [103.05]; Au in ε -Pu: \bigcirc , Charissoux [103.05]; Co in ε -Pu: \triangle , Charissoux [103.06]; Cu in ε -Pu: \diamondsuit , Charissoux [103.05].

Fig. 103.03 Impurity diffusion in δ -plutonium. Ag in δ -Pu: \blacksquare , Charissoux [103.05]; Au in δ -Pu: \blacktriangle , Charissoux [103.05]; Co in δ -Pu: \bigcirc , Charissoux [103.07].

REFERENCES

References to Chapter 10.1

- [101.01] F. Schmitz, M. Fock, J. Nucl. Mater. 21 (1967) 317.
- [101.02] W.N. Weins, O.N. Carlson, J. Less-Common Met. 66 (1979) 99.
- [101.03] S.C. Axtell, O.N. Carlson, Metall. Trans. A 20A (1989) 2289.
- [101.04] S.J. Rothman, N.L. Peterson, in: Diffusion in Body-centred Cubic Metals, Eds. J.A. Wheeler, F.R. Winslow, American Society for Metals, Metal Park, Ohio (1965), p. 183.
- [101.05] F.A. Schmidt, M.S. Beck, D.K. Rehbein, R.J. Conzemius, O.N. Carlson, J. Electrochem. Soc. 131 (1984) 2169; see also I.C.I. Okafor, Acta Metall. 35 (1987) 759.
- [101.06] F.A. Schmidt, R.J. Conzemius, O.N. Carlson, J. Less-Common Met. 59 (1978) 53.

References to Chapter 10.2

- [102.01] A.A. Bochvar, V.G. Kuznetsova, V.S. Sergeev, in: Proc. 2nd Intern. Conf. on the Peaceful Uses of Atomic Energy, Geneva (1958), p. 68.
- [102.02] Y. Adda, A. Kirianenko, J. Nucl. Mater. 1 (2), (1959) 120; see also C.R. Acad. Sc. Paris 247 (1958) 744.
- [102.03] S.J. Rothman, L.T. Lloyd, A.L. Harkness, Trans. AIME 218 (1960) 605.
- [102.04] Y. Adda, A. Kirianenko, C. Mairy, J. Nucl. Mater. 1 (3), (1959) 300.
- [102.05] S.J. Rothman, J. Gray, J.P. Hughes, A.L. Harkness, J. Nucl. Mater. 3 (1961) 72.
- [102.06] Y. Adda, A. Kirianenko, J. Nucl. Mater. 6 (1962) 130; see also C.R. Acad. Sc. Paris 253 (1961) 445.
- [102.07] S.J. Rothman, J.J. Hines, J. Gray, A.L. Harkness, J. Appl. Phys. 33 (1962) 2113.
- [102.08] A.A. Bochvar, V.G. Kuznetsova, V.S. Sergeev, F.P. Butra, Atomn. Energiya 18 (1965) 601; Sov. Atom. Energy, 18 (1965) 761 (English transl.).
- [102.09] S.J. Rothman, B. Bastar, J.J. Hines, D. Rokop, Trans. AIME 236 (1966) 897.
- [102.10] S.J. Rothman, J. Nucl. Mater. 3 (1961) 77.
- [102.11] N.L. Peterson, S.J. Rothman, Phys. Rev. 136 (1964) A842.
- [102.12] M.P. Dariel, M. Blumenfeld, G. Kimmel, J. Appl. Phys. 41 (1970) 1480.
- [102.13] S.J. Rothman, N.L. Peterson, S.A. Moore, J. Nucl. Mater. 7 (1962) 212.
- [102.14] M. Stelly, J.M. Servant, J. Nucl. Mater. 43 (1972) 269.
- [102.15] M. Dupuy, D. Calais, Mém. Sci. Rev. Mét. 62 (1965) 721; see also C.R. Acad. Sc. Paris 260 (1965) 1412.
- [102.16] G.B. Fedorov, E.A. Smirnov, F.I. Zhomov, Met. Metalloved. Chist. Met. (7) (1968) 116.

Further Investigations

γ-uranium

U [102.17] G.B. Fedorov, E.A. Smirnov, Met. Metalloved. Chist. Met. (6) (1967) 181.

 β -uranium

U [102.18] G.B. Fedorov, E.A. Smirnov, S.S. Moiseenko, Met. Metalloved. Chist. Met. (7) (1968) 124.

α-uranium

U [102.19] G.B. Fedorov, E.A. Smirnov, F.I. Zhomov, Met. Metalloved. Chist. Met. (5) (1966) 92.

References to Chapter 10.3

[103.01] M. Dupuy, D. Calais, Trans. AIME 242 (1968) 1679; see also M. Dupuy, C.R. Acad. Sc. Paris 263C (1966) 35.

[103.02] J.A. Cornet, J. Phys. Chem. Sol. 32 (1971) 1489.

[103.03] W.Z. Wade, D.W. Short, J.C. Walden, J.W. Magana, Metall. Trans. 9A (1978) 965.

- [103.04] R.E. Tate, E.M. Cramer, Trans. AIME 230 (1964) 639.
- [103.05] Ch. Charissoux, D. Calais, J. Nucl. Mater. 61 (1976) 317.
- [103.06] Ch. Charissoux, D. Calais, J. Nucl. Mater. 57 (1975) 45.
- [103.07] Ch. Charissoux, D. Calais, G. Gallet, J. Phys. Chem. Sol. 36 (1975) 981.
- [103.08] F. Lataillade, J. Després, B. Hocheid, Plutonium and Other Actinides, Nucl. Metall. 17 (1970) 144.