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Preface to the Seventh German and Third English Edition

Kristallographie has now appeared, after 32 years, in its seventh edition
(Crystallography in its third). The book has changed greatly over these 32 years,
and, I hope, for the better! I have always been very keen that it retain its character as
a basic text, suitable for use at an early stage in a course of study. I also attach great
importance to the exercises – now more than a hundred in number – which give
many possibilities for deepening the study.

In the last few years, I have become increasingly aware that an increasing number
of my readers are undertaking the study of crystallography independently. It thus
seems sensible to assist these readers – and not only them – by including material
designed to assist their study. Even in the first edition (1976), I included a pattern
from which to build a model of a crystal, with instructions on how to build others.
Unfortunately, this proved to be too difficult for many, so now there are 22 patterns
included, which have now been used in Münster for several decades. Genuinely
three-dimensional models are of great assistance in determining symmetry, index-
ing, recognizing forms, and assigning the crystal system and point group of a crystal.
Further, they help to give the three-dimensional training that is so important in
crystallography.

On the other hand, it is difficult to give simple instructions for the building of
three-dimensional models. It is, however, my experience that, with practice, drawing
the parallel projections of structures can also help the student to appreciate their
spatial nature.

This book deals with the fundamentals of crystallography. Today, of course, there
are many websites available with help in learning more about the subject. A good
place to begin is the website of the International Union of Crystallography (IUCr)
[www.iucr.org/education/resources] with many helpful suggestions.

I am much indebted to Professor Elke Koch and Professor Heidrun Sowa for
helpful discussion of symmetry problems. I am also very grateful to Dr. R.O. Gould,
who has again translated the revised text with great expertise.

Münster W. Borchardt-Ott
Autumn 2008
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Preface to the Second English Edition

This second English edition has been required only 1 1
2 years after the first; it appears

shortly before the fifth German edition, of which it is a translation. A major change
is the expansion and revision of Chap. 4 by new exercises on the use of the stereo-
graphic, orthographic and gnonomic projections, and on indexing. Dr. R. O. Gould
has again under taken the translation and has made a thorough revision of the
text of the first edition. I am very grateful to him for his efforts. I should also like
to thank Dr. Wolfgang Engel of Springer Verlag, Heidelberg, very much for his
encouragement and his help during a collaboration of more than a decade.

Münster W. Borchardt-Ott
Summer 1995
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Preface to the First English Edition

This book is based on the lectures which I have now been giving for more than
20 years to chemists and other scientists at the Westfälische Wilhelms-Universität,
Münster. It is a translation of the fourth German edition, which will also be
appearing in 1993.

It has been my intention to introduce the crystallographic approach in a book
which is elementary and easy to understand, and I have thus avoided lengthy mathe-
matical treatments. As will be clear from the contents, topics in crystallography have
been covered selectively. For example, crystal structure analysis, crystal physics and
crystal optics are only touched on, as they do not fit easily into the scheme of the
book.

The heart of the book is firmly fixed in geometrical crystallography. It is from
the concept of the space lattice that symmetry operations, Bravais lattices, space
groups and point groups are all developed. The symmetry of molecules is described,
including the resulting non-crystallographic point groups. The treatment of crystal
morphology has been brought into line with the approach used by International
Tables for Crystallography. The relationship between point groups and physical
properties is indicated. Examples of space groups in all crystal systems are treated.
Much emphasis is placed on the correspondence between point groups and space
groups. The section on crystal chemistry will serve as an introduction to the field. Of
the various methods of investigation using X-rays, the powder method is described,
and an account is given of the reciprocal lattice. At the end of each chapter are
included a large number of exercises, and solutions are given for all of them.

The first stimulus to have this book translated was given by Professor P. E.
Fielding of the University of New England in Armidale (Australia). The transla-
tion was undertaken by Dr. R. O. Gould of the University of Edinburgh. I thank
Dr. Gould for his enthusiasm and for the trouble he has taken over the transla-
tion. It was particularly beneficial that we were able to consider the text together
thoroughly.

Professor E. Koch and Professor W. Fischer, both of the University of Marburg,
have discussed each edition of this book with me, and their criticism has been
invaluable. I wish to record my thanks to them also.

Münster W. Borchardt-Ott
Autumn 1993
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1 Introduction

At the heart of crystallography lies an object – the crystal. Crystallography is con-
cerned with the laws governing the crystalline state of solid materials, with the
arrangement of atoms in crystals, and with their physical and chemical properties,
their synthesis and their growth.

Crystals play a role in many subjects, among them mineralogy, inorganic, organic
and physical chemistry, physics, metallurgy, materials science, geology, geophysics,
biology and medicine. This pervasiveness is perhaps better understood when it is
realized how widespread crystals are: virtually all naturally occurring solids, i.e.
minerals, are crystalline, including the raw materials for chemistry, e.g. the ores.
A mountain crag normally is made up of crystals of different kinds, while an ice-
berg is made up of many small ice crystals. Virtually all solid inorganic chemicals
are crystalline, and many solid organic compounds are made up of crystals, among
them benzene, naphthalene, polysaccharides, proteins, vitamins, rubber and nylon.
Metals and alloys, ceramics and building materials are all made up of crystals. The
inorganic part of teeth and bones is crystalline. Hardening of the arteries and arthri-
tis in humans and animals can be traced to crystal formation. Even many viruses are
crystalline.

This enumeration could be continued endlessly, but it is already obvious that
practically any material that can be regarded as solid is crystalline.

Crystallography is a study that overlaps mineralogy, geology, physics, chemistry
and biology, and is a unifying factor among these sciences. In many countries, espe-
cially in Germany, crystallography is mainly taught as a part of mineralogy, while
elsewhere, notably in Britain and North America, it is more often taught as a part of
physics or chemistry.

The world-wide organization of crystallographers is the International Union of
Crystallography (IUCr), which unites many local and regional organizations, them-
selves made up of biologists, chemists, mineralogists, geologists and physicists. The
IUCr publishes the eight-volume International Tables for Crystallography provid-
ing essential background information for crystallographers, and eight important
scientific journals, the six parts of Acta Crystallographica, the Journal of Applied
Crystallography, and the Journal of Synchrotron Radiation.

W. Borchardt-Ott, Crystallography, 3rd ed., DOI 10.1007/978-3-642-16452-1_1,
C© Springer-Verlag Berlin Heidelberg 2011





2 The Crystalline State

The outward appearance of a crystal is exceptionally variable, but all the variations
which occur can be explained in terms of a single fundamental principle. To grasp
this, we must first come to terms with the nature of the crystalline state. The
following are a few properties that are characteristic of crystals:
• Many crystals not only have smooth faces, but, given ideal growth conditions,

have regular geometric shapes. Fig. 2.1 shows a crystal of garnet with the form
called a rhomb-dodecahedron. This is a polyhedron whose faces are 12 rhombi.
Turn to Fig. 15.3, a pattern which you can (and should!) use to make a model of
a rhomb-dodecahedron.

• If some crystals (e.g. NaCl) are split, the resulting fragments have similar shapes
with smooth faces – in the case of NaCl, small cubes. This phenomenon is known
as cleavage, and is typical only of crystals.

• Figure 2.2 shows a cordierite crystal and the colors that an observer would see
when the crystal is viewed from the given directions. The colors that appear
depend on the optical absorption of the crystal in that particular direction. For
example, if it absorbs all spectral colors from white light except blue, the crystal
will appear blue to the observer. When, as in this case, the absorption differs in
the three directions, the crystal is said to exhibit pleochroism.

Fig. 2.1
A garnet crystal with the
shape of a rhomb-
dodecahedron

W. Borchardt-Ott, Crystallography, 3rd ed., DOI 10.1007/978-3-642-16452-1_2,
C© Springer-Verlag Berlin Heidelberg 2011



4 2 The Crystalline State

Fig. 2.2
Pleochroism as shown by a
crystal of cordierite

• When a crystal of kyanite (Al2OSiO4) is scratched parallel to its length with a
steel needle, a deep indentation will be made in it, while a scratch perpendicular
to the crystal length will leave no mark (see Fig. 2.3). The hardness of this crystal
is thus different in the two directions.

• If one face of a gypsum crystal is covered with a thin layer of wax and a heated
metal tip is then applied to that face, the melting front in the wax layer will be
ellipsoidal rather than circular (Fig. 2.4), showing that the thermal conductivity
is greater in direction III than in direction I. Such behavior – different values of a
physical property in different directions – is called anisotropy, (see also Fig. 2.5c).
If the melting front had been circular, as it is, for example, on a piece of glass,
it would imply that the thermal conductivity is the same in all directions. Such
behavior – the same value of a physical property in all directions – is called isotropy
(see Fig. 2.5a, b).

Anisotropy of physical properties is normal for crystals. It is, however, not universal,
as there are some crystals whose properties are isotropic. If, for example, the above

Fig. 2.3

Fig. 2.3 A crystal of kyanite, with a scratch illustrating the anisotropy of its hardness

(010)

III

I

c

a Fig. 2.4

Fig. 2.4 A crystal of gypsum covered with wax showing the melting front. The ellipse is an
isotherm, and shows the anisotropy of the thermal conductivity
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Fig. 2.5a–c Schematic representation of the states of matter. (a) gas, (b) liquid, (c) crystal



6 2 The Crystalline State

experiment with wax had been carried out on a face of a cubic crystal of galena, the
melting front would have been circular. Similarly, if a sphere is cut from a crystal
of copper, and heated, it will remain spherical as its radius increases. The thermal
conductivity in these cases is the same in all directions, and thus isotropic.

The origin of all of the phenomena listed above lies in the internal structure of
crystals. In order to understand this better, let us now consider the various states of
aggregation of matter.

All matter, be it gas, liquid or crystal, is composed of atoms, ions or molecules.
Matter is thus discontinuous. Since, however, the size of the atoms, ions and
molecules lies in the Å region (1 Å = 10–8 cm = 0.1 nm) matter appears to us
to be continuous. The states of matter may be distinguished in terms of their ten-
dency to retain a characteristic volume and shape. A gas adopts both the volume
and the shape of its container, a liquid has constant volume, but adopts the shape of
its container, while a crystal retains both its shape and its volume, independent of
its container (see Fig. 2.5).

Gases. Figure 2.5a illustrates the arrangement of molecules in a gas at a particular
instant in time. The molecules move rapidly through space, and thus have a high
kinetic energy. The attractive forces between molecules are comparatively weak, and
the corresponding energy of attraction is negligible in comparison to the kinetic
energy.

What can be said about the distribution of the molecules at that particular
instant? There is certainly no accumulation of molecules in particular locations;
there is, in fact, a random distribution. A. Johnsen has illustrated this by a sim-
ple analogy (Fig. 2.6a): we scatter 128 lentils over the 64 squares of a chessboard,
and observe that in this particular case some squares will have no lentils, some 1, 2,
or even 3 – but on average 2. If, instead of single squares we considered blocks of
four squares, the number of lentils in the area chosen would fall between 7 and 9,
while any similar block of 16 squares would have exactly 32 lentils. Thus, two dis-
tinct areas of the same size will tend to contain the same number of lentils, and this
tendency will increase as the areas considered become larger. This kind of distri-
bution is considered to be statistically homogeneous, i.e. it shows the same behavior

Fig. 2.6a, b Statistical (a) and periodic (b) homogeneity after Johnsen
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in parallel directions, and it may easily be seen that the physical properties of the
distribution are isotropic, i.e. are equal in all directions.

Liquids. As the temperature of a gas is lowered, the kinetic energies of the
molecules decrease. When the boiling point is reached, the total kinetic energy
will be equal to the energy of attraction among the molecules. Further cooling thus
converts the gas into a liquid. The attractive forces cause the molecules to “touch”
one another. They do not, however, maintain fixed positions, and Fig. 2.5b shows
only one of many possible arrangements. The molecules change position continu-
ously. Small regions of order may indeed be found (local ordering), but if a large
enough volume is considered, it will also be seen that liquids give a statistically
homogeneous arrangement of molecules, and therefore also have isotropic physical
properties.

Crystals. When the temperature falls below the freezing point, the kinetic
energy becomes so small that the molecules become permanently attached to one
another. A three-dimensional framework of attractive interactions forms among the
molecules and the array becomes solid – it crystallizes. Figure 2.5c shows one possi-
ble plane of such a crystal. The movement of molecules in the crystal now consists
only of vibrations about a central position. A result of these permanent interactions
is that the molecules have become regularly ordered. The distribution of molecules
is no longer statistical, but is periodically homogeneous; a periodic distribution in
three dimensions has been formed (see also Fig. 3.1a).

How can this situation be demonstrated using the chessboard model? (Fig. 2.6b).
On each square, there are now precisely two lentils, periodically arranged with
respect to one another. The ordering of the lentils parallel to the edges and that
along the diagonals are clearly different, and therefore the physical properties in
these directions will no longer be the same, but distinguishable – in other words, the
crystal has acquired anisotropic properties. This anisotropy is characteristic of the
crystalline state.

D A crystal is an anisotropic, homogeneous body consisting of a three-
dimensional periodic ordering of atoms, ions or molecules.

All matter tends to crystallize, if the temperature is sufficiently low, since the ordered
crystalline phase is the state of lowest energy. There exist, however, materials, such as
glass, which never reach this condition. Molten glass is very viscous, and the atoms
of which it is made cannot come into a three-dimensional periodic order rapidly
enough as the mass cools. Glasses thus have a higher energy content than the cor-
responding crystals and can best be considered as a frozen, viscous liquid. They
are amorphous or “formless” bodies. Such materials do not produce flat faces or
polyhedra since an underlying order is missing. (cf. Chap. 5, “Morphology”)

What then may be said about the relationship of liquid, crystal, and glass? One
possibility is to examine the change in specific volume as the temperature is raised
or lowered (Fig. 2.7). As a liquid is cooled, its volume decreases smoothly. When the
melting point (Tm) is reached, the liquid crystallizes, leading to a sharp change in
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Fig. 2.7
Temperature dependence of
the specific volume of a liquid
as it forms a crystalline or a
glass phase.

volume. Further cooling results in a smooth decrease in the volume of the crystalline
phase.

If cooling does not cause a liquid to crystallize, the volume continues to decrease
as shown by the dashed line in Fig. 2.7, corresponding to a “supercooled liq-
uid”. When the transformation temperature, or better transformation range, Tg is
reached, the curve bends and continues more or less parallel to that for the crystal.
This bend corresponds to a large increase in viscosity. The liquid “freezes”, but the
resulting glass is still actually a supercooled liquid.

There are many other ways in which crystals differ from amorphous material.
One of these is that while a crystal has a definite melting point, a glass has a softening
region. Another difference is in their different properties relative to an incident X-
ray beam. The three-dimensional ordering of the atoms in crystals gives rise to sharp
interference phenomena, as is further examined in Chap. 13. Amorphous bodies, as
they do not have underlying order, produce no such effect.

2.1
Exercises

Exercise 2.1 Determine the volume of gas associated with each molecule at
standard temperature and pressure (0◦C, 101.3 kPa). What is the edge of a cube
with that volume?

Exercise 2.2 Determine the packing efficiency of gaseous neon (RNe = 1.60 Å)
at standard conditions, where the packing efficiency is the ratio of the volume
of a neon atom to the volume determined in Exercise 2.1. For comparison, a
copper atom in a crystal has a packing efficiency of 74%.

Exercise 2.3 Discuss the use of the term “crystal glass”!



3 The Lattice and Its Properties

A three-dimensional periodic arrangement of atoms, ions or molecules is always
present in all crystals. This is particularly obvious for the α-polonium crystal illus-
trated in Fig. 3.1a. If each atom is represented simply by its center of gravity, what
remains is a point or space lattice (Fig. 3.1b).

! A point or space lattice is a three-dimensional periodic arrangement of
points, and is a pure mathematical concept.

The concept of a lattice will now be developed from a lattice point via the line lattice
and the plane lattice, finally to the space lattice.

Fig. 3.1a, b
Three-dimensional periodic
arrangement of the atoms in a
crystal of α-polonium (a) and
the space lattice of the crystal
(b)

3.1
Line Lattice

In Fig. 3.2, we may consider moving from the point 0 along the vector �a to the
point 1. By a similar movement of 2�a, we will reach point 2, etc. By this movement,
one point is brought into coincidence with another, and a repetition operation takes
place. By means of this operation, called a lattice translation, a line lattice has been
generated. All points which may be brought into coincidence with one another by

W. Borchardt-Ott, Crystallography, 3rd ed., DOI 10.1007/978-3-642-16452-1_3,
C© Springer-Verlag Berlin Heidelberg 2011
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Fig. 3.2 Fig. 3.3

Fig. 3.2 Line lattice with its lattice parameter |�a| = a0

Fig. 3.3 Plane lattice with the unit mesh defined by the vectors �a and �b

a lattice translation are called identical points or points equivalent by translation.
|�a| = a0 is called the lattice parameter, and this constant alone completely defines
the one-dimensional lattice.

3.2
Plane Lattice

If a lattice translation �b(�b ∦ �a) is then allowed to operate on the line lattice in Fig. 3.2,
the result is the plane lattice or plane net (Fig. 3.3). The vectors �a and �b define a unit
mesh. The entire plane lattice may now be constructed from the knowledge of three
lattice parameters, |�a | = a0 | �b | = b0 and γ , the included angle. If any point is moved
by any arbitrary lattice translation, it will come into coincidence with another point.
A plane lattice thus has lattice translations not only parallel to �a and �b, but also to
any number of combinations of them, i.e. an infinite number of lattice translations.

3.3
Space Lattice

If yet another lattice translation �c is now introduced in a direction not coplanar with
�a and �b, its action on the plane lattice in Fig. 3.3 generates the space lattice shown
in Fig. 3.4. This space lattice can also be produced solely by the operations of three
dimensional lattice translations. In contrast to a finite crystal, a space lattice is infinite

According to the arrangement of the vectors �a, �b, and �c, we may introduce an
axial system with the crystallographic axes a, b and c. The vectors �a, �b, and �c and
their respective crystallographic axes a, b and c are chosen to be right-handed. That
is, if the right thumb points in the direction of �a (a) and the index finger is along
�b (b), the middle finger will point in the direction of �c (c). A lattice, or a crystal
described by it, may always be positioned so that �a (a) points toward the observer,
�b (b) toward the right, and �c (c) upwards, as is done in Fig. 3.4.

The vectors �a �b, and �c define a unit cell, which may alternatively be described by
six lattice parameters (Table 3.1):
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Fig. 3.4
Space lattice with the unit cell
defined by the vectors �a, �b
and �c

Table 3.1
Lattice constants of a unit cell

Length of lattice translation
vectors

Interaxial lattice
angles

|�a| = a0
|�b| = b0
|�c| = c0

�a ∧ �b = γ

�a ∧ �c = β
�b ∧ �c = α

Further application of lattice translations to the unit cell will produce the entire
space lattice. The unit cell thus completely defines the entire lattice.

Every unit cell has eight vertices and six faces. At all vertices there is an identical
point. Can all of these points be considered part of the unit cell? The lattice point D
in Fig. 3.4 is not only part of the marked-out unit cell, but part of all eight cells
which meet at that point. In other words, only one eighth of it may be attributed to
the marked unit cell, and since 8 × 1

8 = 1, the unit cell contains only one lattice
point. Such unit cells are called simple or primitive, and are given the symbol P.

! A space lattice contains infinitely many lattice planes, lines, and points

3.4
The Designation of Points, Lines and Planes
in a Space Lattice

3.4.1
The Lattice Point uvw

Every lattice point is uniquely defined with respect to the origin of the lattice by
the vector �τ = u�a + v�b + w�c. The lengths of �a, �b, and �c are simply the lattice
parameters, so only the coordinates u, v and w require to be specified. They are
written as a “triple” uvw. In Fig. 3.5, the vector �τ describes the point 231 (which
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Fig. 3.5
Designation of lattice points
using the coordinates uvw
that define the vector from
the origin to the lattice point
uvw, �τ = u�a+ v�b+ w�c

is read as two-three-one). The coordinates u, v and w normally are integers, but
can also have values of integers + 1

2 ; 1
3 or 2

3 , as is further explained in Sect. 7.3 and
Table 7.5. When they have integral values, the points uvw are the coordinates of
the points of a P-lattice. The coordinates of the vertices of a unit cell are given in
Fig. 3.5.

3.4.2
Lattice Lines [uvw]

A line may be specified mathematically in any coordinate system by two points.
The lattice line I in Fig. 3.6 contains the points 000 and 231. Since the lattice line
passes through the origin, the other point on its own describes the direction of the
line in the lattice, and the coordinates of this point thus define the line. For this
purpose, they are placed in square brackets [231], or in general [uvw], to show that
they represent the direction of a line.

The lattice line II’ passes through the points 100 and 212. Line II is parallel to this
line, and passes through the origin as well as the point 112 and consequently both
lines are represented by the symbol [112].

Fig. 3.6
Designation of lattice lines
using the coordinates [uvw]
(in square brackets) that
define the vector from the
origin to the given point
�τ = u�a+ v�b+ w�c (I: [231],
II: [112])
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Fig. 3.7
Projection of a lattice onto
the a, b-plane showing
parallel sets of lattice lines
[110], [120] and [310]

Fig. 3.8
Projection of a space lattice
along c onto the a, b-plane.
The lattice line A is defined by
the triple [210], while B may
be given as [130] or [130]

! Note that the triple [uvw] describes not only a lattice line through the origin
and the point uvw, but the infinite set of lattice lines which are parallel to it
and have the same lattice parameter.

Figure 3.7 shows parallel sets of lattice lines [110], [120] and [310]. The repeat
distance along the lines increases with u, v, w.

Figure 3.8 shows a projection of a space lattice along c onto the a, b-plane. The
lattice line A intersects the points with coordinates 000, 210, 420 and 2 10. Note
that minus signs are placed above the numbers to which they apply – this applies to
all crystallographic triples. Each point on the line has different values uvw, but the
ratio u: v: w remains constant. In this case, the smallest triple is used to define the
lattice line. Lines parallel to �a or �b are thus identified as [100] or [010] respectively,
while the line B is given as [130] or [130]; note that these two representations define
opposite directions for the lattice line. Similarly [210] and [2 10] describe the two
directions of a single line.
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3.4.3
Lattice Planes (hkl)

Consider a plane in the lattice intersecting the axes a, b and c at the points m00, 0n0
and 00p. (These coordinates are given as mnp and not uvw to show that the values
need not be integral). An example of a lattice plane which does not intersect the
axes at lattice points is plane D in Fig. 3.11. The coordinates of the three intercepts
completely define the position of a lattice plane (Fig. 3.9). Normally, however, the
reciprocals of these coordinates are used rather than the coordinates themselves:

a-axis: h∼ 1/m
b-axis: k∼ 1/n
c-axis: l∼ 1/p

The smallest integral values are chosen for the reciprocal intercepts, and they are
then written as a triple (hkl) in round brackets.

! The values (hkl) are called Miller indices, and they are defined as the smallest
integral multiples of the reciprocals of the plane intercepts on the axes.

The lattice plane shown in Fig. 3.9 has the intercepts m | n | p = 2 | 1 | 3. The
reciprocals of these are 1

2 |1| 13 , leading to the Miller indices (362).

Fig. 3.9
The intercepts on the axes of
a lattice plane with the Miller
indices (362)

Fig. 3.10
The indexing of lattice planes
by Miller indices, the smallest
integral multiples of the
reciprocals of the intercepts
on the axes; I (111), II (211)



3.4 The Designation of Points, Lines and Planes in a Space Lattice 15

Table 3.2
Indexing of the lattice planes
shown in Fig. 3.10

m n p 1
m

1
n

1
p (hkl)

I 1 1 1 1 1 1 (111)
II 1 2 2 1 1

2
1
2 (211)

In the space lattice shown in Fig. 3.10, two lattice planes have been drawn in,
which are indexed in Table 3.2.

In Fig. 3.11, a projection of a lattice is shown together with the lines representing
the traces of lattice planes perpendicular to the plane of the paper and parallel to the
c-axis. These lattice planes are indexed as shown in Table 3.3.

The lattice planes A to G belong to a set of equally spaced, parallel planes resulting
in the same indices. Since the plane E intersects the origin, it cannot be indexed in
this position. Note that (210) and (2 10) define the same parallel set of planes.

! Generally, the triple (hkl) represents not merely a single lattice plane, but an
infinite set of parallel planes with a constant interplanar spacing.

Fig. 3.11
Projection of a space lattice
along c onto the a, b-plane.
The “lines” A-G are the traces
of the lattice planes parallel to
c with the Miller indices
(210). The “line” H is the
trace of a lattice plane (230)

Table 3.3
Indexing of the lattice planes
shown in Fig. 3.11

m n p 1
m

1
n

1
p (hkl)

A 2 4 ∞ 1
2

1
4 0 (210)

B 3
2 3 ∞ 2

3
1
3 0 (210)

C 1 2 ∞ 1 1
2 0 (210)

D 1
2 1 ∞ 2 1 0 (210)

E – – – – – –

F 1
2 1 ∞ 2 1 0 (2 10)

G 1 2 ∞ 1 1
2 0 (2 10)

H 3 2 ∞ 1
3

1
2 0 (230)
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Fig. 3.12
Projection of a lattice onto
the a, b-plane, with the
projections of six sets of
lattice planes

Figure 3.12 gives the projection of a lattice onto the a,b-plane. This projection
has a square unit mesh (a0 = b0). The projections of six sets of lattice planes with
various indices are also shown. As the indices rise, the spacing between the planes
decreases, as does the density of points on each plane.

Planes which are parallel to b and c will thus only have intercepts with a and are
indexed as (100). Similarly, (010) intersects only the b-axis, and (001) only c.

3.5
The Zonal Equation

We may ask what the relationship is between the symbols [uvw] and (hkl) if they
represent sets of lines and planes that are parallel to one another. The equation of
any plane may be written:

X
m
+ Y

n
+ Z

p
= 1, (3.1)

where X, Y and Z represent the coordinates of points lying on the plane, and m, n
and p are the three intercepts of this plane on the crystallographic axes a, b and c
(see Sect. 3.4.3). If the substitution is then made h ∼ 1

m , k ∼ 1
n , and 1 ∼ 1

p , the
equation may be written

hX+ kY+ 1Z = C, (3.2)

where C is an integer. The equation describes not only a single lattice plane, but a set
of parallel lattice planes. For positive h, k and 1, giving C a value of + 1 describes that
plane of the set which lies nearest to the origin in the positive a, b and c directions.
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Similarly, a value of –1 defines the nearest plane in the negative a, b and c directions
from the origin. The plane (hkl) which cuts the origin has the equation:

hX+ kY+ 1Z = 0. (3.3)

As an example, the planes D, E and F in Fig. 3.11, are defined by the above equation
where (hkl) = (210) and C takes on the values 1, 0 and –1 respectively. For any of
these planes, the triple XYZ represents a point on the plane. In particular, on the
plane passing through the origin (C= 0) this triple XYZ could describe a lattice line
– the line connecting the point XYZ to the origin 000. In this case, we would replace
XYZ by uvw giving the relationship:

hu + kv + lw= 0. (3.4)

For reasons which will appear later this relationship is called the zonal equation.

3.5.1
Applications of the Zonal Equation

3.5.1.1
Application 1

(a) Two lattice lines [u1v1w1] and [u2v2w2] will describe a lattice plane (hkl) (cf.
Fig. 3.13), whose indices may be determined from the double application of the
zonal equation:

hu1+ kv1+ lw1 = 0 (3.5)

hu2+ kv2+ lw2 = 0. (3.6)

The solution of these two simultaneous equations for hkl may be expressed in two
ways as the ratio of determinants:

h : k : 1 =
∣∣∣
∣

v1w1
v2w2

∣∣∣
∣ :
∣∣∣
∣

w1u1
w2u2

∣∣∣
∣ :
∣∣∣
∣

u1v1
u2v2

∣∣∣
∣ (3.7)

h̄ : k̄ : l̄ =
∣∣∣∣

v2w2
v1w1

∣∣∣∣ :
∣∣∣∣

w2u2
w1u1

∣∣∣∣ :
∣∣∣∣

u2v2
u1v1

∣∣∣∣ (3.8)

Fig. 3.13
The lattice lines [u1v1w1] and
[u2v2w2] define the lattice
plane (hkl) or (h̄k̄l̄)
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The lattice plane symbols (hkl) and (h̄k̄l̄), however, describe the same set parallel
planes.

h : k : l = (v1w2 − v2w1) : (w1u2 − w2u1) : (u1v2 − u2v1). (3.9)

The following form is particularly convenient:

(3.10)

Example. What is the set of lattice planes common to the lines [101] and [121]?

1
1

∣
∣
∣
∣

0 1 1 0
2 1 1 2

∣
∣
∣
∣

1
1

2 2 2→ (111)

This result can also be obtained geometrically, as in Fig. 3.14. The lattice lines [101]
and [121] (– • – • – •) lie in the lattice plane (–––). Other lines lying in the plane
are also shown (– • – • – •) in order to make it more obvious. The indicated lattice
plane cannot be indexed, as it passes through the origin. The choice of an alternative
origin N′ makes it possible to index it: m | n| p| = 1|1|1→ (111).

If the determinant is set up in the alternative manner:

1
1

∣∣∣
∣

2 1 1 2
0 1 1 0

∣∣∣
∣

1
1

2 2 2→ (1 1 1). (cf. Eq. 3.8)

c

b

b′

a′

a

N

N′

c′

[121]

[101]

Fig. 3.14
The lattice lines [101] and
[121] lie in the lattice plane
indicated by the dashed lines.
Since, however, that plane
passes through the origin, it is
necessary to consider an
alternative origin such as N′
in order to assign its indices
(111)
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(111) and (1 1 1 ) belong to the same set of parallel lattice planes (cf. Exercise 3.11)

! In the description of crystal faces (Chap. 5) the symbols (hkl) and (h̄k̄l̄) are
taken to represent a crystal face and its parallel opposite.

3.5.1.2
Application 2

Two lattice planes (h1k1l1) and (h2k2l2) intersect in the lattice line [uvw] (Fig. 3.15),
which can be identified by the solution of the equations:

h1u+ k1v+ l1w = 0 (3.11)

h2u+ k2v+ l2w = 0. (3.12)

Proceeding in the same method as above leads to the required lattice line [uvw]:

(3.13)

! Note that, as in (a), two solutions are possible: [uvw] and [ūv̄w̄]. In this case,
these represent the opposite directions of the same line.

Example. Which lattice line is common to the lattice planes (101) and 112?

1
1

∣∣∣∣
1 2 1 1
0 1 1 0

∣∣∣∣
2
1

[1 3 1]

If the values of (hkl) are interchanged, the result will be [1 31]

Fig. 3.15
The lattice planes (h1k1l1)
and (h2k2l2) intersect in the
lattice line [uvw]
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3.6
Exercises

Exercise 3.1 Make a copy on tracing paper of the lattice points outlining a
single unit cell in Fig. 3.5. Lay your tracing on top of a unit cell in the original
drawing and satisfy yourself that you can reach any other cell by suitable lattice
translations.

Exercise 3.2

(a) Examine the lattice below, and give the coordinates of the points P1, P2, P3
and P4, the values of [uvw] for the lattice lines that are drawn in.

(b) On the same diagram, draw in the lines [211], [120] and [212].
(c) Determine the lattice planes to which the lines [131] and [111] belong.

Exercise 3.3 The diagram below is the projection of a lattice along the c-axis
onto the a,b-plane. The dark lines labeled I and II are the traces of planes that
are parallel to the c-axis.
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(a) Index planes I and II.
(b) Calculate [uvw] for the line common to the two planes.
(c) Draw the traces of the planes (320) and (120) on the projection.

Exercise 3.4 Give (hkl) for a few planes containing the line [211], and give
[uvw] for a few lines lying in the plane (121).

Exercise 3.5 What condition must be fulfilled to make (a) [100] perpendicular
to (100), (b) [110] perpendicular to (110) and (c) [111] perpendicular to (111)?

Exercise 3.6 What are the relationships between (110) and (1 10); (211) and
(21 1); [110] and [1 10]; [211] and [21 1]?





4 Crystal Structure

In order to progress from a lattice to a crystal, the points of the lattice must be occu-
pied by atoms, ions or molecules. Because the points are all identical, the collections
of objects occupying them must also be identical. In general, crystals are not built
up so simply as the crystal of α -polonium in Fig. 3.1!

Let us consider the construction of a crystal by means of a hypothetical example.
Figure 4.1a shows a lattice with a rectangular unit cell projected on the a, b-plane.
We now place the molecule ABC in the unit cell of the lattice in such a way that A
lies at the origin and B and C within the chosen cell (Fig. 4.1b). The position of B
or C with respect to the origin may be described by a vector �r in terms of the lattice
translations �a, �b, and �c (cf. Fig. 4.3):

�r= x�a + y�b + z�c (4.1)

The coordinates are yet another triple: x,y,z, where 0 ≤ x,y,z < 1 for all positions
within the unit cell. In our example, the atoms have the following coordinates:

A : 0,0,0 B : x1,y1,z1, C : x2,y2,z2.

This arrangement of atoms within a unit cell is called the basis. Lattice translations
reproduce the atoms throughout the entire lattice (Fig. 4.1c), or:

lattice + basis= crystal structure.

It follows that not only the A-atoms but also the B- and C-atoms lie on the points
of congruent lattices, which differ from one another by the amount indicated in
the basis (see Fig. 4.2). Every atom in a crystal structure is repeated throughout the
crystal by the same lattice translations.

Thus, the following simple definition of a crystal is possible.

D Crystals are solid chemical substances with a three-dimensional periodic array
of atoms, ions or molecules. This array is called a crystal structure.

W. Borchardt-Ott, Crystallography, 3rd ed., DOI 10.1007/978-3-642-16452-1_4,
C© Springer-Verlag Berlin Heidelberg 2011
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Fig. 4.1a–c
Interrelationship of the lattice
(a), the basis or the
arrangement of atoms in the
unit cell (b) and the crystal
structure (c), all shown as a
projection on the a, b-plane

Fig. 4.2
All atoms of the crystal
structure shown in Fig. 4.1 lie
on the points of congruent
lattices
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Fig. 4.3
Description of a point in a
unit cell by the
coordinate-triple x,y,z
defining the vector
�r = x�a+ y�b+ z�c

An example of a simple crystal structure is cesium iodide. The unit cell is a cube
(a0 = b0 = c0 = 4.57 Å, α = β = γ = 90◦).1 The basis is I− : 0,0,0; Cs+ : 1

2 , 1
2 , 1

2 .
In Fig. 4.4a, a unit cell is shown as a perspective picture, with the relative sizes of
the ions indicated. For more complex structures, this method of illustration is less
useful, as it prevents the positions of atoms from being clearly seen. Consequently,
it is more usual merely to indicate the centers of gravity of the atoms, as in Fig. 4.4b.
Figure 4.4c shows the same structure represented as a parallel projection on one
cube face.

An important quantity for any structure is Z, the number of chemical formula
units per unit cell. For CsI, Z = 1 as there are only one Cs+ ion and one I– ion per
cell. Using only structural data, it is thus possible to calculate the density of CsI,
since

� = m
V

g cm−3,

Fig. 4.4a–c The CsI structure shown in a perspective drawing taking account of the relative sizes
of the ions (a), with ions reduced to their centers of gravity (b) and as a parallel projection on
(001) (c)

1 The Ångström unit (Å): 1 Å= 10–8 cm= 0.1 nm. If a row of spheres with a radius of 1 Å is made,
these will be 50,000,000 of them per centimeter!
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Fig. 4.5
The description of lines and
planes in a unit cell by means
of coordinates x,y,z

where m is the mass of the atoms in the unit cell and V is the volume of the cell. The
mass of one chemical formula is M/NA, where M is the molar mass and NA is the
Avogadro number, so

m = Z ·M
NA

and

� = Z ·M
NA · V g cm−3

Thus, taking NA as 6.023× 1023 mol–1, for CsI, where M= 259.81 g mol–1

�CsI = 1 · 259.81
6.023 · 1023 · 4.573 · 10−24 = 4.52 g cm−3 .

In a structure determination, this operation is carried out in reverse: from the
measured density, the number of formula units per cell is estimated.

Using the values (hkl) and [uvw] we have so far only described the orientations
of sets of planes and lines. Consideration of the contents of a unit cell makes it
necessary to describe specific planes and lines in the cell. Use of the coordinates
x,y,z makes this possible. For example, the coordinates x,y,1/2 identify all points in
the plane parallel to a and b which cuts c at 1/2. Figure 4.5 shows the planes x,y,1/2 and
3/4,y,z. The line of intersection may easily be seen to be described by the coordinates
3/4,y,1/2.

4.1
Exercises

Exercise 4.1 Cuprite, an oxide of copper, has the
lattice: a0 = b0 = c0 = 4.27 Å, α = β = γ = 90◦ and the
basis: Cu: 1

4 , 1
4 , 1

4 ; 3
4 , 3

4 , 1
4 ; 3

4 , 1
4 , 3

4 ; 1
4 , 3

4 , 3
4 .

O: 0,0,0; 1
2 , 1

2 , 1
2 .
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(a) Draw a projection of the structure on x,y,0 (the a, b-plane) and a perspec-
tive representation of the structure.

(b) What is the chemical formula of this compound? What is Z (the number
of formula units per unit cell)?

(c) Calculate the shortest Cu-O distance.
(d) What is the density of cuprite?

Exercise 4.2 The cell dimensions for a crystal of AlB2 were determined to be
a0 = b0 = 3.00 Å, c0 = 3.24 Å, α = β = 90◦, γ = 120◦. There is an Al-atom at
0,0,0, and B-atoms at 1

3 , 2
3 , 1

2 and 2
3 , 1

3 , 1
2 .

(a) Draw a projection of four unit cells of this structure on (001).

(b) Calculate the shortest Al-B distance.
(c) Calculate the density of AlB2.

Exercise 4.3 In the accompanying drawing of the unit cell of a lattice, give the
coordinates of the points occupied by small circles, which, as we will later learn,
represent inversion centers (Sect. 6.3).
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Exercise 4.4 Draw the unit cell of a lattice and give the coordinates which
describe its ‘edges’.

Exercise 4.5 For the same unit cell, give the coordinates which describe its
‘faces’.

Exercise 4.6 Give the coordinates for the planes and lines drawn in the unit
cell shown below.

Exercise 4.7 Draw a unit cell with the shape of a cube. On it, sketch a plane
with co-ordinates x,x,z and lines with the co-ordinates x,x,0 and x,x,x.



5 Morphology

By the term “morphology”, we refer to the set of faces and edges which enclose a
crystal.

5.1
Relationship Between Crystal Structure andMorphology

The abundance of characteristic faces and, at least in ideal circumstances, the regular
geometric forms displayed externally by crystals result from the fact that internally,
crystals are built upon a crystal structure. What is, then, the relationship between the
crystal structure (the internal structure) and morphology (the external surfaces)?
Figure 5.1 shows the crystal structure and the morphology of the mineral galena
(PbS). The faces of a crystal are parallel to sets of lattice planes occupied by atoms,
while the edges are parallel to lattice lines occupied by atoms. In Fig. 5.1a, these
atoms are represented by points. A lattice plane occupied by atoms is not actually
flat. This may be seen for the lattice plane (100), (010) or (001) in Fig. 5.1c when
the size of the spherical atoms is taken into account, and is even more marked for
crystals of molecular compounds. Atomic radii are very small – of the order of 1 Å –
so crystal faces appear smooth and flat to the eye. A crystal face contains a two-
dimensionally periodic array of atoms.

The relationship between crystal structure and morphology may be summarized
thus:

! (a) Every crystal face lies parallel to a set of lattice planes; parallel crystal
faces correspond to the same set of planes.

(b) Every crystal edge is parallel to a set of lattice lines.

The reverse conclusions must, however, certainly not be drawn, since a crystal will
have a very large number of lattice planes and lines, and generally only a few edges
and faces.

W. Borchardt-Ott, Crystallography, 3rd ed., DOI 10.1007/978-3-642-16452-1_5,
C© Springer-Verlag Berlin Heidelberg 2011
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Fig. 5.1a, b Correspondence between crystal structure
(a) and morphology (b) in galena (PbS). In a, the atoms
are reduced to their centers of gravity. (c) shows the
atoms occupying the (100), (010) or (001) face

Furthermore, it should be noted that the shapes in Fig. 5.1 have been drawn
to vastly different scales. Suppose the edge of the crystal marked with an arrow is
6 mm in length; then that edge corresponds to some 107 lattice translations, since
the lattice parameters of galena are all 5.94 Å.

Since crystal faces lie parallel to lattice planes and crystal edges to lattice lines,
Miller indices (hkl) may be used to describe a crystal face, and [uvw] a crystal edge.
The morphology of the crystal gives no information about the size of the unit cell,
but can in principle give the ratio between one unit cell edge and another. Normally,
however, the lattice parameters are known, so the angles between any pair of lattice
planes can be calculated and compared with the observed angles between two crystal
faces.

The crystal of galena in Fig. 5.1 has been indexed, i.e. the faces have been iden-
tified with (hkl). Thus, with the origin chosen suitably inside the crystal, (100) cuts
the a-axis and is parallel to b and c; (110) is parallel to c and cuts a and b at the
same distance from the origin; (111) cuts a, b and c all at the same distance from the
origin.

5.2
Fundamentals of Morphology

Morphology is the study of the external boundary of a crystal, built up of crystal
faces and edges. In morphology, the words “form”, “habit” and “zone” have special
meanings.
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(a) Form. The morphology of a crystal is the total collection of faces which
characterize a particular crystal. The morphology of the crystals shown in
Fig. 5.2 consists of the combination of a hexagonal prism and a “pinacoid”; a
pinacoid is a pair of parallel faces which in this case make up the ends of this
prism. The prism and the pinacoid are examples of a crystal form, which is fur-
ther discussed in Chap. 9. In the meantime, we will simply consider a crystal
form as a set of “equal” faces. It is thus possible to describe the morphology as
the set of forms of a crystal.

c)b)a)

Fig. 5.2a–c
The three basic habits: (a)
equant, (b) planar or tabular,
(c) prismatic or acicular with
the relative rates of growth in
different directions shown by
arrows

(b) Habit. This term is used to describe the relative sizes of the faces of a crystal.
There are three fundamental types of habit: equant, planar or tabular, and pris-
matic or acicular (needle-shaped). These habits are illustrated in Fig. 5.2 by the
relative sizes of the hexagonal prism and the pinacoid.

(c) Zone. The crystals in Figs. 2.1, 2.2, 2.3 and 2.4 show several examples of three
or more crystal faces intersecting one another to form parallel edges. A set of
crystal faces whose lines of intersection are parallel is called a zone (Fig. 5.3).
Faces belonging to the same zone are called tautozonal. The direction parallel
to the lines of intersection is the zone axis. Starting from any point inside the
crystal, the normals to all the faces in a zone are coplanar, and the zone axis is
normal to this plane. Only two faces are required to define a zone.

Fig. 5.3
A zone is a set of crystal faces
with parallel lines of
intersection. The zone axis is
perpendicular to the plane of
the normals to the
intersecting faces, and is thus
parallel to their lines of
intersection (After [32])
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The galena crystal in Fig. 5.1b shows several zones. For example, the face (100)
belongs to the zones [(101)/101̄)] = [010], [(110)/11̄0)] = [001], [(111)/11̄1̄)] =
[011̄] and [(11̄1)/111̄)] = [011].

All intersecting faces of a crystal have a zonal relationship with one another. This
is evident from consideration of Fig. 5.1b.

The faces or the lattice planes (h1,k1,l1), (h2,k2,l2), and (h3,k3,l3), are tautozonal
if and only if

∥
∥
∥
∥
∥
∥

h1k1l1
h2k2l2
h3k3l3

∥
∥
∥
∥
∥
∥
= 0 (5.1)

i.e. h1k2l3 + k1l2h3 + l1h2k3 − h3k2l1 − k3l2h1 − l3h2k1 = 0. (5.2)

Do the planes (hkl) belong to the zone [uvw]? The answer depends on whether or
not the zonal equation hu + kv + lw= 0 (Eq. 3.4) is fulfilled. For example, (11̄2) does
lie in the zone [1̄11] since 1× (–1) + (−1)× 1 + 2× 1= 0.

5.3
Crystal Growth

It is easier to understand the morphology of a crystal if the formation and growth of
crystals is considered. Crystals grow from, among other things, supersaturated solu-
tions, supercooled melts and vapors. The formation of a crystal may be considered
in two steps.

1. Nucleation. This is the coming together of a few atoms to form a three-
dimensional periodic array – the nucleus – which already shows faces, although
it is only a few unit cells in size (see Fig. 5.4a).

2. Growth of a Nucleus to a Crystal. As the nucleus attracts further atoms, they take
up positions on its faces in accordance with its three-dimensional periodicity. In
this way, new lattice planes are formed (Fig. 5.4b–d). Note that the illustration
is two-dimensional only. The growth of the nucleus, and then of the crystal, is
characterized by a parallel displacement of its faces.

! The rate of this displacement is called the rate of crystal growth, and is a
characteristic, anisotropic property of a crystal.

Figure 5.5 shows a few stages in the growth of a quartz crystal.
The nucleus shown in Fig. 5.6 is bounded by two different types of faces, and

the rates of growth of these faces, v1 and v2 are thus, in principle, distinguishable.
Figure 5.6a illustrates the case in which these rates of growth are similar, while
in Fig. 5.6b, they are very different. A consequence of this difference is that the
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Fig. 5.4a–d Nucleation and growth of the nucleus to a macrocrystal illustrated in two dimensions.
(a) Nucleus, e.g. in a melt. (b) Atoms adhere to the nucleus. (c) Growth of a new layer on the faces
of a nucleus. (d) The formation of a macrocrystal by the addition of further layers of atoms

Fig. 5.5
Quartz crystal showing its
stepwise growth
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Fig. 5.6a, b
Crystal growth showing a
small (a) and a large (b)
difference in growth rate with
direction

faces corresponding to the slow growth rate become steadily larger, while those
corresponding to rapid growth disappear entirely. In addition, it should also be
noted that crystal growth rates are affected by temperature, pressure, and degree
of saturation of the solution. The actual crystal faces which eventually enclose the
crystal depend on the ratios of the growth rates of the various faces, the slower-
growing ones becoming more prominent than those that grow more rapidly. Those
faces which do eventually develop generally have low Miller indices and are often
densely populated with atoms.

The three basic types of crystal habit may be understood in terms of the relative
growth rates of the prism and pinacoid faces, which are indicated in Fig. 5.2 by
arrows.

Figure 5.7 shows how crystals of different shapes can result from the same
nucleus. Crystal I is regular in shape, while crystals II and III have become very
much distorted as a result of external influences on the growth rate. None the less,
the angles between the normals to the crystal faces remain constant, since the grow-
ing faces have simply been displaced along their normals. A parallel displacement
of the faces cannot change interfacial angles. This observation applies equally to all
growing faces of a crystal.
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Fig. 5.7
Despite difference in rates of
growth of different parts of a
crystal, the angles between
corresponding faces remain
equal

This observation is the basis of the law of constancy of the angle: in different spec-
imens of the same crystal, the angles between corresponding faces will be equal. This
law, which is valid at constant temperature and pressure, was first formulated by N.
Steno in 1669, without any knowledge of crystal lattices!

The relative positions of the normals to the faces of the crystals in Fig. 5.7 remain
constant. It is possible, by measurement of the angles between faces, to determine
these relative positions and thus eliminate the distortion.

So far, our discussion has assumed the existence of a single crystal nucleus,
or only a few, which can grow separately into single crystals like those shown in
Fig. 2.1. The term single crystal, as it is used here, implies one which has grown as
such. It will normally display characteristic faces, but those grown in the labora-
tory often do not. If many nuclei are formed simultaneously, they may grow into
one another in a random fashion, as illustrated in Fig. 5.8. This disturbance will
prevent the development of crystal faces and forms. Instead, a crystal aggregate or
polycrystal results. Figure 5.8 shows an example of single phases in the development
of such an aggregate. The individual crystallites of an aggregate are themselves single
crystals.

Fig. 5.8a–c Development of a crystal aggregate. (a) Formation of several nuclei, which initially
can grow independently. (b) Collision of growing crystallites leads to interference and irregularity
in growth of the polyhedra. Eventually, the polyhedral shape of the crystallites is entirely lost. (c)
The single crystal domains of the aggregate with their grain boundaries
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5.4
The Stereographic Projection

Since crystals are three-dimensional objects, it is necessary to use projections in
order to work with them on a flat surface. One such projection is the parallel pro-
jection onto a plane, which was illustrated in Fig. 4.4c for representing a crystal
structure.

For morphological studies, the stereographic projection has proved to be par-
ticularly useful. The principle of this projection is shown in Fig. 5.9. A crystal, in
this case galena (PbS), is placed at the center of a sphere. The normals to each face,
if drawn from the center of the sphere, will then cut the surface of the sphere in
the indicated points, the poles of the faces. The angle between two poles is taken to
mean the angle between the normals n, not the dihedral angle f between the faces.
These two angles are simply related as: n (angle of normals) = 180◦− f (dihedral
angle) (Fig. 5.10). The poles are not randomly distributed over the surface of the
sphere. In general they will lie on a few great circles, i.e. circles whose radius is that
of the sphere. Those faces whose poles lie on a single great circle will belong to
a single zone. The zone axis will lie perpendicular to the plane of the great circle.

Fig. 5.9
Crystal of galena at the center
of a sphere. The normals to
the faces of the crystal cut the
sphere at their poles, which
lie on great circles

Fig. 5.10
In a stereographic projection,
lines are drawn between the
poles of the faces in the
northern hemisphere and the
south pole, and the
intersection of these lines
with the equatorial plane is
recorded
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Considering the sphere as a terrestrial globe, a line from each of the poles in the
northern hemisphere is projected to the south pole, and its intersection with the
plane of the equator is marked with a point • or a cross + (see Fig. 5.11). Lines
from poles in the southern hemisphere are similarly projected to the north pole, and
their intersections with the equatorial plane are marked with an open circle O. For
those poles lying exactly on the equator, a point or cross is used. The mathematical
relationships of the stereographic projection are shown in Fig. 5.33.

Figure 5.12 shows the stereogram of the crystal in Fig. 5.9, only those planes
belonging to the northern hemisphere being shown. Poles belonging to a single zone
lie on the projections of the relevant great circles. The points resulting from the
projections of each face are indexed

Figure 5.13a shows the stereographic projection of a tetragonal prism and a pina-
coid, while Fig. 5.13b gives that of a tetragonal pyramid and a pedion. A pedion is
the name given to a crystal form which consists of a single face. In both cases, the
altitude of the prism or pyramid is set in the N–S direction. Both the tetragonal
prism and the tetragonal pyramid have square bases and square cross-sections. The
faces of the prism are perpendicular to the plane of the stereographic projection, so

Fig. 5.11
Stereographic projection of
the crystal in Fig. 5.9; see also
Fig. 5.1b. Only the poles with
positive values of l are
included

Fig. 5.12
Relationship between the
angle of intersection of the
normals (n) and the dihedral
angle (f) between the faces F1
and F2. The poles of the faces
lie on a great circle, the zone
circle
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Fig. 5.13a, b Stereographic projection of a tetragonal prism and a pinacoid (a) and of a tetragonal
pyramid and a pedion (b). The angular coordinates φ and ρ are given for one of the pyramid faces

their poles lie on the circumference of the circle of that projection. The faces of the
pyramid make equal angles with the equatorial plane, so the poles of these faces are
at equal distances from the center of the plane of projection.

The representation of the stereographic projection in Figs. 5.9, 5.11, and 5.12 is
only intended to explain the principles of the method. In practice, the projection is
based on the values of measured angles.

The stereographic projection is also very useful for the description of the point
groups. In this case, there is a departure from the normal convention of plotting
the stereogram. For rotation axes and rotoinversion axes, the symbols of these axes
are used to indicate their intersection with the surface of the sphere of projec-
tion. Similarly, for mirror planes, the corresponding great circle of intersection is
indicated (for an example, see Fig. 7.8e).

5.5
The Reflecting Goniometer

The angles between crystal faces may conveniently be measured with a reflecting
goniometer. The crystal is mounted on a goniometer table, which is essentially
a rotating plate with a graduated angle scale (see Fig. 5.14). The crystal mount
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Fig. 5.14
Light path for a one-circle
reflecting goniometer

Fig. 5.15 Two-circle reflection goniometer with azimuthal circle φ and pole distance circle ρ

(After de Jong [22])

(or goniometer head) is a construction of arcs and slides which makes it possi-
ble to bring a zone axis of the crystal into coincidence with the rotation axis of
the goniometer table. The crystal is then rotated until the light beam from a lamp
mounted horizontally is reflected from a crystal face onto the cross-hairs of a tele-
scope, also mounted horizontally. The reading on the scale of the table then fixes the
position of that crystal face. The table is then rotated until another face comes into
the reflecting position, and the angular reading for this position is taken. The differ-
ence between the two readings is the angle between the normals to the crystal faces.
Continuing to rotate the table through 360◦ will allow the angles corresponding to
the selected zone to be measured. This is the principle of the one-circle reflection
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goniometer. For the measurement of the angles corresponding to other zones on a
one-circle reflecting goniometer, the crystal must be remounted.

A two-circle reflection goniometer makes it possible to rotate and measure the
crystal about two mutually perpendicular axes (Fig. 5.15). In this way, all possible
faces can be brought into the reflecting position. From the position of the two circles,
the angular coordinates φ and ρ may be measured. These coordinates uniquely
define the orientation of a crystal face, and the values can be directly plotted on
a stereographic projection.

5.6
TheWulff Net

The Wulff net is a device to enable measured crystal angles to be plotted readily as a
stereographic projection. The Wulff net is itself the stereographic projection of the
grid of a conventional globe orientated so that the N′–S′ direction lies in the plane of
projection (Fig. 5.16). The N–S direction of the stereographic projection (Fig. 5.9) is
thus perpendicular to the N′–S′ direction both of the grid net of the globe and of the
Wulff net (Fig. 5.16). Figure 5.16a shows the grid of only one hemisphere. The equa-
tor and all meridians of the globe are great circles, while all of the parallels except the
equator are small circles. With the help of the Wulff net, the angle between any two
poles on the surface of the sphere can now be plotted directly on the stereographic
projection. The angle measured between any two crystal faces is the angle between
their normals or the angle between their poles. The two normals define the plane
of a great circle (Fig. 5.9). The arc of the great circle between the two normals is
the measured angular value. It is thus crucial that only arcs of great circles are used
when angles are plotted on or estimated from a stereographic projection!

We shall now demonstrate the use of the Wulff net to plot the two angles mea-
sured with a two-circle goniometer (the azimuthal angle ϕ and the pole distance ρ)

Fig. 5.16a, b The stereographic projection of the grid net of a globe (N′–S′ ⊥ N–S) produces
the Wulff net; the positions of the angular coordinates ϕ (the azimuthal angle) and � (the pole
distance) are indicated. The pole P has coordinates ϕ= 90◦ and � = 30◦
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on a stereographic projection. The circle of the plane of projection is taken as the
azimuth ϕ, so possible ϕ-values run from 0 to 360◦. The front face of the tetragonal
pyramid in Fig. 5.13b thus has a ϕ-value of 90◦. The ρ-axis is perpendicular to the
ϕ-axis. The faces of the tetragonal pyramid have ϕ-coordinates of 0◦, 90◦, 180◦ and
270◦ respectively and all faces have the same ρ-value.

A similar consideration of a tetragonal dipyramid, e.g. no. 6 in Exercise 5.4 results
in the following angular coordinates (ϕ, ρ) for the eight faces:

• As above, ϕ= 0◦, 90◦, 180◦, 270◦
• For both ρ and – ρ

Note that faces in the northern hemisphere are assigned values 0◦ ≤ ρ ≤ 90◦, while
those in the southern hemisphere have −90◦ ≤ ρ ≤ 0◦ where both 90◦ and −90◦
represent positions on the equator. For an example, see the table of ϕ, ρ -values for
the galena crystal in Exercise 5.13.

For practice, a Wulff net with a diameter of 20 cm and a 2◦-grid is bound inside
the rear cover. For best results, this should be carefully removed and pasted on a
card with a minimum thickness of 1 mm. Drawings are then made on tracing paper
secured by a pin at the center of the net so as to be readily rotated.

The stereographic projection has two important properties:

(1) The projections of two vectors onto the sphere intersect with the same angle as
do the vectors themselves. The parallels and the meridians of the global net are
mutually perpendicular. Since the Wulff net is the projection of these circles,
the corresponding great and small circles of the Wulff net are perpendicular to
one another, cf. Fig. 5.16.

(2) All circles, great and small, on the sphere will project as circles or arcs on the
equatorial plane (Fig. 5.17). Exceptionally, the meridians which are parallel to
the N–S-direction, will project as straight lines. This property has several con-
sequences. For example, consider a circle with a radius of 30◦ on the surface
of the sphere. Select a general point on the Wulff net, place the pole M there,
and construct the locus of all points that are 30◦ from it. By rotating the trac-
ing paper, the poles lying 30◦ from M on each of the great circles will be found
(Fig. 5.18). These poles will indeed be found to lie on the circumference of a
circle. However, M is not at the center of this circle. The actual center M′ may
be found by bisecting the diameter K1 K2.

The following examples illustrate the principles of the stereographic projection
and the use of the Wulff net.

(1) Given the two poles 1 and 2, determine the angle between them: Place the trac-
ing paper over the Wulff net and rotate it until both poles lie on a great circle,
the zone circle (cf. Fig. 5.19a). The value of the angle can then be read from
the great circle. If one of the poles lies in the southern hemisphere, it must be
treated appropriately (cf. Fig. 5.19b).
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Fig. 5.17
A circle on the surface of a
sphere remains a circle in its
stereographic projection on
the equatorial plane

Fig. 5.18
Detail of the equatorial plane
of a stereographic projection.
Points 30◦ from a pole M are
shown. These poles lie on the
circumference of a circle,
whose center M′ may be
found by bisecting the
diameter K1 K2

Fig. 5.19a, b The angle between two poles may be read from the great circle on which they both
lie

(2) Two faces define a zone. Their line of intersection is the zone axis, which is
normal to the plane defined by the normals to the faces (cf. Fig. 5.3). The zone
circle is perpendicular to the pole of the zone axis.

(a) Draw the pole corresponding to a zone circle: Rotate the zone circle onto a
great circle of the Wulff net; the zone pole will then be 90◦ from the zone
circle along the equator (cf. Fig. 5.20).
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Fig. 5.20
The zone circle and the zone
pole (�) are mutually
perpendicular

Fig. 5.21
The angle ε between the
planes of two zone-circles is
the angle between the poles of
the corresponding zones (�)

Fig. 5.22
Construction of the two poles
3, which make an angle κ

with pole 1, and an angle ω

with pole 2

(b) Draw the zone circle corresponding to a given zone pole: Rotate the pole
onto the equator of the Wulff net. The zone circle is then the meridian 90◦
away from the pole (cf. Fig. 5.20).

(3) The angle ε between the planes of two zone-circles is the angle between the
poles of the corresponding zones (cf. Fig. 5.21).

(4) Find the pole 3, which is separated from pole 1 by an angle κ and from pole 2
by an angle ω: This will lie at the intersections of the two circles with the given
radii. Note that the centers and the radii of the circles must first be specified.
The center of the κ-circle is the midpoint of the diameter K1 K2 (cf. Fig. 5.18);
the center of the ω-circle is found by constructing the perpendicular bisector of
a chord. Note that there are two solutions to this problem (cf. Fig. 5.22).
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Fig. 5.23a, b, c The octahedron in (a) is rotated into the position in (b). This rotation is shown in
the stereogram in (c). The crosses in the stereogram correspond to the faces in (a), the points to the
faces in (b). The poles move along small circles

(5) Change the plane of projection of a stereographic projection: An octahedron is a
crystal form consisting of eight equilateral triangular faces (Fig. 5.23a). Fig 5.23c
gives the stereographic projection of this octahedron. The poles of the faces are
marked with a cross; those lying in the southern hemisphere are not shown. The
stereogram is now to be altered, so that the pole of one of the octahedral faces
is moved to the center of the plane of projection. This may be done by rotating
one of the poles onto the equatorial plane of the Wulff net. The pole will lie on
the equator at 54◦ 44′ from its center. Rotating the pole about the N′–S′ axis of
the net by 54◦ 44′ then brings it to the center of the projection. The other poles
move along their own small circles by an angle of 54◦ 44′. The new positions of
the poles of the faces, which are shown by points in Fig. 5.23c, correspond to
the orientation of the octahedron in Fig. 5.23b, which sits on a face.

5.7
Indexing of a Crystal

Today, it is rarely necessary to index a crystal whose lattice constants are unknown.
In general, lattice constants give no indication of which faces of a crystal will actually
be prominent, but it is possible to produce a stereogram showing all the poles rep-
resenting faces that are possible for that lattice. Since crystals usually develop faces
with low Miller indices, the number of poles which must be drawn is small.

We shall now draw the stereogram of the poles of a crystal of topaz. The lat-
tice parameters are a0 = 4.65, b0 = 8.80, c0 = 8.40 Å, α = β = γ = 90◦. The six
faces (100), (100), (010), (010), (001), (001) which are normal to the crystallographic
axes can be entered immediately into the stereogram (Fig. 5.24). These faces lie on
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Fig. 5.24
Stereogram of the poles of a
few of the faces of a topaz
crystal allowed by the lattice
which have low indices

the following zone-circles: [100] ≡ [(001)/(010)], [010] ≡ [(100)/(001)], [001] ≡
[(100)/(010)]. The zone axis is normal to the plane of the zone-circle, and is paral-
lel to the set of lattice lines which are common to the lattice planes making up the
zone.

Figure 5.25 shows a (010)-section through the crystal lattice with the traces of
the planes (100), (101), and (001), which belong to the [010]-zone. The angle δ is
the angle between the normals to (001) and (101). Since tan δ = c0/a0 , δ = 61.03◦.
Similarly, Fig. 5.26, showing the (100)-section of the same lattice, gives the angle
between the normals to (001) and (011). In this case, tan δ’= c0/b0, and δ′ = 43.67◦.
With the help of the Wulff net, the angles δ and δ′ can be placed on the great circles
corresponding to the zones [010] and [100] respectively, giving the positions of the
poles of the planes (101) and (011). Since the planes (101), (101) and (101) have the
same inclination to the crystallographic axes as (101), while (01 1), (011) and (011)
have that of (011), they may likewise be entered on the stereogram (Fig. 5.24).

The great circles for the zones [(100)/(011)] and [(101)/(010)] may now be
drawn in, and the two intersections of these circles will occur at the poles with
Miller indices (111) and (1 1 1). These traces of zone-circles lying in the southern
hemisphere are given as dashed lines.1

1 Application of the zonal equation leads to

1 0 0 1 0 0
0 1 1 0 1 1——————————-

[0 1 1]

0 1 0 0 1 0
1 0 1 1 0 1——————————-

[1 0 1]

0 1̄ 1 0 1̄ 1
1 0 1̄ 1 0 1̄——————————-

[1 1̄ 1]

If the values of [uvw] are interchanged, the result is (1 1 1). Two zone circles intersect in two poles.
In morphology, (hkl) and (h k l) represent two parallel faces, which are related to only one set of
lattice planes, which may be designated as (hkl) or (h k l).
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Fig. 5.25 Fig. 5.26

Fig. 5.25 Section parallel to (010) through the lattice of a topaz crystal, showing the traces of the
planes (001), (101) and (100), all of which belong to the zone [010]. δ is the angle between the
normals to (001) and (101)

Fig. 5.26 Section parallel to (100) through the lattice of a topaz crystal, showing the traces of the
planes (001), (011) and (010), all of which belong to the zone [100]. δ′ is the angle between the
normals to (001) and (011)

The drawing in of the circles for further zones gives the poles for further faces.
From these, the poles can be located for all faces with the same axial inclination
as (111), viz. (111), (111), (1 11), (111), (111), (11 1) and (1 1 1). For further faces,
the zonal equation is used. Eventually, a stereogram, like that in Fig. 5.27 may be
produced showing the poles for all faces (hkl) with 2̄ ≤ h, k ≤ 2 and 0 ≤ l ≤ 2.

An actual topaz crystal is shown in Fig. 5.28. Once such a crystal has been indexed
with the aid of a stereogram, it is only necessary to measure a few angles on the actual
crystal in order to bring the angles of the crystal into correspondence with the angles
in the stereogram.

The indexing of the stereogram in Fig. 5.27 may be accomplished very easily
using the complication rule, formulated by V. Goldschmidt. This rule allows all
of the faces of a zone to be indexed by addition or subtraction of the indices of
two standard faces. The application of this rule is shown in Fig. 5.29. Let the start-
ing faces be (100) and (010). Addition of (100) + (010) gives (110); (010) + (110)
gives (120); (110) + (120) gives (230), etc. It should be clear that subtraction will
in the end lead to similar results. All of the calculated planes belong to the zone
[001].

In Fig. 5.30, two zone circles are shown, each having two indexed poles on it. The
complication rule may be used to index the pole at the point of intersection. In zone
1, (011) + (110) gives (101), while in zone 2, (010) + (211) gives (201). These poles
lie between their generating poles. The problem is solved when further addition or
subtraction leads to a common point. In this case, from zone 1: (110) + (101) gives
(211); while from zone 2, (201) + (010) gives (211), so the pole corresponding to
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Fig. 5.27 Stereogram of the poles of those faces of a topaz crystal allowed by the lattice which have
indices (2 ≤ h, k ≤ 2; 0 ≤ l ≤ 2)

Fig. 5.28 Topaz crystal. (After [37])
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Fig. 5.29
Complication of the faces
(100) and (010)

Fig. 5.30
Indexing of the point of
intersection of two zone
circles by complication of the
(hkl) for faces lying in these
zones

the intersection, has been indexed. This example is taken from Fig. 5.27. Note the
relative positions of (101) and (201).

A corollary of the complication rule is that all the faces of a crystal may be indexed
by complication of the four simple planes (100), (010), (001) and (111).

Table 5.1 gives the φ and ρ values for a crystal which has been measured on a
two-circle reflection goniometer. Figure 5.31 gives the corresponding stereographic
projection, in which the poles in the other octants may be inferred. The faces are
to be indexed without reference to lattice constants. The crystallographic axes have
been chosen to be parallel to the main zone axes of the stereographic projection.
The faces normal to a, b and c can then be indexed directly. Since only (001) and
(001) actually appear in the crystal, the positions of (100), (100), (010) and (010)
have been added as auxiliary poles, and represented by open circles. One plane
must then be chosen as the unit face (111), which cuts each crystallographic axes
a, b, c, at unit length. These unit lengths give the relative spacings at which the
unit face cuts the crystallographic axes, a, b, c. They are calculated below. The
only faces that can be considered for this purpose are 5 and 6, as only they cut a,
b and c all in a positive sense. It is reasonable to choose face 6 as the unit face,
as the zone circles including this pole contain more poles than those cutting 5. It
is now possible to index faces making equal intercepts on a, b and c, viz. (111),
(111), (111) and (1 11), together with those having poles in the southern hemisphere,
(111), (111), (11 1) and (1 1 1). These last have not been included in the stereogram,
nor have any others in the southern hemisphere, i.e. those with negative ρ. Using
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Table 5.1
φ and ρ angles for the topaz
crystal in Fig. 5.28

Face φ ρ (hkl)

1,1′ – ± 0◦ 001
2,2′ 0◦ ±43◦39′ 011
3,3′ 0◦ ±62◦20′ 021
4 43◦25′ 90◦ 120
5,5′ 62◦08′ ±45◦35′ 112
6,6′ 62◦08′ ±63◦54′ 111
7 62◦08′ 90◦ 110
8,8′ 90◦ ±61◦0′ 101

Fig. 5.31
Indexing of the topaz crystal
in Fig. 5.28

the complication rule, it is now possible to index the following faces and their
equivalents:

(101) = (100)+ (001) = (111)+ (111),
(011) = (010)+ (001) = (111)+ (111),
(110) = (100)+ (010) = (111)+ (111).

The remaining faces are then:

5 : (111)+ (001) = (101)+ (011) = (112)
3 : (010)+ (011) = (111)+ (110) = (021)
4 : (110)+ (010) = (111)− (011) = (120)

The crystal is now fully indexed, and is, in fact, the topaz crystal shown in Fig. 5.28.
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Fig. 5.32
The all-positive octant of the
topaz stereogram from
Fig. 5.31 with the constructed
trace of the (110) face

The morphological axial ratios a:b:c, normally given as a
b : 1 : c

b , are character-
istic of a crystal. The values for topaz can now be calculated: The (110) face cuts a
and b at unit length (Fig. 5.32). The angle δ′′ is the angle between (110) and (100),
and from Table 5.1 (7), it is 90◦ − 62◦08′ = 27◦52′. Thus a

b = tan(27◦52′) = 0.529.
From Fig. 5.26, δ′ is the angle between (011) and (001), and from Table 5.1(2), δ′
= 43◦ 39′. Hence, c

b = tan (43◦ 39′) = 0.954, and the normalized morphological
axial ratios may be given as a

b : 1 : c
b = 0.529 : 1 : 0.954. The numbers 0.529,

1 and 0.954 give the relative spacings (unit lengths) at which the unit face cuts the
crystallographic axes a, b and c.

Today, it is usual to formulate the structural axial ratio in terms of the lattice
constants; for topaz . a0

b0
: 1 : c0

b0
= 0.528 : 1 : 0.955.

5.8
The Gnomonic and Orthographic Projections

In addition to the stereographic projection, mention should be made of the
gnomonic and orthographic projections.

5.8.1
The Gnomonic Projection

As in the stereographic projection, the crystal is considered to lie at the center
of a sphere. The normals to the faces produce points PG on a plane of projec-
tion, which is tangential to the sphere at the north pole (Fig. 5.33). The poles
corresponding to the faces of a zone lie in straight lines on the projection plane.
Figure 5.34 shows a gnomonic projection of the galena crystal in Fig. 5.9. As ρ

approaches 90◦, the distances N – PG approach infinity. The poles of those faces
with ρ = 90◦ are represented in the projection by arrows. The distance N – PG is R.
tan ρ.
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Fig. 5.33
The relationship of the
stereographic, gnomonic and
orthographic projections

Fig. 5.34 Fig. 5.35

Fig. 5.34 Gnomonic projection of the galena crystal in Fig. 5.9

Fig. 5.35 Orthographic projection of the galena crystal in Fig. 5.9

5.8.2
The Orthographic Projection

As in the stereographic projection, the crystal is again considered to lie at the center
of a sphere. In distinction to the stereographic projection, the poles in the northern
hemisphere are projected onto the equatorial plane along the N–S direction, and not
toward the south pole (Fig. 5.33). Figure 5.35 shows an orthographic projection of
the galena crystal in Fig. 5.9. The distance M – PO is R. sin ρ. Compare Figs. 5.12 and
5.35. The orthographic projection is widely used in the description of the symmetry
of cubic space groups (Fig. 10.15).
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5.9
Exercises

Exercise 5.1 Plot the poles of the faces of the following objects on a stere-
ogram.

Exercise 5.2 Plot the directions corresponding to the following axial systems
on a stereogram.

Fig. 5.36 Axial Systems
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Exercise 5.3 Using copies of the patterns in Fig. 15.5(1)–(12), construct mod-
els of the polyhedral models given in Fig. 5.37. Plot the poles of the faces of the
polyhedra you have made on a stereogram with the orientation chosen such
that the altitude of each crystal is perpendicular to the plane of projection. The
drawings below give the geometric shapes of the base or of any section normal
to the altitude.

Fig. 5.37 Crystal Polyhedra

Exercise 5.4 Which faces of the hexagonal prism and pinacoid and of the
tetragonal dipyramid belong to a single zone? Draw in the zone circle on the
appropriate stereogram in Fig. 5.37.
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Fig. 5.37 (Continued)

Exercise 5.5 What is represented by the following stereograms?
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Exercise 5.6 In a stereographic projection, choose a pole at random and draw
in points 30◦ away from it in all directions. What is the locus of the points
produced?

Exercise 5.7 Construct a Wulff net using a ruler, a protractor and a compass.
Make the circles at intervals of 30◦.

Exercise 5.8 Insert poles of a stereographic projection with the following φ

and � values: (1) 80◦, 60◦; (2) 160◦, 32◦; (3) 130◦, 70◦. Determine the angle
between (a) 1 and 2; (b) 1 and 3; (c) 2 and 3. Indicate the zone pole for the
zones determined by (a) 1 and 2; (b) 1 and 3; (c) 2 and 3, and give φ and �

values for their positions.

Exercise 5.9 The poles for the faces with angular coordinates 40◦, 50◦ and
140◦, 60◦ lie on zone circle A, while the poles 80◦, 70◦ and 190◦, 30◦ are on
zone circle B. These zone circles have two points of intersection. Determine
the angular coordinates φ, � for these points. How are these faces orientated
relative to each other?

Exercise 5.10 What is the relationship among the normals to the faces
comprising a zone? How are they related to the zone axis?

Exercise 5.11 In the cubic unit cell shown in Fig 5.38 three different sorts of
axes are shown. Three axes (�) pass through the midpoints of opposite faces
(x, 1

2 , 1
2 ; 1

2 ,y, 1
2 ; and 1

2 , 1
2 ,z). Four axes (
) lie along the body diagonals. Six axes

(()) pass through the mid points of opposite edges. All of these axes intersect in
the center of the unit cell.

Fig 5.38
Cubic unit cell showing the
axes through the midpoints of
opposite faces (�), along the
body diagonals (
), and
through the midpoints of
opposite edges (0). (After
Buerger [8])

Draw the axes on a stereographic projection making use of the Wulff net. It
is convenient to place one of the axes (�) at the center of the plane of projec-
tion. The angles between the various axes may be taken from Fig. 5.39 and 5.40,
which shows cross-sections through the center of the cube.
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Fig. 5.39 Fig. 5.40

Fig 5.39 Section through the center of the cubic unit cell in Fig. 5.38 parallel to a cube face
( 1

2 ,y,z or x, 1
2 ,z or x,y, 1

2 )

Fig 5.40 Section x,x,z or x,1-x,z throught the cubic unit cell of Fig. 5.38. The angle O is
54.73◦, half of the tetrahedral angle (the H-C-H angle in methane) of 109.46◦

Exercise 5.12 In the cubes illustrated below, planes have drawn parallel to the
cube faces (a), and diagonal to them (b), so that each of these planes bisects
the cube. Draw these planes as great circles and their respective projections
on the accompanying stereographic diagram. Now draw all these great circles
from (a), (b)1, (b)2, and (b)3 in the final diagram, and label the axes with the
symbols (), 
, and � as in Exercise 5.11. Compare your stereogram with that
in Fig. 7.13e.
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Exercise 5.13 The galena crystal in Fig. 5.41 (see also Fig. 5.1) was measured
using a reflection goniometer. The angular coordinates φ and ρ are given in
Table 5.2.

(a) Draw a stereogram of the pole faces.
(b) Compare this stereogram of galena with stereograms (a) and (b) in

Exercise 5.12.

Fig 5.41
Crystal of galena

Table 5.2
Angular coordinates of the
galena crystal in Fig. 5.41

Face ϕ �

1.1′ – ±0◦

2,2′ 0◦ ±45◦

3 0◦ 90◦

4,4′ 45◦ ±54.73◦

5 45◦ 90◦

6,6′ 90◦ ±45◦

7 90◦ 90◦

8,8′ 135◦ ±54.73◦

9 135◦ 90◦

10,10′ 180◦ ±45◦

11 180◦ 90◦

12,12′ 225◦ ±54.73◦

13 225◦ 90◦

14,14′ 270◦ ±45◦

15 270◦ 90◦

16,16′ 315◦ ±54.73◦

17 315◦ 90◦

Exercise 5.14 Draw a stereogram showing the pole faces of a crystal
of rutile (TiO2), The lattice parameters are: a0= b0= 4.59 Å, c0= 2.96 Å,
α=β = γ =90◦. Compare your stereogram with that given in Table 9.11.15.
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Exercise 5.15 Draw the stereogram of a cube in its normal setting, i.e. with
one face normal to the N–S direction. Rotate the cube to bring a body diagonal
of the cube parallel to N–S, and draw the resulting poles of the faces on the
stereographic projection.

Exercise 5.16 Draw an orthographic projection of the axes of the cube-shaped
unit cell shown in Fig. 5.38. The necessary angular values my be taken from
Exercise 5.11. Sketch the main zone circles.

Exercise 5.17 Draw a gnomonic projection of the topaz crystal in Fig. 5.28.
The lattice constants are: a0= 4.65, b0= 8.80, c0= 8.40 Å, α=β = γ = 90◦.

Exercise 5.18 The rate of growth of a crystal is an anisotropic property. What
shape would a crystal have if its growth rate were isotropic?





6 Principles of Symmetry

Up to now, the only repetition operation that we have used formally has been the
lattice translation: the operation of three non-coplanar lattice translations on a point
which gives rise to the space lattice.

Fig. 6.1
This wheel may be considered
either as derived from an
object consisting of a single
spoke which is repeated by
rotation every 45◦ or as an
object which is brought into
coincidence with itself by a
rotation of 45◦

In addition to lattice translations, there are other repetition operations, such as
rotations and reflections. In these cases, an object is brought into a coincidence with
itself by rotation about an axis or reflection in a plane.

D All repetition operations are called symmetry operations. Symmetry consists of
the repetition of a pattern by the application of specific rules.

In the wheel illustrated in Fig. 6.1, the spokes are repetitions of one another at inter-
vals of 45◦, or alternatively, as the wheel rotates, it is brought into coincidence with
itself by every rotation of 45◦.

D When a symmetry operation has a “locus”, that is a point, a line, or a plane
that is left unchanged by the operation, this locus is referred to as the symmetry
element.

Figure 6.2 is an illustration of a crystal of gypsum. The right-hand half of the
crystal can be brought into coincidence with the left-hand half through a reflection

W. Borchardt-Ott, Crystallography, 3rd ed., DOI 10.1007/978-3-642-16452-1_6,
C© Springer-Verlag Berlin Heidelberg 2011
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Fig. 6.2
Reflection of either side of
this gypsum crystal in the
hatched plane indicated
brings it into coincidence
with the other side. This
plane is called a mirror plane

in the hatched plane, which will equally bring the left-hand side into coincidence
with the right. Every point in the crystal will be moved by this reflection operation
except those which actually lie on the reflection plane itself. The plane containing
these points is thus the symmetry element corresponding to the symmetry operation
of reflection; it is called a mirror plane.

Rotation through 180◦ about the axis marked with an arrow will bring either half
of the pair of scissors in Fig. 6.3 into coincidence with the other half. Alternatively,
rotation of the pair of scissors through 180◦ brings it into coincidence with itself.
Every point on the scissors moves during this operation except those that lie on
the rotation axis (the arrow) itself. The points comprising this axis make up the
symmetry element corresponding to the symmetry operation of rotation: the rotation
axis.

Fig. 6.3
Rotation of the pair of
scissors through 180◦ about
the axis marked with an
arrow brings it into
coincidence with itself. This
axis is called a rotation axis

Fig. 6.4
Either pentagon is brought
into coincidence with the
other by reflection in a point.
This is called inversion, and
the point which remains
unmoved by the operation is
called an inversion center or
center of symmetry
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Another type of symmetry is shown by the pair of irregular pentagons in Fig. 6.4.
Reflection of either pentagon through the indicated point will bring it into coin-
cidence with the other pentagon. In this symmetry operation, which is called
inversion, only a single point remains unchanged, it is the symmetry element of
the symmetry operation inversion and is called an inversion center or a center of
symmetry.

6.1
Rotation Axes

What symmetry elements are present in a general plane lattice, such as that shown
in Fig. 6.5? Make a copy of the figure on tracing paper and lay the copy directly over
the original. Then rotate the copy about the central lattice point A until both lattices
come into coincidence once more. In this case, this will happen after a rotation of
180◦, and a further rotation of 180◦ makes a full 360◦ rotation, returning the upper
lattice to its original position.

The symmetry element corresponding to the symmetry operation of rotation is
called a rotation axis. The order of the axis is given by X where X = 360◦

ε
, and ε is

the minimum angle (in degrees) required to reach a position indistinguishable from
the starting point. In the above case, X = 360◦

180◦ = 2, and the axis is called a 2-fold
rotation axis. The symbol for this operation is simply the digit 2. In a diagram, it is
represented as

( )
if it is normal to the plane of the paper, or as→ if it is parallel to it.

Whenever a 2-fold axis passes through a point A, a 2-fold axis must pass through
all points equivalent by translation to A. 2-fold axes normal to the lattice plane will

Fig. 6.5a, b
A general plane lattice (a) and
its symmetry (b). Symmetry
elements marked with the
same letter are equivalent to
one another
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also pass through all points B, C and D which lie on the midpoints of a translation
vector. There are thus an infinite number of rotation axes normal to this plane.

Objects are said to be equivalent to one another if they can be brought into coinci-
dence by the application of a symmetry operation. If no symmetry operation except
lattice translation is involved, the objects are said to be “equivalent by translation”
or “identical”.

In Fig. 6.5, all rotation axes A are equivalent to one another, as are all axes B, C
and D. On the other hand, the axes A are not equivalent to B, and so forth.

A crystal, in which congruent lattice planes (Fig. 6.5) lie directly one above the
other, may develop a morphology in which the lower and upper faces are corre-
sponding parallelograms (pinacoid), and the side faces are all perpendicular to these
(Fig. 6.6). Such a crystal will come into coincidence with itself if it is rotated through
180◦ about an axis through the middle of the upper and lower faces. It thus contains
a single 2-fold axis. This observation may be generalized as follows:

Fig. 6.6
A crystal with upper and
lower parallelogram faces and
sides perpendicular to them
has – so far as its morphology
is concerned – only a single
2-fold axis

! The morphology of a single crystal will show only one symmetry element of a
particular type in a particular direction, although both its lattice and its crystal
structure will show infinitely many parallel elements.

Let us now consider whether it is possible to have axes of order higher than 2. An
axis with X > 2 operating on a point will produce at least two other points lying
in a plane normal to it. Since three non-colinear points define a plane, this must
be a lattice plane. Thus, rotation axes must invariably be normal to lattice planes,
and we must decide whether the points generated by a rotation axis can fulfill the
conditions for being a lattice plane, specifically, that parallel lattice lines will have
the same translation period.

Threefold Rotation Axis 3 (graphical symbol 
). Figure 6.7a shows a 3-fold rotation
axis normal to the plane of the paper. By its operation, a rotation of 120◦

(
= 360◦

3

)
,

point I comes into coincidence with point II, and, by a second rotation of 120◦
with point III. A further rotation of 120◦ returns it to its original location. A lattice
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translation moves point I to point IV, and the four points thus generated produce
the unit mesh of a lattice plane. Thus, 3-fold axes are compatible with space lattices.

Fourfold Rotation Axis 4 (graphical symbol �). Fourfold axes are also compatible
with space lattices. As shown in Fig. 6.7b, the action of a 4-fold axis on a point results
in a square of points which is also the unit mesh of a lattice plane.

Fig. 6.7a–c The arrays of points resulting from the operation on a point of (a) 3-fold, (b) 4-fold,
and (c) 6-fold axes normal to the plane of the paper can lead to lattice planes. additional points
produced by lattice translations

Fivefold Rotation Axis 5. The operation of this axis on a point results in a regular
pentagon of points, as shown in Fig. 6.8a. The line through points III and IV is
parallel to that through II and V. If these are to be lattice lines, the spacings of the
two pairs of points must either be equal or have an integral ratio. Since this is clearly
not the case, the points in Fig. 6.8a do not constitute a lattice plane, and we may
conclude that 5-fold axes are impossible in space lattices!

Fig. 6.8a–c The arrays of points resulting from the operation on a point of a 5-fold, b 7-fold, and
c 10-fold axes do not fulfill the conditions for a lattice plane, in that parallel lines through equivalent
points do not have equal spacings. These rotation symmetries cannot occur in lattices

Sixfold Rotation Axis 6 (graphical symbol ).1 This operation, applied to a single
point, results in a regular in a regular hexagon (Fig. 6.7c). A lattice translation places

1 The standard international symbols for 2, 3, 4 and 6 are , , , and , respectively. For
convenience, , 
, � and are also used here. In Chap. 9, filled and unfilled symbols are used to
distinguish the ends of a polar rotation axis Xp.
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Table 6.1
Derivation, using Eq. (6.5), of
the rotation axes X which are
compatible with
a space lattice

m cos ε ε X

0 0 90◦ 4
1 1

2 60◦ 6
2 1 0◦, 360◦ 1

–1 – 1
2 120◦ 3

–2 –1 180◦ 2

a lattice point on the axis itself, and the resulting array meets the condition for a
lattice plane. Inspection of Fig. 6.7a,c will show that the lattices resulting from 6-fold
and 3-fold axes are, in fact, equal.
Rotation Axes of Order Higher Than 6. Figure 6.8b,c shows the effect of attempting
to build up a lattice plane by applying 7-fold and 10-fold axes to a point. The results
are analogous to those for the 5-fold axis described in paragraph (c) above. These
arrays do not produce equal spacings of points in parallel lines and so cannot occur
in lattices. The same result will occur for any rotation axis with X > 6. This result can
also be formulated mathematically. Figure 6.8 shows 10 equivalent points resulting
from a 10-fold rotation axis. Points I and V lie on a line parallel to that connecting
points II and IV. If these are to be lines of a plane net, then I–V must either equal
II–IV or be an integral multiple of it.

(1) I− V = m · II− IV (6.1)

(2) I− V = 2r · sin 2ε = 4r · sin ε · cos ε (6.2)

(3) II− IV = 2r · sin ε (6.3)

(1) 4r · sin ε · cos ε = m · 2r · sin ε (6.4)

cos ε = m/2 (6.5)

Since –1 ≤ cos ε ≤ +1, m must be 0, 1, 2, –1 or –2. Table 6.1, along with Eq. (6.5)
(cos ε =m/2) establishes the rotation axes that are compatible with a space lattice.

! In space lattices and consequently in crystals, only 1-, 2-, 3-, 4-, and 6-fold
rotation axes can occur.

6.2
TheMirror Plane

A further symmetry operation is reflection and the corresponding symmetry ele-
ment is called a plane of symmetry or, more commonly, a mirror plane, and given
the symbol m. The graphical symbol for a plane normal to the paper is a bold line,
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Fig. 6.9
The operation of a mirror
plane m on an asymmetric
molecule. The mirror plane,
perpendicular to the paper,
transforms A into B and
likewise B into A

Fig. 6.10a, b
Operation of m on a lattice
line: in a the lattice line is
parallel to m. The resultant
plane lattice is primitive with
a rectangular unit cell. In b,
the lattice line is tilted with
respect to m. The resultant
plane lattice again has a
rectangular unit cell, but is
now centered. additional
points produced by lattice
translations

as in Fig. 6.9. A mirror plane parallel to the paper is represented by a bold angle; an
example of this is in Sect. 15.2. Any point or object on one side of a mirror plane is
matched by the generation of an equivalent point or object on the other side at the
same distance from the plane along a line normal to it (Fig. 6.9).

Figure 6.10 shows the operation of a mirror plane on a lattice line A, generating
another lattice line A′. Whether the line A is parallel to the mirror plane or not, the
result is a rectangular unit mesh. The generation of the lattice plane in Fig. 6.10b
requires that a lattice point lies on m; this lattice contains two points per unit
mesh and is called centered. A primitive mesh is not chosen in this case since the
rectangular cell (with the symmetry plane parallel to an edge) is easier to work with.

6.3
The Inversion Center

The symmetry operation called inversion relates pairs of points or objects which
are equidistant from and on opposite sides of a central point (called an inversion
center or center of symmetry). The symbol for this operation is 1, and is explained
in Sect. 6.4.1a. An illustration of this operation on a molecule is given in Fig. 6.11.
The graphical symbol for an inversion center is a small circle. Every space lattice has
this operation and is thus centrosymmetric, see Fig. 6.12.
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Fig. 6.11 The operation of an inversion center (0) on asymmetric molecules

Fig. 6.12
The unit cell of a general
lattice, showing the inversion
at 1

2 , 1
2 , 1

2 . All lattices are
centrosymmetric

The operation of an inversion center on a crystal face generates a parallel face on
the opposite side of the crystal. An example of this is the crystal of malonic acid in
Table 9.11.2 which has no symmetry other than inversion, and is entirely enclosed
by pairs of such parallel faces (or pinacoids). The occurrence of such pairs of parallel
faces is important for the detection of inversion symmetry in crystals.

6.4
Compound Symmetry Operations

The operations of rotation, inversion, reflection and lattice translation may be linked
with one another. There are two possibilities to be considered here:

(a) Compound Symmetry Operation. Two symmetry operations are performed in
sequence as a single event. This produces a new symmetry operation but the
individual operations of which it is composed are lost.

(b) Combination of Symmetry Operations. In this case, two or more individual
symmetry operations are combined which are themselves symmetry opera-
tions. Both they and any combination of them must be compatible with the
space lattice.
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Fig. 6.13a, b Compound symmetry operation a and combination of symmetry elements b of a
4-fold rotation and an inversion, illustrated by the effect on the point 1. In a the rotation and the
inversion are not present; in b they are present. The open circles in a represent auxiliary points
occupied when only one part of the compound operation has been applied. In b, the combination
of the rotation and the inversion results also in a mirror plane normal to the axis

These different cases may be illustrated for 4-fold rotation and inversion by
considering the examples given in Fig. 6.13.
(a) Compound Symmetry Operation. Figure 6.13a shows an operation which con-

sists of a rotation of 90◦ about an axis followed by an inversion through a point
on the axis. Successive applications of this compound operation move a point at
1 to 2, 3, 4, and back to 1. Note that the resulting array has neither an inversion
center nor a 4-fold rotation axis.

(b) Combination of Symmetry Operations. Figure 6.13b illustrates the result of
the operations 4-fold rotation and inversion also being present themselves.
Successive operations of the 4-fold axis move a point from 1 to 2, 3, 4 and back
to 1, while the inversion center moves it from each of those positions to 7, 8, 5
and 6 respectively.

Combinations of symmetry operations will be further examined in Chaps. 6, 8 and
9. Compound symmetry operations are summarized in Table 6.2, where the names

Table 6.2 Compound symmetry operations of simple operations. The corresponding symmetry
elements are given in round brackets

Rotation Reflection Inversion Translation

Rotation × Roto-reflection Roto-inversion Screw rotation

Reflection (Roto-reflection axis) × 2-fold rotation Glide reflection

Inversion (Roto-inversion axis) (2-fold rotation
axis) × Inversion

Translation (Screw axis) (Glide plane) (Inversion center) ×
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of the symmetry elements corresponding to the symmetry operations are given
in round brackets. Neither reflection plus inversion nor translation plus inversion
results in a new operation. Glide and screw operations are beyond the needs of the
present discussion and will be covered in Sect. 9.1.

6.4.1
Rotoinversion Axes

The compound symmetry operation of rotation and inversion is called rotoinver-
sion. Its symmetry elements are the rotoinversion axes, with the general symbol X
(pronounced X-bar or bar-X). There are only five possible rotation axes X: 1, 2, 3, 4
and 6, and five corresponding rotoinversion axes X : 1, 2, 3, 4 and 6.

(a) Rotoinversion Axis 1 (Fig. 6.14a). 1 implies a rotation of 360◦ followed by inver-
sion through a point on the 1-fold rotoinversion axis. The operation of 1 on a
point 1 returns it to its starting position, and the subsequent inversion takes it
to point 2. The same operations on point 2 bring it to the original position of
point 1. The rotoinversion operation 1 is thus identical to inversion through an
inversion center. For this reason, 1 is used as a symbol for the inversion center.

Fig. 6.14a–d
The operation of
rotoinversion axes on a point
1: a 1. b 2≡m. c 3≡ 3 + 1.
d 6≡ 3⊥m. For 4, see
Fig. 6.10a. The unfilled circles
represent auxiliary points
which are not occupied when
the two operations of which
the compound operation is
composed are not themselves
present

(b) Rotoinversion Axis 2 (Fig. 6.14b). The effect of rotation through an angle of
180◦ followed by inversion is to take a point from 1 to 2. A repetition of this
compound operation returns it to its original position. The two points are,
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however, also related to one another by reflection in a plane normal to the axis.
The operation 2 is thus identical with m, and need not be considered further.
Note, however, that 2 represents a direction normal to m.

(c) Rotoinversion Axis 3 (graphical Symbol ) (Fig. 6.14c). Successive applications
of the operation 3 move a point to altogether six equivalent positions. In this
case, both of the simple operations 3 and 1 are necessarily present , 3 ≡ 3 +
1 so the compound symmetry operation is here a combination of symmetry
operations.

(d) Rotoinversion Axis 4 (graphical symbol ) (Fig. 6.13a). The 4 axis has already
been analyzed in the previous section. As may be seen in Fig. 6.13a, and as the
graphical symbol indicates, 4 implies the presence of a parallel 2.

(e) Rotoinversion Axis 6 (graphical symbol ) (Fig. 6.14d). Successive applications
of 6 move a point to altogether six equivalent positions. It can be seen that 6
implies the presence of a parallel 3 and a perpendicular m: 6 ≡ 3⊥m.

The unambiguous demonstration of the relationships: 1 ≡ inversion center,
2 ≡ m, 3 ≡ 3+ 1, 4 implies 2, and 6 ≡ 3⊥m in Figs. 6.13a and 6.14 is only possible
when an object such as an unsymmetrical pyramid is operated upon by symmetry
operations (see Exercise 6.1a). Note particularly that only rotoinversion axes of odd
order imply the presence of an inversion center, e.g. 1 and 3. Note that this also applies
to the non-crystallographic axes 5, 7 etc.

6.4.2
Rotoreflection Axes

Like the rotoinversion axes, rotoreflection axes S1, S2, S3, S4, and S6 may be defined.
Rotoreflection implies the compound operation of rotation and reflection in a plane
normal to the axis. However, these axes represent nothing new, since it is easy to
demonstrate the correspondence S1 ≡ m; S2 ≡ 1; S3 ≡ 6; S4 ≡ 4; S6 ≡ 3.
Rotoinversion axes are now invariably used in crystallography.

The symmetry elements with which the crystallographer is concerned are the
proper rotation axes X (1, 2, 3, 4 and 6) and the rotoinversion or improper axes X(1 ≡
inversion center, (2) ≡ m, 3, 4 and 6). In addition to these, there are screw axes and
glide planes (see Sect. 10.1).

! The axes X and X, including 1 and m, are called point-symmetry elements,
since their operations always leave at least one point unmoved.

For 1, this property applies to every point in space, for m to every point on the
plane, for 2, 3, 4, 6, to every point on the axis, and for 1, 3, 4 and 6 to a single point.
A mathematical description of the point symmetry operations is given in Sect. 11.1
(see also Table 11.1)
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6.5
Exercises

Exercise 6.1 The ten crystallographic point symmetry operations are shown
below. Carry out these operations on:

(a) An unsymmetrical pyramid, whose base lies into the plane of the paper.
Sketch the appearance of the generated pyramids, using dotted lines for
those lying below the paper.

(b) A general pole on a sterographic projection.
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Exercise 6.2 Carry out the rotoreflection operations S1, S2, S3, S4 and S6
on a general pole on a stereographic projection, and compare these with the
stereograms of the rotation-inversion axes 1, 2≡ m, 3, 4 and 6 in Exercise 6.1.

Exercise 6.3 When two faces are related by an inversion center 1, how must
they lie with respect to one another?

Exercise 6.4 Carry out the rotoinversion operation (a) 5 (b) 8 (c) 10
–

on a
general pole on a stereographic projection.
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Exercise 6.5 Analyse the rotoinversion axes (cf. Exercise 6.1 and 6.4) into
simple symmetry elements, if it is possible.

Exercise 6.6 Which rotoinversion axes contain an inversion center?

Exercise 6.7 What crystal form is developed by the faces whose poles result
from the operation of 3, 4, 6 and 6 on a general pole? (see Exercise 6.1b).

Exercise 6.8 What shape is implied for the section of a prism which has a 2-,
3-, 4-, or 6-fold axis?

Exercise 6.9 Determine the location of the rotation axes of a cube. Draw these
axes, showing the points at which they enter the cube (see Fig. 15.6 (3)).
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The general space lattice, with no restrictions on the shape of the unit cell (Fig.
3.4 with a0 
= b0 
= c0, α0 
= β0 
= γ0), may be used to describe all crystals. In most
cases, however, the lattices which occur are special in that they have special features,
such as unit cell dimensions (lattice parameters) which are equal in two or three
directions or angles between cell edges with particular values, such as 60◦, 90◦, 120◦
or 54.73◦, such as the cubic unit cell in Fig. 3.1b (a0= b0 = c0, α0= β0= γ0 = 90◦).

The general lattice has no point symmetry elements except inversion centers. The
presence of rotation axes and mirror planes will restrict the cell parameters in some
way, and give special lattices. These special lattices give rise to simplifications in the
crystal morphology and in physical properties.

! When lattice translations in two directions are equivalent, all physical proper-
ties are equal in these directions.

In addition to the general space lattice, there are several special lattices. Before we
consider these space lattices, however, it is useful to develop the relevant concepts
by consideration of general and special plane lattices.

The General (Oblique) Plane Lattice

If we take a point 1, and operate on it with a 2-fold axis, we will generate an equiva-
lent point 2 (Fig. 7.1a). The application of a lattice translation �a to point 1 generates
an identical point 3 (Fig. 7.1b), and the 2-fold axis then relates point 3 to point 4
(Fig. 7.1c). We have now generated a unit mesh of the lattice. It has the shape of an
oblique parallelogram, where a0 
= b0 and γ 
= 90◦.

Note that here and throughout this book, in reference to symmetry, 
=means need
not be equivalent while=means are required by symmetry to be equivalent.

It is possible to vary a0, b0 and γ in any way we like without losing the 2-fold
axis. Thus this lattice is fully general.

W. Borchardt-Ott, Crystallography, 3rd ed., DOI 10.1007/978-3-642-16452-1_7,
C© Springer-Verlag Berlin Heidelberg 2011
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Fig. 7.1a–c Development of the general plane lattice, with an oblique unit mesh

Special Plane Lattices

(a) Returning to Fig. 7.1a, point 3 could have been chosen so that the points 1, 2
and 3 described a right triangle, with the right angle at point 3 (Fig. 7.2a). The
operation of the 2-fold axis now results in a rectangular unit mesh, a0 
= b0,
γ = 90◦. The arrangements of the points is now “special”, as further symme-
try has been introduced, namely two mutually perpendicular mirror planes,
parallel to the 2-fold axis (Fig. 7.2b).

Fig. 7.2a, b
Development of the special
plane lattice with a
rectangular unit mesh (a) and
its symmetry (b)

(b) A further possibility in Fig. 7.1a would be to choose the location of point 3 so
that points 1, 2 and 3 formed an isosceles triangle with the two equal edges
meeting at point 3. The unit mesh of the resulting lattice is a rhombus: a0 = b0,
γ 
= 60◦, 90◦ or 120◦ (Fig. 7.3a). Extension of the edges 1–4 and 1–3 a further
unit translation on the other side of 1, an alternative choice of unit mesh arises
(Fig. 7.3b). It is rectangular (a′0 
= b′0, γ = 90◦), and is called centered because

Fig. 7.3a–c Development of the special plane lattice with a rhombic unit mesh (a), and its
alternative description by a centered rectangular mesh (b). Symmetry of the plane lattice (c)
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it has a point at its center identical to those at the vertices. Consideration of
the symmetry of this cell shows that there are a pair of mirror planes, similar to
those in Fig. 7.2b, and several 2-fold axes (Fig. 7.3c).

(c) Returning once more to Fig. 7.1a, we choose the position of point 3 in such a
way as to make the points 1, 2 and 3 describe an isosceles right triangle, with
the right angle at 3. The resultant lattice now has a square unit mesh: a0 = b0, γ
= 90◦. As shown in Fig. 7.4b, there are now a 4-fold axis and four mirror planes
parallel to it in the cell.

Fig. 7.4a, b
Development of the special
plane lattice with a square
unit mesh and its symmetry

(d) Finally, let us choose the position of point 3 in Fig. 7.1a such that the points 1,
2 and 3 make an equilateral triangle (Fig. 7.5a). The unit mesh of the resulting
hexagonal lattice is now a 120◦ rhombus, or a0 = b0, γ = 120◦. In addition to
the 2-fold axis, there are now 3- and 6-fold axes as well as several mirror planes.
The axes are shown in Fig. 7.5b (see also Fig. 6.7a, c).

Fig. 7.5a, b
Development of the special
hexagonal plane lattice and its
symmetry. The unit mesh is a
120◦ rhombus

We have now developed all four of the possible special plane lattices (which were, in
fact, introduced in a different way in Chap. 6) from the general plane lattice. These
plane lattices are summarized in Table 7.1 with their characteristic symmetry ele-
ments. The general lattice (see Fig. 7.5) possesses 2-fold axes only, but the special
lattices (a)–(d) all have further symmetry elements, which are shown on their dia-
grams in Fig. 7.6. It should be noted that only point symmetry elements are shown
here. There are compound symmetry elements involving translation, glide planes
(see Sect. 10.1).



78 7 The 14 Bravais Lattices

Table 7.1 Plane lattices

Shape of unit
mesh

Lattice
parameters

Characteristic
symmetry elements Figure

General plane lattices Parallelogram a0 
= b0
γ 
= 90◦

2 6.5
7.1c

Special plane lattice a Rectangle
(primitive)

a0 
= b0
γ= 90◦

m 7.2a
7.6a

b Rectangle
(centered)

a0 
= b0
γ = 90◦

m 7.3b
7.6b

c Square a0 = b0
γ = 90◦

4 7.4a
7.6c

d 120◦ Rhombus a0 = b0
γ = 120◦

6 (3) 7.5a
7.6d

Fig. 7.6a,b
Symmetry elements of the
special lattice planes with a
primitive (a) and a centered
(b) rectangular unit mesh,
and a square (c) and a
hexagonal (120◦ rhombus)
(d) unit mesh
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Fig. 7.6c,d (Continued)
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7.1
The Primitive Space Lattices (P-Lattices)

The relationships between lattices and symmetry elements in three dimensions are
similar to those in two. From the general space lattice, several special space lattices
may be derived, in which congruent lattice planes are stacked above one another.
If the symmetry of the lattice planes is not changed, the five space lattices with
primitive unit cells (P-lattices) are produced. These are given in Table 7.2.

Compare the stacking processes illustrated in Figs. 7.7, 7.8, 7.9a, b, 7.10 and
7.11a, b. Notice that the centered rectangular plane lattice (b) does not occur. The
square lattice may be stacked either with c0 
= a0 = b0 or c0 = a0 = b0; the former
develops the tetragonal P-lattice and the latter the cubic P-lattice. The cubic lattice is
a special case of the tetragonal, since new, characteristic symmetry elements appear
(three-fold rotation axes along the body diagonals of the unit cell). The generation of
the general or triclinic P-lattice by stacking is shown in Fig. 7.12a. All of the P-lattices
are illustrated in Table 7.3.

Table 7.2 P-lattices

Shape of unit mesh in stacked
layers

Interplanar spacing Lattice Figure

Parallelograma (a0 
= c0) b0 Monoclinic P 7.8a, b

Rectangle (a0 
= b0) c0 Orthorthombic P 7.9a, b

Square (a0 = b0) c0 
= (a0 = b0) Tetragonal P 7.10a, b

Square (a0 = b0) c0 = (a0 = b0) Cubic P 7.13a, b

120◦-Rhombus (a0 = b0) c0 Hexagonal P 7.12a, b

a Note that for historical reasons, the description a0 
= b0, γ 
= 90◦ has been changed in this case to
a0 
= c0, β 
= 90◦
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Fig. 7.7a–f The triclinic crystal system
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Fig. 7.8a–d The monoclinic crystal system
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Fig. 7.8e,f (Continued)
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Fig. 7.9a–d The orthorhombic crystal system
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Fig. 7.9e,f (Continued)
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Fig. 7.10a–d The tetragonal crystal system
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Fig. 7.10e,f (Continued)
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Fig. 7.11a–d The trigonal crystal system
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Fig. 7.11e,f (Continued)
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Fig. 7.12a–d The hexagonal crystal system
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Fig. 7.12e,f (Continued)
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Fig. 7.13a–d The cubic crystal system
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Fig. 7.13e,f (Continued)
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Table 7.3 The 14 Bravais lattices
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7.2
The Symmetry of the Primitive Lattices

Before considering the symmetry of lattices, it is useful to learn two rules governing
the generation of a symmetry element by the combination of two others. In the fol-
lowing two cases, the presence of any two of the given symmetry elements implies the
presence of the third. Combination of symmetry elements is no casual occurrence; it
is fundamental to the nature of symmetry.

! In the following two rules the presence of any two of the given symmetry
elements implies the presence of the third:

Rule I. A rotation axis of even order (Xe = 2, 4 or 6), a mirror plane normal to
Xe, and an inversion center at the point of intersection of Xe andm (Fig. 7.13).1

Rule II. Two mutually perpendicular mirror planes and a 2-fold axis along
their line of intersection (Fig. 7.14)

Every lattice is centrosymmetric and has inversion centers on the lattice points and
midway between any two of them. Thus, in a P-lattice, there are inversion centers at
0,0,0; 1

2 ,0,0; 0, 1
2 ,0; 0,0, 1

2 ; 1
2 , 1

2 ,0; 1
2 ,0, 1

2 ; 0, 1
2 , 1

2 and 1
2 , 1

2 , 1
2 .

Fig. 7.14a–c Symmetry rule I: (a) 2⊥m → 1̄ (at the intersection of 2 and m); (b) 1̄ on m→ 2
(passing through 1̄ and normal to m); (c) 1̄ on 2→m (passing through 1̄ and normal to 2)

Fig. 7.15a–c Symmetry rule II: (a) m′ ⊥ m′′ → 2 (along the intersection of m′ and m′′;
(b) 2 on m′′ → m′⊥m" (with 2 as the line of intersection); (c) 2 on m′ → m′′⊥m′ (with 2 as the
line of intersection)

1 Xe = 2, 4 or 6. The illustration only includes the case Xe = 2. The rule is not completely general,
since m + 1̄ can only generate 2.
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7.2.1
Symmetry of the Triclinic P-Lattice

The only point symmetry elements of the triclinic lattice are inversion centers
(Fig. 7.15) at the coordinates given above. A projection of the symmetry elements
parallel to c onto x,y,0 is shown in Fig. 7.16. The z-coordinates implied for the
inversion centers are 0 and 1

2 .

Fig. 7.16
Triclinic P-lattice with the
symmetry elements of space
group P1̄ ( 1̄ on lattice
point)

Fig. 7.17
Projection of the symmetry
elements of space group P1̄
onto x,y,0. The z-coordinates
of 1̄ are 0 and 1

2 , cf. Fig. 7.16

D The complete set of symmetry operations in a lattice or a crystal structure, or
a group of symmetry operations including lattice translations is called a space
group.

The space group of a primitive lattice which has only 1̄ is called P1̄, and the
conditions for its unit cell parameters: a0 
= b0 
= c0; α 
= β 
= γ .

7.2.2
Symmetry of theMonoclinic P-Lattice

The set of lattice planes from which we generated the monoclinic P-lattice (Fig. 7.8a)
contain a set of 2-fold axes parallel to b. In addition, there are mirror planes normal
to b at x,0,z and x, 1

2 ,z as well as the inversion centers that were present in the triclinic
case. The location of the mirror planes follows from our first rule: (2 and 1̄ generate
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m ⊥ 2 at 1̄.) The array of symmetry elements of the lattice is shown in Fig. 7.8d in
projections on x,0,z and x,y,0.2 Since the 2 is normal to the m, this combination is
given the symbol 2/m, pronounced “two over m”. It is not necessary to represent the
inversion center, since 2/m implies 1̄, by Rule I.

The space group of the monoclinic P-lattice is P2/m, where it is conventional to
choose the b-axis parallel to 2 and normal to m. The b-axis is called the symme-
try direction. The a- and c-directions thus lie in the plane of m. This is called the
“second setting”. Occasionally, the so-called “first setting” is encountered, with the
c-direction parallel to 2 and normal to m. When this convention is used, the lat-
tice is formed in the more usual way by the stacking of parallel lattice planes with
a0 
= b0, γ 
= 90◦, and a spacing of c0.

7.2.3
Symmetry of the Orthorhombic P-Lattice

In addition to the symmetry of the stacked planes (Fig. 7.9a), the orthorhombic
P-lattice (Fig. 7.9b) has mirror planes normal to c at x,y,0 and x,y, 1

2 and inversion
centers (Fig. 7.9d). Further, the application of rule I (m + 1̄ ⇒ 2⊥m) or rule II
(m⊥m ⇒ 2) generates 2-fold axes at x,0,0; x,0, 1

2 ; x, 1
2 ,0; x, 1

2 , 1
2 ; 0,y,0; 0,y, 1

2 ; 1
2 ,y,0

and 1
2 ,y, 1

2 .
An alternative approach, which leads to the same result is the following: the unit

cell of the orthorhombic P-lattice is a rectangular parallelepiped; it is bounded by
three pairs of lattice planes with primitive rectangular unit meshes. These planes all
have the same symmetry, that shown in Fig. 7.9a. The arrangement of symmetry
elements is shown in Fig. 7.18, which should be compared with Fig. 7.9d. This set
of symmetry elements can be given a symbol. The symmetry elements are arranged
in the order of the crystallographic axes: a,b,c. Each axis has a 2-fold rotation axis

Fig. 7.18
Symmetry elements of space
group P 2/m 2/m 2/m. The
inversion centers are not
shown

2 In the diagrams, the symbol indicates a mirror plane parallel to the plane of the page at
heights of 0 and 1

2 . When the planes lie at other heights, such as 1
4 and 3

4 , this is shown by adding
1
4 . Note that if there is an m, 2 or 1̄ at 0, it is also found at 1

2 ; if it lies at 1
4 , it is also at 3

4 , etc.
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Fig. 7.19 a Space group P 2/m 2/m 2/m. In the other diagrams, only the symmetry elements
corresponding to the symmetry directions a, b, c are shown:
b P2/m . . . . . . ,
↓
a

c P . . . 2/m . . . ,
↓
b

d P . . . . . . 2/m
↓
c
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parallel to it and mirror planes normal to it. Thus, the symbol for this space group

is:
P2/m 2/m 2/m
↓ ↓ ↓
a b c

.

Here the a-, b- and c-axes are all called symmetry directions. Figure 7.19, gives a
projection of all point symmetry elements of space group P2/m2/m 2/m, and sep-
arate projections showing those elements related to the symmetry directions a, b
and c.

7.2.4
Symmetry of the Tetragonal P-Lattice

In addition to the symmetry of the stacked planes (Fig. 7.10a), the tetragonal
P-lattice (Fig. 7.10b) has mirror planes ⊥ c at x,y,0 and x,y, 1

2 and inversion cen-
ters (Fig. 7.10d). Further, the application of Rule I (m + 1̄ ⇒ 2⊥m) or rule II
(m⊥m ⇒ 2) generates several 2-fold axes. It should be noted in passing that the
projection of the symmetry elements for this space group in Fig. 7.10d is incomplete,
since there are also glide planes present (Sect. 9.1). The same is true for the space
groups in Figs. 7.10d–7.13d, which in addition contain screw axes. These symmetry
elements are essentially irrelevant to our present purpose, and will not be considered
further here.

The unit cell of a tetragonal P-lattice has the shape of a tetragonal prism; it is
bounded by two lattice planes with square unit meshes and four planes with rect-
angular meshes, the symmetries of which are shown in Fig. 7.20. Compare Fig. 7.20
with Fig. 7.10d, noting that the 2-fold axes parallel to [110] and [11̄0] do not appear
in Fig. 7.20.

The 4-fold axes have the effect of making a and b equivalent, and they are often
denoted as a1 and a2, as in Fig. 7.10d. Similarly, the directions [110] and [11̄0]
are equivalent to one another. We must now introduce a further type of brackets,
pointed brackets 〈 〉 . The symbol 〈uvw〉 denotes the lattice direction [uvw] and all
directions equivalent to it. Similarly, 〈a〉 denotes the a-axis and all equivalent axes.

Fig. 7.20
Symmetry elements of space
group P 4/m 2/m 2/m. The 2
along 〈110〉 and the inversion
centers are not shown
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Fig. 7.21 a Space group P 4/m 2/m 2/m. In the other diagrams, only the symmetry elements
corresponding to the symmetry directions c, 〈a〉, 〈110〉 are shown:
b P 4/m . . . . . . ,

↓
c

c P . . . 2/m . . . ,
↓
〈a〉

d P . . . . . . 2/m
↓
〈110〉
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For the tetragonal lattice, 〈110〉 implies both the [110] and the [11̄0] directions, and
〈a〉 implies both the a- and b-axes.

In the space group symbol, the symmetry elements are given in the order: c, 〈a〉,
diagonal of the 〈a〉-axes, viz. 〈110〉, all of which are called symmetry directions. Thus,
equivalent symmetry operations are given only once. The space group symbol is thus
P 4/m 2/m 2/m.
↓ ↓ ↓
c 〈a〉 〈110〉 .
Figure 7.21 gives a projection of all point symmetry elements of space group

P4/m 2/m 2/m, and separate projections showing those elements related to the
symmetry directions c, 〈a〉 and 〈110〉.

7.2.5
Symmetry of the Hexagonal P-Lattice

In addition to the symmetry of the stacked planes, the hexagonal P-lattice, like the
orthorhombic and tetragonal lattices, has mirror planes ⊥ c at x,y,0 and x, y, 1

2 , and
inversion centers (Fig. 7.10d), so the application of Rule I (m+ 1̄⇒ 2⊥m) or rule
II (m⊥m⇒ 2) generates several 2-fold axes.

Figure 7.22 shows the projection of a hexagonal P-lattice on (001). The 6-fold
axis makes a = b, and a and b may also be written as a1 and a2. Another direction,
called the a3-axis, may then be added, making an angle of 120◦ with a1 and a2, and
equivalent to them both. Thus, 〈a〉 now represents a1, a2, a3. The diagonals bisecting
the 〈a〉-axes are [210], [1̄2̄0] and [1̄10]. As for the tetragonal lattice, the symmetry
elements are arranged in the space group symbol in the order, c, 〈a〉, diagonals of
the 〈a〉 axes, viz. 〈210〉, all of which are called symmetry directions.

The space group symbol is thus:
P6/m 2/m 2/m.
↓ ↓ ↓
c 〈a〉 〈210〉 .

Fig. 7.22
Hexagonal P-lattice projected
on (001) emphasizing the
symmetry directions 〈a〉 = a1,
a2, a3 and 〈210〉 = [210],
[1̄10] and [12̄0]
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Fig. 7.23 a Space group P 6/m 2/m 2/m. In the other diagrams, only the symmetry elements
corresponding to the symmetry directions c, 〈a〉, 〈210〉 are shown:
b P6/m . . . . . . ,
↓
c

c P . . . 2/m . . . ,
↓
〈a〉

d P . . . . . . 2/m
↓
〈210〉
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Figure 7.23 gives a projection of all the point-symmetry elements of space
group P6/m2/m2/m, and separate diagrams showing those elements related to the
symmetry directions c, 〈a〉 and〈210〉.

7.2.6
Symmetry of the Cubic P-Lattice

The symmetry of the stacking planes is shown in Fig. 7.12a. The stacking results
in a lattice with a cubic unit cell (a0 = b0 = c0). This means that the lattice planes
0,x,z and x,0,z have the same symmetry as x,y,0, see Fig. 7.12d. This equivalence of
the planes generates four 3-fold axes along the body diagonals of the unit cell as well
as inversion centers, so these axes are represented as 3̄ (≡ 3+ 1̄). Application of rule
I (m + 1̄ ⇒ 2⊥m) or rule II (m⊥m ⇒ 2) generates 2-fold axes parallel to [110]
and equivalent directions. (These 2-fold axes are not included in Fig. 7.11d).

In the space group symbol, the symmetry elements are given in the order: 〈a〉,
〈111〉 = body diagonals of the unit cell, 〈110〉 = face diagonals of the unit cell. The

space group symbol for the cubic P-lattice is thus:
P4/m 3̄ 2/m.
↓ ↓ ↓
〈a〉 〈111〉 〈110〉 .

Figure 7.24 gives a projection of all the point-symmetry elements of space group
P4/m3̄2/m, and separate diagrams showing those elements related to the symmetry
directions 〈a〉, 〈111〉 and 〈110〉.

7.3
The Centered Lattices

Consideration of the primitive lattices we have so far generated raises the question
as to whether it is possible to import into the P-lattices one or more further lat-
tice planes without destroying the symmetry. Let us first consider the monoclinic
P-lattice.

Figure 7.25 shows the monoclinic P-lattice and its symmetry, P2/m, projected
onto x,0,z (see also Fig. 7.8d). Each point of the lattice has 2/m symmetry, which
implies the presence of an inversion center in the point. Insertion of new lattice
planes parallel to (010) into the lattice is only possible if the lattice points fall on a
position which also has symmetry 2/m, i.e. on 1

2 ,0,0; 0, 1
2 ,0; 0,0, 1

2 ; 1
2 , 1

2 ,0; 1
2 ,0, 1

2 ; 0, 1
2 , 1

2 ,
or 1

2 , 1
2 , 1

2 . These possibilities must each be considered.

(a) Lattice Plane with Lattice Point at 1
2 , 1

2 ,0 (Fig. 7.26). These new lattice points
center the a, b-face of the unit cell. This is called a C-face centered lattice, or
more simply a C-lattice, although this name is formally inexact, being used to
describe a “lattice with a C-face centered unit cell”. The monoclinic C-lattice is
illustrated in Table 7.3.
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Fig. 7.24 a Space group P 4/m 3̄ 2/m. In the other diagrams, only the symmetry elements corre-
sponding to the symmetry directions 〈a〉, 〈111〉, <110> are shown.
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Fig. 7.25
The monoclinic P-lattice and
its symmetry elements
projected onto x,0,z (©
lattice point with y= 0)

Fig. 7.26
The monoclinic C-lattice
projected on x,0,z
( represents a lattice point
with y = 1

2
)

(b) Lattice Plane with Lattice Point at 0, 1
2 , 1

2 (Fig. 7.27). If the new plane centers the
b, c-face, the result will be an A-face centered lattice. Since, however, in mono-
clinic cells, the a and c axes may lie anywhere in the mirror plane, they may be
swapped, converting the A-lattice into a C-lattice.

(c) Lattice Plane with Lattice Point at 1
2 ,0, 1

2 (Fig. 7.28). The result is now a
B-lattice, from which a smaller, primitive unit cell can be chosen (outlined in
bold) that still has monoclinic symmetry.

(d) Lattice Plane with Lattice Point at 1
2 , 1

2 , 1
2 (Fig. 7.29). A lattice is formed, with a

lattice point at the body center of the unit cell. This is called a body centered
or I-lattice (from the German innenzentriert). As with the A-lattice, choice of
different axes convert this to a monoclinic C-lattice.

Fig. 7.27
The monoclinic A-lattice
(a0, b0, c0) can, by
interchanging a and c, be
converted to a monoclinic
C-lattice (a′0, b0, c′0)
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Fig. 7.28
The monoclinic B-lattice
(a0, b0, c0) can be converted
to a smaller monoclinic
P-lattice (a′0, b0, c′0)

Fig. 7.29
The monoclinic I-lattice
(a0, b0, c0) can be converted
to a monoclinic C-lattice
(a′0, b0, c′0)

(e) Lattice Plane with Lattice Point at 1
2 ,0,0; 0, 1

2 ,0 or 0,0, 1
2 . In any of these cases, the

result is simply to halve the cell; no new type of lattice is formed.
(f) It is also possible to introduce two lattice planes at the same time, for exam-

ple, as in both (a) and (b), giving additional lattice points at 1
2 , 1

2 ,0 and 0, 1
2 , 1

2
(Fig. 7.30a). Since it is necessary that all lattice points have the same environ-
ment, and parallel lattice lines the same period a further lattice point (shown
with a dashed outline) must be added at 1

2 ,0, 1
2 . Thus, all the faces of the unit cell

are now centered, giving an all-face centered or F-lattice.

A general principle following from this is that a lattice centered on two faces cannot
exist because the requirement that all lattice points are identical and parallel lattice
lines have the same lattice period will convert it to an all-face centered lattice.

The monoclinic F-lattice can, in fact, be reduced to a C-lattice of half the volume,
as is shown in Fig. 7.30b.

We have now considered all the possibilities for introducing extra lattice planes
into the monoclinic P-lattice, and have shown that all of these may be represented
either as P- or C-lattices (A, I, F→ C; B→ P).

The orthorhombic lattice may be developed in the same way, giving rise of
orthorhombic A-, B-, C-, I- and F-lattices. The I- and F-lattices are now not
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Fig. 7.30 a, b. The development of the monoclinic F-lattice (a). The monoclinic F-lattice (a0,b0,c0)
can be converted to a monoclinic C-lattice (a′0,b0,c′0) (b)

reducible as they were in the monoclinic case. The A-, B- and C-lattices are alterna-
tive representations of the same lattice; the a-, b-, and c-axes can always be chosen
so as to generate a C-lattice. There are a few space groups which are customarily
treated as having an A-lattice (see Table 10.2). The C-lattice may also be devel-
oped by the vertical stacking of planes with the centered rectangular unit mesh
(Fig. 7.6b).

Similar considerations to those in the monoclinic case lead from the tetragonal
P-lattice to the tetragonal I-lattice, and from the cubic P-lattice to the cubic I- and
F-lattices (Table 7.3).

An examination of the hexagonal P-lattice will show that the only point with the
same symmetry as 0,0,0 is 0,0, 1

2 . The addition of a lattice plane there will merely
halve the size of the unit cell.

A 6-fold axis always contains a 3-fold axis. Starting from this fact, the plane lattice
with a 120◦ rhombus as unit mesh contains a 3-fold axes at 0,0,z; 1

3 , 2
3 ,z and 2

3 , 1
3 ,z

(Fig. 7.11a). It is possible to add a second plane at a height of 1
3 c0 with a lattice point

on the 3-fold axis at 2
3 , 1

3 ,z and a third plane at a height of 2
3 c0 with a lattice point on

the 3-fold axis at 1
3 , 2

3 ,z (Fig. 7.11b). The fourth plane will then come at a height of
c0, directly above the first. This new arrangement of lattice points reduces the 6-fold
axes to 3-fold and removes the mirror planes at x,0,z; 0,y,z and x,x,z as well as the
2-fold axes parallel to the c-axis. The resulting lattice has the shape of a hexagonal
lattice (a0 = b0 
= c0, α = β = 90◦, γ = 120◦) but contains three lattice points per
unit cell (0,0,0; 2

3 , 1
3 , 1

3 ; 1
3 , 2

3 , 2
3 ).

It is possible, however, to describe this lattice by a primitive unit cell
(a′0 = b′0 = c′0, α′ = β′ = γ′). If the first cell is used to describe the lattice, it is
called a trigonal R-lattice, if the second is used, the lattice is called rhombohedral P
(Fig. 7.19b). The unit cell of the rhombohedral P-lattice has indeed the shape of a
rhombohedron, with six rhombi as faces.
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Special cases of the rhombohedral P-lattice are: (a) α′ = 90◦ gives the cubic
P-lattice; (b) α′ = 60◦ gives the cubic F-lattice and (c) α′ = 109.47◦ gives the cubic
I-lattice.

7.4
The Symmetry of the Centered Lattices

With the exception of the trigonal R-lattice, the derivation above of the centered lat-
tices always paid strict attention to retaining the full symmetry of the corresponding
P-lattice. All the symmetry elements of the P-lattice remained, only the transla-
tion properties were altered. The centering does indeed introduce new symmetry
elements, notably screw axes and glide planes (see Sect. 10.1). In spite of this, the
symbols for the space groups of the centered lattices may easily be given, since the
new symmetry elements do not appear in them.

Now it is not difficult to derive the symbol for the trigonal R-lattice from the
reduced symmetry of the lattice planes. There are, in addition to the normal ones,
further inversion centers, which, by Rule I (m + 1̄ ⇒ 2 ⊥ m), generate a set of
2-fold axes parallel to a1, a2, a3 (Fig. 7.11d). The 3-fold axis becomes 3̄ since 3 +
1̄ ⇒ 3̄. The order of the symmetry directions here is: c, <a>, giving the symbol
R3̄ 2/m.
↓ ↓
c 〈a〉

The space group symbols of the 14 Bravais lattices are given in Table 7.4 in the
same order as Table 7.3.

Table 7.3 contains the 14 lattices, which are usually known as the Bravais lattices.

! The 14 Bravais lattices represent the 14 and only ways in which it is possible to
fill space by a three-dimensional periodic array of points.

Table 7.4 The space group symbols for the 14 Bravais lattices

P C I F

Triclinic P 1̄

Monoclinic P 2/m C 2/m

Orthorhombic P 2/m 2/m 2/m C 2/m 2/m 2/m I 2/m 2/m 2/m F 2/m 2/m 2/m

Tetragonal P 4/m 2/m 2/m I 4/m 2/m 2/m

Trigonal
P 6/m 2/m 2/m

R 3̄ 2/m

Hexagonal

Cubic P 4/m3̄ 2/m I 4/m3̄2/m F 4/m3̄2/m
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All crystals are built up on one of these lattices. In Chap. 4, we defined a crystal
structure as a lattice plus a basis. While the number of lattices is fixed at 14, there
are infinitely many possible ways of arranging atoms in cell. Any crystal structure,
however, has only one Bravais lattice.

The number and coordinates of the lattice points in the unit cells of the Bravais
lattices is given in Table 7.5.

Table 7.5 Number and coordinates of the lattice points in the unit cells of the Bravais lattices

Lattice No. of lattice points in unit cell Coordinates of lattice points in unit cell

P 1 0,0,0
A 2 0,0,0; 0, 1

2 , 1
2

B 2 0,0,0; 1
2 ,0, 1

2

C 2 0,0,0; 1
2 , 1

2 ,0

I 2 0,0,0; 1
2 , 1

2 , 1
2

R 3 0,0,0; 2
3 , 1

3 , 1
3 ; 1

3 , 2
3 , 2

3

F 4 0,0,0; 1
2 , 1

2 ,0; 1
2 ,0, 1

2 ; 0, 1
2 , 1

2

7.5
Exercises

Exercise 7.1 Symmetry of plane lattices.

(a) Determine the symmetry elements for the given plane lattices, and draw
these in their places on the lattice. Note that only m, 2, 3, 4 and 6 normal
to the plane of the paper need be considered.

(b) Draw in the edges of the unit mesh and give the lattice parameters. Which
lattice parameters are equivalent and why?

(c) Determine which symmetry elements are themselves equivalent by sym-
metry.
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Exercise 7.1 (Continued)

Exercise 7.2 For the given two-dimensional structures, determine:

(a) The unit mesh.
(b) The symmetry elements. It is only necessary to indicate those symmetry

elements which lie within the unit mesh. As in Exercise 7.1, only m, 2, 3, 4
and 6 normal to the plane of the paper need be considered.

Two dimensional structures after Kockel
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Exercise 7.2 (Continued)

Exercise 7.3 (Refer to Symmetry rule I)

(a) Draw the given combinations of two symmetry elements on the stereo-
graphic projection. As the inversion center is a single point, it cannot be
shown on the stereogram, but may be taken to lie at the center of the pro-
jection. Draw in a pole which does not lie on any symmetry element, and
allow the symmetry elements to operate on it. On the basis of the positions
of the resulting poles, determine the third symmetry element generated
by the combination of the gien symmetry elements, and draw it on the
sterogram.

(b) Below are given an orthorhombic unit cell and its projection on x,y,0. Draw
the third symmetry element generated by the two given elements on either
or both of these, give its symbol and the coordinates of its position. Note
that only one symmetry element of each type is drawn in the cell.
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Exercise 7.3 (Continued)
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Exercise 7.3 (Continued)

Exercise 7.4 (Refer to symmetry rule II)

(a) On the following stereograms, draw in the third symmetry element gener-
ated by the combination of the given two.
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(b) An orthorhombic unit cell and its projection on x,y,0 are given below. On
either of them, draw the third symmetry element generated by the two
given elements, and given its symbol and the coordinates of its position.
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Exercise 7.5 Which of the 14 Bravais lattices are each of the following?



118 7 The 14 Bravais Lattices

Exercise 7.6

(a) Draw the unit cells of each of the following lattices as a projection on x,y,0,
or, in the monoclinic case, on x,0,z. Use a scale of 1 Å= 1 cm.

Monoclinic P: a0 = 5.5, b0 = 4.0, c0 = 4.0 Å; β = 150◦

Orthorhombic P: a0 = 3.0, b0 = 4.5, c0 = 4.0 Å
Tetragonal P: a0 = 4.0, c0 = 3.0 Å
Hexagonal P: a0 = 4.0, c0 = 3.0 Å
Trigonal R: a0 = 4.5, c0 = 3.0 Å

(b) Determine the symmetry operations of lattices you have drawn, and plot
the symmetry elements on the projection of the lattice.

(c) Now use colored pens to color the symmetry elements, using colors so that
symmetry elements with the same symmetry direction have the same color.

(d) Give the space group symbol for each lattice, making use of the colors of
symmetry elements you have chosen in (c).

Exercise 7.7 Derive the three centered orthorhombic lattices (cf. Sect. 7.3).

(a) What is the symmetry of a lattice point in the orthorhombic P-lattice?
(b) Which points in the unit cell of the P-lattice have the same symmetry as the

lattice points? Give their coordinates.
(c) Bring a lattice plane, parallel to (001) into a position such that a lattice point

comes into coincidence with each of the positions you have determined in
(b). Repeat the above exercise with two planes.

Exercise 7.8 Similarly, derive the centered tetragonal lattices.

Exercise 7.9 The projection of a Bravais lattice onto x,y,0 is given below.

(a) Name the lattice constants and give the coordinates of the lattice points.
(b) Determine the symmetry of the lattice, and draw the symmetry elements

on the projection.
(c) What are the symmetry directions for this lattice?
(d) What is its space group symbol?

Exercise 7.10 Look at Figs. 7.19, 7.21, 7.23 and 7.24. How do the individual
projections in each figure relate to one another?
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In the various lattices, the vectors �a, �b and �c must be chosen and associated with
a system of suitable crystallographic axes, a, b, c. This is not done arbitrarily.
Generally, so far as is possible, the choices are made so that the direction of rota-
tion axes, rotoinversion axes and the normals to mirror planes are parallel to �a, �b, �c.
Thus:

�a, �b, �c; a, b, c // X, X̄, normal to m.

It is possible to distinguish six axial systems (systems of crystallographic axes),
which are given in Figs. 7.7c–7.13c and which correspond to the six primitive lat-
tices. These axial systems naturally apply equally to the centered lattices. On this
basis, we may define a crystal system:

D All lattices, all crystal structures and all crystal morphologies which can be
defined by the same axial system belong to the same crystal system.

This definition distinguishes six crystal systems. It is, however, usual to separate the
system of crystallographic axes based on a = b 
= c, α = β = 90◦, γ = 120◦ into a
hexagonal and a trigonal crystal system. The hexagonal system is characterized by
the presence of 6 or 6̄, while the trigonal is characterized by 3.

In Table 8.1, the seven crystal systems are listed along with the restrictions on
the axial system. It is important to remember, however, that equivalence of crys-
tallographic axes and special values of the angles are simply a consequence of
the underlying symmetry. Those symmetry elements which cause equivalences to
arise between crystallographic axes are listed. A full list of the symmetry elements
characterizing the various crystal systems is given in Table 9.9.

The space groups of the lattices themselves have the highest symmetry which
can occur in that crystal system (cf. Table 7.4). Symmetry elements in each crystal
system can only be orientated in certain directions with respect to one another, since
it is not those symmetry elements alone, but they and all their combinations which

W. Borchardt-Ott, Crystallography, 3rd ed., DOI 10.1007/978-3-642-16452-1_8,
C© Springer-Verlag Berlin Heidelberg 2011
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Table 8.1 The seven crystal systems

Crystal system Restrictions on the axial system Figure Equivalences of
crystallographic
axes caused by:

Triclinic a
=b
=c α=β=γ a 7.7c

Monoclinic a
=b
=c α=γ=90◦, β>90◦ 7.8c

Orthorhombic a
=b
=c α=β=γ=90◦ 7.9c

Tetragonal a=b
=c (a1=a2 
=c) α=β=γ=90◦ 7.10c 4, 4̄//c

Trigonalb a=b
=c (a1=a2 
=c) α=β=90◦, γ=120◦ 7.12c 3//c

Hexagonal a=b
=c (a1=a2 
=c) α=β=90◦, γ=120◦ 7.12c 6, 6̄//c

Cubic a=b=c (a1=a2=a3) α=β=γ=90◦ 7.13c 3// 〈111〉
aAs usual, the signs=and 
=are to be read as must be equivalent and need not be equivalent
respectively as a consequence of symmetry.
bAn alternative definition divides the hexagonal and trigonal systems differently, giving a hexago-
nal and a rhombohedral system. The rhombohedral system (see Fig. 7.11b) has the restrictions on
its axial system: a=́b=́c;́ α=́β=́γ .́

must be in accordance with the properties of the space lattice. The symmetry of the
lattice automatically determines all the angles which the symmetry elements of the
particular crystal system may make with one another.

The symmetry directions in crystal systems are summarized in Table 8.2.
These symmetry directions are used for point groups (Chap. 9) and space groups
(Chap. 10). Symmetry directions are defined differently for each crystal system. For
some subgroups, a symmetry element does not necessarily exist in the second and/or
third position of the symmetry directions (cf. Table 9.10).

The normalized axial ratios from morphology a
b : 1 : c

b or from the crystal struc-
ture a0

b0
: 1 : c0

b0
for an orthorhombic crystal are discussed in Section 5.7. These

ratios are summarized in Table 8.3 for all crystal systems. They may be expressed
more simply for systems of higher symmetry.

The U.S. Department of Commerce: National Institute on Standards and
Technology (NIST) and the International Centre for Diffraction Data have pro-
duced a series of volumes Crystal Data – Determinative Tables. These contain an
extensive listing of important crystallographic data. Triclinic (anorthic), monoclinic
and orthorhombic crystals are listed in the order of the a0

b0
ratio, where c0 < a0 < b0.

Tetragonal, trigonal and hexagonal crystals are arranged by the c0
a0

ratio, and cubic
crystals by the value of the lattice constant a0.
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Table 8.2 Symmetry directions in the seven crystal systems

Crystal system Position in the international symbol

First Second Third

Triclinic – – –

Monoclinic b – –

Orthorhombic a b c

Tetragonal c <a>a <110>b

Trigonal c <a>c –d

Hexagonal c <a>c <210>e

Cubic <a>f <111>g <110>h

a a, b; (a1, a2).
b [110],[11̄0].
c a, b; (a1, a2, a3).
d Some space groups require a third symmetry direction <210>, as in the hexagonal system.
Examples are P3̄1m and P312 which have m or 2 in the direction <210> (cf. Table 10.2).
e [210], [1̄10], [1̄2̄0].
f a, b, c; (a1, a2, a3).
g [111], [11̄1̄], [1̄11̄], [1̄1̄1].
h [110], [11̄0], [101], [1̄01], [011], [011̄].

Table 8.3
Normalized axial ratios as
used for the various crystal
systems

Crystal system Axial ratios

Morphological Structural

Triclinic

Monoclinic
a
b

: 1 :
c
b

a0

b0
: 1 :

c0

b0
Orthorhombic

Tetragonal

Trigonal
c
a

c0

a0
Hexagonal

Cubic – a0





9 Point Groups

9.1
The 32 Point Groups

As has been noted, the space groups of the Bravais lattices are those with the highest
possible symmetry for the corresponding crystal systems. When the lattice points
are now replaced by actual atoms, ions or molecules, they must themselves pos-
sess at least the full symmetry of the lattice point if the space group is to remain
unchanged. Now the symmetry of a lattice point is easily determined from the
space group; it consists of all of the point symmetry elements of the space group
that pass through the point (X, X̄, m) or lie on it (1̄). In each crystal system, only
the space group of the P-lattice or, in the trigonal system the R-lattice, need be
considered (see Figs. 7.7d–7.13d), since the centered lattices in each system define
identical points. Lattice translations, the most important of all the symmetry oper-
ations for space groups, are now discarded, and the set of symmetry elements
remaining is called a point group. The symmetry elements of these point groups
and their stereographic projections are set out in Figs. 7.7e–7.13e, and the con-
version from space group to point group in Table 9.1. There is a great deal of
useful information in the diagrams, and it is worth taking the trouble to study them
carefully.

D The point groups are made up from point symmetry operations and com-
binations of them. Formally, a point group is defined as a group of point
symmetry operations whose operation leaves at least one point unmoved. Any
operation involving lattice translation is excluded.

The symmetry directions have the same relationship to the symmetry elements of the
point group as they do to those of the space group (Table 8.2). Those point groups
derived from the space groups of the lattices are also the highest symmetry possible
for the particular crystal system.

W. Borchardt-Ott, Crystallography, 3rd ed., DOI 10.1007/978-3-642-16452-1_9,
C© Springer-Verlag Berlin Heidelberg 2011
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Table 9.1 Correspondence of one of the space groups of highest symmetry in each crystal system
with the point group of highest symmetry in that crystal system

Crystal system Space group Point group Figure

Triclinic P1̄ → 1̄ 7.7d, e

Monoclinic P2/m → 2/m 7.8d, e

Orthorhombic P2/m 2/m 2/m → 2/m 2/m 2/m 7.9d, e

Tetragonal P4/m 2/m 2/m → 4/m 2/m 2/m 7.10d, e

Trigonal R 3̄ 2/m → 3̄ 2/m 7.11d, e

Hexagonal P6/m 2/m 2/m → 6/m 2/m 2/m 7.12d, e

Cubic P4/m 3̄ 2/m → 4/m 3̄ 2/m 7.13d, e

These point groups of highest symmetry in each crystal system all contain the
symmetry elements of one or more point groups of lower symmetry (sub-groups).
These will be developed below for some crystal systems:

(a) Triclinic. The only subgroup of 1̄ is 1. Starting from the space group P1̄
(Fig. 7.16), all points which do not lie on inversion centers have the point
symmetry 1.

(b) Monoclinic. 2/m has the subgroups 2, m,1̄ (cf. Symmetry rule I) and 1. Since1̄
and 1 belong to the triclinic system, only 2 and m are monoclinic point groups
(cf. Fig. 7.8f). They possess sufficient symmetry to define the monoclinic system:
m ⊥ b in the a, c-plane, and 2 parallel to b and normal to the a, c-plane. In the
space group P2/m (Fig. 7.8d), the point 0,0,0 has the point symmetry 2/m, while
any point on x, 1

2 ,z has point symmetry m, and any point on the line 1
2 ,y, 1

2 has
point symmetry 2 (cf. Fig. 10.13)

(c) Orthorhombic. If inversion symmetry is removed from point group
2/m 2/m 2/m, each 2/m must be reduced either to 2 or to m (Symmetry rule
I). The possible orthorhombic subgroups are thus mmm, mm2 (or m2m or
2 mm), m22 (or 2m2 or 22m) and 222. The symmetry elements of mmm
are given on the stereogram in Fig. 9.1. By Symmetry rule II (m ⊥ m ⇒
2), 2-fold rotation axes are formed at each intersection of planes, and the
point group 2/m 2/m 2/m has been reformed. Similarly, the combination 22m
also regenerates 2/m 2/m 2/m (cf. Fig. 9.2). The orthorhombic subgroups of
2/m 2/m 2/m are thus 222 and mm2 (Fig. 7.9f). As an example, in the space
group P2/m 2/m 2/m (Fig. 7.9d), all points on 1

2 , 1
2 ,z (z 
= 0 or 1

2 ) have point
symmetry mm2.

In a similar way, the other crystal systems may be treated, giving in total 32 point
groups or crystal classes, which are summarized in Table 9.2. They are called the
crystallographic point groups.

All crystallographic point groups are subgroups of either 4/m 3̄ 2/m or 6/m 2/m
2/m or both. The hierarchy of the subgroups is illustrated in Fig. 9.3.
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Fig. 9.1 Fig. 9.2

Fig. 9.1 The three mutually perpendicular mirror planes of mmm showing with dashed outline
the automatically developed 2-fold axes (Symmetry rule II). Thus mmm is in fact 2/m 2/m 2/m
and is used as an abbreviated symbol for it

Fig. 9.2 The symmetry elements of m22 (fully drawn in) on the stereogram, automatically gen-
erate (Symmetry rule II) the other symmetry elements shown with dashed outline, generating
2/m 2/m 2/m. Thus, m22 is in fact identical with 2/m2/m 2/m

Table 9.2 The 32 point groups

Crystal system Point groups

Symmetry and
stereograms of the
point groups in
figure

Triclinic 1̄ 1
Monoclinic 2/m m, 2 7.8e, f
Orthorhombic 2/m 2/m 2/m (mmm) mm2, 222 7.9e, f
Tetragonal 4/m 2/m 2/m (4/mmm) 4̄2m, 4mm, 422, 4/m, 4̄, 4 7.10e, f
Trigonal 3̄ 2/m (3̄m) 3m, 32, 3̄, 3 7.11e, f
Hexagonal 6/m 2/m 2/m (6/mmm) 6̄m2, 6mm, 622, 6/m, 6̄, 6 7.12e, f
Cubic 4/m 3̄ 2/m (m3̄m) 4̄3m, 432, 2/m3̄ (m3̄), 23 7.13e, f

Some point groups have overdefined symbols, as we have seen for 2/m 2/m 2/m
(Fig. 9.1). In some of these cases, the symbol is abbreviated; the abbreviated symbols
are shown in round brackets in Table 9.2. These abbreviated forms are also used for
space groups (Chap. 10). They are called short symbols to distinguish them from the
full symbols.

Up to now, symmetry symbols have always been used in relation to the symmetry
directions. The symbol on its own, however, clearly shows the relative orientation
of the various symmetry elements. Thus:

X2: rotation axis X and 2-fold axes perpendicular to it, e.g. 42(2) (Fig. 7.10f).
Xm: rotation axis X and mirror planes parallel to it, e.g. 3m (Fig. 7.11f).
X̄2: rotoinversion axis X̄ and 2-fold axes perpendicular to it, e.g. 4̄ 2(m)

(Fig. 7.10f).
X̄m: rotoinversion axis X̄ and mirror planes parallel to it, e.g. 6̄m(2) (Fig. 7.12f).
X/mm: rotation axis X and mirror planes both parallel and perpendicular to it, e.g.

4/mm(m) (Fig. 7.10f).
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Fig. 9.3 The crystallographic point groups and their subgroups, after Hermann [19]. The circles
corresponding to the highest symmetry group of each crystal system are outlined in bold. Double
or triple lines indicate that the supergroup is related to the subgroup in two or three inequivalent
settings. Connecting lines between point groups of the same crystal system are bold, all others are
plain or dashed. The presence of a line of any sort indicates that the lower group is a subgroup
of the higher. On the ordinate is given the order of the point group, i.e. the number of symmetry
operations in the group. See also Sect. 11.2

The symbols we have been using so far for space groups and point groups are known
as the International or Hermann-Mauguin symbols. In physics and chemistry, the
older Schönflies symbols are widely used. Unfortunately, Schönflies symbols are
impossible to adapt as useful space group symbols. Although they are adequate to
define point groups, there is no particular advantage to using them. Table 9.3 gives
the International equivalents of all the Schönflies symbols for the crystallographic
point groups.
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Table 9.3 The Schönflies symbols for the point groups with the equivalent international symbols
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9.2
Crystal Symmetry

A space group reveals the entire symmetry of a crystal structure. When we consider
only the morphology of a crystal, the lattice translations which characterize the space
group are no longer relevant, and what is left is the point group which is implied
by that space group. If the crystal is bounded by plane faces, the symmetry of its
morphology will be compatible with that point group.

Figure 9.4 illustrates the symmetry of a crystal of PbS (galena) (cf. Fig. 15.4). The
symmetry elements which are apparent in the crystal are summarized on the stere-
ographic projection. The point group of the crystal is 4/m 3̄ 2/m (Oh). In Table 9.11,
examples of crystals in various point groups are given in the right-hand column.

9.2.1
Crystal Forms of the Tetragonal System

In Sect. 5.2, crystal form was provisionally defined as a set of “equal” faces. We are
now in a position to give an exact definition.

Fig. 9.4a–d A galena crystal in point group 3

a 111 110< >< >< >

4 m/ 2 m/ .
↓ ↓ ↓

In a, only those symmetry

elements which relate to the a-axis and equivalent directions (i.e. the b- and c-axes) have been
drawn in (4/m→ <a>); in b, only those relating to the [111] and equivalent directions (3̄→ <111>);
in c, only those relating to the [110] and equivalent directions (2/m→ <110>). The stereogram of
the symmetry elements is given in d



9.2 Crystal Symmetry 129

Fig. 9.5a,b
Stereograms of point group 4.
a General form, tetragonal
pyramid {hkl}. b Limiting
form tetragonal prism {hk0}
of general form tetragonal
pyramid {hkl}

When the symmetry operations of a point group are applied to a crystal face, a
number of equivalent faces will be produced. Thus, as shown in the stereographic
projection in Fig. 9.5a, application of the symmetry operation of the point group 4
on the pole of a face produces a tetragonal pyramid.

D A set of equivalent faces is called a crystal form. (but see also Sect. 9.7)

Exercise 6.1b gives a manipulation which will always result in the production of the
stereogram of a crystal form.

The individual faces of the tetragonal pyramid in Fig. 9.5a have been indexed,
i.e. assigned the values of their Miller indices. A scheme for indexing the faces of
tetragonal crystals will be given later (Fig. 9.9). A crystal form is identified by the
indices of one of the faces belonging to that form. In the case of a form, the indices
are placed in braces, thus: {hkl}, in order to distinguish between a face and a form.
The relationship between (hkl) and {hkl} is the same as that between [uvw] and
<uvw>.

Each face of the tetragonal pyramid in Fig. 9.5a is itself unsymmetrical, as there
is no symmetry element normal to it. On its own, it thus has face symmetry 1.

Three types of crystal forms must now be distinguished: a general form, a special
form and a limiting form.

D A general form is a set of equivalent faces, each of which has face symmetry 1.

In other words, when the poles of the faces of a general form are placed on a stere-
ogram of the symmetry elements, they do not lie on any of them. General forms
have general indices {hkl}. The tetragonal pyramid {hkl} in Fig. 9.5a is such a gen-
eral form. The poles of the faces of a general form have two degrees of freedom,
shown as arrows in the figure. The face can be displaced in two directions without
causing the tetragonal pyramid to cease to be a crystal form. All that happens is that
the inclination of the faces to one another is altered.

The variation of the indices {hkl} gives rise not to only one, but to an infinite
number of general crystal forms. In some point groups, care must be taken with
the signs of the indices. In any case, the possibility of infinitely many crystal forms
is only of theoretical interest; in practice, crystals normally have faces with small
values of h, k and l.
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Fig. 9.6a,b
Stereograms of point group
4mm. a Special form,
tetragonal pyramid {hhl}. b
Limiting form, tetragonal
prism {110} of special form,
tetragonal pyramid {hhl}

D A special form is a set of equivalent crystal faces which themselves have a face
symmetry higher than 1.

In a stereogram of the symmetry elements, the poles of the faces of a special form lie
on at least one of them. Figure 9.6a shows the stereogram of the symmetry elements
of the point group 4 mm. If the pole of a face (hhl) is entered, the application of the
symmetry elements gives a tetragonal pyramid {hhl}. This is a special form, as the
poles of the faces lie on a symmetry element, and each has face symmetry ..m. The
symmetry is given as ..m. with reference to the order of the symmetry directions
used for point groups of the tetragonal system: c,<a>,<110>〉. The mirror planes
with which we are concerned here are those normal to <110>. The poles of the faces
of this special form have only a single degree of freedom. The form will remain a
tetragonal pyramid only as long as the pole remains on the mirror plane ..m. Should
the pole move until it coincides with the 4-fold axis, another special form arises,
the pedion {001} with face symmetry 4 mm. This form no longer has any degree of
freedom. A special form always has indices which are a special case of {hkl}, such as
{hhl}, {h0l} or {100}.

D A limiting form is a special case of either a general or a special form. It has the
same number of faces, each of which has the same face symmetry, but the faces
may be described differently.

Consider the situation in Fig. 9.5a if the pole moves to the periphery of the equatorial
plane of the stereographic projection. The result is a tetragonal prism {hk0} which is
the limiting form of the general form tetragonal pyramid {hkl} with face symmetry 1.
A similar movement of the pole {hhl} in Fig. 9.6b, along the mirror plane to the
periphery of the equator gives rise to the tetragonal prism {110}, the limiting form
of the special form {hhl} with face symmetry ..m.

Each point group has characteristic forms. What follows is a description of those
of the point group 4/mmm, the point group of highest symmetry in the tetragonal
system. Figure 9.7a is a stereogram of the symmetry elements of this point group. A
single, asymmetric face unit is shown hatched in Fig. 9.7a.
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Fig. 9.7a–g Crystal forms of point group 4/mmm, with their face symmetries. A stereogram of
the symmetry elements is given, with the asymmetric face unit and stereograms of each form
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D The asymmetric face unit of a point group, in terms of its stereographic projec-
tion, is the smallest part of the surface of the sphere which, by the application
of the symmetry operations, will generate the entire surface of the sphere.

This particular asymmetric face unit is bounded by m.., .m. and ..m. The vertices
have face symmetry 4mm, m2m. and m.m2. If a pole is entered in the asymmetric
face unit on the stereogram and operated on by the symmetry 4/mmm, the result
is a ditetragonal dipyramid, {hkl}, shown in Fig. 9.7a. This form has two degrees
of freedom. A ditetragonal dipyramid will be generated as long as the pole does
not move onto one of the symmetry elements which constitute the boundary of the
asymmetric face unit. The ditetragonal dipyramid is a general form (face symmetry
1, two degrees of freedom, {hkl}). The size of the asymmetric face unit is simply the
ratio of the surface area of the sphere to the number of faces in a general form.

fasym.faceunit =
fsurface area of the sphere

number of faces in the general form
(9.1)

In this case, the number of such faces is 16, so the asymmetric face unit shown
hatched in Fig. 9.7a is 1

16 of the total surface area of the sphere.

! An asymmetric face unit of a point group contains all the information neces-
sary for the complete description of the crystal forms in this point group. (This
definition may be compared with that of the asymmetric unit in Eq. 10.3.)

If the general pole (hkl) is moved onto the mirror plane m.., this pole, and all the
others in the general form {hkl} will undergo a change. As the poles approach this
mirror plane, the angle between (hkl) and (hkl̄) becomes progressively smaller, and
is equal to 0 at the mirror plane. At this point, the two faces (hkl) and (hkl̄) have
coalesced into a single face (hk0). As shown in Fig. 9.7b, the ditetragonal dipyramid
has become a ditetragonal prism {hk0}.

Figure 9.8 shows the stereographic projection of a ditetragonal prism {hk0} and
the indices of the poles of its faces. In the stereogram, a section through the dite-
tragonal prism is shown in bold lines which are extended (dashed lines) to show the
intercepts on the axes better, (hk0)= (210).

A pole of a face on the mirror plane .m. gives, after the application of the symme-
try operations, a tetragonal dipyramid, {h0l}, shown in Fig. 9.7c. A pole of a face on
..m gives a tetragonal dipyramid {hhl}, shown in Fig. 9.7d. The three forms {hk0},
{h0l} and {hhl} all have eight faces, i.e. half of the number of faces of the ditetrag-
onal dipyramid. These three forms each have one degree of freedom. Each form
retains its identity so long as the pole remains on the appropriate edge (m) of the
asymmetric face unit.

The poles of faces on the vertices of the asymmetric face unit have no degree
of freedom. The application of the symmetry operations to a pole with face sym-
metry m2m. gives a tetragonal prism {100} (Fig. 9.7e). Similarly the pole with face
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Fig. 9.8
Section through a
ditetragonal prism (outlined),
in the equatorial plane of a
stereographic projection, with
the poles of the relevant faces
and their indices, {hk0}
(={210}) shown. The dashed
lines serve to indicate the
intercepts of the faces on the
axes

symmetry m.m2 gives a tetragonal prism {110} (Fig. 9.7f), while that on 4 mm gives
a pinacoid {001} (Fig. 9.7 g).

The forms {hk0}, {h0l}, {hhl}, {100}, {110} and {001} have the face symmetries > 1
given in Fig. 9.7 and are thus special forms.

Figure 9.9 shows a stereogram with the poles of the crystal forms of point group
4/mmm, the highest point symmetry of the tetragonal system. The poles of the faces
with negative indices l̄ are not shown. The heavy lines divide the surface into the
16 asymmetric face units of the point group 4/mmm. Those poles which lie on the
corners of the asymmetric face unit have no degree of freedom. Those on the edges
of the asymmetric face unit have one degree of freedom, and represent all other
poles lying on the same edge. The poles lying within the asymmetric face unit have
two degrees of freedom and represent all faces whose poles lie in this area. In every
case, taken together, these faces produce ditetragonal dipyramids.

If the poles of the faces of a ditetragonal prism {hk0} (Fig. 9.8) are split and moved
an equal amount in the directions of (001) and (001̄), a ditetragonal dipyramid {hkl}
will be formed. The indexing of the faces of this form arise from the {hk0} of the
ditetragonal prism by the replacement of 0 with l and l̄, as in Fig. 9.9, the indices of
all 16 faces of the ditetragonal dipyramid can be read from the stereogram in Fig. 9.9,
as can the indices for the faces of all of the tetragonal forms.

In 4/mmm, there are n = 16 poles for faces of the general form, and 2n + 2 =
34 poles for faces of special forms, each type of form being considered only once.
The same relationship between the numbers of faces for the general form and the
total number of faces for all special forms also applies to the point group of highest
symmetry in the orthorhombic, hexagonal and cubic systems.

Starting from the point group of highest symmetry in a crystal system, the sub-
groups can be developed – see Sect. 9.1. There is a similar relationship between the
general crystal form of the point group of highest symmetry and those of its sub-
groups belonging to the same crystal system. These may be illustrated by starting
from the stereogram of the crystal forms of 4/mmm in Fig. 9.9 and developing those
of the subgroup 4mm.
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Fig. 9.9 Stereogram of the poles of the faces of all crystal forms of 4/mmm, the point group of
highest symmetry in the tetragonal system. The stereogram shows the position and the indices
for each face in each form. Poles of faces with negative values of l are not included. The spherical
triangle with vertices (001), (100) and (110) is an asymmetric face unit of the point group 4/mmm

Place a piece of tracing paper over the stereogram in Fig. 9.9, choose suitable sym-
metry directions and mark on it those symmetry elements which belong to 4 mm
(Fig. 7.10f). A possible asymmetric face unit for this point group is a region bounded
by the pole faces (001), (100), (001̄) and (110). Because half of this asymmetric face
unit lies in the southern hemisphere, it is shown checked in Fig. 9.10a. It is twice the
size of the asymmetric face unit of 4/mmm, and is made up by combining two such
asymmetric face units.

Now enter on the tracing paper the pole of a general face (hkl), and allow
the symmetry operations of 4mm to act on it. The result is eight poles which
define a ditetragonal pyramid {hk1} (Fig. 9.10a1). The pole (hkl̄) which belongs to
the same asymmetric unit as (hkl) in 4mm gives a second ditetragonal pyramid
{hkl̄} (Fig. 9.10a2). Thus, the ditetragonal dipyramid which is the general form in
4/mmm reduces to two ditetragonal pyramids in 4mm. The doubling of the size of
the asymmetric face unit results in a halving of the number of faces in the general form.

In the same way, the general forms of the other tetragonal point groups may be
developed. The relevant asymmetric face units are given in Table 9.4.
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Fig. 9.10a–d Crystal forms of point group 4mm, in so far as these differ from those in point
group 4/mmm (Fig. 9.7), with their face symmetries. A stereogram of the symmetry elements is
given, with the asymmetric face unit and stereograms of each form.

The general form of point group 4/m is a tetragonal dipyramid. The poles (hkl)
and (hk̄l) both give tetragonal dipyramids, {hkl} and {hk̄l}, by the action of the sym-
metry operations, and these two dipyramids may be distinguished by their positions.
Figure 9.11 shows the square cross-sections of {hkl} and {hk̄l}. Taking them together,
and ignoring the dashed lines, they make up the cross-section of the ditetragonal
dipyramid {hkl} of 4/mmm.

The general form of 4̄2m is the tetragonal scalenohedron, and of 422 the tetrag-
onal trapezohedron (Fig. 15.2b). The combination of {hkl} and {hk̄l} regenerates in
both point groups the ditetragonal dipyramid.

The asymmetric face unit for 4 and 4̄ is four times the size of that of 4/mmm
(Table 9.4). In 4, the ditetragonal dipyramid is split into four tetragonal pyramids,
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Fig. 9.11 Square cross-sections through the tetragonal dipyramids {hkl} and {hk̄l}, general forms
in point group 4/m. Together, they make up the fully outlined ditetragonal cross section of the
ditetragonal dipyramid. The same relationship holds for the four tetragonal pyramids {hkl}, {hkl̄},
{hk̄l} and {hk̄l̄}, general forms in point group 4

{hkl}, {hk̄l}, {hk̄l̄}, {hkl̄}, while in 4̄, it becomes four tetragonal disphenoids, also
{hkl}, {hk̄l}, {hk̄l̄}, {hkl̄}. [Fig. 15.2b(9)].

The special forms of point group 4/mmm in Fig. 9.7 are given in Table 9.4 with
their face symmetries.

With the help of the stereogram in Fig. 9.9, we may derive the limiting and special
forms of point group 4 mm. As in 4/mmm, the pole of the face (hk0) gives rise to the
ditetragonal prism {hk0} (Fig. 9.7b). This ditetragonal prism is the limiting form of
the general form ditetragonal pyramid {hkl}. These forms both have face symmetry
1 and a total of eight faces.

Application of the symmetry operations 4mm to the pole of the face (h0l)
results in a tetragonal pyramid {h0l} (Fig. 9.10b1), having point symmetry .m., a
special form. Similarly, {h0l̄} is a tetragonal pyramid (Fig. 9.10b2). These pyramids
are distinguished only by their settings, and their combination gives the tetragonal
dipyramid {h0l} of point group 4/mmm. The tetragonal prism {100} is a limiting
form of the special form tetragonal pyramid {h0l}, also having face symmetry .m.,
and a total of four faces.

Tetragonal pyramids are also generated by {hhl} and {hhl̄} (Fig. 9.10c), this time
with face symmetry ..m. These forms combine to give the tetragonal dipyramid {hhl}
of 4/mmm. The tetragonal prism {110} is a limiting form of the special form tetrago-
nal pyramid {hhl}. Finally, the pole of the face (001) gives the pedion {001}, with face
symmetry 4 mm. All of the forms of the point group 4 mm are given in Table 9.4.

The special and limiting forms of the rest of the tetragonal point groups are also
to be found in Table 9.4. It will be seen that the various forms of the point groups
of lower symmetry are greatly simplified. For point group 4, for example, all that
remains beside the general form tetragonal pyramid is a single limiting form, the
tetragonal prism, and a single special form, the pedion.

In Table 9.4, the general forms and their limiting forms are separated from spe-
cial forms by heavy lines, while dashed lines are used to separate the general forms
from their limiting forms. Equal forms with the same face symmetry are collected
together, as is also done in Tables 9.5, 9.6, 9.7.
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The face symmetries in Table 9.4 are always derived from a three-component
symbol for the point group, which is expanded as required, e.g. 4/m(1) (1). Thus,
the face symmetry in {hk0} is given as m.., and that in {001} is given as 4.. . The
same expansion is used for those point groups in other crystal systems which have
symbols with only 1 or 2 components, e.g. 3m(1), 23(1), etc.

Crystal forms in the other crystal systems can be developed in the same way to
that we have done for the tetragonal system. In the following pages, the crystal forms
for the hexagonal (trigonal), cubic and orthorhombic systems are set out to show
their interrelationships and to provide an aid in the indexing of faces. The crystal
forms are given for each system (Tables 9.4, 9.5, 9.6, and 9.7), and Fig. 15.2 gives
a summary of the 47 fundamental forms. The names used here are those in the
International Tables for Crystallography [14].

9.2.2
Crystal Forms of the Hexagonal (Trigonal) System

In each crystal system, an axial system a, b, c must be chosen which is appropriate
for the symmetry. For the hexagonal and trigonal systems, in addition to the unique
c-axis, it is convenient to choose three equivalent axes a1, a2 and a3 (cf. Fig. 7.22)
and to use the Bravais-Miller indices (hkil). The index i corresponds to the a3 axis.
The indices h, k and i are not independent, but are related by h + k + i = 0 or h +
k = ī. The application of this relationship can be seen in Fig. 9.12. Joint consider-
ation of the hexagonal and trigonal systems is useful since all of the trigonal forms
may be derived from the dihexagonal dipyramid, the general form of 6/m 2/m 2/m,
the highest symmetry point group of the hexagonal system (see Figs. 9.12 and 9.13
and Table 9.5). The trigonal and hexagonal crystal forms are all set out in Fig. 15.2c.

9.2.3
Crystal Forms of the Cubic System

The cubic crystal forms are collected in Table 9.6 and Fig. 15.2d; see also Figs. 9.14
and 9.15.

In the cubic, hexagonal (including trigonal) and tetragonal systems, all crystal
forms except the pinacoid and the pedion are characteristic of the system.

9.2.4
Crystal Forms in the Orthorhombic, Monoclinic
and Triclinic Systems

All of the “rhombic” forms are listed in Fig. 15.2a. see also Fig. 9.16 and Table 9.7.
Only relatively simple forms occur in the monoclinic system. The general form

in 2/m is the rhombic prism; in m and 2, the general forms are both dihedra: a dome
in m and a sphenoid in 2 (Fig. 15.2a). The pinacoid and the pedion are special or
limiting forms.

The triclinic system gives only the pinacoid (1̄) and the pedion (1).
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Fig. 9.12 a, b Section through a hexagonal prism {hki0} (a) and {khi0} (b), in the equatorial plane
of a stereographic projection, with the poles of the relevant faces and their indices indicated. The
dashed lines serve to indicate the intercepts of the faces on the axes [(hki0) = (213̄0); (khi0) =
123̄0)]

Fig. 9.13 Stereogram of the poles of the faces in all crystal forms of the point group of highest
symmetry in the hexagonal system, 6/m 2/m 2/m. The stereogram shows the positions and the
indices of all hexagonal and trigonal forms. The poles of faces with negative 1 are excluded. The
spherical triangle with vertices (101̄0), (0001), (112̄0) is an asymmetric face unit for the point group
6/m 2/m 2/m
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Fig. 9.14 Indices for the cubic faces belonging to the form {hk0} (= {210}). If these are shifted
from their special position so that their poles move toward the pole of the (111) face, faces will be
obtained with general indices {hkl} in the point group 4/m 3̄ 2/m (cf. Fig. 9.15)

Fig. 9.15 Stereogram of the poles of the faces in all crystal forms of the point group of highest
symmetry in the cubic system, 4/m 3̄ 2/m. The stereogram shows the positions and the indices of
all cubic forms (hk0)= (310), (hkk)= (311), (hhk)= (221), (hkl)= (321). The poles of faces with
the third index negative are excluded. The spherical triangle with vertices (100), (110), (111) is an
asymmetric face unit for the point group 4/m 3̄2/m
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Fig. 9.16
Stereogram of the poles of the
faces in all crystal forms of
the point group of highest
symmetry in the
orthorhombic system,
2/m 2/m 2/m. The
stereogram shows the
positions and the indices of
all orthorhombic forms. The
poles of faces with negative 1
are excluded. The spherical
triangle with vertices (100),
(010), (001) is an asymmetric
face unit for the point group
2/m 2/m 2/m

The symmetry of a crystal form can be considered in two separate ways. A tetrag-
onal pyramid is generated by the symmetry operations of 4; that is its generating
symmetry. On the other hand, a tetragonal pyramid actually displays the symme-
try of 4mm; that is its eigensymmetry.1 In Table 9.8, these eigensymmetries and
generating symmetries are given for all tetragonal forms.

Normally, crystals are not characterised by a single form but by a combination
of forms, which must, of course, all conform to the point group of the crystal. The
rutile crystal in Table 9.11.15 is a combination of a tetragonal dipyramid {111}, and
two tetragonal prisms, {100} and {110}.

Table 9.8 Eigensymmetry and generating symmetry of the tetragonal forms

Eigensymmetry Generating symmetry

Tetragonal pyramid 4mm 4, 4mm
Tetragonal disphenoid 42m 4, 42m
Tetragonal prism 4/mmm 4, 4, 4/m, 422, 4mm 42m, 4/mmm
Tetragonal trapezohedron 422 422
Ditetragonal pyramid 4mm 4mm
Tetragonal scalenohedron 42m 42m
Tetragonal dipyramid 4/mmm 4/m, 422, 42m, 4/mmm
Ditetragonal prism 4/mmm 422, 4mm, 42m, 4/mmm
Ditetragonal dipyramid 4/mmm 4/mmm

1 eigen (German)= own
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9.3
Molecular Symmetry

Point symmetry is a very great help in the description of molecules, by which
term we include polyatomic ions of any charge. Figure 9.17a shows a molecule of
H2O, on which the symmetry elements, two mirror planes and a 2-fold rotation
axis, have been drawn. The point group mm2 (C2v) is shown on the stereogram in
Fig. 9.17b.

In Table 9.11.1–32 (left hand column) molecular examples are given for several
point groups. Some of these molecules are shown in the “Newman projection” used
widely in organic chemistry. In other cases, bonds are shown as thick or thin line to
indicate whether they are above or below the plane of the page. The stereogram for
the point group is in most cases in the same orientation as the example molecule.

The point groups of molecules are not limited to the 32 crystallographic groups.
They may contain such symmetry elements as 5-fold axes which are incompati-
ble with a crystal lattice. These non-crystallographic point groups are described in
Sect. 9.7.

The point group of a molecule indicates which atoms and which bonds are
equivalent. Thus, in benzene, C6H6, with point group 6/mmm – D6h all C-atoms
and all H-atoms are equivalent, as are all C–H and C–C bonds (Fig. 9.18a, and
also Table 9.11.27). Coronene, C24H12, also belongs to point group 6/mmm – D6h.
In Fig. 9.18b, equivalent carbon atoms are indicated by the letters a or b or c,
and all bonds between pairs of similarly labelled atoms are equivalent. There are
thus four symmetry independent C–C bonds in coronene (a–a, a–b, b–c and c–c).
Further examples are naphthalene, C10H8, and pyrene, C16H10, both (mmm – D2h)
(Fig. 9.18c), and phenanthrene, C14H10, (mm2 – C2v) (Fig. 9.18e). The equivalences
can be particularly clearly shown by copying the stereogram of the appropriate point
group (Table 9.11.7, 8 and 27) onto transparent paper and superimposing it on the
molecules in Fig. 9.18.

In PF5, phosphorus is surrounded by five fluorine atoms. Were this a planar pen-
tagonal molecule, all F-atoms and all P-F bonds would be equivalent (point group
5/mm2 (10m2), Table 9.11.35). In fact, the molecule has the shape of a trigonal
dipyramid (Fig. 9.19) with the P-atom at the center, and point symmetry 6̄ m2 (D3 h).

Fig. 9.17a, b
Point symmetry (mm2 – C2v)
of the H2O molecule. b
Stereogram of the symmetry
elements of this point group
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Fig. 9.18a–e Equivalence within molecules. Equivalent atoms have the same letter symbols;
equivalent bonds have the same pair of letters. (a) Benzene and (b) coronene (6/mmm – D6h);
(c) naphthalene and (d) pyrene (mmm – D2h); (e) phenanthrene (mm2 – C2v)

Fig. 9.19a, b
The PF5 molecule (a) has
point group 6̄m2 (D3h) (b).
All atoms marked Fa are
equivalent, as are all marked
Fb, but Fa and Fb are not
equivalent to one another

Thus, the two atoms labelled Fa are equivalent, as are the three labelled Fb, but Fa
and Fb are not equivalent to one another.

If one of the methyl groups of an ethane molecule is rotated about the C–C
bond through 360◦ with respect to the other, various different conformations will
be generated. These are illustrated in Fig. 9.20 together with the stereograms of the
respective point groups. Conformations are the spatial arrangements of the atoms
of a molecule which result from rotation about a chemical single bond.
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Fig. 9.20a–d Conformations of ethane. a Eclipsed: ϕ = 0 or 120 or 240◦: (6̄m2− D3h). b Skew: 0
< ϕ < 60◦, 120 < ϕ < 180◦ or 240 < ϕ < 300◦: (32 – D3). c Staggered: ϕ = 60 or 180 or 300◦: (3̄m−
D3d). d Skew: 60 < ϕ < 120◦, 180 < ϕ < 240◦ or 300 < ϕ < 360◦: (32− D3). The conformations in b
and d are enantiomorphs

9.4
Determination of Point Groups

Before the determination of the point group of a crystal (or a molecule having a
crystallographic point group), it should be assigned to one of the seven crystal sys-
tems. For this, it is necessary to know the characteristic symmetry elements of the
crystal systems; these are given in Table 9.9, and can be derived from the symmetry
information given in Table 9.10.

In determining the point group of molecules or crystals, it is in general not nec-
essary to find each and every symmetry element. Using Tables 9.9 and 9.10, it may
generally be done by answering a few, well-chosen questions. In practice, it is best
to consider first an important property of rotation axes.

! All rotation axes are polar. This means that they have distinct properties in
parallel and antiparallel directions

The 2 in Fig. 9.17 and Table 9.11.18 and the 3 in Table 9.11.19 are examples of
polar rotation axes. The ends of polar axes are represented in symmetry diagrams
and stereograms by one solid and one open symbol (cf. Figs. 7.8f, 7.9f, 7.10f, 7.11,
7.12f, and 7.13f).

! Various other symmetry elements can destroy this polarity, viz.:

• 1̄
• m⊥ X
• 2⊥ X
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Table 9.9 Characteristic symmetry elements of the seven crystal systems

Questions to use for point-group determination:

! 1. Are rotation axes higher than 2 present (3, 4, 6)?
2. Are these axes polar?

or
Is an inversion centre present?
(crystals with an inversion center are characterized by sets of parallel faces
opposite one another. (6.3))

Point group determination will be illustrated by two examples:

(a) The methane molecule (CH4) (Table 9.11.31). It is easily seen that a polar
3-fold axis lies on each C–H bond. As there are four of these, the point group
must belong to the cubic system, and it must be one with polar 3-fold axes
(indicated in Table 9.10 by a subscript p by the graphical symbol (e.g. �p).
This indicates either 23 or 4̄3m (Table 9.10). These are readily distinguished,
since only 4̄3m has mirror planes. These planes are easily seen in CH4, so the
point group is 4̄3m.

(b) A crystal of magnesium (Table 9.11.27). The crystal contains a 6-fold rotation
axis, and so must belong to the hexagonal system. An inversion center is also
easily found. This limits the point group to 6/m and 6/mmm (Table 9.10).
These may be distinguished by the mirror planes parallel to 6 in 6/mmm and
not in 6/m. Since these planes are evident in the crystal, the magnesium crystal
may be assigned to point group 6/mmm.
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Determination of the symmetry of a crystal is not always unambiguous. For exam-
ple, the cube (hexahedron) occurs as a form in all five cubic point groups (Table 9.6).
Determining the symmetry of a cube will naturally lead to the point group of high-
est symmetry, m3̄m (Table 9.11.32). The mineral pyrites, FeS2 (point group m3̄)
has cube-shaped crystals. The cube-faces, however, frequently have characteristic
striations which indicate the lower symmetry (Table 9.11.29).

In other ambiguous cases, “etch-figures” will indicate the true symmetry of a
crystal face and hence of the entire crystal. These figures are bounded by faces with
high Miller indices and arise from the action of a solvent on a crystal face. Crystals
of the mineral nepheline (Table 9.11.21) have a morphology (a hexagonal prism and
a pinacoid) which indicate the point group 6/mmm. The etch figures show that the
true symmetry is only 6.

9.5
Enantiomorphism

The point group 1(C1) is asymmetric. All other point groups with no symmetry
other than rotation axes are called chiral or dissymmetric. The relevant point groups
are:

X: (1), 2, 3, 4, 6 Cn: (C1), C2, C3, C4, C6

X2: 222, 32, 422, 622 Dn: D2, D3, D4, D6

X3: 23, 432 T, O

D Asymmetric and dissymmetric crystals and molecules are those which are
not superimposable on their mirror images by rotation or translation. These
mirror images are said to be the enantiomorphs of each other.

In Fig. 6.9 and Table 9.11.3 and 18, examples are given of enantiomorphic crystals
and molecules. Enantiomorphic molecules are also called enantiomers.

9.6
Point Groups and Physical Properties

We shall now examine a few properties of molecules and crystals which are related
to their point groups, or whose effects may be traced back to specific symmetry
considerations.

9.6.1
Optical Activity

Optical activity refers to the ability of certain crystals and molecules to rotate the
plane of polarized light. It can only arise in those point groups which are enan-
tiomorphic (cf. Sect. 9.5 and Table 9.10). The optical activity of a crystal may be
distinguished from that of a molecule in two ways:



9.6 Point Groups and Physical Properties 155

9.6.1.1
Optical Activity as a Property of a Crystal

The crystal is optically active only in the crystalline state. The activity is lost when
the crystal is melted or dissolved. Examples include MgSO4 · 7H2O, SiO2 (low-
quartz) and NaClO3 (Table 9.11.6, 18 and 28). Not only the morphology but also
the crystal structures exist in two enantiomorphic forms. The “left” form rotates
the plane of polarized light to the left, and the “right” form an equal amount to the
right.

9.6.1.2
Optical Activity as a Property ofMolecules

Some molecules are themselves enantiomeric, and both their solutions and the crys-
tals they form are optically active. Well-known examples of this type of optical
activity are the crystals of D- and L-tartaric acid (Table 9.11.3). In contrast, the
“racemate” DL-tartaric acid is optically inactive and gives crystals with point group
1̄ (Ci). Molecules of the isomeric form meso-tartaric acid (1̄, (Ci), Table 9.11.2) are
centrosymmetric and hence optically inactive.

Optical activity is not limited to the 11 point groups in which enantiomorphism
occurs (Sect. 9.5). It can also occur in crystals in the point groups m(Cs), mm2(C2v),
4̄ (S4) and 4̄2m (D2d), cf. Table 9.10.

9.6.2
Piezoelectricity

Some crystals, when subjected to pressure or tension in certain directions develop
an electric charge; this property is called piezoelectricity. This effect is clearly seen
in plates of quartz (point group 32), cut normal to the a-axis or any polar 2-fold
rotation axis (Fig. 9.21). The direction of the applied pressure or tension must be
along a polar axis. Polar axes are those which have distinct physical properties in the
parallel and antiparallel directions. These directions must thus not be themselves
related by symmetry. It follows that within the crystal there will be an asymmetric
charge distribution along polar axes. Application of pressure normal to such an axis
will alter the separation of the centers of the negative and positive atoms of the
crystal, since the dipole moment of the crystal will be parallel to a polar axis. Thus,
the opposite faces, normal to a polar axis, develop electric charges when a pressure
is applied along that axis. The direction of this electric field is reversed when the
pressure is replaced by a tension.

Piezoelectricity is only observed in crystals which have polar axes. Polar direc-
tions only exist in point groups without a center of symmetry. There are 21 such
point groups, as is shown in Table 9.10. The point group 432 is also excluded, as the
symmetry is too high for the effect to develop.
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Fig. 9.21a–c The piezoelectric effect in a quartz plate arising from pressure along a polar axis,
here parallel to the a1 axis

The piezoelectric effect is reversible. If an electric field is applied in the direction
of the polar axis of a quartz plate, the crystal will undergo compression or expansion.
The application of an alternating field will cause the crystal to vibrate.

Other crystals which show piezoelectricity include D- and L-tartaric acid
(2 − C2), Table 9.11.3; tourmaline (3m − C3v), Table 9.11.19; NaClO3 (23 − T),
Table 9.11.28; ZnS (sphalerite) (4̄3m− Td), Table 9.11.31.

Piezoelectricity has many technical applications, including ultrasonic generators,
amplifiers, microphones and quartz time-pieces.

9.6.3
Pyroelectricity

When a crystal of tourmaline (Table 9.11.19) is heated, the polar ends of the crystal
develop electric charges. Heating causes the positive end of the c-axis to become
positively charged relative to the negative end, and cooling has the opposite effect.
This effect results from the fact that tourmaline has a permanent electric dipole.
The charge which builds up is soon dissipated by conduction into the surroundings.
Changes in temperature change the size of the electric dipole.

The dipole moment is a vector. Pyroelectricity can only arise when the point
group has no symmetry operations which alter the direction of this dipole. The vec-
tor must remain unchanged by all the symmetry operations. Point groups having
this property include those with only a single rotation axis: 2(C2), 3(C3), 4(C4) and
6(C6) as well as those which have only these axes plus mirror planes parallel to them:
mm2(C2v), 3m(C3v), 4 mm(C4v) and 6 mm(C6v). The dipole-moment vector lies in
the rotation axis. The conditions for the presence of a dipole moment are also found
in the point groups m (for all directions parallel to the mirror plane) and 1 (for every
direction), cf. Table 9.10.

Knowledge of the symmetry gives only a qualitative indication of the possible
presence of pyroelectricity. It does not indicate the size of the dipole moment or the
directions of the positive and negative ends.

Sucrose, C12H22O11, (2 − C2) and hemimorphite, Zn4[(OH)2/Si2O7] · H2O
(mm2 − C2v) are examples of crystals showing pyroelectricity.
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Table 9.11 Examples of molecules and crystals for the point groups
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Table 9.11 (Continued)
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Table 9.11 (Continued)
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Table 9.11 (Continued)
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Table 9.11 (Continued)
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Table 9.11 (Continued)
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Table 9.11 (Continued)
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Table 9.11 (Continued)
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Table 9.11 (Continued)
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9.6.4
Molecular Dipole Moments

Many molecules have an asymmetric distribution of electric charge and hence an
electric dipole moment. The relationship between the point group of a molecule and
the direction of its dipole is the same as that developed above for the pyroelectricity
of crystals (cf. Sect. 9.6.3).

The measurement of a dipole moment can give important information about the
shape of a molecule. PF3 has a dipole moment, while BF3 does not. Molecules of
the formula AB3 may have the shape of an equilateral triangle with A at the center
[6̄m2 – (D3d)] or a triangular pyramid with A at the apex [3m – (C3v)], cf.
Table 9.11.19 and 26. The shape of BF3 is thus the former, while PF3 is the latter.

9.7
Noncrystallographic Point Groups

Up to this point, we have only been concerned with the 32 crystallographic point
groups, which are the most important ones for the purpose of this book. In order
to give a complete picture, however, it must be emphasized that there are an infinite
number of point groups which cannot be assigned to a crystal system because they
contain 5-, 7-, 8- . . .. . . up to∞-fold axes.

D Point groups which contain a rotation or rotation-inversion axis which is
incompatible with a space lattice are called noncrystallographic point groups.

Noncrystallographic point groups are, however, important for the description of
molecular symmetry.

Linear molecules such as CO, HCl and CN-, like a cone, have an∞-fold rotation
axis with an infinite number of mirror plans parallel to it. The point group is∞m.
(Table 9.12.1)

The symmetry of other linear molecules such as O2 and CO2 is that of a bicone
or a cylinder; in addition to the symmetry of ∞m, there are a mirror plane and
infinitely many 2-fold axes normal to the ∞-fold axis. In addition there is an
inversion center. The point group symbol is∞/mm. (Table 9.12.2)

The symmetry of the sulfur molecule S8 is that of the tetragonal antiprism, 8̄2m.
(Table 9.12.3)

The pentagonal prism has symmetry 5/mm2. (Table 9.12.4) and is not a crystal
form!! All prisms, pyramids and bipyramids with X > 6 are also never crystal forms;
they cannot form the natural boundary surfaces of a crystal. Although it has five
equivalent faces, these do not constitute a crystal form. When non-crystallographic
symmetry is considered, the definition of a crystal form in Sect. 9.2 must be extended
to read “ . . ... but only when the equivalence is generated by the operations 1, 2, 3,
4, 6, 1̄, m, 3̄, 4̄, or 6̄.
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Table 9.12 A few noncrystallographic point groups

Molecules, polyhedra and
other geometric forms

Noncrystallographic point groups

1
CO, HCl, CN–

cone

An∞-fold rotation axis with infinitely many
mirror planes parallel to it

∞m – C∞v

2

H2
O2
Cl2

CO2

bicone cylinder

An∞-fold rotation axis with infinitely many
mirror planes parallel to it, infinitely many
2-fold rotation axes normal to it and a mirror
plane normal to it

∞/mm – D∞h

3

S8 8̄2m – D4d
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Table 9.12 (Continued)

Molecules, polyhedra and
other geometric forms

Noncrystallographic point groups

4

ferrocene
(eclipsed conformation)

Pentagonal prism

5/mm2 – D5h
10m2

5

pentagonal dodecahedron

icosahedron

2/m35 – D5h
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Table 9.13 Elements of the platonic solids

Polyhedron Description
of faces

Number of Point
group

Type of symmetry

Faces
(f)

Vertices
(v)

Edges
(e)

�

�

�

�

Tetrahedron
Equilateral
triangle

4 4 6 4̄3m

CrystallographicOctahedron 8 6 12
m3m

�

�

�

�

Cube Square 6 8 12

Pentagonal
dodecahedron

Regular
pentagon 12 20 30

2/m3̄5̄ Noncrystallographic
Icosahedron Equilateral

triangle 20 12 30

D The five platonic solids, named for the Greek philosopher Plato, are those
which are bounded by a set of equivalent regular polygons.

Only three of these five solids can be crystal forms, namely the tetrahedron, the
octahedron and the cube. (see Exercise 9.15: 15, 14, and 13.) The other two pla-
tonic solids are the pentagonal dodecahedron and the icosahedron (Table 9.12.5).
In Table 9.13, all of the platonic solids are listed with their geometrical properties
(number of faces, edges and vertices).

The tetrahedron has point group 4̄3m, the octahedron and the cube m3̄m, and
the icosahedron and the pentagonal dodecahedron 2/m3̄5̄, as shown in Table 9.12.5.
It is certainly worthwhile to take the time to build models of both of these polyhedra
in order fully to appreciate their symmetry (patterns are given in Exercise 15.9). It
will be evident from the stereographic projection of the pentagonal dodecahedron
along a 5-fold axis and of the icosahedron along a 3-fold axis that these solids have
the point group 2/m3̄ 5̄.

It will be noticed that the octahedron and the cube, and also the pentagonal
dodecahedron and the icosahedron, are “duals” of one another. This means that
the two solids have the same number of edges, while the number of faces in each
equals the number of vertices in the other. (See the arrows in Table 9.13). Table 9.13
also illustrates the Euler equation for convex polyhedra:

f
(
faces

) + v (vertices) = e
(
edges

) + 2.

It is important not to confuse the (noncrystallographic) regular pentago-
nal dodecahedron with the various cubic dodecahedral crystal forms, especially
the tetartoid and the pyritohedron with symmetry 23 and 2/m3̄ respectively
(Fig. 15.2d.36 and 37), the faces of which are not regular pentagons. (Fig. 15.2d (37),
(36) and Fig. 15.7(1))
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9.8
Exercises

Exercise 9.1

(a) What is meant by a polar rotation axis?
(b) Which symmetry elements can compensate the polarity of a rotation axis?

The arrows in the diagram represent X-fold polar rotation axes, Xp. The
polarity will be compensated by a symmetry operation which reverses the
head of the arrows. Draw in the location of symmetry elements which can
do this.

(c) How can polar rotation axes be recognised in symmetry diagrams and in
the stereograms of point groups?

Exercise 9.2 Are there polar rotoinversion axes? If so, specify which; if not,
state why not.

Exercise 9.3 Combine the operations 1+1̄, 2+1̄, 3+1̄, 4+1̄, 6+1̄. Which point
groups result? Give their symbols.

Exercise 9.4 Combine the operations (A) 2+2, (B) m+m and (C) 2+m, where
the elements intersect at angles of 30, 45, 60 and 90◦. Take the direction of m to
be the direction of its normal.

Complete the stereographic projections shown in Table 9.14. Which sym-
metry elements are generated? What are the resultant point groups? Give the
symbols for each.

Copy the stereograms of the point groups in columns A, B or C into column
D, and add 1̄. Which new point groups are generated? Give their symbols.

For each point group, choose an axial system and assign each point group to
a crystal system.

The solution of that part of the exercise will explain the following symmetry
rules:

(A) The combination of two 2-fold axes at an angle of
ε

2
produces an X-fold

axis through their point of intersection perpendicular to their common

plane. X =
360◦

ε
.

(B) The combination of two mirror planes at an angle of
ε

2
produces an X-fold

axis along their line of intersection. X =
360◦

ε
.
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(C) The combination of a 2-fold axis with a mirror plane at an angle of
ε

2
produces an X̄ axis through the point of intersection of the axis with the
normal to the plane and perpendicular to the common plane of the axis

and the normal. X̄ = 360◦

ε
.

Since only X=1, 2, 3, 4 and 6 or X̄ = 1̄, 2̄ ≡ m, 3̄, 4̄ and 6̄ are permitted, ε
2

can only have the values 30, 45, 60, 90 and 180◦. The combinations at an angle
of 180◦ are not included in Table 9.14.

Table 9.14
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Exercise 9.5 Combine the operations of (A) 2+3, (B) 4̄+3 and (C) 4+3, where
the elements intersect at an angle of 54.73◦ (the angle between the edge and the
body diagonal of a cube).

Complete the stereographic projections shown in Table 9.15, and give the
symbols for the resultant point groups. Copy the stereograms in E, F and G
into H, I and K and add 1̄ to them. Give the symbols of the point groups which
now result.

Table 9.15

Exercise 9.6 Starting from the point of highest symmetry in the trigonal
system 3 2/m, develop its trigonal subgroups.

Exercise 9.7 Color the circles of the point groups in Fig. 9.3, using the same
color for all point groups belonging to the same crystal system.

Exercise 9.8

(a) How is it possible to identify the crystal system of a point group from its
International symbol?

(b) For each crystal system, give the characteristic point-symmetry elements,
and, if necessary, the number of such elements or their relationship to
one another. Mark the position these elements occupy in the International
point-group symbol, and give an example for each crystal system.
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Crystal system Characteristic symmetry
elements number and
relationship to one
another

Position of characteristic
symmetry element(s) in
the symbol

Example

1st 2nd 3rd

Triclinic

Monoclinic

Orthorhombic

Tetragonal

Trigonal

Hexagonal

Cubic

Exercise 9.9 Determine the International symbol for the point groups whose
symmetry elements are illustrated in the following sterograms:
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(a) First, find the symmetry elements that charcterise the crystal system.
(b) Indicate the crystallographic axes a, b, c on the sterogram, bearing in mind

the orientation of the symmetry directions for the crystal system.
(c) Give the International symbol and, in brackets, the Schönflies symbol.

Exercise 9.10 In the stereograms below, indicate the symmetry elements for
the given point group:

(a) Determine the crystal system.
(b) Draw the appropriate axial system on the stereogram. The c-axis should

always be perpendicular to the plane of projection.
(c) Analyse the point group symbol with respect to the symmetry directions.
(d) Finally, draw the symmetry elements on the stereogram. Remember that

rotations and rotoinversion axes, as well as the normals to planes are
arranged parallel to their symmetry directions.
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Exercise 9.11 Determination of point groups
Determine the point groups of the molecules and ions given below, using the
method described in Sect. 9.4. Give the International symbol and the Schönflies
symbol, and draw the symmetry elements on the stereographic projection.

(a) Which isomers of tetrachlorocyclobutane are enantiomers?
(b) Which molecules possess a dipole moment?
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Exercise 9.12 What information about the spatial arrangement of the atoms
in the following molecules can you infer from the point group symmetry?
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Exercise 9.13 Rotate one of the CH2Cl groups of a 1,2-dichloroethane
molecule about the C-C bond stepwise through 360◦ with respect to the other.
Which symmetry distinct conformations are encountered? Given their point
groups, and compare them with the corresponding conformations of ethane in
Fig. 9.20.

Exercise 9.14 Will measurements of their dipole moments distinguish the cis
and trans forms of dichloroethene?

Exercise 9.15

(a) Determine the point groups of the following crystals with the help of
Table 9.10 and crystal models such as those illustrated in Exercise 5.4.
Draw the symmetry elements on the stereogram, and give the International
symbol for the group.

(b) Indicate the position of the crystallographic axes on the stereograms and
the crystal diagrams.

(c) Estimate by eye the positions of the crystal faces, and enter the poles on the
stereogram, using different colors for different forms.

(d) Index the crystal forms.
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Tetragonal Scalenohedron

Pentagonal Dodecahedron Hexagonal Trapezohedron

Ditetragonal Scalenohedron

Exercise 9.16 Which of the crystals in Exercise 9.15 might, on the basis of its
crystal forms, show the piezo-electric effect? Mark the appropriate diagrams
“Piezo-elect.”

Exercise 9.17 There is a simple relationship between the numbers of faces,
edges and vertices of a polyhedron. Work out what it is.

Exercise 9.18 The figure shows the cross-section of a ditetragonal prism
on the equatorial plane of a stereographic projection, together with the cor-
responding poles. The dashed lines have been added to point out the axial
intercepts of the faces.



9.8 Exercises 187

(a) Index all the faces of the crystal form {hk0} or {210}.
(b) If the faces of a ditetragonal prism are inclined by a given angle in the

direction of the positive and negative c-axis, the poles of the faces move
a corresponding amount away from the periphery in the [001] and [001]
directions. What is the resulting crystal form? Index all the faces of this
form.

Exercise 9.19 The figure shows the cross-section of a hexagonal prism on the
equatorial plane of a stereographic projection, together with the corresponding
poles. The dashed lines have been added to point out the axial intercepts of the
faces.

(a) Index all the faces of the crystal form {hki0} or {2130}.
(b) If the faces of a hexagonal prism are inclined by a given angle in the direc-

tion of the positive and negative c-axis, the poles of the faces move a
corresponding amount away from the periphery in the [0001] and [0001]
directions. What is the resulting crystal form? Index all the faces of this
form.

Exercise 9.20 Derive the crystal forms of the following point groups:

(1) 42m (4) mm2 (7) 3m
(2) 4 (5) 6/mmm (8) m3m
(3) mmm (6) 622 (9) 43m

(a) Use the characteristic symmetry elements to determine the crystal system
(cf. Table 9.9).
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(b) Look up the stereogram of the poles of the forms for the point group of
highest symmetry in that system: Fig. 9.16 for orthorhombic, Fig. 9.9 for
tetragonal, Fig. 9.13 for hexagonal or trigonal, and Fig. 9.15 for cubic.

(c) Place a piece of tracing paper over the stereogram, and draw in the
symmetry elements for the point group, appropriately orientated to the
crystallographic axes.

(d) Indicate the asymmetric face unit.
(e) Draw in first the poles for the faces of the general form. What is it called?

Index all the faces.
(f) If the general form has limiting forms, draw these in and name and index

them.
(g) Draw in the special forms and their limiting forms (if any). Name and

index them and give the point symmetry of their gaces.

(It is a good idea to use several pieces of tracing paper!)

Exercise 9.21 In International Tables for Crystallography, Vol. A, for the point
group 4/m32/m, the trapezohedron (or deltoidicositetrahedron), is given as the
special form {hhl}, |h|<|l| and the trisoctahedron for {hhl}, |h|>|l|. In Table 9.6,
however, the trapezohedron is given for {hkk} and the trisoctahedron for {hhk}.
Explain this apparent inconsistency.

Exercise 9.22 Which special forms in the hexagonal and trigonal systems have
limiting forms?

Exercise 9.23 Note that, as shown in Table 9.6, the {100} form in all cubic
point groups is a cube. The highest face-symmetry in point group 4mm can
also show cube-like faces, characteristic of m3̄m. Many of the cubic crystrals of
pyrites, FeS2, show characteristic striations on the cube faces, which reduce the
face symmetry to mm2, indicating that the point group of the crystal is 2/m3̄.

(a) Draw a cube, and decorate the faces so as to reduce the symmetry to 4̄3m,
432 and 23.

(b) In each case, what has the face symmetry become?
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10.1
Glide Planes and Screw Axes

The 32 point groups are the symmetry groups of many molecules and of all crystals,
so long as only the morphology is considered. Space groups give the symmetry not
only of crystal lattices, but also of crystal structures.

The space-group symbols for the 14 Bravais lattices are listed in Table 7.4. The
space-group symbol does not in general enumerate all the symmetry elements of the
space group. In particular, the space groups of centered lattices contain new sym-
metry operations. These are compound symmetry operations which arise through
reflection and translation (1) and rotation and translation (2) (cf. Sect. 6.4 and
Table 6.2).

1. In the orthorhombic C-lattice, reflection through a plane (– – –) at 1/4,y,z, fol-
lowed by a translation of �b2 moves the lattice point 0,0,0 to 1/2,1/2,0 (Fig. 10.1a).
This symmetry operation is called a glide reflection, and the corresponding
element is a glide plane (in this case, a b-glide plane).

Fig. 10.1
a Location of a b-glide plane
in an orthorhombic C-lattice.
b. Position of 2-fold screw
axis in an orthorhombic
I-lattice. ( lattice point with
z= 1/2)

2. In the orthorhombic I-lattice, a 180◦ rotation about an axis ( ) at 1/4,1/4,z, followed
by a translation of �c2 , moves the lattice point 0,0,0 to 1/2,1/2,1/2 (Fig. 10.1b). This
symmetry operation is called a screw rotation, and the corresponding element is
a screw axis (in this case, a 2-fold screw axis).

W. Borchardt-Ott, Crystallography, 3rd ed., DOI 10.1007/978-3-642-16452-1_10,
C© Springer-Verlag Berlin Heidelberg 2011
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10.1.1
Glide Planes

The compound symmetry operation “glide reflection” implies:

(A) a reflection and
(B) a translation by the vector �g parallel to the plane of glide reflection where |�g| is

called the glide component.

Figure 10.2 contrasts the operation of a mirror plane with that of a glide plane on
a point lying off the planes.

Fig. 10.2a,b
Operation of a mirror plane
m (a) and of a glide plane c
(b) on a point shown in
perspective and as a
projection on (001)

A second application of the glide reflection brings one to a point identical to the
starting point.

! |�g| is one-half of a lattice translation parallel to the glide plane, |�g| = 1
2 |�τ |.

Glide planes are developments of mirror planes, and can only occur in an orienta-
tion that is possible for a mirror plane.

For this reason, in the orthorhombic system, glide planes only occur parallel to
(100), (010) and (001). Compare the space group P2/m 2/m 2/m in Fig. 7.9d with
the point group 2/m 2/m 2/m in Fig. 7.9e. Since the glide component |�g| must be
half of a lattice translation parallel to the glide plane, in an orthorhombic space
group the only possible glide planes parallel to (100) will have glide components
1
2 |�b|, 1

2 |�c|, 1
2 |�b + �c| and 1

4 |�b + �c|, and this last type will only occur in centered
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Fig.10.3 Glide planes in the orthorhombic system

lattices, where 1
4 |�b + �c| can be half of a lattice translation. In Fig. 10.3, these cases

are illustrated, together with those parallel to (010) and (001).
Glide planes are designated by symbols indicating the relationship of their glide

components to lattice vectors �a, �b and �c. Those with axial components: 1
2 |�a|, 1

2 |�b| or
1
2 |�c| are given the symbols a, b and c respectively, those with diagonal components
1
2 | �τ 1± �τ 2 |, have the symbol n, while those with component 1

4 | �τ 1± �τ 2 |, known as
diamond glides, have the symbol d. (See Fig. 10.3). Finally, in some centered lattices,
a plane may have glide components in both of two directions, e.g. 1/2�a and 1/2�b. These
are given the symbol e (Fig. 10.4f).

Since glide planes play so important a role in space groups, the operation of a few
examples will be given in an orthorhombic cell projected on x,y,0. In these projec-
tion diagrams, only a single glide plane is shown – see Sect. 15.2 for an explanation
of the graphical symbols.

• In Fig. 10.4a, an a-glide is shown at x,1/4,z. Reflection of a point x,y,z in this plane
gives x,1/2−y,z, called an “auxiliary” point and the translation 1

2�a then moves this
auxiliary point to 1/2+x,1/2−y,z.

• The b-glide plane at x,y,0 in Fig. 10.4b reflects a point x,y,z to the auxiliary point
x,y,z, which the translation of 1

2
�b then moves to x,1/2+y,z̄.

• The c-glide plane at x,1/2,z in Fig. 10.4c reflects a point x,y,z to the auxiliary point,
x,1−y,z which the translation of 1/2�c then moves to x,1−y,1/2+z.
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Fig. 10.4a–f Operation of glide planes on a point. In each case, only a single glide plane is shown
projected on x,y,0 in an orthorhombic cell
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• The n-glide plane at x,y,1/4 in Fig. 10.4d is parallel to the a, b-plane, and thus has a
glide component 1

2 |�a+ �b|. It reflects a point x,y,z to the auxiliary point x,y,1/2−z,
which the translation of 1

2 (�a+ �b) then moves to 1/2+x,1/2+y,1/2−z.
• The n-glide plane at 0,y,z in Fig. 10.4e has a glide component 1

2 |�b+ �c|. It reflects
a point x,y,z to the auxiliary point x̄, y, z, which the translation of 1

2 (�b + �c) then
moves to x̄, 1

2 + y, 1
2 + z.

10.1.2
Screw Axes

The compound symmetry operation “screw rotation” implies:

• a rotation of an angle ε = 360◦

X
; (X = 1, 2, 3, 4, 6) and

• a translation by a vector �s parallel to the axis, where |�s| is called the screw
component.

For rotation axes and rotoinversion axes, the direction of rotation was unim-
portant. This is not the case for screw axes; for a right-handed axial system, X,Y,Z
(Fig. 10.5) a rotation about an axis on Z from the X-axis toward the Y-axis is linked
with a positive translation along Z. This is the motion of a right-handed screw,
which corresponds to the motion of advancing the thumb of the right hand in the
direction of the vector �s as the fingers of this hand point in the sense of rotation.

Figure 10.6 shows the operation of a 6-fold screw axis (ε = 60◦) on a point lying
off the axis. The points 1, 2, 3 . . . are arranged like the treads of a spiral staircase.
After X rotations (X= 6) through the angle ε (X · ε= 360◦), the point 1 would return
to its starting point. In this case, however, the rotations have been accompanied by
a translation of X · �s, and the point 1′ has been reached, which is identical to the

Fig. 10.5
The handedness of a screw
axis

Fig 10.6
Operation of a 6-fold screw
axis 61 on a point lying off the
axis

Fig. 10.5 Fig. 10.6
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starting point. The vector 1–1′ is not necessarily a single lattice translation �τ , but
may be any integral multiple σ of �τ .

X · |�s| = σ |�τ | or

|�s| = σ

X
|�τ |.

Since |�s| < |�τ |, σ < X and can have the following values:
σ= 0, 1, 2, . . . X–1
and |�s| = 0, 1

X |�τ |, 2
X |�τ |, .... X−1

X |�τ |
since the screw component

|�s| = σ

X
|�τ | ,

screw axes are designated Xσ= X0, X1, X2, . . .. XX–1
For X= 4, σ = 0, 1, 2, 3. The resulting screw axes are 40 (a 4-fold rotation axis),

41, 42 and 43, with screw components 0, 1
4 |�τ |, 2

4 |�τ | and 3
4 |�τ |. (Note that the screw

component is directly derivable from the symbol, by inverting it and considering

Fig. 10.7a,b Operation of a 4-fold rotation axis and the three 4-fold screw axes on a point lying
off the axes. (a) shows perspective views and (b) projections on x,y,0
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it as a fraction, e.g. 41 → 1
4 .) The 4-fold rotation and screw axes are compared in

Fig. 10.7. Successive operations of the 4-fold screw axes on a point lying off the axis
move point 1 to 2, 3 and 4. A lattice translation of τ generated the points 1′, 2′, 3′ and
4′. The operations of the screw axes are also illustrated in Fig. 10.7b by projection of
the points within a single lattice translation onto the plane normal to the axis. Note
that the sets of points generated by 41 and 43 are mirror images of one another, i.e.
they are a pair of enantiomorphs. Since 41 represents a right-handed screw, 43 may
be described as a left-handed screw with a screw component |�s′ | = 1

4 |�τ | also.
Figure 10.8 shows all of the other screw and rotation axes possible for crystals

(see also Sect. 15.2). The enantiomorphous pairs are 31 and 32, 41 and 43, 61 and 65,
and 62 and 64.

Screw axes can only occur in crystals parallel to those directions which are
possible for rotation axes in the corresponding point group.

10.2
The 230 Space Groups

The 32 crystallographic point groups have been derived from the point groups of
highest symmetry in each crystal system (see Table 9.2). All of the space groups can
be derived in a similar manner. Starting from the space groups of highest symmetry
in each crystal system, i.e. those of the 14 Bravais lattices (see Table 7.4), it is possible
to derive an analogous scheme for determining all of their subgroups. It must, how-
ever, be borne in mind that screw axes can replace rotation axes, and glide planes
mirror planes thus:

2← 21
3← 31, 32
4← 41, 42, 43
6← 61, 62, 63, 64, 65
m← a, b, c, n, e, d.

Fig. 10.8
Operation of rotation and
screw axes on a point lying off
them. The enantiomorphous
pairs 31–32, 61–65 and 62–64
are given together. 4, 41, 42
and 43 are shown in Fig. 10.7
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Fig. 10.8 (Continued)
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a. Space groups of point group 2/m

Fig. 10.9a The monoclinic space groups projected on x,y,0. The c-axis is not normal to the plane
of projection, but is tilted such that β > 90◦
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b. Space groups of point group m

c. Space groups of point group 2

Fig. 10.9b,c (Continued)

The space groups of the monoclinic system will be derived as an example for all
crystal systems. We start from the two monoclinic space groups of highest symme-
try; P2/m and C2/m (Fig. 10.9). Additionally, in C2/m, there are a-glide planes at
x,1/4,z and x,3/4,z, and 21-axes at 1/4,y,0; 1/4,y,1/2; 3/4,y,0 and 3/4,y,1/2.

The monoclinic subgroups of the point group 2/m are m and 2. The point-
symmetry elements 2 and m can be replaced by 21 and a glide plane respectively.
Since m is parallel to (010), only a-, c- and n-glides are possible. However, a different



10.2 The 230 Space Groups 199

Fig. 10.10a–c In the monoclinic system, a-, c-, and n-glide planes parallel to (010) are all possible.
These are shown in a, b and c respectively. Suitable alteration of the choice of axes will convert a-
and n- into c-glides

choice of the a and c axes will convert either an a- or an n-glide into a c-glide
(Fig. 10.10). Thus, only the c-glide need be considered. (Note, however, that in the
C2/m, it is an a-glide that is produced by the centering operation.)

Replacement of 2 and m by 21 and c results in the 13 monoclinic space groups
shown in Table 10.1 as subgroups of P2/m and C2/m.

The sets of symmetry elements for these space groups are shown in Fig. 10.9, in
the same order as Table 10.1, as projections on x,y,0. Additionally, a- and n-glide
planes occur in C-centered space groups. Thus it can be seen that the pairs of sym-
bols C2/m and C21/m, C2/c and C21/c, and C2 and C21 represent only a single space
group each, cf. Exercise 10.4.

In the same way, inspection of the other crystal systems leads to the entire 230
space groups. These 230 space groups are listed in Table 10.2, sorted by crystal sys-
tem and point group. Only the standard abbreviated symbols (short symbols) are
given.

In every case, the point group is easily derived from the space group symbol. The
screw axes are replaced by the corresponding rotation axis, the glide planes by a
mirror plane, and the lattice symbol is omitted, the result being the point group to
which the space group belongs.

Table 10.1
The point and space groups
of the monoclinic crystal
system

Point groups Space groups

2/m P2/m C2/m
P21/m -a

P2/c C2/c

P21/c -b

m Pm Cm
Pc Cc

2 P2 C2
P21 -c

a C21/m≡ C2/m, b C21/c≡ C2/c, c C21 ≡ C2
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Table 10.2 The 230 Space groups

Crystal system Point group Space groups

Triclinic 1
1̄

P1
P1̄

Monoclinic 2
m
2/m

P2
Pm
P2/m
P21c

P21
Pc
P21/m
C2/c

C2
Cm
C2/m

Cc
P2/c

Orthorhombic 222

mm2

P222
C2221
I212121
Pmm2
Pca21
Pna21
Ccc2
Aea2
Iba2

P2221
C222

Pmc21
Pnc2
Pnn2
Amm2
Fmm2
Ima2

P21212
F222

Pcc2
Pmn21
Cmm2
Aem2
Fdd2

P212121
I222

Pma2
Pba2
Cmc21
Ama2
Imm2

mmm Pmmm
Pmma
Pbam
Pmmn
Cmcm
Cmme
Immm

Pnnn
Pnna
Pccn
Pbcn
Cmce
Ccce
Ibam

Pccm
Pmna
Pbcm
Pbca
Cmmm
Fmmm
Ibca

Pban
Pcca
Pnnm
Pnma
Cccm
Fddd
Imma

Tetragonal 4

4̄
4/m

422

4 mm

4̄2m

4/mmm

P4
I4
P4̄
P4/m
I4/m
P4/22
P4222
I422
P4mm
P4cc
I4mm
P4̄2m
P4̄m2
I4̄m2
P4/mmm
P4/mbm
P42/mmc
P42/mbc
I4/mmm

P41
I41
I4̄
P42m
I41/a
P4212
P42212
I4122
P4bm
P4nc
I4cm
P4̄2c
P4̄c2
I4̄c2
P4/mcc
P4/mnc
P42/mcm
P42/mnm
I4/mcm

P42

P4/n

P4122
P4322

P42cm
P42mc
I41md
P4̄21m
P4̄b2
I4̄2m
P4/nbm
P/4nmm
P42/nbc
P42/nmc
I41/amd

P43

P42/n

P41212
P43212

P42nm
P42bc
I41cd
P4̄21c
P4̄n2
I4̄2d
P4/nnc
P4/ncc
P42/nnm
P42/ncm
I41/acd

Trigonal 3
3̄
32

P3
P3̄
P312
P3212

P31
R3̄
P321
P3221

P32

P3112
R32

R3

P3121

3m

3̄m

P3ml
R3m
P3̄1m
R3̄m

P31m
R3c
P3̄1c
R3̄c

P3c1

P3̄m1

P31c

P3̄c1
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Table 10.2 (Continued)

Crystal system Point group Space groups

Hexagonal 6

6̄
6/m
622

6 mm
6̄m2
6/mmm

P6
P64
P6̄
P6/m
P622
P6422
P6mm
P6̄m2
P6/mmm

P61
P63

P63/m
P6122
P6322
P6cc
P6̄c2
P6/mcc

P65

P6522

P63cm
P6̄2m
P63/mcm

P62

P6222
P6222
P63mc
P6̄2c
P63/mmc

Cubic 23

m3̄

432

4̄3m

m3̄m

P23
I213
Pm3̄
Im3̄
P432
I432
P4̄3m
F4̄3c
Pm3̄m
Fm3̄m
Im3̄m

F23

Pn3̄
Pa3̄
P4232
P4332
F4̄3m
I4̄3d
Pn3̄n
Fm3̄c
Ia3̄d

I23

Fm3̄
Ia3̄
F432
P4132
I4̄3m

Pm3̄n
Fd3̄m

P213

Fd3̄

F4132
I4132
P4̄3n

Pn3̄m
Fd3̄c

It would be useful to revise the space groups of the Bravais lattices, which are
given in Figs. 7.7d–7.13d.

The International (Hermann-Mauguin) symbols thus indicate the symmetry of
each space group clearly. Schönflies symbols, on the other hand, merely assign an
arbitrary number to each space group within a given point group. Thus, for point
group m(Cs), we have:

Pm : (C1
s ), Pc : (C2

s ), Cm : (C3
s ), Cc : (C4

s ).

This is the main reason that Schönflies symbols are rarely used in crystallography.

10.3
Properties of Space Groups

It is certainly not necessary to study each of the 230 space groups individually, but
a general knowledge of how space groups differ from one another is useful. For this
reason, the properties of a few space groups will be explored in detail.

Figure 10.11a gives the symmetry elements for the space group Pmm2. The appli-
cation of the symmetry operations to a point x,y,z will generate the points x,ȳ,z; x̄,y,z,
and x̄,ȳ,z, as well as equivalent points such as x,1-y,z; 1-x,y,z and 1-x,1-y,z.
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Fig. 10.11a–c Symmetry elements of space group Pmm2 in projection on x,y,0. (a) The general
position x,y,z. (b) the special position 1/2,y,z. (c) The special position 1/2,1/2,z

D The number of equivalent points in the unit cell is called its multiplicity.

In Fig. 10.11a, the position is “4-fold”, or said to have a multiplicity of 4. This
position has no restrictions on its movement; it has three degrees of freedom, and,
as long as it does not move onto a point symmetry element, it continues to have a
multiplicity of 4. Such a position is called a general position.

D A general position is a set of equivalent points with point symmetry (site
symmetry) 1.

It is asymmetric, and this is indicated in Fig. 10.11 by the tail on the circle. The figure
is, of course, not really asymmetric, as it is unchanged on reflection in the plane of
the paper, but it is sufficiently unsymmetrical for our present purpose!

If the point in the general site x,y,z is moved on to the mirror plane at 1/2,y,z, the
point 1-x,y,z comes into coincidence with it; the two points coalesce at the mirror
plane to a single point 1/2,y,z. At the same time, the points x,1-y,z and 1-x,1-y,z coa-
lesce to the single point 1/2,1-y,z (Fig. 10.11a, b). From the 4-fold general position,
we have obtained a 2-fold special position. The multiplicity of a special position is
always an integral factor of the multiplicity of the general position. Special positions
are not asymmetric; they possess site symmetry higher than 1, and in Fig. 10.11b,
the site symmetry is m.
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D A special position is a set of equivalent points arising from the merging of
equivalent positions. It has point symmetry (site symmetry) higher than 1.

This particular special position has two degrees of freedom. As long as the point
remains on the mirror plane, its multiplicity is unchanged. Other similar special
positions arise from the mirror planes at x,0,z; x,1/2,z and 0,y,z.

If a point on 1/2,y,z moves onto the 2-fold axis at 1/2,1/2,z the two points 1/2,y,z and
1/2,1-y,z coalesce to 1/2,1/2,z. This special position retains only a single degree of free-
dom. The point symmetry of the position rises to mm2, and the multiplicity falls
to 1. The positions 0,0,z; 1/2,0,z and 0,1/2,z are similar to 1/2,1/2,z. Some space groups
have special positions with no degrees of freedom, and important case of this being
a point on an inversion center (see Table 10.4).

The general and special positions in space group Pmm2 are set out in Table 10.3.

Table 10.3 Positions of the space group Pmm2

Position
Degrees of
freedom Multiplicity

Site
symmetry

Coordinates of
equivalent points Figure

General 3 4 1 x,y,z; x̄,ȳ,z;
x,ȳ,z; x̄,y,z 10.11a

Special

2

2 m 1
2 ,y,z; 1

2 ,ȳ,z 10.11b

2 m 0,y,z; 0,ȳ,z

2 m x, 1
2 ,z; x̄, 1

2 ,z

2 m x,0,z; x̄,0,z

1

1 mm2 1
2 , 1

2 ,z 10.11c

1 mm2 1
2 ,0,z

1 mm2 0, 1
2 ,z

1 mm2 0,0,z

Another space group in point group mm2 is Pna21, shown in Fig. 10.12. The
space group symbol indicates that the unit cell is orthorhombic, with n-glide planes
normal to the a-axis with a glide component 1/2|�b+�c|, a-glides normal to the b-axis,
and 21-screw axes parallel to the c-axis. The general position, x,y,z, as shown in
Fig. 10.12, is again 4-fold. When, however, the point moves onto the a-glide at x,1/4,z,
the multiplicity is unchanged. A special position does not arise, since glide planes
and screw axes do not alter the multiplicity of a point. As a result, the space group
Pna21 has no special positions.

Figure 10.13 shows the projection of the space group P2/m on x,y,0. In addition
to the general position, there are special positions with m, 2 and 2/m site symmetry.
Table 10.4 shows these points, and gives the degrees of freedom, the multiplicities,
and the site symmetries of each type of position. Note that as the site symmetry rises,
the multiplicity falls.
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Fig. 10.12 Symmetry elements of the space group Pna21 in projection on x,y,0 showing the gen-
eral position x,y,z (1). Even if a point lies on the a-glide plane at x,1/4,z (1′), this does not reduce
its multiplicity. Glide planes and screw axes, unlike point-symmetry elements, do not reduce the
multiplicity of a position which lies on them

Fig. 10.13 Space group P2/m shown in projection on x,y,0 with the general position x,y,z and the
special positions on m, 2 and 2/m

D The asymmetric unit of a space group is the smallest part of the unit cell from
which the whole cell may be filled exactly by the operation of all the symmetry
operations. Its volume is given by:

Vasym.unit = Vunitcell

multiplicity of the general position

It has the property that no two points within it are related to one another by a
symmetry operation, cf. the asymmetric face unit of a point group in Sect. 9.2.1.
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Table 10.4 Positions of the space group P2/m

Position Degrees of
freedom

Multiplicity Site
symmetry

Coordinates of
equivalent points

-–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

-
General 3 4 1

x,y,z
x,1-y,z
1-x,y,1-z
1-x,1-y,1-z

Special

2 2 m
x, 1

2 ,z
1-x, 1

2 ,1-z

1 2 2
1
2 ,y, 1

2
1
2 ,1-y, 1

2

0 1 2/m 1
2 , 1

2 , 1
2

Fig. 10.14a–c. a Operation of a 61-screw axis at 0,0,z on a point in a general site x,y,z. b
Displacement of the points originated in a by lattice translation into the unit cell(general position).
c Space group P61
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An asymmetric unit of the space group P2/m is the volume limited by
0≤x≤ 1

2 ; 0≤y≤ 1
2 ; 0≤z≤1. Its volume is one quarter of that of the unit cell, so the

equation above is fulfilled, as the multiplicity of the general position is 4.
The tetragonal space group P42/mnm will be described in Sect. 10.4,

International Tables for Crystallography. The general position in the hexagonal space
group P61 is illustrated in Fig. 10.14. Figure 10.14a shows the operation of a 61-axis
at 0,0,z on an asymmetrical point x,y,z. The coordinate for each generated equiva-
lent point are easily determined. With different z-values, these x- and y-coordinates
will also arise from 6, 6̄, 62, 63, 64, 65, 3, 3̄, 31, 32-operations. In Fig. 10.14b, the
equivalent points of 10.14a have been shifted to a single unit cell by lattice transla-
tions. From this arrangement of the points, the 21 at 1/2,1/2,z and the 31 at 2

3 , 1
3 ,z and

1
3 , 2

3 ,z are clearly shown. The symmetry elements of P61 are given in Fig. 10.14c.
We shall now consider, as an example of the cubic system, the space group

P4/m3̄2/m. This is the space group of the cubic P-lattice, which has already been
introduced in Fig. 7.13d. That diagram of the space group P4/m3̄2/m is incomplete.
It was, however, adequate for the introduction of symmetry relationships, and is

Fig. 10.15 Space group P4/m3̄2/m [6], [14] projection on x,y,0
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also entirely suitable for the application of this space group, as we shall see later.
M. J. Buerger [8] developed projections of the cubic space groups which have been
included in the third edition of the International Tables [16]. Figure 10.15 shows
such a projection on x,y,0 of the space group P4/m 3̄ 2/m. In order to include those
symmetry elements which are parallel to < 110 > and < 111 > in the diagram, Buerger
used an orthographic projection (see Sect. 5.8), and representations of the oblique
rotation- and screw-axes. In order to understand the relationship of the various
symmetry elements, it is useful to study Figs. 10.15 and 7.13d, to see that they are
representations of the same thing.

Even for so complex a space group as P4/m3̄2/m, it is relatively easy to describe
a general position. Figure 10.16 a shows a section of a cubic unit cell. A 3-fold rota-
tion axis lies along the body-diagonal of the unit cell x,x,x, but it is not shown here.

Fig. 10.16a–d
The 48-fold general position
of space group P4/m3̄2/m. (a)
Section of a unit cell showing
the operation of the 3-fold
rotation axis at x,x,x (not
drawn) on a general point
x,y,z with x= 0.3, y= 0.2,
z= 0.1. (b) Projection of the
equivalent points in a on
x,y,0. (c) The operation of the
mirror plane at x,x,z on the
points in b generates six
equivalent points in a planar,
6-membered ring. (d) The
operations of the 4-fold axis
at 0,0,z and the mirror plane
at x,y,0 on the points in c
complete the full set of 48
equivalent points of the
general position. Only those
points lying above the plane
of the paper are shown. The
rest may be generated by
giving a minus sign to the
third co-ordinate of each
triple
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Fig. 10.16a–d
(Continued)

Starting from a point x,y,z (x= 0.3, y= 0.2, z= 0.1), the operation of the 3-fold axis
generates the points z,x,y and y,z,x (Fig. 10.16a). Figure 10.16b shows the projec-
tion of these three points on x,y,0. The application of the mirror plane at x,x,z
to these points converts them to a set of six points in a planar ring (Fig. 10.16c).
The further application of the 4-fold axis at 0,0,z converts this ring to a set of four
rings (Fig. 10.16d). Finally, the mirror plane at x,y,0 reflects these rings downwards
and produces the full set of points for this 48-fold position. The coordinates of
all 48 of these points are given in Fig. 10.16d, if each triple is taken to imply one
with a minus sign on the third-co-ordinate as well. These 48 equivalent points are
generated entirely by the symmetry of 4/m3̄m!

There is a simple relationship between the number of faces in the general form
of a crystal of a particular point group and the multiplicity of the general position
of a space group in that point group (cf. Table 10.2). For space groups with a P-
lattice, the multiplicity of the general position is equal to the number of faces in
the general form for the point group. For space groups with C-, A- and I-lattices,
the multiplicity of the general position is twice as great as the number of faces, and
for those with an F-lattice four times. The general form of the point group mm2 is
the rhombic pyramid (cf. Exercise 9.15(5)) with four faces. The multiplicity of the
general position in Pmm2 (Fig. 10.11a) or Pna21 (Fig. 10.12) is 4, while for Cmm2,
Aba2, Imm2 or Ima2 it is 8, and for Fmm2, it is 16.

If the point group includes an inversion center, all the corresponding space
groups will be centrosymmetric, cf. the monoclinic space groups in Fig. 10.9a.

Consider now the space group P42/n 21/c 2/m. Removing the lattice symbol and
converting all glide planes and screw axes to the corresponding point symmetry
elements (42 → 4; 21 → 2; n, c → m) gives the point group of this space group:
4/m 2/m 2/m.
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Fig. 10.17 Space group P42/mnm, from International Tables for Crystallography, Vol. A. [16]
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10.4
International Tables for Crystallography

Many of the most important properties of the 230 space groups are collected in
International Tables for Crystallography, Vol A. [16]. These tables are exceedingly
useful. The information they contain may be illustrated with respect to the space
group P42/mnm (Fig. 10.17).

(1) Short space group symbol, Schönflies symbol, point group, crystal system,
number of the space group, full space group symbol.

(2) Projection of the symmetry elements of the space group on x,y,0; a points down
the page, b across to the right, and the origin is in the upper left corner.

(3) Projection of a general position on x,y,0; the axial directions are as in (2),
represents an asymmetric point. represents a point that is related to it by
rotoinversion (1̄, 2̄ ≡m, 3̄, 4̄, or 6̄); they are thus enantiomorphs of each other.

represents a point projecting on top of another, while implies that one
of the points is derived from the other by rotoinversion, in this case reflection
in the mirror plane at x,y,0. The z-coordinate is indicated thus: + = z, – = z̄,
1/2 += 1/2 + z, 1/2 –= 1/2 – z.

(4) Information about the choice of origin, here at an inversion center at the inter-
section of three mutually perpendicular mirror planes. Since this is a tetragonal
space group, the symbols 2/m 1 2/m imply the symmetry directions, c, < a >,
< 110 >.

(5) The asymmetric unit:

Vasym.unit= V unit cell
multiplicity of the general position

(cf.Eq.10.3)

(6) The symmetry operations of the space group. They are numbered, here 1 – 16.
Examples:

• (3) 4+ is on the line 0,1/2,z, with the screw translation in parentheses: (0,0,1/2)
= 1/2 c. It is thus a 42-screw axis. The plus sign indicates that it is in the
mathematically positive or right handed sense, as in Fig. 10.5.

• (5) 2 is a 21-screw axis on 1/4,y,1/4 with |�s| = (0,1/2,0)= 1/2 |�b|.
• (12) 4̄- is a 4-fold rotoinversion axis on 0,1/2,z with an inversion center at

0,1/2,1/4. In this case, the minus sign adjacent to the 4̄ indicates that the screw
sense is negative, i.e. left-handed.

• (14) n is an n-glide plane at 1/4,y,z, with a glide translation of (0,1/2,1/2), =
1/2 (|�b| + |�c|).

(7) General and special positions.
Col. 1: the multiplicity of the position.
Col. 2: the Wyckoff letter assigned to this position; the letter furthest down the
alphabet, here k, represents the general position.
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Col. 3: the site symmetry (point symmetry of the position), in the order
c, < a >, < 110 >.
Col. 4: the coordinates of equivalent points in the position.

10.5
Space Group and Crystal Structure

In Chap. 3, we defined a crystal structure as lattice + basis. It is thus possible to
describe it as a geometrical arrangement of atoms. Table 10.5 A gives the lattice and
the basis for the rutile (TiO2) structure. The perspective drawing and the projection
on x,y,0 in Fig. 10.18 are derived from these data.

Every crystal structure can be similarly described by its space group and the occu-
pation of general or special positions by atoms. The crystal structure of rutile is in
space group P42/mnm. The titanium atoms occupy the position a, and the oxygen
atoms the position f with x = 0.3 (cf. the page of International Tables in Fig. 10.17).

Table 10.5 Description of the crystal structure of rutile TiO2

A B

Lattice Basis Space group Positions of the atoms

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Tetragonal P Ti: 0,0,0
1
2 , 1

2 , 1
2

P42/mnm a Ti: 0,0,0
1
2 , 1

2 , 1
2

a0 = 4.59 Å
c0 = 2.96 Å

O: 0.3, 0.3, 0
0.8, 0.2, 1

2
0.2, 0.8, 1

2
0.7, 0.7, 0

a0 = 4.59 Å
c0 = 2.96 Å

f O: x,x,0
1
2+x, 1

2−x, 1
2

1
2−x, 1

2+x, 1
2

x̄,x̄,0
x = 0.3

Fig. 10.18a,b The crystal structure of rutile, TiO2, shown: (a) in a perspective drawing, (b) in
projection on x,y,0
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The special position a is 2-fold, implying 0,0,0 and 1/2,1/2,1/2, f is 4-fold: x,x,0; 1/2+x,
1/2–x,1/2; 1/2–x,1/2+x,1/2 and x̄,x̄,0 (Table 10.5B). 0,0,0 and x,x,0 (x= 0.3) lie in a single
asymmetric unit of space group P42/mnm, cf. Fig. 10.17. Substituting 0.3 for x in
the coordinates for the O-atoms gives the specific coordinates listed for the basis in
Table 10.5 A. The description of a crystal structure in terms of the space group is
much simpler than that in terms of the basis when positions of high multiplicity are
involved. In addition, the space group shows clearly which atoms are related to one
another by the symmetry elements of the space group. This relationship is particu-
larly important for positions with one or more degrees of freedom. Any movement
in x (cf. position f in Fig. 10.17) alters the relationship of all the related atoms; for
example, an increase of x results in the movement of the O-atoms indicated by the
arrows in Fig. 10.18b.

10.6
Relationships Between Point Groups and Space Groups

As is shown in Table 10.2, there is a fundamental relationship between the point
groups of morphology and the space groups of crystal structure. In any crystal,
the only crystal forms which can appear are those of its point group, and this
may be derived from the space group of its crystal structure. For example, the
rutile structure has the space group P42/mnm, and consequently the point group
4/mmm. The only possible forms for this point group are those given in Fig. 9.7.
The crystal illustrated in Table 9.11.15 thus shows only the forms {111}, {110},
and {100}.

There are only a few exceptions to this correspondence between point groups and
space groups, and these deviations can be traced back to adsorption effects during
crystal growth.

Table 10.6 gives further relationships between point groups and space groups.
Molecules may also be assigned a point group, and one may ask what part this

plays when similar molecules group together in crystal growth. What relationship is
there between the point group of the molecule and the space group of the crystal?
Hexamethylenetetramine has the point group 4̄3m (Fig. 10.19a). In its crystal struc-
ture (Fig. 10.19b), with space group I4̄3m, the molecules occupy sites with point
symmetry 4̄3m, giving a perfect correspondence. It must be emphasized, however,
that this is far from a general rule!

Ethylene, with point group 2/m2/m2/m, (mmm), Fig. 10.20a, crystallizes in space
group P21/n21/n2/m (Pnnm), Fig. 10.20b, with its center of gravity occupying a
point with point symmetry only 2/m.

Similarly, benzene, Fig. 10.21a, with the very high point symmetry 6/mmm, crys-
tallizes in the orthorhombic space group Pbca, Fig. 10.21b. In this case, the center
of gravity of the molecule is on a site of only 1̄ symmetry. Again, the molecular
symmetry is much higher than its site symmetry in the crystal.
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Table 10.6 Correspondence of point groups and space groups

Point groups:
A group of point symmetry operations,
whose operation leaves at least one point
unaltered. Any operation involving
lattice translations is thus excluded

Space groups:
A group of symmetry operations which
include lattice translations

1 1̄
2 m
3 3̄
4 4̄
6 6̄

1 1̄
2 m 21; a, b, c, n, e, d
3 3̄ 31, 32

4 4̄ 41, 42, 43

6 6̄ 61, 62, 63, 64, 65
lattice translations

a, b, c
α, β, γ

a0, b0, c0
α, β, γ

Order of the symmetry operations
e.g. 4/m 2/m 2/m

| | |
c < a > < 110 >

Order of the symmetry operations
e.g. P42/m 2/m 2/m

| | |
c < a > < 110 >

General form:
Set of equivalent faces each with face
symmetry 1

General position:
Set of equivalent points each with site
symmetry 1

fasymmetric face unit =
fsphere

multiplicity of general form

Vasymmetric unit =
Vunit cell

multiplicity of general point

Multiplicity of general form of the point
group

Multiplicity of the general position in all space
groups with a P-lattice that are isomorphous
with that point group

Special form:
Set of equivalent faces each with face
symmetry >1

Special position:
Set of equivalent points each with site
symmetry >1

Fig. 10.19a,b
Symmetry of
hexamethylenetetramine
(C6H12N4). (a) molecule:
4̄3m. (b) crystal structure:
I 4̄3m. (After[2])
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Fig. 10.20a,b
Symmetry of ethylene
(C2H4). (a) Molecule: 2/m
2/m 2/m (b) Crystal structure
P21/n 21/n 2/m

Fig. 10.21a,b
Symmetry of benzene
(C6H6). (a)
Molecule:6/mmm. (b) Crystal
structure:Pbca

The sulfur molecule, S8, Table 9.12.3, with the non-crystallographic point sym-
metry 8̄2m (D4d), crystallises in the orthorhomic space group Fddd with site
symmetry 2.

It will thus be seen that there is no general relationship between molecular and
crystal symmetry, except that a molecule cannot occupy a site of higher symmetry
than its molecular point group unless the structure is disordered. The actual crys-
tal structure that occurs depends mainly on the packing of the molecules and the
intermolecular interactions that are possible.
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10.7
Exercises

Exercise 10.1 For the two-dimensional “Kockel” structures given below,
indicate:
(a) The unit mesh.
(b) The symmetry elements, paying particular attention to glide planes.
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Exercise 10.2 Glide planes and screw axes. In the projections below of a unit
cell onto x,y,0, only a single symmetry element is given. Allow this symmetry
element ot operate on an asymmetric point (in a general site) at x,y,z and give
the coordinates of the equivalent point(s) generated.



10.7 Exercises 217

2  in 1 , y , 0
4

21  in  0 , y , 1
4

41  in  0 ,  0 , z 31  in  0 ,  0 , z

21  in 1 , 0, z
2

2  in 1 , 1 , z
4 4

1
4

1
4

l)

j)i)

0

k)

m) n)

Exercise 10.2 (Continued)

Exercise 10.3 The figures show the operation of a glide plane and a 21-axis
on a point. The arrangement of the points appears to be the same in the two
diagrams. Discuss this apparent contradiction.
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Exercise 10.4 Show that (a) C21/c ≡ C2/c, (b) C21/m ≡ C2/m, and (c) C21
≡ C2.

Start from the projections of the space groups (a) P21/c, (b) P21/m and (c)
P21 as given in Fig. 10.9. Place a point at x,y,z and another at 1

2 +x, 1
2 +y,z (C-

centering), and allow the symmetry elements to operate on them. This will give
the general positions for: (a) C21/c, (b) C21/m and (c) C21. Using these gen-
eral positions, the complete symmetry of the space groups can be determined.
Using Fig. 10.9, show the correspondence of (a) C21/c with C2/c, (b) C21/m
with C2/m, and (c) C21 with C2, moving the origin of the diagram as necessary.

Exercise 10.5 Determine the symmetry of the orthorhombic C-and I-lattices.
Indicate the symmetry elements on a projection of the lattice onto x,y,0, and
give the space group symbol.

Exercise 10.6 Draw the symmetry diagram of space group Pmm2 on a piece
of graph paper. Enter points in the general positions 0.1,0.1,0.1; 0.1,0.4,0.1;
0.25,0.25,0.1; and 0.4,0.4,0.1 and those points resulting from the operation of
the symmetry elements on them.

Exercise 10.7 The symmetry diagrams for seven space groups are given below
as projections on x,y,0.

(a) Enter on each diagram a point in a general site x,y,z, and allow the
symmetry to operate on it.

(b) Give the coordinates of the points equivalent to x,y,z.
(c) What is the multiplicity of the general position?
(d) Work out the space group symbol. (The graphical symbols for symmetry

elements are given in Sect. 15.2).
(e) Indicate a special position – if there are any – and give its multiplicity.
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Exercise 10.7 (Continued)
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Exercise 10.7 (Continued)

Exercise 10.8 Make a tracing of the projection of a hexagonal unit cell on x,y,0
(Fig. 10.14) and place at 0,0,z (a) a 62-axis, (b) a 63-axis.

1. Allow the symmetry elements to operate on a point in a general site, and
give the coordinates of the resulting equivalent points.

2. Draw in the other symmetry elements of the space group in the unit cell.
3. Which symmetry elements are contained within 62 and 63?

Exercise 10.9 Consider the space group P4/m 3̄ 2/m (Fig. 10.15 and 10.16). In
a projection on x,y,0, draw in the special positions (a) x,x,z, (b) x,x,x, (c) x,0,0.

Give the coordinates of the equivalent points and the multiplicities and site
symmetry of the positions.
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Exercise 10.10 Draw a representation of the general position for the space
group P 2/m3̄. Note that P 2/m 3̄ is a sub group of P 4/m3̄ 2/m. Start from
Fig. 10.16, noting that 3̄ contains the 1̄ that lies at 0,0,0. From that, the
orientation of the 2 and the m may be seen.

Exercise 10.11 Draw several projections of a tetragonal unit cell on x,y,0.
Show each of the 16 symmetry operations of the space group P42/mnm
[Fig. 10.17(6)], let each of them operate on a point x,y,z, and give the coor-
dinates of the generated points.

Exercise 10.12 In a projection, draw in the symmetry elements of each of the
following space groups: P21/c, Pna21, Pmna, Pbca, and P422.

Exercise 10.13 Criticize the symbol Pabc.

Exercise 10.14 For each of the following space groups: P1̄ (Fig. 7.7d), Pm and
P2/m (Fig. 10.9) and P2/m2/m2/m (Fig. 7.9d), consider an atom A at 0,0,0 and
an atom B at a general position (x,y,z < 1/4).

(a) Give the chemical formula for the resulting structure.
(b) What is the value of Z (the number of “molecules” per unit cell)?
(c) Describe the shape of the resulting molecule.
(d) Determine the point symmetry of the molecule.
(e) Determine the actual point symmetry of that point in the unit cell.





11 Symmetry Groups

In our discussion of point and space groups, the related sub- and supergroups were
mentioned without establishing that all of these are true groups in the mathematical
sense. In order to show this, we will begin by showing how symmetry operations
can be represented by matrices and vectors.

11.1
Representation of Symmetry Operations byMatrices

We will start with the symmetry operations of point groups, leaving such operations
as glide planes, screw axes and translations until later.

The orientation of symmetry elements will first be described in terms of the crys-
tallographic axes a,b,c, or a directional vector [uvw], since these are relatively easy
for a beginner to understand. For example, 4c represents a 4-fold rotation axis par-
allel to c, while m[110] is a mirror plane normal to the [110]-direction. The symbols
used in International Tables for Crystallography [16] will be also given.

Consider a 3-fold rotation axis in the c-direction as an example. Figure 11.1
shows this rotation axis and the lattice vectors �a,�b,�c of the co-ordinate system
in a stereographic projection. This rotation axis in fact comprises two symmetry

kil
ihl

hkl

a

–a – b

a′′

b a′

b′

b′′

Fig. 11.1
Transformation of the
coordinate system �a, �b, �c into
�a′, �b′, �c′ by the operation of
the 3-fold axis 31

c and into
�a′′, �b′′, �c′′ by 32

c , shown in a
stereographic projection.
These operations also convert
(hkl) into (ihl) and (kil)

W. Borchardt-Ott, Crystallography, 3rd ed., DOI 10.1007/978-3-642-16452-1_11,
C© Springer-Verlag Berlin Heidelberg 2011
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operations, the 3-fold axes 31
c and 32

c , taken in the mathematically positive, or
counterclockwise direction. The rotation 32

c implies two successive operations of 31
c .

31
c may be written 3+ 0,0,z and 32

c as 3– 0,0,z, where 3– 0,0,z implies a mathematically
negative or clockwise rotation.

• 31
c (3+ 0,0,z) transforms the vector �a into the vector �a′ = �b, the vector �b into
�b′ = –�a – �b, and the vector �c into �c′=�c. This may be written:

a′ = 0 · �a+ 1 · �b+ 0 · �c (11.1)

b′ = −1 · �a− 1 · �b+ 0 · �c (11.2)

c′ = 0 · �a+ 0 · �b+ 1 · �c (11.3)

These equations may be summarized as follows in matrix-vector terminology:

(�a′, �b′, �c′) = (�a, �b, �c) ·
⎛

⎝
0 1̄ 0
1 1̄ 0
0 0 1

⎞

⎠ = (�a, �b, �c) · (M) (11.4)

The coefficients of the three equations thus become the columns of the matrix (M).
A minus-sign is written above the number to which it refers as in crystallographic

triples.

• 32
c (3– 0,0,z) transforms the vector �a into the vector �a′′ = –�a –�b, the vector �b into
�b′′ = �a, and the vector �c into �c′=�c. This gives a second matrix:

⎛

⎝
1̄ 1 0
1̄ 0 0
0 0 1

⎞

⎠ (11.5)

The two matrices are the inverses of each other, so their multiplication gives the unit
matrix (E).

⎛

⎝
0 1̄ 0
1 1̄ 0
0 0 1

⎞

⎠ ·
⎛

⎝
1̄ 1 0
1̄ 0 0
0 0 1

⎞

⎠ =
⎛

⎝
1̄ 1 0
1̄ 0 0
0 0 1

⎞

⎠ ·
⎛

⎝
0 1̄ 0
1 1̄ 0
0 0 1

⎞

⎠ =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ (11.6)

or
(M) · (M)−1 = (M)−1 · (M) = (E) (11.7)

Let us now make the symmetry operations 31
c and 32

c operate on a point with
coordinates x,y,z.

• 31
c (3+ 0,0,z) transforms the point x,y,z into the point ȳ,x – y,z. If the coordinates

are given as a column vector, the following equation is obtained:

(M) ·
⎛

⎝
x
y
z

⎞

⎠ =
⎛

⎝
0 1̄ 0
1 1̄ 0
0 0 1

⎞

⎠ ·
⎛

⎝
x
y
z

⎞

⎠ =
⎛

⎝
0 · x− 1 · y+ 0 · z
1 · x− 1 · y+ 0 · z
0 · x+ 0 · y+ 1 · z

⎞

⎠ =
⎛

⎝
−y

x− y
z

⎞

⎠→ ȳ, x− y, z

(11.8)
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• 32
c (3– 0,0,z) transforms the point x,y,z into the point y – x,x̄,z, or, in matrix

notation:
⎛

⎝
1̄ 1 0
1̄ 0 0
0 0 1

⎞

⎠ ·
⎛

⎝
x
y
z

⎞

⎠ =
⎛

⎝
−x+ y
−x
z

⎞

⎠→ y− x, x̄, z (11.9)

Note that the column vector is placed to the right of the matrix.
In Fig. 11.2, the three points have been drawn in a hexagonal coordinate system.

They represent the general positions of point group 3.

Fig. 11.2
Operation of the axes 31

c and
32

c on a point x,y,z

Similarly, the indices of the planes which are equivalent to the plane (hkl) by the
3-fold rotations 31

c and 32
c can be calculated using the matrices (M) and (M)–1. It is

important to notice that the matrices (M) and (M)–1 now reverse their roles: (M)–1

describes the counterclockwise rotation of (hkl), while (M) describes its clockwise
rotation.

• 31
c (3+ 0,0,z) :

(hkl) · (M)−1 = (hkl) ·
⎛

⎝
1̄ 1 0
1̄ 0 0
0 0 1

⎞

⎠

= (h · 1̄+ k · 1̄+ 1 · 0, h · l+ k · 0+ l · 0, h · 0+ k · 0+ l · 1)
= (−h− k, h, l)

→ (h̄+ k̄hl) = (ihl)
(11.10)

• 32
c (3– 0,0,z) :

(hkl) · (M−1) = (hkl) ·
⎛

⎝
0 1̄ 0
1 1̄ 0
0 0 1

⎞

⎠

= (h · 0+ k · 1+ l · 0, h · 1̄+ k · 1̄+ l · 0, h · 0+ k · 0+ l · 1)
= (k,− h − k, l)

→ (kh̄+ k̄l) = (kil)
(11.11)

Note that the row vector is placed to the left of the matrix.
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The poles of the three planes, constituting the trigonal pyramidal form, are drawn
in Fig. 11.1, which may be compared with Fig. 9.13.

In Chap. 6 (Principles of Symmetry) it was shown that only 10 distinct symme-
try operations are possible for crystallographic point groups. This number, however,
increases to 64, if the possible orientations of the symmetry elements to the crystal-
lographic axes and the full set of operations implied by rotation and rotoinversion
axes are counted.

These 64 cases are given in Table 11.1. The first column enumerates the oper-
ations, and the second gives their symbols. The direction of a rotation or rotoin-
version axis or that of the normal to a mirror plane is given by the appropriate
crystallographic axis a, b or c, or by a direction symbol [uvw]. The third column
gives this symbol as it is represented in International Tables for Crystallography (I.T.)
[16]. If a symmetry element implies further operations, these are given sequentially.
For a rotation axis, the first is always the one implying a counterclockwise rotation;
for a rotoinversion axis, it is the one including a counterclockwise rotation. In the
I.T. notation, these always have an index of 1 or a +-sign. The index π indicates that
the first operation is applied π times. The last operation in this set is that which is
opposite to the first. For a 4-fold axis parallel to c, these will be: 41

c or 4+ 0,0,z (no.
49), 42

c ≡ 2c or 2 0,0,z (no. 7), and 43
c or 4– 0,0,z (no. 50). The operation of one sym-

metry operation after another is represented by the product of their matrices. The
operation performed first is placed to the right:

41
c · 41

c = 42
c ≡ 2c

⎛

⎝
0 1̄ 0
1 0 0
0 0 1

⎞

⎠ ·
⎛

⎝
0 1̄ 0
1 0 0
0 0 1

⎞

⎠ =

⎛

⎝
1̄ 0 0
0 1̄ 0
0 0 1

⎞

⎠
(11.12)

41
c · 42

c = 43
c

⎛

⎝
0 1̄ 0
1 0 0
0 0 1

⎞

⎠ ·
⎛

⎝
1̄ 0 0
0 1̄ 0
0 0 1

⎞

⎠ =

⎛

⎝
0 1 0
1̄ 0 0
0 0 1

⎞

⎠
(11.13)

41
c · 43

c = 44
c ≡ 1

⎛

⎝
0 1̄ 0
1 0 0
0 0 1

⎞

⎠ ·
⎛

⎝
0 1 0
1̄ 0 0
0 0 1

⎞

⎠ =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠
(11.14)

The fourth column gives the crystal systems in which this operation is possible
(a = triclinic (anorthic), m = monoclinic, o = orthorhombic, t = tetragonal, h =
hexagonal, r= rhombohedral, and c= cubic). The matrix representation (M) of the
element is given in the fifth column. In the sixth column are given the coordinates
into which x,y,z is converted by the given operation. The seventh column contains
the inverse matrices (M)–1. The final column gives the indices of the plane into
which (hkl) is converted by the operation.
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Table 11.1 Matrices and inverse matrices for the point symmetry operations; the coordinates of
the points to which they convert x,y,z; and the Miller indices of the planes to which they convert
(hkl)

Symmetry operation
(M) (M) .

x
y
z

(M) − 1 ( hkl) .  (M) − 1

Nr. I.T.

Cr
ys

ta
l s

ys
te

m
s

1 1 1
a

c

1 0 0
0 1 0
0 0 1

x,y,z hkl

2 1 1
1 0 0
0 1 0
0 0 1

x,y,z

x,y,z

hkl

3

2a 2  x,0,0

o
t
c

1 0 0
0 1 0
0 0 1

hkl

h4
1 1 0
0 1 0
0 0 1

x − y,y,z hh + kl

5

2b 2  0,y,0

m
o
t
c

1 0 0
0 1 0
0 0 1

x,y,z hkl

h6
1 0 0
1 1 0
0 0 1

x,y − x,z = ( M) h + kkl

7 2c 2  0,0,z

m
o
t
h
c

1 0 0
0 1 0
0 0 1

x,y,z hkl

8 2[ 110] 2  x,x,0
t
h
c

0 1 0
1 0 0
0 0 1

y,x,z khl

9 2[ 110] 2  x,x,0
t
r
h
c

0 1 0
1 0 0
0 0 1

y,x,z khl

10 2[ 101] 2  x,0,x c
0 0 1
0 1 0
1 0 0

z,y,x lkh

11 2[ 101] 2  x,0,x r
c

0 0 1
0 1 0
1 0 0

z,y,x lkh
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Table 11.1 (Continued)

(M) (M) .
x
y
z

(M)− 1 (hkl) . (M) − 1

Nr. I.T.

12 2[ 011] 2  0,x,x c
1 0 0
0 0 1
0 1 0

x,z,y hlk

13 2[ 011] 2  0,x,x r
c

1 0 0
0 0 1
0 1 0

x,z,y hlk

14 2[ 210] 2  2x,x,0

h

1 0 0
1 1 0
0 0 1

x,x − h + kkl

15 2[ 120] 2  x,2x,0
1 1 0
0 1 0
0 0 1

y − x,y,z hh + kl

16

ma

m  0,y,z
o
t
c

1 0 0
0 1 0
0 0 1

x,y,z hkl

17 m  x,2x,z h
1 1 0
0 1 0
0 0 1

y − x,y,z

= ( M)

hh + kl

18

mb

m  x,0,z
m
o
t
c

1 0 0
0 1 0
0 0 1

x,y,z hkl

19 m  2x,x,z h
1 0 0
1 1 0
0 0 1

x,x − y,z h + kkl

20 mc m  x,y,0

m
o
t
h
c

1 0 0
0 1 0
0 0 1

x,y,z hkl

21 m[ 110] m  x,x,z
t
h
c

0 1 0
1 0 0
0 0 1

y,x,z khl

22 m[ 110] m  x,x,z
t
r
h
c

0 1 0
1 0 0
0 0 1

y,x,z khl

23 m[ 101] m   x,y,x c
0 0 1
0 1 0
1 0 0

z,y,x lkh

Symmetry operation

Cr
ys

ta
l s

ys
te

m
s

y,z
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Table 11.1 (Continued)

(M) (M) .
x
y
z

(M)− 1 ( hkl) . (M)−1

Nr. I.T.

24 m[101] m   x,y,x r
c

0 0 1
0 1 0
1 0 0

z,y,x lkh

25 m[011] m   x,y,y c
1 0 0
0 0 1
0 1 0

x,z,y

x,y

hlk

26 m[011] m   x,y,y r
c

1 0 0
0 0 1
0 1 0

x,z,y = ( M) hlk

27 m[210] m   0,y,z
1 0 0
1 1 0
0 0 1

− h + kkl

28 m[120] m   x,0,z

h

1 1 0
0 1 0
0 0 1

x − y,y,z hh + kl

29 31
c 3+ 0,0,z

0 1 0
1 1 0
0 0 1

y,x − y,z
1 1 0
1 0 0
0 0 1

h + khl

30 32
c 3− 0,0,z

1 1 0
1 0 0
0 0 1

y − x,x,z
0 1 0
1 1 0
0 0 1

kh + kl

31 31
[111] 3+ x,x,x

r
c

0 0 1
1 0 0
0 1 0

z,x,y
0 1 0
0 0 1
1 0 0

lhk

32 32
[111] 3− x,x,x

0 1 0
0 0 1
1 0 0

y,z,x
0 0 1
1 0 0
0 1 0

klh

33 31
[111] 3+ x,x,x

x,x,x

x,x,x

0 0 1
1 0 0
0 1 0

z,x,y
0 1 0
0 0 1
1 0 0

lhk

34 32
[111] 3−

c

0 1 0
0 0 1
1 0 0

y,z,x
0 0 1
1 0 0
0 1 0

klh

35 31
[111] 3+

0 0 1
1 0 0
0 1 0

z,x,y
0 1 0
0 0 1
1 0 0

lhk

36 32
[111] 3−

0 1 0
0 0 1

10     0
y,z,x

0 0 1
1 0 0
0 1 0

klh

Symmetry operation

Cr
ys

ta
l s

ys
te

m
s

x,z

x,x,x
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Table 11.1 (Continued)

(M) (M) .
x
y
z

(M) − 1 (hkl) . (M)− 1

Nr. I.T.

37 31
[ 111] 3+ x,x,x

x,x,x

c

0 0 1
1 0 0
0 1 0

z,x,y
0 1 0
0 0 1
1 0 0

lhk

38 32
[ 111] 3−

0 1 0
0 0 1
1 0 0

y,z,x
0 0 1
1 0 0
0 1 0

klh

39 31
c 3+ 0,0,z

0,0,z

0,0,z

0,0,z

0 1 0
1 1 0
0 0 1

y,y − x,z
1 1 0
1 0 0
0 0 1

h + khl

(30) 32
c 32

c 3−

(2) 33
c 1 1 h

(29) 34
c 31

c 3+

40 35
c 3−

1 1 0
1 0 0
0 0 1

x − y,x,z
0 1 0
1 1 0
0 0 1

kh + kl

41 31
[ 111] 3+ x,x,x

0 0 1
1 0 0
0 1 0

z,x,y
0 1 0
0 0 1
1 0 0

lhk

(32) 32
[ 111] 32

[ 111] 3− x,x,x

(2) 33
[ 111] 1 1 r

c

(31) 34
[ 111] 31

[ 111] 3+ x,x,x

42 35
[ 111] 3− x,x,x

0 1 0
0 0 1
1 0 0

y,z,x
0 0 1
1 0 0
0 1 0

klh

43 31
[ 111] 3+ x,x,x

x,x,x

x,x,x

x,x,x

0 0 1
1 0 0
0 1 0

z,x,y
0 1 0
0 0 1
1 0 0

lhk

(34) 32
[ 111]

32
[ 111]

3−

(2) 33
[ 111]

1 1 c

(33) 34
[ 111]

31
[ 111]

3+

44 35
[ 111] 3−

0 1 0
0 0 1
1 0 0

y,z,x
0 0 1
1 0 0
0 1 0

klh

Symmetry operation

Cr
ys

ta
l s

ys
te

m
s



11.1 Representation of Symmetry Operations by Matrices 231

Table 11.1 (Continued)

(M) (M) .
x
y
z

(M)− 1 (hkl) . (M)−1

Nr. I.T.

45 31
[111] 3+ x,x,x

x,x,x

x,x,x

x,x,x

0 0 1
1 0 0
0 1 0

z,x,y
0 1 0
0 0 1
1 0 0

lhk

(36) 32
[ 111]

32
[ 111]

3−

(2) 33
[ 111]

1 1

(35) 34
[ 111]

31
[ 111]

3+

46 35
[111] 3−

c

0 1 0
0 0 1
1 0 0

y,z,x
0 0 1
1 0 0
0 1 0

klh

47 31
[111] 3+ x,x,x

x,x,x

x,x,x

x,x,x

0 0 1
1 0 0
0 1 0

z,x,y
0 1 0
0 0 1
1 0 0

lhk

(38) 32
[ 111]

32
[ 111]

3−

(2) 33
[ 111]

1 1

(37) 34
[ 111]

31
[ 111]

3+

48 35
[ 111]

3−
0 1 0
0 0 1
1 0 0

y,z,x
0 0 1
1 0 0
0 1 0

klh

49 41
c 4+ 0,0,z

0,0,z

0,0,z

0 1 0
1 0 0
0 0 1

y,x,z
0 1 0
1 0 0
0 0 1

khl

(7) 42
c 2c 2 t

c

50 43
c 4−

0 1 0
1 0 0
0 0 1

y,x,z
0 1 0
1 0 0
0 0 1

khl

51 41
a 4+ x,0,0

x,0,0

x,0,0

1 0 0
0 0 1
0 1 0

x,z,y
1 0 0
0 0 1
0 1 0

hlk

(3) 42
a 2a 2 c

52 43
a 4−

1 0 0
0 0 1
0 1 0

x,z,y
1 0 0
0 0 1
0 1 0

hlk

Symmetry operation

Cr
ys

ta
l s

ys
te

m
s
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Table 11.1 (Continued)

(M) (M) .
x
y
z

(M)− 1 ( hkl) . (M)− 1

Nr. I.T.

53 41
b 4+ 0,y,0

0,y,0

0,y,0

0 0 1
0 1 0
1 0 0

z,y,x
0 0 1
0 1 0
1 0 0

lkh

(5) 42
b 2b 2 c

54 43
b 4−

0 0 1
0 1 0
1 0 0

z,y,x
0 0 1
0 1 0
1 0 0

lkh

55 41
c 4+ 0,0,z

0,0,z

0,0,z

0 1 0
1 0 0
0 0 1

y,x,z
0 1 0
1 0 0
0 0 1

khl

(7) 42
c 2c 2 t

c

56 43
c 4−

0 1 0
1 0 0
0 0 1

y,x,z
0 1 0
1 0 0
0 0 1

khl

57 41
a 4+ x,0,0

 x,0,0

1 0 0
0 0 1
0 1 0

x,z,y
1 0 0
0 0 1
0 1 0

hlk

(3) 42
a 2a 2  x,0,0

58 43
a 4−

c

1 0 0
0 0 1
0 1 0

x,z,y
1 0 0
0 0 1
0 1 0

hlk

59 41
b 4+ 0,y,0

0 0 1
0 1 0
1 0 0

z,y,x

z,y,x

0 0 1
0 1 0
1 0 0

lkh

(5) 42
b 2b 2    0,y,0

60 43
b 4− 0,y,0

0 0 1
0 1 0
1 0 0

0 0 1
0 1 0
1 0 0

lkh

Symmetry operation

Cr
ys

ta
l s

ys
te

m
s
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Table 11.1 (Continued)

(M) (M) .
x
y
z

(M)− 1 (hkl) . (M)− 1

Nr. I.T.

61 61
c 6+ 0,0,z

0,0,z

0,0,z

0,0,z

0,0,z

0,0,z

0,0,z

0,0,z

0,0,z

1 1 0
1 0 0
0 0 1

x − y,x,z
0 1 0
1 1 0
0 0 1

kh + kl

(29) 62
c 31

c 3+

(7) 63
c 2c 2 h

(30) 64
c 32

c 3−

62 65
c 6−

0 1 0
1 1 0
0 0 1

y,y − x,z
1 1 0
1 0 0
0 0 1

h + khl

63 61
c 6+

1 1 0
1 0 0
0 0 1

y − x,x,z
0 1 0
1 1 0
0 0 1

kh + kl

(29) 62
c 31

c 3+

(20) 63
c mc m x,y,0 h

(30) 64
c 32

c 3−

64 65
c 6

0 1 0
1 1 0
0 0 1

y,x −y,z
1 1 0
1 0 0
0 0 1

h + khl

Symmetry operation

Cr
ys

ta
l s

ys
te

m
s

Now we will consider screw rotations and glide reflections. These operations con-
sist of the coupling of a rotation or a reflection with a translation. The matrix-vector
representation of these operations consists of a matrix (M) giving the rotation or
reflection followed by a vector representing the screw (s) or glide (g) component.
For a pure translation, (M) is the unit matrix (E).

41-screw axis in 0,0,z:

(41)1
c

41
c⎛

⎝
0 1̄ 0
1 0 0
0 0 1

⎞

⎠ ·
⎛

⎝
x
y
z

⎞

⎠+
�s⎛

⎝
0
0
1
4

⎞

⎠ =
⎛

⎝
−y
x

z + 1
4

⎞

⎠→ ȳ,x,z + 1
4 (11.15)

(41)2
c

42
c≡2c⎛

⎝
1̄ 0 0
0 1̄ 0
0 0 1

⎞

⎠ ·
⎛

⎝
x
y
z

⎞

⎠+
2�s⎛

⎝
0
0
1
2

⎞

⎠ =
⎛

⎝
−x
−y

z + 1
2

⎞

⎠→ x̄, ȳ, z + 1
2 (11.16)
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(41)3
c

43
c⎛

⎝
0 1 0
1̄ 0 0
0 0 1

⎞

⎠ ·
⎛

⎝
x
y
z

⎞

⎠+
3�s⎛

⎝
0
0
3
4

⎞

⎠ =
⎛

⎝
y
−x

z + 3
4

⎞

⎠→ y, x̄, z + 3
4 (11.17)

(41)4
c

44
c≡1⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ ·
⎛

⎝
x
y
z

⎞

⎠+
4�s⎛

⎝
0
0
1

⎞

⎠ =
⎛

⎝
x
y

z+ 1

⎞

⎠→ x,y,z+ 1 (11.18)

The fourfold application of this symmetry operation results in a unit translation
parallel to the screw axis.

a-glide plane in x,0,z:

a1

m1
b⎛

⎝
1 0 0
0 1̄ 0
0 0 1

⎞

⎠ ·
⎛

⎝
x
y
z

⎞

⎠+

�g⎛

⎝
1
2
0
0

⎞

⎠ =
⎛

⎝
x + 1

2−y
z

⎞

⎠→ x + 1
2 , ȳ, z (11.19)

a2

m1
b≡1⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ ·
⎛

⎝
x
y
z

⎞

⎠+

2�g⎛

⎝
1
0
0

⎞

⎠ =
⎛

⎝
x+ 1

y
z

⎞

⎠→ x+ 1,y,z (11.20)

n-glide plane in 0,y,z:

n1

m1
a⎛

⎝
1̄ 0 0
0 1 0
0 0 1

⎞

⎠ ·
⎛

⎝
x
y
z

⎞

⎠+

2�g⎛

⎜
⎝

0
1
2
1
2

⎞

⎟
⎠ =

⎛

⎜
⎝

−x
y + 1

2

z + 1
2

⎞

⎟
⎠→ x̄, y + 1

2 , z + 1
2 (11.21)

n2

m2
a≡1⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ ·
⎛

⎝
x
y
z

⎞

⎠+

2�g⎛

⎝
0
1
1

⎞

⎠ =
⎛

⎝
x

y+ 1
z+ 1

⎞

⎠→ x, y+ 1, z+ 1 (11.22)

Applying a glide-operation twice always results in a lattice translation parallel to the
glide plane.

When a symmetry element does not pass through the origin 0,0,0, this situation
requires a further vector, the position vector�l, giving the separation of the symmetry
element from the lattice origin. Usually, �l is combined with the vector �s or �g to give
a composite vector �v.
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2 in 1
2 , 1

4 , z

2c⎛

⎝
1̄ 0 0
0 1̄ 0
0 0 1

⎞

⎠ ·
⎛

⎝
x
y
z

⎞

⎠+

�l⎛

⎝
0
1
2
0

⎞

⎠ =
⎛

⎝
x̄+ 1
ȳ + 1

2
z

⎞

⎠→ 1− x, 1
2 − y,z

a in x, 1
4 , z

mb⎛

⎝
1 0 0
0 1̄ 0
0 0 1

⎞

⎠ ·
⎛

⎝
x
y
z

⎞

⎠+

�g⎛

⎝
1
2
0
0

⎞

⎠+

�l⎛

⎝
0
1
2
0

⎞

⎠ =
⎛

⎝
1 0 0
0 1̄ 0
0 0 1

⎞

⎠ ·
⎛

⎝
x
y
z

⎞

⎠+

�v⎛

⎜
⎝

1
2
1
2

0

⎞

⎟
⎠

=

⎛

⎜
⎝

x + 1
2

ȳ + 1
2

z

⎞

⎟
⎠→ 1

2 + x, 1
2 − y,z

21 in 1
4 , y, 1

4
2b⎛

⎝
1̄ 0 0
0 1 0
0 0 1̄

⎞

⎠ ·
⎛

⎝
x
y
z

⎞

⎠+
�s⎛

⎝
0
1
2
0

⎞

⎠+

�l⎛

⎝
1
2
0
1
2

⎞

⎠ =
⎛

⎝
1̄ 0 0
0 1 0
0 0 1̄

⎞

⎠ ·
⎛

⎝
x
y
z

⎞

⎠+

�v⎛

⎜
⎝

1
2
1
2
1
2

⎞

⎟
⎠

=

⎛

⎜
⎝

x̄ + 1
2

y + 1
2

z̄ + 1
2

⎞

⎟
⎠→ 1

2 − x, 1
2 + y, 1

2 − z

In the following examples, the eight equivalent points of the general position in the
space group P21/b 2/c 21/n are calculated using matrices (see also Fig. 11.3):

Fig. 11.3 Space group P21/b 2/c 21/n showing a set of general positions: (1) x,y,z (2) x̄,ȳ,z̄
(3) 1

2 +x, 1
2 –y,z̄ (4) 1

2 –x, 1
2 +y,z (5) x̄,y, 1

2 –z (6) x,ȳ, 1
2 +z (7) 1

2 –x, 1
2 –y, 1

2 +z (8) 1
2 +x, 1

2 +y, 1
2 –z
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1. 1
1⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ ·
⎛

⎝
x
y
z

⎞

⎠ =
⎛

⎝
x
y
z

⎞

⎠→ x,y,z

2. 1̄in 0,0,0
1̄⎛

⎝
1̄ 0 0
0 1̄ 0
0 0 1̄

⎞

⎠ ·
⎛

⎝
x
y
z

⎞

⎠ =
⎛

⎝
x̄
ȳ
z̄

⎞

⎠→ x̄,ȳ,z̄

3. 21 in x, 1
4 ,0

2a⎛

⎝
1 0 0
0 1̄ 0
0 0 1̄

⎞

⎠ ·
⎛

⎝
x
y
z

⎞

⎠+
�s⎛

⎝
1
2
0
0

⎞

⎠+
l̄⎛

⎝
0
1
2
0

⎞

⎠ =
⎛

⎝
1 0 0
0 1̄ 0
0 0 1̄

⎞

⎠ ·
⎛

⎝
x
y
z

⎞

⎠+
⎛

⎜
⎝

1
2
1
2
0

⎞

⎟
⎠

=
⎛

⎜
⎝

x + 1
2

ȳ + 1
2

z̄

⎞

⎟
⎠→ 1

2 + x, 1
2 − y,z̄

4. b-glide in 1
4 ,y,z

ma⎛

⎝
1̄ 0 0
0 1 0
0 0 1

⎞

⎠ ·
⎛

⎝
x
y
z

⎞

⎠+

�g⎛

⎝
0
1
2
0

⎞

⎠+
l̄⎛

⎝
1
2
0
0

⎞

⎠ =
⎛

⎝
1̄ 0 0
0 1 0
0 0 1

⎞

⎠ ·
⎛

⎝
x
y
z

⎞

⎠+
⎛

⎜
⎝

1
2
1
2
0

⎞

⎟
⎠

=
⎛

⎜
⎝

x̄ + 1
2

y + 1
2

z

⎞

⎟
⎠→ 1

2 − x, 1
2 + y,z

5. 2 in 0,y, 1
4

2b⎛

⎝
1 0 0
0 1 0
0 0 1̄

⎞

⎠ ·
⎛

⎝
x
y
z

⎞

⎠+

�1⎛

⎝
0
0
1
2

⎞

⎠ =
⎛

⎝
x̄
y

z̄ + 1
2

⎞

⎠→ x̄,ȳ, 1
2 − z

6. c-glide in x,0,z
mb⎛

⎝
1 0 0
0 1̄ 0
0 0 1

⎞

⎠ ·
⎛

⎝
x
y
z

⎞

⎠+

�g⎛

⎝
0
0
1
2

⎞

⎠ =
⎛

⎝
x
ȳ

z + 1
2

⎞

⎠→ x,ȳ, 1
2 + z
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7. 21 in 1
4 , 1

4 , z
2c⎛

⎝
1̄ 0 0
0 1 0
0 0 1̄

⎞

⎠ ·
⎛

⎝
x
y
z

⎞

⎠+
�s⎛

⎝
0
0
1
2

⎞

⎠+

1̄⎛

⎜
⎝

1
2
1
2
0

⎞

⎟
⎠ =

⎛

⎝
1̄ 0 0
0 1̄ 0
0 0 1̄

⎞

⎠ ·
⎛

⎝
x
y
z

⎞

⎠+

�v⎛

⎜
⎝

1
2
1
2
1
2

⎞

⎟
⎠

=
⎛

⎜
⎝

x̄ + 1
2

ȳ + 1
2

z + 1
2

⎞

⎟
⎠→ 1

2 − x, 1
2 − y, 1

2 + z

8. n-glide in x,y, 1
4

mc⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ ·
⎛

⎝
x
y
z

⎞

⎠+

�g⎛

⎜
⎝

1
2
1
2
0

⎞

⎟
⎠+

l̄⎛

⎝
0
0
1
2

⎞

⎠ =
⎛

⎝
1 0 0
0 1 0
0 0 1̄

⎞

⎠ ·
⎛

⎝
x
y
z

⎞

⎠+

�v⎛

⎜
⎝

1
2
1
2
1
2

⎞

⎟
⎠

=
⎛

⎜
⎝

x + 1
2

y + 1
2

z̄ + 1
2

⎞

⎟
⎠→ 1

2 + x, 1
2 + y, 1

2 − z

11.2
Properties of a Group

A point or space group, or, in general, any symmetry group, is a combination of
symmetry elements which together constitute a mathematical group. For this to be
the case, four conditions must be met:

D
• If two symmetry operations of a group are performed sequentially, the

result must be some symmetry operation of the group. Thus, the opera-
tion 2[110] followed by the operation 2a of the point group 422 results in
the rotation 43

c , which is also is an operation of 422.

2a · 2[110] = 43
c

⎛

⎝
1 0 0
0 1̄ 0
0 0 1̄

⎞

⎠ ·
⎛

⎝
0 1 0
1 0 0
0 0 1̄

⎞

⎠ =
⎛

⎝
0 1 0
1̄ 0 0
0 0 1

⎞

⎠

• The symmetry operation 1, or the identity, is found in every symme-
try group. It is the basic element of any group, and multiplication of
any symmetry element with it leaves that symmetry element unchanged.
Examples:

2[110] · 1 = 1 · 2[110] = 2[110], 31
c · 1 = 1 · 31

c = 31
c , ma · 1 = 1 ·ma = ma
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• In any symmetry group, the presence of an operation implies the presence
of its inverse. The multiplication of these two elements gives the identity.
Examples:

41
c · 43

c = 43
c · 41

c = 1 (4+ · 4− = 4− · 4+ = 1),
2[110] · 2[110] = 1, ma ·ma = 1, 1̄ · 1̄ = 1.

In the case of a two-fold rotation, a reflection or an inversion, the
operation is its own inverse.

• The multiplication of symmetry operations is always associative:
Examples:

(ma ·mb) ·mc = ma · (mb ·mc)

2c ·mc = ma · 2a = 1̄

(41
c ·m[110]) · 2c = 41

c · (m[110] · 2c)

mb · 2c = 41
c ·m[11̄0]= ma.

! The symmetry operations of a group constitute the elements of that group.
The number of elements is called the order of the group.

Point group 422 has the elements 41
c , 42

c ≡ 2c, 43
c , 2a, 2b, 2[110], 2[11̄0], and 1. Thus,

its order is 8. 2/m, with the elements 2, m, 1̄ and 1, has order 4. The order of a point
group is always the same as the number of faces in its general form (422: tetragonal
trapezohedron, 8 faces, order 8; 2/m: rhombic prism, 4 faces, order 4.)

Some groups are commutative. In them, the order of multiplication of the
elements does not affect the result

Example: 2/m 2/m 2/m:
ma. mb =mb. ma = 2c ; 2a. 2b = 2b. 2a = 2c etc.

D Calling a group G’ a subgroup of another group G implies that the elements of
G’ are a subset of those of G. Similarly, G is then called a supergroup of G’.

Some symmetry groups have a finite number of elements, while others have an
infinite number.

11.2.1
Finite Symmetry Groups

Crystallographic point groups are all of this type. The elements of the group are the
point symmetry operations, i.e. inversions, rotations, rotoinversions and reflections.
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The orders of these groups range from 1 (point group 1) to 48 (4/m3̄2/m). The
others have the following orders:

• 2 (1̄, 2, m)
• 3 (3)
• 4 (4, 4̄, 2/m, 222, mm2)
• 6 (3̄, 6, 6̄, 32, 3m)
• 8 (2/m2/m2/m, 4/m, 422, 4mm, 4̄2m)
• 12 (3̄2/m, 6/m, 622, 6mm, 6̄m2, 23)
• 16 (4/m2/m2/m)
• 24 (6/m2/m2/m, 2/m3̄, 432, 4̄3m)

The sub- and supergroups of the crystallographic point groups are given in Fig. 9.3.

11.2.2
Infinite Symmetry Groups

Space groups are of this type. The elements of the group are point symmetry oper-
ations as above, together with translations, screw rotations and glide reflections. All
space groups allow translations in three linearly independent directions. By suc-
cessive applications of translations, screw rotations or glide reflections, an infinite
number of identical points can be reached. This characteristic distinguishes such
symmetry operations from those of point symmetry.

All of the translations of a space group taken together constitute a subgroup of it,
known as the translational subgroup. The translations taken alone obey the defining
axioms for a group. Furthermore, translations are commutative, meaning that the
order in which they are applied has no effect on the result. Translational subgroups
of space groups are thus Abelian groups. Space groups, with the exception of P1,
and the more complicated point groups are not Abelian groups.

11.3
Derivation of a Few Point Groups

In Chap. 9 (Point Groups), point groups were derived as subgroups of the point
group of highest symmetry in each crystal system, e.g. 2, m, 1̄ and 1 from 2/m. In
Exercises 9.4 and 9.5, the derivation of a point group was carried out geometrically
by combining symmetry elements at specific angles to one another. This may, of
course, also be done by calculation. A few examples will be shown here:

• Exercise 9.4A Combination of two 2-fold axes at 30◦ to one another:

(a) 2[210] · 2a = 61
c⎛

⎝
1 0 0
1 1̄ 0
0 0 1̄

⎞

⎠ ·
⎛

⎝
1 1̄ 0
0 1̄ 0
0 0 1̄

⎞

⎠ =
⎛

⎝
1 1̄ 0
1 0 0
0 0 1

⎞

⎠
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(b) 62
c(≡ 31

c) · 2a = 2[110]

(c) 63
c(≡ 2c) · 2a = 2[120]

(d) 64
c(≡ 32

c) · 2a = 2b

(e) 65
c · 2a = 2[11̄0]

as seen in the stereogram, the point group 622 has been derived.

• Exercise 9.4B Combination of two mirror planes at 45◦ to one another:

(a) ma · m[11̄0] = 41
c

⎛

⎝
1̄ 0 0
0 1 0
0 0 1

⎞

⎠ ·
⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠ =
⎛

⎝
0 1̄ 0
1 0 0
0 0 1

⎞

⎠

(b) 42
c(≡ 2c) ·ma = mb

(c) 41
c ·ma = m[110]

as seen in the stereogram, the point group 4mm has been derived.

• Exercise 9.4C Combination of a 2-fold axis and a mirror plane at 60◦ to one
another:

(a) 2a · mb = 3̄1
c

⎛

⎝
1 1̄ 0
0 1̄ 0
0 0 1̄

⎞

⎠ ·
⎛

⎝
1 0 0
1 1̄ 0
0 0 1

⎞

⎠ =
⎛

⎝
0 1 0
1̄ 1 0
0 0 1̄

⎞

⎠

(b) 3̄2
c(≡ 32

c) · 2a = 2b

(c) 3̄4
c(≡ 31

c) · 2a = 2[110]

(d) 3̄3
c(≡ 1̄) · 2a = ma

(e) 3̄3
c(≡ 1̄) · 2[110] = m[110]

as seen in the stereogram, the point group, 3̄2/m has been derived.

• Exercise 9.4D Combination of two 2-fold axes at 90◦ to one another plus an
inversion center:

(a) 2a · 2b = 2c⎛

⎝
1 0 0
0 1̄ 0
0 0 1̄

⎞

⎠ ·
⎛

⎝
1̄ 0 0
0 1 0
0 0 1̄

⎞

⎠ =
⎛

⎝
1̄ 0 0
0 1̄ 0
0 0 1

⎞

⎠

This produces the point group 222, cf. Fig. 7.9f
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(b) 2a·1̄ =ma
2b·1̄ =mb
2c·1̄ =mc

This now produces the point group 2/m 2/m 2/m, cf. Fig. 7.9e

• Exercise 9.5E Combination of a 2-fold and a 3-fold axis at 54◦44′ to one another:

(a) 2a · 31
[111] = 31

[1̄11̄]⎛

⎝
1 0 0
0 1̄ 0
0 0 1̄

⎞

⎠ ·
⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ =
⎛

⎝
0 0 1
1̄ 0 0
0 1̄ 0

⎞

⎠

(b) 31
[111] · 31

[1̄11̄] = 32
[1̄11̄]

(c) 31
[111] · 31

[11̄1̄] = 32
[1̄1̄1]

(d) 31
[111] · 32

[1̄1̄1] = 2b

(e) 31
[111] · 32

[11̄1̄] = 2c

This combination produces the point group 23, as shown in the stereogram.

• Exercise 9.5H Combination of a 2-fold and a 3-fold axis at 54◦44′ to one another
plus an inversion center:

(a) 2a · 1̄ = ma
2b · 1̄ = mb
2c · 1̄ = mc

(b) 31
[111]

· 1̄ = 3̄1
[111]

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ ·
⎛

⎝
1̄ 0 0
0 1̄ 0
0 0 1̄

⎞

⎠ =
⎛

⎝
0 0 1̄
1̄ 0 0
0 1̄ 0

⎞

⎠ etc.

This combination produces the point group 2/m 3̄, as shown in Fig. 7.13a-f.

11.4
GroupMultiplication Tables

A group multiplication table allows the formation and the characteristics of a finite
point group to be summarized conveniently. In the table, all the products of any two
elements are shown in a square array. Figure 11.4 shows the tables for the five point
groups of order 4, each symmetry element having one row and one column. The
tables in Fig. 11.4 are symmetric about the diagonal from top left to bottom right
(the leading diagonal). This implies that the order of multiplication of the matrices
does not affect the result. These groups are thus all Abelian groups.
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Fig. 11.4a-e Group tables for the point groups of order 4, (a ) 2/m, (b) 222, (c) mm2, (d) 4, (e) 4̄

Figure 11.5 shows the group table for 3m. This table is not symmetrical, so 3m
is not an Abelian group. For the correct interpretation of such a group table, it is
essential to understand in which order the elements are applied to an object. The
rule is that the symmetry operation in the top row is applied first, and then the
operation in the left-most column.

The group tables for 2/m, 222 and mm2 in Fig. 11.4 are built up in the same way.
If the four symmetry operations are simply represented as a, b, c and d, the three
tables will become identical. Finite groups with this property are called isomorphic
groups. Such groups always have the same order. The groups 4 and 4̄ (Fig. 11.4b, e)
are isomorphic with each other, but not with 2/m, 222 and mm2.

Here are some important relationships that can be read directly from the tables
in Fig. 11.4.
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Fig. 11.5
Group table for the point
group 3m

• 2/m (Fig. 11.4a)

2 · 2= 1 m ·m= 1 1̄ · 1̄= 1

2, m and 1̄ are thus their own inverses. Further, symmetry rule I (p. 95) is seen
directly:

2b ·mb =1̄ 2b · 1̄=mb mb · 1̄= 2b

• 222 (Fig. 11.4b):

2a · 2b = 2c 2a · 2c = 2b etc.

• mm2 (Fig. 11.4c): symmetry rule II (p. 95) is here seen directly:

ma ·mb = 2c ma · 2c =mb etc.

• 3m (Fig. 11.5)
ma·mb = 31

c

11.5
Exercises

Exercise 11.1 Write the matrices for the following symmetry operations:

(a) 1̄

(b) 2b

(c) m[210]

(d) 3[111]

(e) 4̄1
b

(f) 61
c
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Exercise 11.2 What are the inverse matrices for 1̄, 2c and m[110] ?

Exercise 11.3 In this book, the monoclinic system is always treated in the sec-
ond setting (2, m||b). Are the matrices in Table 11.1 also valid for the first setting
(2, m||c)?

Exercise 11.4 Multiply the matrices for:

(a) 2a and m[110] (b) 31
c and mc (c) 41

c and 1̄

Which symmetry operations and point groups are formed?

Exercise 11.5 Derive using matrix multiplication the symmetry operations of
symmetry rule I (Fig. 7.14)

Exercise 11.6 Write the symmetry operations for point group 4̄2m. What is
the order of this point group? Use these symmetry operations to derive the faces
equivalent to (hkl). What crystal form do these faces represent? Compare the
indices you have derived with those in Fig. 9.9.

Exercise 11.7 Demonstrate that 3m and 32 are isomorphic groups. Is 32 an
Abelian group?



12 Fundamentals of Crystal Chemistry

Crystal chemistry is concerned with the crystal structure of the elements and of
chemical compounds. It attempts to explain why particular types of crystal struc-
tures arise under specific conditions. It is, however, still only possible to understand
how relatively simple crystal structures arise from the atoms that make them up.

A fundamental concept in crystal structures is the idea of sphere packing. In this
approach, the atoms or ions of which the structure is composed are regarded as
hard spheres which pack with one another. Goldschmidt and Laves summarized
this approach in three principles:

! 1. The Principle of Closest Packing. Atoms in a crystal structure attempt to
arrange themselves in a manner which fills space most efficiently.

2. The Symmetry Principle. Atoms in a crystal structure attempt to achieve
an environment of the highest possible symmetry.

3. The Interaction Principle. Atoms in a crystal structure attempt to achieve
the highest coordination (Sect. 12.1), i.e. the maximum possible number
of nearest neighbors with which they can interact.

Chemical bonding is a very important factor in crystal chemistry, as it is concerned
with the forces holding the atoms together in the structure. The atoms of a structure
are held together in a characteristic order by the chemical bonding. This bonding
arises from interaction of the electron shells of the atoms, and is conventionally
divided into:

(a) metallic bonding
(b) van der Waals bonding
(c) ionic or heteropolar bonding and
(d) covalent or homopolar bonding.

They are illustrated schematically in Fig. 12.1. Actual compounds rarely correspond
exactly to one of these types. In most cases, the bonding is a mixture of two or more
types, which should be regarded only as limiting cases.

W. Borchardt-Ott, Crystallography, 3rd ed., DOI 10.1007/978-3-642-16452-1_12,
C© Springer-Verlag Berlin Heidelberg 2011
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Fig. 12.1a–d Schematic summary of bonding types in crystals. a Metallic bonding. Valence elec-
trons of the metal atoms are delocalised in an “electron cloud”. This negatively charged cloud
encloses the positively charged atom cores and holds them together. b Van der Waals bonding.
This arises from random variations in the charge distributions of the atoms and is very weak. The
atoms and molecules tend toward a closest packing. c Ionic bonding. In an ionic crystal, the pos-
itively and negatively charged ions are held together by electrostatic forces. d Covalent bonding.
This represents the four sp3-orbitals of a carbon atom in the diamond structure

It is beyond the scope of this book to discuss the theory of chemical bonding.
We shall restrict ourselves here, so far as bonding theory is concerned, to a small
number of principles on which further study may be based.

The principles stated above work well in rationalizing the structures of metallic
and ionic materials. They also have some application to molecular crystals, those
held together by van der Waals forces. For covalent structures, the principles of
closest packing and of high coordination are rarely fulfilled. This results from the
fact that covalent bonding is directional in nature.

12.1
Coordination

In crystal chemistry, the immediate neighborhood of each atom and the forces
which bind it to its neighbors play a leading role in the explanation of the overall
geometry of the crystal.

D The number of nearest neighbors of a central atom or ion is called its coor-
dination number, and the polyhedron formed when the nearest neighbors are
connected by lines is called its coordination polyhedron.

Some important coordination polyhedra are given in Table 12.1 along with actual
examples. The coordination number, in square brackets, can be inserted in the
chemical formula as a superscript, and thus add significant crystal-chemical infor-
mation to the formula.

Ideally, coordination polyhedra have a high point symmetry. However, a coordi-
nation polyhedron is nothing like so sharply defined as a crystal form (Sect. 9.2.1).
Even atoms of the same element coordinated to the same central atom are not neces-
sarily equivalent. Strictly speaking, cubic (m3̄m), octahedral (m3̄m) and tetrahedral
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Table 12.1 Important coordination polyhedra

a The limiting value of the radius ration Ra/Rx is that at which spherical coordinating atoms X
just touch one another, and the central atom A fits precisely into the resulting hole.
b cf. Exercise 4.2
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(4̄3m) symmetries can only arise in the cubic system. Coordination polyhedra are
often more or less distorted. The cubic coordination in cubic CsI (Fig. 3.4) and the
octahedral coordination in NaCl (Fig. 12.17) are strictly regular, while the octahedral
coordination in tetragonal rutile (Fig. 10.18) is distorted, cf. Exercise 12.10.

12.2
Metal Structures

A simple picture of metallic bonding is that the valence electrons of the metal atoms
are delocalised in an “electron cloud” (Fig. 12.1a). This negatively charged cloud
encloses the positively charged atom cores (not ions) and shields them from one
another. The bonding forces are not directional; they are equal in all directions.

In a metal, one can consider the atoms as spheres. Each atom attempts to asso-
ciate itself with the maximum number of similar atoms. This can be achieved for 12
nearest neighbors in two different arrangements (coordination polyhedra), shown
in Figs. 12.2a and 12.3a, and also Table 12.1a, b. Starting from these coordination
polyhedra as nuclei, crystal growth will result in the formation of two distinct crystal

Fig. 12.2a–c Cubic closest packing of spheres (Cu-type). a Coordination polyhedron [12] (cuboc-
tahedron) as a perspective representation, using spheres reduced in size, and as a projection of the
spheres on a close-packed layer. b The crystal structure. One of the layers parallel to (111) is shown
together with the layer sequence ABCA. c A unit cell (cubic F-lattice). The spheres are reduced in
size, and their correspondence to the stacked layers is indicated. The unit cell is also sketched in b
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Fig. 12.3a–c Hexagonal closest packing of spheres (Mg-type). a Coordination polyhedron [12]
(disheptahedron) as a perspective representation, using spheres reduced in size, and as a projection
of the spheres on a close-packed layer. b The crystal structure. One of the layers parallel to (0001)
is shown together with the layer sequence ABA. c A unit cell. The spheres are reduced in size, and
their correspondence to the stacked layers is indicated. The unit cell is also sketched in b

structures. These structures can be described as stackings of closest packed layers of
spheres, and they differ in the layer sequence.

Structure I may be described by a cubic unit cell, with a cubic F-lattice, and is
called the Cu-type, while structure II has a hexagonal unit cell, and is called the
Mg-type. The two structures are thus called cubic and hexagonal closest packing
respectively, abbreviated to ccp and hcp. Examples of each structure are given in
Table 12.2. Some metals occur with both structure types, e.g. Ni.

The atoms of the Cu or ccp structure are all related by simple lattice translations,
and are thus identical. In the Mg or hcp structure, atoms in the A-layers are all
identical, as are atoms in the B-layers. The A- and B-atoms are, however, equivalent
but not identical to one another. This is shown by the positions given in Table 12.2.

If the lattice constant is known, the radius of a sphere (the atomic radius) may
be calculated. Figure 12.2b, c shows the diagonal of a (100) face of the cubic unit
cell of the ccp-structure. Its length is equal to four sphere radii (B-2C-A). Thus
R= 1/4 a0

√
2 In the hcp-structure, R= 1/2 a0 (cf. Fig. 12.3b, c). Radii of metal atoms

are given in Table 12.3.
It is possible to fill spaces completely by packing equal cubes, or, indeed, equal

general parallelepipeds. This is not possible with spheres. In both types of closest
sphere packings, there are interstices remaining of specific coordination; these are
usually called “holes”. These may be bounded by four spheres (tetrahedral holes) or
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Table 12.2 Data for the three most important metal structure types, Cu, Mg and W, and for α -Po

Cu ccp Mg hcp W bcc α-Po sc

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – -
Lattice

+
basis

Cubic F Hexagonal P Cubic I Cubic P

0,0,0 0,0,0; 2
3 , 1

3 , 1
2 0,0,0 0,0,0

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – -
Space group

+
F 4/m 3̄ 2/m P 63/m 2/m 2/c I 4/m 3̄ 2/m P 4/m 3̄ 2/m

Positions occupied (a) 0,0,0 (c) 0,0,0; 2
3 , 1

3 , 1
2 (a) 0,0,0 (a) 0,0,0

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – -
Coordination

polyhedron, number
Cuboctahedron Dishepatahedron Cube Octahedron

[12] [8] [6]

Atomic radii 1
4a0
√

2 1
2a0

1
4a0
√

3 1
2a0

Packing efficiency 0.74 0.68 0.52

Further examples
Ag, Au
Ni, Al
Pt, Ir

Pb, Rh

Mg (1.62)
Ni (1.63)
Ti (1.59)
Zr (1.59)
Be (1.56)
Zn (1.86)

Mo, V
Ba, Na
Zr, Fe

–

by six (octahedral holes), (Fig. 12.4) and are examples of tetrahedral and octahedral
coordination (Table 12.1).

D The packing efficiency is defined as the ratio of the sum of the volumes of the
spheres making up a unit cell to the volume of the unit cell.

If the spheres are equal in size, it is given by

Z · 4
3πR3

Vunitcell
.

As we have seen, in the ccp structure, R = 1
4 a0
√

2. Thus a0 = 4R√
2

and

V = a3
0 = 16R3√2. Since Z = 4, the packing efficiency is thus π

6
√

2 = 0.74. The

Fig. 12.4
a Tetrahedral [4] holes. b
Octahedral [6] hole in closest
packed arrays of spheres
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corresponding calculation for the hcp structure gives the same result; both types of
closest packing are equally efficient.

For the hcp structure, the ideal c0
a0

ratio may be calculated, since c0 is the
height of two coordination tetrahedra of edge 2R = a0, sharing a common vertex
(cf. Fig. 12.3c). This gives a value for c0 / a0 of 2/3 ·√6 = 1.63. In Table 12.2, the c0

a0
values for several metals are given; they tend to lie between 1.56 and 1.63. The value
for Zn is considerably larger.

In addition to the two types of closest packing, a further structure adopted by
some metals is the W-type, with a cubic I-lattice, usually simply called body-centered
cubic, and abbreviated bcc (Fig. 12.5). In this structure, the body-diagonal of the unit
cell consists of four sphere radii, i.e. R= 1/4 a0

√
3.

The packing efficiency of this structure is π
8
√

3 = 0.68. The coordination
number is [8], and the coordination polyhedron is a cube.

An arrangement of metal atoms in a cubic P-lattice occurs only for α-polonium
(Fig. 2.1, Table 12.2). It has a packing efficiency of 0.52, a coordination number of
[6] and an octahedron as its coordination polyhedron.

Considering the above data for the hcp and ccp structures, the Goldschmidt and
Laves principles are very well fulfilled:

• The packing efficiency is 0.74, the highest possible for the packing of equal
spheres.

• F4/m3̄2/m is one of the highest symmetry space groups of the cubic system, and
P63/m 2/m 2/c is one of the highest symmetry space groups of the hexagonal
system.

• [12] is the highest possible coordination number for spheres of equal size.

The W-type or bcc structure has a packing efficiency of only 0.68 and its coor-
dination number, [8], is smaller than that of the closest packed structures, but its
symmetry, I4/m3̄2/m is also high.

The α-Po structure also has a high symmetry (P4/m3̄2/m), but its packing effi-
ciency and coordination of 0.52 and [6] respectively are very small. This is certainly
the reason for α-Po being the sole example of this structure.

Metals attempt to achieve a high symmetry and a high packing efficiency. The
great majority of metals crystallize in one of the first three given structure types.

Fig. 12.5a,b
Crystal structure of tungsten.
a With atomic radii shown to
scale. b Showing only the
centers of gravity of the atoms
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Metals have many characteristic properties which are related to their structure
and bonding:

(a) Electrical and Thermal Conductivity: Metals are good conductors of both heat
and electricity. These properties arise from the fact that the electron clouds
between the atom cores can move freely.

(b) Plastic Deformation: Plastic deformation in a metal is a shearing parallel to clos-
est packed layers. This property is most prominent for metals with cubic closest
packing in which four equivalent (111)-planes can undergo shear efficiently.
These metals are generally soft, malleable and ductile. Gold, for example, can
be beaten to a thin foil that weakly transmits green light. Crystals with hexag-
onal closest packing of the atoms are less malleable, since they have only one
shear plane, parallel to (0001). Body-centered cubic metals are yet more brittle.

12.3
Structures of Noble Gases andMolecules

In noble gas and molecular structures, the atoms or molecules are held together by
van der Waals forces. These forces are very weak. This is apparent from the very low
melting points of such crystals, e.g. neon: −247.7◦C, ethylene: −170◦C, benzene:
5.5◦C and phenyl salicylate 43◦C.

Noble gas atoms can also pack together as spheres, having a noble gas electron
configuration. The bonding forces, like those in metals are non-directional, and the
same sphere packings occur:

• cubic closest packing (cf. Fig. 12.2): Ne, Ar, Kr, Xe, Rn.
• hexagonal closest packing (cf. Fig. 12.3): He.

Molecular structures are characterized by the fact that the energy holding the
atoms in the molecules together (covalent bonding) is large, while that holding one
molecule to another is very weak. Most molecular compounds are organic, inor-
ganic examples include sulfur (cf. the S8 molecule in Table 9.12.3) and C60, see
below.

Three molecular structures were introduced in Figs. 10.19, 10.20 and 10.21
(hexamethylenetetramine, ethylene and benzene). As was made clear in Chap. 10,
there is no simple relationship between crystal symmetry and molecular symmetry.
Although molecules are not spherical in shape, they do attempt to pack as closely
as possible in crystals. The hexamethylenetetramine structure (Fig. 10.1), for exam-
ple, has a packing efficiency of 0.72. In the crystal structure of CO2, the C-atoms
occupy the positions of a cubic closest packing, the linear molecules being parallel
to < 111 >.

Since the forces holding the molecules together are weak, it follows that the lattice
energies of organic compounds are, in general, low. Nonetheless, the great majority
of organic compounds can be crystallised. Even “giant” molecules with very large
unit cell dimensions have been crystallised, for example:
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Fig. 12.6a,b
The C60-molecule forms an
almost spherical cage with 20
six-membered rings and 12
five-membered rings (a)
([41]). The
non-crystallographic point
group 2/m3 5(Ih) of the
molecule (b) ([14])

1. vitamin B12: C63H88N14O14PCo, P212121, a0 = 25.33 Å, b0 = 22.32 Å,
c0 = 15.92 Å, Z= 4

2. pepsin: P6122, a0 = 67 Å, c0 = 154 Å, Z= 12, M ≈ 40000

Fullerenes are molecules containing only carbon, the main one of which has the
molecular formula C60. In this molecule, the atoms form an almost spherical cage,
made up of 20 six-membered rings and 12 five-membered rings. The structure
is that of a soccer ball (Fig. 12.6a). The molecule has the non-crystallographic
symmetry 2/m3 5 (Ih) (Fig. 12.6b), and for this reason, all atoms are equivalent.

C60 molecules have been crystallised with a ccp structure.

12.4
Ionic Structures

Ionic crystals are built from positively and negatively charged ions, and the bonding
energy is Coulombic forces, which are non-directional and equal in all directions.
The strength of a bond is related to the charge on the ions, e, and the distance, d,
between them:
Coulomb’s Law: K= e1·e2

d2

Each cation seeks to maximize the number of neighboring anions, while each anion
equally seeks to maximize its neighborhood of cations (Fig. 12.1c). The formation
of ionic structures is thus another packing problem, but now the spheres are ions
of opposite charge which generally are also different in size. The relative sizes of the
radius of the cation, RA, and that of the anion, Rx, the radius ratio RA/Rx, can sug-
gest the appropriate coordination polyhedron and thus the crystal structure (Sects.
12.4.2, 12.4.3 and 12.4.4).

12.4.1
Ionic Radii

Figure 12.7 gives ionic radii as a function of atomic number.
The size of an ion, considering an ion as a sphere, depends on the charge on the

nucleus and on the number of electrons.
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• Within a column of the periodic table, the ionic radius generally rises with the
increasing nuclear charge.

Li+ = 0.70 Å F– = 1.33 Å
Na+ = 0.98 Å Cl– = 1.81 Å
K+ = 1.33 Å Br– = 1.96 Å
Rb+ = 1.52 Å I– = 2.20 Å
Cs+ = 1.70 Å

• For isoelectronic ions, an increase in the nuclear charge results in a lowering of
the ionic radius.

• For a particular element, the ionic radius falls as the positive charge rises: cf. S(16)
or Mn(25) in Table 12.3.

Table 12.3 Nuclear charge and ionic radius

Na+ Mg2+ Al3+ Si4+ P5+ S6+ Cl7+

0.98 Å 0.65 Å 0.57 Å 0.39 Å 0.34 Å 0.29 Å 0.26 Å

12.4.2
Octahedral Coordination [6]

The octahedron as a coordination polyhedron is illustrated in Table 12.1e. The lim-
iting value for the radius ratio RA/RX for this coordination may be determined by
considering an octahedron composed of spherical anions which touch one another,
and placing a cation precisely in the hole in its center. Figure 12.8 shows a sec-
tion through such an octahedron. It can be seen that RA + RX = RX

√
2, or

RA/RX =
√

2− 1 = 0.41. Octahedral coordination is only stable if RA/RX is greater
than or equal to 0.41 (Fig. 12.9a, b). A section through an unstable octahedron is
shown in Fig. 12.9c.

Octahedral coordination occurs in the Na[6]Cl (Figs. 12.10 and 12.18) and rutile
Ti[6]O2 (Fig. 10.18) structure types. The NaCl structure type can be considered
as a cubic closest packing of anions with cations in the octahedral holes. For
LiCl (RA/RX = 0.43), the ideal radius ratio for octahedral coordination is almost
achieved. By contrast, NaCl itself has a radius ratio of 0.54 (Fig. 12.9a).

The spinel structure Mg[4] Al2[6] O4 is based on a cubic closest packed array
of oxide ions. The Mg2+ ions occupy tetrahedral holes and the Al3+ ions octahe-
dral holes. Let us consider how many of the octahedral and tetrahedral holes are
occupied.

Fig. 12.8
Cross-section through a
coordination octahedron
([6])
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Fig. 12.9a–c Section through a coordination octahedron, with the corresponding radius ratio,
RA/RX. The arrangements in (a) and (b) are stable; that in (b) shows the limiting case with RA/RX
= 0.41, and that in (c) is unstable

Fig. 12.10
Na[6]Cl structure, Fm3̄m
Lattice: cubic F Basis: Na+ at
0,0,0; Cl– at 1/2,0,0

Considering the NaCl structure as a cubic closest packing of Cl– ions (Fig. 12.9),
it will be noted that all octahedral holes are occupied by Na+ ions. In NaCl, the ratio
Cl–: Na+is 1:1, thus each sphere in a ccp array (Cl–) corresponds to an octahedral
hole (Na+). Figure 12.11 shows the “antifluorite” structure. The sulphide ions are in
a ccp array (Fig. 12.11a), and the Li+ ions occupy all tetrahedral holes. In Li2S, the
ratio Li+: S2– = 2:1, so each sphere in a ccp array (S2–) corresponds to two tetra-
hedral holes (Li+). The relation 2[4], 1[6] per sphere applies equally to both closest
packings.

Returning now to the spinel structure, Mg[4] Al2[6] O4, we can see that 1/8 of the
tetrahedral holes are occupied by Mg2+ and 1/2 of the octahedral holes by Al3+.

In the Ni[6]As (niccolite) structure (P63/mmc), the As atoms are arranged as a
hexagonal closest packing and the Ni atoms occupy all of the octahedral holes (Ni:

Fig. 12.11a, b The fluorite or Ca[8]F2 structure, and the “antifluorite” structure (e.g. Li2S), space
group Fm3̄m. Lattice: cubic F. Basis: Ca2+ or S2− at 0,0,0; F− or Li+ at 1/4,1/4,1/4 and 3/4,1/4,1/4. (a)
Fluorite structure with F− at 0,0,0 to emphasize cubic coordination. (b)
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As = 1:1, Fig. 12.19). The O2–-ions of the corundum, Al2[6]O3 similarly form a
hexagonal closest packing. The Al3+ ions are in octahedral holes. From the above
relationship, 2/3 of the octahedral holes are occupied. In corundum, every third
octahedral hole is vacant, but in the ideal structure, all holes are equivalent. This
results in a lowering of the space group symmetry to R3̄c. Thus, corundum is trig-
onal, while in NiAs, the symmetry of the hexagonal closest packing (P63/mmc) is
retained.

The O2–ions in forsterite, Mg2
[6] Si[4] O4, also are arranged as a hexagonal closest

packing. The Si4+ ions occupy 1/8 of the tetrahedral holes, and the Mg2+ ions half
of the octahedral holes. The symmetry is lowered to Pnma.

The atoms or ions in tetrahedral or octahedral holes are usually not statistically
disordered. In most cases, they are ordered in the structure.

12.4.3
Cubic Coordination [8]

As the radius ratio increases, there should be a range in which the trigonal prism,
with limiting RA/RX = 0.53, is stable (cf. Table 12.1d). In fact, for ionic structures,
the stable structure becomes cubic [8]-coordination, cf. Table 12.1c. Making use of
Fig. 12.12, which shows a section through a cube parallel to (110) (cf. Fig. 3.4),
the limiting value for RA/RX for cubic coordination can be calculated: RA + RX =
Rx ·
√

3, so RA/RX =
√

3− 1 = 0.73.
This implies that octahedral coordination is stable for the range 0.41 < RA/RX

< 0.73, while cubic coordination is preferred for RA/RX > 0.73.
Cubic coordination is found in structures of the Cs[8]Cl-type, and for the fluorite

or Ca[8]F2-type (Fig. 12.11). Cs[8]I (Fig. 4.4) has the Cs[8]Cl structure with an almost
ideal radius ratio of 0.75.

In Fig. 12.11b the CaF2 structure has been drawn with an F−-ion at 0, 0, 0. This
makes the cubic coordination of the Ca2+ more evident. Ca2+ ions occupy every
second cubic hole. The Cl– ions have the same arrangement in the CsCl structure;
in that case, every cubic hole is occupied by Cs+. The fluorite structure is found for
SrF2, BaF2, SrCl2, UO2 etc., and also for a number of alkali metal sulphides, e.g.
Li2S, Na2S, K2S etc. As in indicated by the chemical formulae, in these sulphides,
the positions of the cations and the anions must be reversed, i.e. S2– ions occupy the
Ca2+ positions and the alkali metal cations occupy the F– positions. This structure is
called the “antifluorite” structure. In it, the S2– ions form a ccp array, and the cations
occupy all of the tetrahedral holes (Fig. 12.11a).

Fig. 12.12
Section, parallel to (110),
through cubic coordination
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In Table 12.4, a number of AX and AX2 compounds are listed, arranged accord-
ing to structure type. The radius ratio values are also given. The agreement between
theory and experiment is reasonable, considering that the use of radius ratios makes
the assumption that ions are hard spheres.

12.4.4
Tetrahedral Coordination [4]

Table 12.1g shows the tetrahedron as a coordination polyhedron. A suitable radius
ratio can also be calculated for tetrahedral [4]-coordination. In Fig. 12.13a, a coor-
dination tetrahedron is shown inscribed in a cube. Figure 12.13b shows a section
through the cube and tetrahedron parallel to (110), with the radii of ions drawn to
scale. Since RA + RX is half the body diagonal of the cube ( 1

2
√

3) and RX is half of

the face diagonal ( 1
2
√

2), (RA+RX)/RX =
√

3/
√

2, and RA/RX =
√

3
2 − 1 = 0.225.

This implies that tetrahedral coordination will have a range of stability for 0.225
< RA/RX < 0.41. Important examples of this coordination are the sphalerite or zinc
blende (Zn[4]S) structure (Fig. 12.14), the wurtzite (Zn[4]S) structure (Fig. 12.15)
and all modifications of SiO2 except stishovite. Figures 12.16 and 12.25 show the
structures of different modifications of Si[4]O2. The SiO4 tetrahedra build a frame-
work structure through the sharing of vertices. The radius ratio for SiO2 is 0.29.

Fig. 12.13a,b
Coordination tetrahedron
A[4]X4, inscribed in a cube
(a); (110)-section through a
coordination tetrahedron
derived from sphere packing
(b)

Fig. 12.14 Fig. 12.15

Fig. 12.14 Zn[4]S-structure (sphalerite or zinc blende). Space group F4̄3m. Lattice: cubic F. Basis:
S at 0,0,0; Zn at 1

4 , 1
4 , 1

4

Fig. 12.15 Zn[4]S-structure (wurtzite). Space group P63mc. Lattice: hexagonal P. Basis: S at 0,0,0;
2
3 , 1

3 , 1
2 ; Zn at 0,0, 1

2 +z; 2
3 , 1

3 ,z (z≈ 1
8 )
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Fig. 12.16a,b Linking of pairs of tetrahedra (a) and octahedra (b) through a vertex, an edge and
a face. The numbers give the relative distances apart of the two coordinated cations, after Pauling
[34]

The bonding in both Zn[4]S structures is, in fact, largely covalent in nature. If,
however, the geometry alone is considered, the S-atoms in the sphalerite structure
occupy the positions of a cubic closest packing, and in the wurtzite structure those
of a hexagonal closest packing. In both structures, the Zn-atoms occupy half of the
tetrahedral holes.

How, then, do the basic principles for the formation of ionic structures work out
in practice?

• In general, ionic structures have space groups of high symmetry, e.g. CsCl:
P4/m3̄2/m; NaCl and CaF2: F4/m3̄2/m. Structures based on the closest pack-
ing of anions retain the space groups of those arrangements when the interstices
of a particular type are completely filled, e.g. Na[6]Cl: F4/m3̄2/m (Fig. 12.10).
When the interstices are only partly filled, the symmetry may be lowered, e.g.
Al2[6]O3: R3c.

• The packing efficiency of ionic structures is usually high: for the ideal CsCl type,
with RA/RX = 0.73, it is 0.73; for the NaCl type with RA/RX = 0.41, it is 0.79.
As the radius ratio increases for a particular structure type, the packing efficiency
decreases. For the structure of the NaCl type, for example, with RA/RX = 0.54
(cf. Fig. 12.9a) it is 0.66.

• In ionic structures, the commonly occurring coordination numbers, [8], [6], and
[4], are dependent on radius ratio and are relatively small. A better correlation
is obtained if only the coordinations of the anions are considered, e.g. NaCl and
Al2O3: Coordination number [12].

Finally, the linking of coordination polyhedra in ionic compounds should be con-
sidered. Linking by shared vertices is favorable. The sharing of edges, and in
particular the sharing of faces lowers the stability of a crystal structure. This effect
is greatest when a cation has a high charge or a low coordination number: Pauling’s
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third rule. In Fig 12.16, the linking of pairs of tetrahedra and octahedra through
a vertex, an edge and a face are shown. Taking the distance between cations in
the vertex-sharing polyhedra to be 1, the values in Fig. 12.16 show the decrease
in cation–cation distance in the edge- and face-sharing cases. Note that it is more
severe for the linked tetrahedra (0.55, 0.38) than for the linked octahedra (0.71,
0.58). The closer the cations come to one another, the greater is the Coulombic
repulsion, and the lower the stability of the structure. The effect is greater when
the cations have higher charge.

The SiO4−
4 tetrahedra of numerous silicate structures, and of SiO2 structures,

share vertices (cf. the Si[4]O2 structures in Figs. 12.17 and 12.25). There are a few
exceptions; stishovite, Si[6]O2, for example, has the rutile structure. In the fluorite
structure (Fig. 12.11b), the coordination cubes share edges.

In the NaCl and NiAs structures, the cations have octahedral coordination. This
coordination is indicated on the structures, in Figs. 12.18 and 12.19. In NaCl, the
octahedra share edges, in NiAs, they share faces.

Comparison in this respect of the Na[6]Cl and Cs[8]Cl structures favors the NaCl
structure, since the Cs+ ions have a cubic coordination in which all cube faces are
shared.

The coordination octahedron of the rutile structure (Fig. 10.18) shares two edges.
This becomes clear when the unit cells above and below that shown are considered.

Fig. 12.17
Structure of high cristobalite,
Si[4]O2, Fd3̄m

Fig. 12.18
The NaCl structure, showing
the edge-sharing
coordination octahedra.
Every edge is shared by two
octahedra
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Fig. 12.19a,b Ni[6]As structure, P63/mmc. Lattice: hexagonal P. Basis: As 0,0,0; 2
3 , 1

3 , 1
2 Ni 1

3 , 2
3 , 1

4 ;
1
3 , 2

3 , 3
4 . a Perspective drawing. b As projection on (0001). The As-octahedra are face-sharing

Two other forms of TiO2, brookite and anatase, have coordination octahedra which
share three and four edges respectively. The rutile structure is thus the most stable
form of TiO2, and, unlike brookite and anatase, its structure is adopted by many
compounds.

12.5
Covalent Structures

Covalent or homopolar bonding will be illustrated by the diamond structure, which
consists entirely of carbon atoms. The outer shell of a carbon atom in free space
is occupied by 2s22p2-electrons. We may consider one electron promoted to give
2s12p3 and the resulting set mixed to form a set of four sp3 orbitals, pointing to the
corners of a tetrahedron (Fig. 12.1g). Each C-atom can form bonds with a maximum
of four other C-atoms. This results in the formation of a crystal structure, based on
tetrahedra (Fig. 12.20), which has the same overall ordering of atoms as the spha-
lerite type in Fig. 12.14. Each C-atom is surrounded by a tetrahedron of four other
C-atoms.

In this case, the picture of bonding as sphere-packing is inapplicable as the main
forces are due to the directional bonding of overlapping atomic orbitals. The pack-
ing efficiency of the C-atoms in diamond is not high. The bonding in diamond is
exceptionally strong, resulting in its great hardness.

Fig. 12.20
Diamond structure, Fd3̄m
Lattice: Cubic F. Basis: C at
0,0,0 and 1

4 , 1
4 , 1

4
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12.6
Isotypes, Solid Solutions and Isomorphism

D Crystals which have the same crystal structure are said to belong to a structure
type or to be isotypes.

Isotypes are generally characterized by having the same space group, analogous
chemical formulae, and the same coordination polyhedra occupying the same sites.
Neither the absolute size of the atoms nor the type of chemical bonding is impor-
tant; ionic NaCl and metallic PbS crystals are isotypes, as are metallic Cu and van
der Waals Ar crystals.

The relationship between isotypic structures becomes closer if atoms in one
structure can replace those in the other. The following experiment will illustrate
this. Two single crystals of the isotypic structures Au and Ag are pressed together as
the temperature is raised, but kept below the melting point of either crystal. By dif-
fusion, silver atoms pass into the gold crystal and occupy the places vacated by gold
atoms, while gold atoms similarly diffuse into the silver crystal. This diffusion can
proceed to such an extent that eventually, in some parts of the mass, an atomic ratio
Au: Ag of 1:1 is reached. The single crystal nature of the starting materials is appar-
ently lost. In some regions, arrangements of atoms like that in Fig. 12.21 will occur.
Figure 12.21a shows the initial situation, with separate crystals of Ag and Au, while
Fig. 12.21b gives the situation after the diffusion process. The diffusion process has
distributed the Au and Ag atoms statistically over the sites of the crystal structure.

Fig. 12.21
a Single crystals of Ag and Au
pressed against one another.
b The resultant solid solution
Ag, Au resulting from
diffusion of one metal into
the other. Only a single layer
at x,y,0 is shown
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D Crystals in which one or more positions are occupied by a statistical distribution
of two or more different atom types are called mixed crystals or solid solutions.

The reciprocal exchange of atoms in crystals is referred to as diadochy or
replacement.

The chemical formula is also an indication that a crystal structure is actually a
solid solution. Interchangeable atoms are written together in a chemical formula,
separated by a comma. The solid solution described above would be written as
Ag, Au. K(Cl, Br) describes a solid solution in which Cl– and Br– replace one
another. In olivine, (Mg, Fe)2SiO4, the oxide ions form an hcp array. The Mg2+

and Fe2+ ions are statistically distributed over specific octahedral holes.
Solid solutions form most commonly when the replaceable atoms or groups of

atoms are most similar in chemical properties and size. A rule of thumb for solid
solution formation is that the radii of the interchangeable atoms should differ by
no more than 15%. Silver and gold are miscible in all proportions (RAg = 1.44 Å,
RAg = 1.44 Å, difference 
 ~ 0.0%). Ag, Au solid solutions are generally formed by
slow cooling of a mixture of melts of the two components.

Copper and gold are only miscible in all proportions at high temperatures
(RCu = 1.28 Å, 
 ~ 11%). During slow cooling the (Cu, Au) solid solution is
converted to ordered structures, called superstructures. The superstructures with
composition Cu3Au and CuAu are given in Fig. 12.22. Note that CuAu is tetragonal,
and no longer cubic.

Gold and nickel (
 ~ 14%) are also miscible at high temperature. At lower
temperature, the solution separates into Ni-rich and Au-rich solid solutions. The
separation can be essentially complete, so that only pure Ni and Au domains remain.

Solid solutions in which one atom directly replaces another are called substitu-
tional solid solutions.

Plagioclases are solid solutions whose limiting compositions are NaAlSi3O8
(albite) and CaAl2Si2O8 (anorthite). Here, the formation of a solid solution occurs
through the simultaneous substitution of Ca for Na and Al for Si, or vice versa.
In order to keep the charges balanced, the general formula for a plagioclase is:
(Na1–x Cax) (Al1+xSi3–x) O8, where 0 < x < 1. (0: albite; 1: anorthite).

When crystals of the same structure type (isotypic crystals) form solid solu-
tions with one another, the structures are said to be isomorphous. As the following
examples will show, however, solid solution formation is no criterion for isotypy.

Fig. 12.22
a The CuAu structure. b The
Cu3Au structure as
superstructures of the Cu, Au
solid solution
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Zn[4]S (sphalerite-type, Fig. 12.14) and FeS (Ni[6]As-type, Fig. 12.19) are clearly
not isotypic. In sphalerite, however, a (Zn, Fe) substitution up to about 20%
is possible. Fe2+ and Zn2+ are bivalent ions with almost equal radii of 0.74 Å.
A substitution (Fe, Zn) in FeS does not occur. The occurrence of substitution is
thus not only dependent on the size of the atoms but also on the properties of the
crystal structures.

Ag[6]Br (NaCl-type) and Ag[4]I (sphalerite-type) show limited solid solution for-
mation. In AgBr, a (Br/I) substitution of up to 70% I− is possible, while in AgI,
substitution of Br– occurs only very slightly.

Li[6]Cl (NaCl-type) and MgCl2 (CdCl2-type, a layer structure) have not only dif-
ferent crystal structures, but also different chemical formulae. In both cases, the Cl–
ions form ccp arrays, and Li+ and Mg2+ occupy octahedral holes in these arrays.
All octahedral holes are occupied in LiCl, while in MgCl2, only every second hole
is occupied. When solid solutions are formed, a Mg2+ ion occupies one Li+ site in
LiCl, and causes another Li+ site to be vacant. Similarly, when a Li+ ion occupies a
Mg2+ site, another Li+ ion will occupy one of the empty octahedral holes in MgCl2.

12.7
Polymorphism

Under different conditions, many solid substances can produce different crys-
tal structures of the same chemical constitution. This phenomenon is known as
polymorphism.

Nickel crystallises in both the Cu[12]-type (ccp) and the Mg[12]-type (hcp), zir-
conium in both the Mg[12]-type (hcp) and the W[8]-type (bcc), and Zn[4]S in both
the sphalerite and wurtzite types. CaCO3 can give crystals of both the calcite-type
(Ca[6]CO3) and the aragonite-type (Ca[9]CO3). These CaCO3 structures naturally
produce different morphologies (cf. Table 9.11.8 and 20).

The interconversion of polymorphs, also called structure transformations, can
proceed in a variety of ways. Buerger [7] distinguished the following types of
transformation:

12.7.1
Transformations of First Coordination

The transformation alters the coordination numbers, and thus the arrangement of
nearest neighbors. The new structure thus has new coordination numbers.

12.7.1.1
Dilatational Transformations

Cs[8]Cl is converted, above 445◦C, to the Na[6]Cl type. The CsCl structure
(Fig. 12.23a) is converted to the NaCl structure by a dilatation along a body diagonal
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Fig. 12.23a,b Dilatational transformation in the first coordination. The Cs[8] Cl structure (a) is
converted by means of a dilitation along the body diagonal of the cube into the Na[6]Cl structure.
(b) (After [5])

of the cube (Fig. 12.23b). From the cubic arrangement of the Cl– ions (a cube is a
special rhombohedron with a 90◦ angle) arises a rhombohedral arrangement with a
60◦ angle. A rhombohedral P-cell with α= 60◦ is a cubic F-lattice (cf. Sect. 7.4). The
movement of the Cl– ions causes the Cs+ ions to lose two neighbors, and the cubic
coordination is transformed to octahedral. Dilatational transformations are rapid.

12.7.1.2
Reconstructive Transformations

Ca[9]CO3 (aragonite) is converted about 400◦C to Ca[6]CO3 (calcite). The coor-
dination number falls from [9] to [6]. The bonds between Ca2+ and CO3

2− are
broken and reformed. Another example of this type of transformation is the con-
version of Zr from the Mg[12]-type (hcp) to the W[8]-type (bcc). Reconstructive
transformations are very slow.

In Table 12.5, examples are given of compounds crystallizing in the calcite and
aragonite structure types, with the radii of the cations. RCa

2+ = 0.99 Å is the limiting
radius for the two types. Smaller cations fit well into the [6]-holes of the calcite

Table 12.5 The occurrence of the calcite and aragonite structures as a function of cation radius

Structure type Formula Cation radius (Å) Coordination number

Calcite MgCO3
FeCO3
ZnCO3
MnCO3
CdCO3
CaCO3

0.66
0.74
0.74
0.80
0.97
0.99

[6]

Aragonite CaCO3
SrCO3
PbCO3
BaCO3

0.99
1.12
1.20
1.34

[9]
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structure, while larger ones fit better into the [9]-holes of the aragonite structure.
Ca2+ ions can form both structures. Raising the temperature favors the conversion
of Ca[9]CO3 (aragonite) to Ca[6]CO3 (calcite), while raising the pressure converts
calcite to aragonite. These observations may be summarized by the rules:

! higher temperatures favor lower coordination numbers; higher pressures favor
higher coordination numbers

12.7.2
Transformations in Secondary Coordination

In these cases, the arrangement of nearest neighbors, i.e. the coordination, is
unchanged. The arrangement of next-nearest neighbors is changed. Figure 12.24
shows such a change diagrammatically. The three structures are all made up of
planar AB4 “polyhedra” which are interconnected in different ways.

12.7.2.1
Displacive Transformations

These involve a direct conversion of (a) into (b) (Fig. 12.24). The polyhedra undergo
rotation only, and no bonds are broken. An angle A-B-A which is less than 180◦ in
(a) becomes equal to 180◦ in (b). The density falls and the symmetry rises.

Low and high-quartz structures, Si[4]O2 are three-dimensional networks of SiO4
tetrahedra, which share vertices with one another. In right-handed low-quartz
(P322) (cf. Table 9.11.18), these tetrahedra form a helix about a 32-screw axis, paral-
lel to the c-axis. In right-handed high-quartz (P6222), this becomes a 62-screw axis.
Figure 12.24 gives a projection of both structures on to (0001). At 573◦C, a displacive
transformation between low- and high-quartz occurs. The two structures are very
similar; only a small rotation of one tetrahedron relative to another has occurred.
The conversion of low- to high-quartz lowers the density from 2.65 to 2.53 g cm–3

(600◦C).

12.7.2.2
Reconstructive Transformations

Consider the conversion of (b) to (c) in Fig. 12.24. For this to occur, the bonds
in b must be broken, so that the 4-membered rings of (b) may be rebuilt into the
6-membered rings of (c).

When high-quartz is heated above 870◦C, it undergoes a reconstructive transfor-
mation to high-tridymite (P63/mmc, Fig. 12.25c). The tridymite structure consists
of 6-membered rings of SiO4 tetrahedra, which are packed above one another,
normal to the c-axis.
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Fig. 12.24a–c
Transformations in the
secondary coordination
sphere for structures based on
square AB4 coordinations.
a↔ b is displacive, b↔ c is
reconstructive. (After [5])

The transformation between sphalerite and wurtzite is also reconstructive.
Displacive transformations require little energy and are relatively rapid; recon-

structive ones require more energy and are very slow.

12.7.3
Order-Disorder Transformations

Copper and gold are miscible in all properties at high temperatures. In the
(Cu, Au)-solid solution, the Cu and Au atoms are statistically distributed over the
sites of the ccp crystal structure (disorder). On cooling, there is an ordering through
the formation of the CuAu and Cu3Au superstructures (Figs. 12.21 and 12.22,
cf. Sect. 12.6).
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Fig. 12.25a–c Transformations in the secondary coordination of Si[4]O2 structures shown as pro-
jections on (0001). a↔ b Displacive: right-handed low-quartz (P322)↔ right-handed high-quartz
(P6222). b↔ c Reconstructive: right-handed high-quartz (P6222)↔ high-tridymite (P63/mmc).
a, b after [39]
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12.7.4
Transformations Involving Changes in Type of Bonding

Carbon occurs as diamond (Fig. 12.20), graphite (Fig. 12.26) and the various
fullerenes (e.g. C60, Fig. 12.6a). In diamond, the bonding throughout the crystal
is covalent. In graphite and in the fullerenes, covalent bonds hold the atoms in the
layers or molecules while van der Waals forces hold layers and molecules together.
Transformations of this sort are very slow.

In the graphite structure, the carbon atoms are ordered in 6-membered rings
in the layers. The coordination “polyhedron” in this case is an equilateral triangle
[3] (Table 12.1h). The layer stacking can repeat itself at intervals of either two or
three layers (Fig. 12.26). Both of these structures have been observed. This special
form of polymorphism is called polytypism. In these polytypic structures, (a) gives a
hexagonal unit cell and (b) a rhombohedral. The structures are thus labelled as the
2H- and the 3R-polytypes of graphite, respectively.

Fig. 12.26a,b Polytypes of graphite structure. a 2H; b 3R. After [37]

12.8
Further Information on Crystal Structures

In this chapter, only a few, albeit very important, crystal structures have been
described. The basic ideas and vocabulary have, however, been introduced to enable
the reader to read the extensive literature on crystal structures. The following “clas-
sical” references are particularly recommended: [26], [42]–[45], [49]. The number
of determined crystal structures has now reached several hundred thousand, and to
deal with this flood of information, various databanks have been established. The
most important two of these are:
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(1) ICSD (Inorganic Crystal Structure Database, FIZ, Karlsruhe, Germany and
NIST, Gaithersburg MD, USA) [Inorganic and mineral structures – generally
non-molecular]

(2) CSD (Cambridge Crystallographic Database, Cambridge, UK) [Molecular
organic and organometallic structures]

(3) COD (Crystallography Open Database)

The use of these databanks is not free, but in most countries arrangements have been
made so that students can gain access to them.

12.9
Exercises

Exercise 12.1 Calculate the ideal radius ratio RA/RX for the coordination
polyhedra: trigonal prism [6] and equilateral triangle [3] (cf. Table 12.1).

Exercise 12.2 Give a description of the following structures in terms of lattice
+ basis:

a) α-Polonium (cubic P-lattice), cf. Fig. 3.1.
b) Tungsten (cubic I-latice), cf. Fig. 12.5.
c) Magnesium (hexagonal closest packing) cf. Fig. 12.3.
d) Copper (cubic closest packing) cf. Fig. 12.2.
e) Draw four unit cells of the Mg-structure in projection on (0001). Find those

symmetry elements which characterise the structure as hexagonal.

Exercise 12.3 Calculate the radii of the atoms in the structures in Exercise
12.2, using the following lattice parameters:

a) α-Po: a0=3.35 Å.
b) W: a0=3.16 Å.
c) Mg: a0=3.21 Å, c0=5.21 Å.
d) Cu: a0=3.61 Å.

Compare these values with those given in Fig. 12.7.

Exercise 12.4 Calculate the ideal c0/a0 ratio for hexagonal closest packing.

Exercise 12.5 The packing efficiency is the ratio of the sum of the volumes of
the atoms making up a unit cell to the volume of the cell itself. Calculate the
packing efficiencies of:

a) α-Polonium (cubic P-lattice).
b) Tungsten (cubic I-lattice).
c) A hexagonal closest packing.
d) A cubic closest packing.
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Exercise 12.6 The diamond structure has:
lattice: cubic F, a0=3.57 Å
basis: C: 0,0,0; 1

4 , 1
4 , 1

4 .

a) Draw a projection of the structure on x,y,0. sketch tapered C–C bonds with
colors indicating the height (use green for 0<z< 1

2 and red for 1
2 <z<1

b) Calculate the length of a C–C bond.
c) What is the value of Z?
d) Describe the structure.
e) Compare the diamond structure with that of sphalerite (Fig. 12.14).

Exercise 12.7 The graphite (2H) structure has
lattice: hexagonal P: a0=2.46 Å; c0=6.70 Å.
basis: C: 0,0,0; 0,0, 1

2 ; 1
3 , 2

3 ,0; 2
3 , 1

3 , 1
2 .

a) Draw a projection on four unit cells on x,y,0. join each C-atom to its three
nearest neighbors with the same z-coordinate with colored lines (z=0 green,
z= 1

2 red).

b) Calculate the length of a C–C bond.
c) What is the value of Z?
d) Describe the structure. How large is the inter-layer spacing?
e) Calculate the densities of diamond and graphite and comment on the

difference.

Exercise 12.8 LiCl (NaCl-type; a0=5.13 Å) has an arrangement of Cl− ions
which is cubic closest packed (RA/RX =0.43). Calculate the ionic radii of Cl–
and Li+ and the packing efficiency of the LiCl structure.
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Exercise 12.9 Draw the ions on the x,y,0-plane of the NaCl (a0= 5.64 Å), LiCl
(a0=5.13 Å) and RbF (a0=5.64 Å). The ionic radii can be taken from Fig. 12.7.

Exercise 12.10 Calculate the Ti–O distance in the coordination octahedron
of the rutile structure (cf. Table 10.5). Which distances are equivalent by
symmetry, and hence required to be equal?

Exercise 12.11 The pyrites structure (FeS2) has:

a) Space group Pa3 (P21/a3)
Fe: 4a 3 0,0,0; 0, 1

2 , 1
2 ; 1

2 , 1
2 ,0; 1

2 ,0, 1
2 .

S: 8c 3 x,x,x; 1
2 +x, 1

2−x,x; x, 1
2 +x, 1

2−x; 1
2−x,x, 1

2 +x;

x,x,x; 1
2−x, 1

2 +x,x; x, 1
2−x, 1

2 +x; 1
2 +x,x, 1

2−x, (x=0.386).
b) Lattice constant: a0=5.41 Å.
1. Draw the structure as a projection on x,y,0 (let a0=10 cm).
2. Describe the structure.
3. What is the value of Z?
4. Calculate the shortest Fe–S and S–S distances.
5. Draw the symmetry elements on the projection.

Exercise 12.12 A compound of NH4/Hg/Cl has:

a) Space group P4/mmm.
b) Lattice constants: a0= 4.19 Å, c0= 7.94 Å.
c) Positions: Hg: 0,0,0

NH4: 1
2 , 1

2 , 1
2

Cl(1): 1
2 , 1

2 ,0
Cl(2):± (0,0,z) z= 0.3

1. Draw a projection of the structure on 0,y,z (1 Å=1 cm).
2. Give the chemical formula of the compound, and the value of Z.
3. Describe the coordination of Hg and NH4, giving the coordination number

and the coordination polyhedron.
4. Calculate the shortest Hg−Cl and NH4−Cl distances.
5. What assumption has been made in assigning the space group in a)?

Exercise 12.13 The cystal structure of BaSO4 has:

a) Space group Pnma with special and general positions:
(4c)±(x, 1

4 ,z; 1
2 +x, 1

4 , 1
2−z)

(8d)± (x,y,z; x, 1
2 +y,z; 1

2 +x, 1
2−y, 1

2−z; 1
2−x,y, 1

2 +z)

b) Lattice constants: a0=8.87 Å, b0=5.45 Å, c0=7.15 Å.
c) Occupation of positions:
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Position multiplicity and Wyckoff letter x y z

Ba (4c) 0.18
1
4

0.16

S (4c) 0.06
1
4

0.70

O(1) (4c) −0.09
1
4

0.61

O(2) (4c) 0.19
1
4

0.54

O(3) (8d) 0.08 0.03 0.81

1. Draw a projection of the structure on x,0,z.
2. What is the value of Z?
3. Determine the coordination of O atoms around S.





13 Studies of Crystals by X-Ray Diffraction

Since the wavelengths of X-rays and the lattice parameters of crystals are of the same
order of magnitude, X-rays are diffracted by crystal lattices. It was from the discov-
ery of this effect in 1912 by Max von Laue that we may date the beginning of modern
crystallography. Only then did it become possible to determine the structures of
crystals.

We shall only describe here one X-ray method, the Debye-Scherrer technique, in
detail, because it is a very important research tool for the scientist. Also, a brief
description will be given of how a crystal structure may be determined.

For a fuller description of X-rays and their properties, the reader is referred to
textbooks of physics.

13.1
The Bragg Equation

The diffraction of X-rays by crystals can be formally described as a reflection of
X-rays from sets of lattice planes. Assume that a parallel, monochromatic beam of
X-rays (i.e. one characterized by a single wavelength λ) falls on a set of lattice planes
with a spacing of d, making a glancing angle of θ with them (Fig. 13.1). The waves I
and II will be reflected at A1 and B, and will thus undergo interference. At the point
A1, the waves will have had a path difference Γ = BA1−A1B′ = BA3−BC = CA3,
since BA1 = BA3 and B′A1 = BC. Thus,

sin θ = Γ

2d
(13.1)

An interference maximum will be observed when � is an integral multiple n of
λ, or � = nλ, where n is the order of the interference.

D This gives rise to the Bragg equation:

nλ = 2 d sin θ (13.2)

W. Borchardt-Ott, Crystallography, 3rd ed., DOI 10.1007/978-3-642-16452-1_13,
C© Springer-Verlag Berlin Heidelberg 2011
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Fig. 13.1a Diffraction (“reflection”) of an X-ray beam by a set of lattice planes. b Interference of
waves reflected by a set of lattice planes (Γ = 1λ)

13.2
The Debye-Scherrer Method

In the Debye-Scherrer method, a fine powder of a crystalline substance is irra-
diated with monochromatic X-rays. According to the Bragg equation, a set of
parallel planes (hkl) will reflect X-rays with certain characteristic glancing angles θ

(Fig. 13.2a). Since the crystallites are randomly arranged in a fine powder, there will
always be a large number of crystals orientated in such a way that a given set of
planes (hkl), which make an angle θ with the X-ray beam can cause reflection to
occur. These planes are tangent to the surface of a cone with a cone-angle of 2θ .
The beams reflected by these planes lie on the surface of a cone with a cone angle
of 4θ (Fig. 13.2b). Figure 13.2c shows the reflection cones of a few different sets of
planes.

In the Debye-Scherrer method, a cylindrical camera is used with the powdered
specimen, contained in a thin tube mounted along the cylinder axis. The cones of
reflection intersect the film in Debye-Scherrer lines (Fig. 13.2c, d). The angle between
pairs of lines originating from the same cone is 4θ . Thus

S
2πR

= 4θ

360◦
(13.3)

where R is the radius of the camera. For R = 28.65 mm (2πR = 180 mm), the
measured value of S in mm is thus equal to the value of 2θ in degrees.

In order to obtain information from X-ray photographs, it is necessary to index
the reflections, i.e. to determine which set of lattice planes gave rise to the observed
interference. Since the value of θ is easy to read from the photograph and λ

is known, the Bragg equation allows d, the spacing of the lattice planes, to be
calculated.

How are these d-spacings related to (hkl)? The plane lying next to the one which
passes through the origin in Fig. 13.3 intercepts the orthorhombic axes at the point
m00 (a-axis), 0n0 (b-axis) and 00∞ (c-axis), cf. Sect. 3.4.3.
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Fig. 13.2a Relationship between the primary beam and a ray diffracted by the lattice planes (hkl).
b Possible orientations of the set of planes (hkl) in a crystalline powder. The result of the random
orientation of the planes giving a glancing angle of θ is a cone with a generating angle of 4θ . c, d The
rays diffracted from the various lattice planes lie on concentric cones about the primary beam.
Their intersections with the film give rise to the “lines” of the powder diagram. (After Cullity [13])

Fig. 13.3
Relationship between the
Miller indices of a set of
lattice planes and the spacing
of the planes d for an
orthorhombic crystal
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For a set of planes (hkl), considering only the plane nearest the origin:

cos ϕa = d
m · a0

= d · h
a0

(13.4)

cos ϕb = d
n · b0

= d · k
b0

(13.5)

cos ϕc = d
p · c0

= d · l2

c0
(13.6)

Squaring these and adding them together gives:

cos2 ϕa + cos2 ϕb + cos2 ϕc = d2 ·
(

h2

a2
0
+ k2

b2
0
+ l2

c2
0

)

= 1 (13.7)

dhkl = 1
√

h2

a2
0
+ k2

b2
0
+ l2

c2
0

(13.8)

this relationship applies to the orthorhombic system. In the cubic system, it
simplifies to

dhkl = a0√
h2 + k2 + 12

. (13.9)

Substituting this equation for the d-spacing into the Bragg equation and squaring
gives:

sin2θ = λ2

4a2
0
· (h2 + k2 + 12). (13.10)

The right-hand side of this equation is the product of a constant factor λ2/4a2
0 and

an integer (h2 + k2 + l2). The values of sin2θ for individual reflections are thus
related to one another as integers.

The powder pattern for tungsten in Fig. 13.4 was taken with CuKα radiation,
λ = 1.54 Å. Table 13.1 shows the calculations for this photograph. Note that this

Fig.13.4 Powder diagram of tungsten (reduced to 0.65 of original size)
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Table 13.1 Interpretation of the powder pattern of tungsten

Reflection number S (mm) θ(◦) sin2θ = λ2

4a2
0
· (h2 + k2 + l2) hkl dhkl (Å)

1 40.3 20.15 0.1187= 0.0594·2 110 2.24
2 58.3 29.15 0.2373= 0.0593·4 200 1.58
3 73.2 36.60 0.3555= 0.0592·6 211 1.29
4 87.1 43.55 0.4744= 0.0593·8 220 1.12
5 100.8 50.40 0.5937= 0.0594·10 310 1.00
6 115.0 57.50 0.7113= 0.0592·12 222 0.91
7 131.2 65.60 0.8294= 0.0592·14 321 0.85
8 154.2 77.10 0.9502= 0.0592·16 400 0.79

table includes the reflections 200, 220 and 400, which contravene the definition of
Miller indices as they do not represent the smallest integral multiples of the recip-
rocals of intercepts on the axes. In fact, they are Miller indices multiplied by the
factor n, the order of diffraction. In other words, 200 may be regarded as the second
order of diffraction from the (100) planes. These hkl triples, written without brack-
ets, are called Laue symbols, and their use makes the factor n of the Bragg equation
unnecessary.

From the constant factor λ2/4a2
0 = 0.0592, the lattice parameter a0 = 3.16 Å may

be determined. Z, the number of formula units per unit cell, can also be determined
(cf. Chap. 4)

Z= � · V ·NA

M
(13.11)

Z= 19.3 · 3.163 · 10−24 · 6.022 · 1023

183.86
(13.12)

Z ∼ 2 (13.13)

A cubic structure of an element with Z = 2 can only occur if the substance has a
cubic I–lattice, cf. Fig. 12.5.

In Table 13.1, 100, 111 and 210 do not occur. Such absences occur in structures
which have centered lattices or contain glide planes or screw axes.

The absent reflections are said to be extinct. Those reflections which do occur in
Table 13.1 obey the rule h+k+l = 2n, where n is an integer, and this is characteristic
for all structures with an I-lattice.

The number of reflections which can be observed on an X-rays photograph is
limited. In the Bragg equation sin θ = λ

2d ,−1 ≤ sin θ ≤ +1. Thus λ
2d ≤ +1. and

d ≥ λ
2 . Diffraction can only arise from those sets of lattice planes for which d ≥ λ

2 .
For CuKα radiation, λ = 1.54 Å, the limiting value for d is thus 0.77 Å. The pattern
for tungsten thus contains no reflections with a d-value ≤ λ

2 = 0.77 Å.
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The greatest use of the Debye-Scherrer method is in the identification of crys-
talline substances. Every sort of crystal produces a pattern of lines with characteristic
positions and intensities. The intensity is roughly proportional to the blackness of
a photograph. The American Society for Testing Materials published an index (the
ASTM index) containing data for all crystalline inorganic and organic substances
which have been studied by X-ray diffraction. This index is now administered by
the Joint Committee for Powder Diffraction Standards (JCPDS) at the International
Centre for Diffraction Data in Swarthmore, USA. The PDF now contains data for
more than 200,000 crystalline samples on CD-Rom. Every substance has an “index
card” which contains many crystallographic data: the crystal system, space group,
lattice constants, number of formula units per unit cell and density, as well as the
d-values or 2θ-values, the relative intensities (strongest = 100) and the hkl-values
for individual reflections. The PDF-card for tungsten is given in Table 13.2.

The identification of an unknown substance depends on the correspondence
between the powder diagram for the specimen and a diagram stored on the PDF.
The search routine normally begins with the identification of the three lines of high-
est intensity. The use of known chemical or physical properties, such as the density,
can also assist the search.

13.3
The Reciprocal Lattice

Crystals are three-dimensional systems. A stereographic projection, which gives a
useful summary of the arrangements of the crystal faces with respect to one another,
can be derived simply from a consideration of the morphology of a crystal. As
described in Sect. 5.4, the normals to the crystal faces are used for this purpose.

An alternative system for representing the lattice planes was proposed by P.P.
Ewald to discuss the scattering of X-rays by the crystal lattice. Since, as is described
in Sect. 13.1, the diffraction of X-rays can be interpreted as the reflection of the rays
by sets of parallel lattice planes, it was important to devise an aid to illustrate both
the orientations of the lattice planes and their diffraction. This aid is the “recipro-
cal lattice”. Each set of lattice planes in the crystal is represented by a point in the
reciprocal lattice. The construction of a “reciprocal lattice” from the corresponding
“direct lattice” may be performed as follows: For each set of lattice planes (hkl), the
normal is drawn from the origin with a length d∗ = C

dhkl
, where d is the lattice

spacing and C is a proportionality constant.
The construction of the reciprocal lattice corresponding to the projection on

(010) of a direct monoclinic P-lattice is shown in Fig. 13.5. The normal to the set
of lattice planes (001) is drawn from the origin and assigned a length d∗ = C

d001
. The

resulting point is called P∗001. A similar construction for the set of (100) planes gives
the point P∗100. The points P∗001 and P∗100 represent the relative orientations of the
(001) and (100) lattice planes.
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Fig. 13.5
Monoclinic P-lattice as a
projection on (010) with the
points P∗001 and
P∗100.P∗000, P∗001 and P∗100
define a lattice, the reciprocal
lattice

Making use of the three points P∗000, P∗100 and P∗001, a two-dimensional lattice
can be constructed. This reciprocal lattice plane is indicated by dashed lines in
Fig. 13.5.

It must now be shown that the reciprocal lattice points corresponding to all sets
of lattice planes with indices (h0l) fall on this same plane. Figures 13.6, 13.7 and
13.8 show the relevant constructions for the sets of (101), (201) and (102) planes.
When all relevant points are added to the drawing, its lattice-like nature is apparent
(Fig. 13.9). This construction does not, however, lead to all of the points required
by the reciprocal lattice. For example, P∗002, P∗200 and P∗202are missing since lattice
planes with indices such as (002), (200) and (202) contravene the definition of Miller
indices given in Sect. 3.4.3. It is, of course, possible to define a set of “lattice planes”

(002) with a spacing d = d001

2
. In these “lattice planes”, only half of the planes

intersect points of the direct lattice. Furthermore, the Bragg equation (13.2) can be
written in the form λ = 2 d

n sin θ . If this is done, every n-th order diffraction with
a plane spacing of d can be replaced by a first-order diffraction from planes with
a spacing of d

n . P∗002 describes in the same way a second-order diffraction from the
planes (001), P∗003 a third order, and so on. The same sort of reasoning applies to the
points P∗200, P∗202, etc. (see also Sect. 13.2). The rule for constructing the reciprocal
lattice given above (p. 284) is thus incomplete and should read: . . . with a length
d∗ = C

dhkl
, and all integral multiples thereof, where d is the lattice spacing.. . .
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Fig. 13.6 Fig. 13.7

Fig. 13.6 Monoclinic P-lattice as a projection on (010) with the traces of the lattice planes (101)
and the point P∗101 of the reciprocal lattice

Fig. 13.7 Monoclinic P-lattice as a projection on (010) with the traces of the lattice planes (201)
and the point P∗201 of the reciprocal lattice

Fig. 13.8 Fig. 13.9

Fig. 13.8 Monoclinic P-lattice as a projection on (010) with the traces of the lattice planes (102)
and the point P∗102 of the reciprocal lattice

Fig. 13.9 Reciprocal lattice (a∗c∗-plane) corresponding to the monoclinic P-lattice of Fig. 13.5
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The reciprocal lattice, like the direct lattice, is defined by six lattice parameters:

∣∣�a∗∣∣ = a∗0 =
1

d(100)
= b0c0 sin α

V
(13.14)

∣∣∣�b∗
∣∣∣ = b∗0 =

1
d(010)

= a0c0 sin β

V
(13.15)

∣∣�c∗∣∣ = c∗0 =
1

d(001)
= a0b0 sinγ

V
(13.16)

V = a0b0c0 ·
√

1− cos2 α − cos2 β − cos2 γ + 2 cos α cos β cos γ (13.17)

(Volume of the unit cell)

α∗ = �b∗ ∧ �c∗; cos α∗ = cos β cos γ − cos α

sin β sin γ
(13.18)

β∗ = �a∗ ∧ �c∗; cos β∗ = cos α cos γ − cos β

sin α sin γ
(13.19)

γ ∗ = �a∗ ∧ �b∗; cos γ ∗ = cos α cos β − cos γ

sin α sin β
(13.20)

The use of the reciprocal lattice allows an elegant discussion of the application of the
Bragg equation to the diffraction of X-rays by a lattice. Figure 13.10 shows a section
through a reciprocal lattice. The direction of the primary beam is indicated by a
straight line through the point P∗000. A sphere (which in Fig. 13.10 becomes a circle)
with a radius of C

λ
and a center at the point M on the line is then constructed so

that the surface of the sphere intersects the origin of the reciprocal lattice, P∗000. This
sphere is known as the sphere of reflection. In general, no point of the reciprocal

Fig. 13.10
Ewald Construction
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lattice other than P∗000 lies on the surface of the sphere. By choosing the direction
of the primary beam appropriately, however, it may be possible to cause another
point P∗hkl to lie on the surface of the sphere of reflection, as in Fig. 13.10. In this
case, the condition for the Bragg equation n λ = 2d sin θ is fulfilled precisely for
the set of planes (hkl). Diffraction occurs, and the diffracted beam has the direction
MP∗hkl. The orientation of the planes (hkl) is shown in Fig. 13.10 by a dotted line. It is
obvious that the diffracted beam with a glancing angle equal to θ can equally well be
described as a reflection from the lattice planes (hkl). It will be noticed that for the

triangle P∗hkl MT, sin θ =
1

2d
1
λ

= λ
2d , fulfilling the Bragg condition. This geometrical

construction is known as the Ewald construction.
If a single crystal is rotated about an axis which is perpendicular both to the

primary beam and to a selected plane of the reciprocal lattice, then the reciprocal
lattice itself rotates about an axis through P∗000. During this rotation, other points
of the reciprocal lattice will pass through the surface of the sphere of reflection,
and the corresponding lattice planes will come into the diffracting position. These
relationships are the basis of rotating crystal methods.

The precession method of M. Buerger produces an undistorted representation of
the reciprocal lattice. In this technique, an axis of the crystal processes about the
primary beam. The resulting picture is of the reciprocal lattice plane perpendicu-
lar to this axis. A precession photograph of β=eucryptite, LiAlSiO4 (space group
P6422) is shown in Fig. 13.11. It represents the a∗ b∗-plane. The reciprocal lattice
of a hexagonal lattice is itself hexagonal, as is shown in Fig. 13.12 which should be
compared with Fig. 13.11.

13.4
Laue Groups

In general, the intensity of an X-ray beam diffracted from one side of a set of lattice
planes is equal to that diffracted from the other. A diffraction pattern is thus cen-
trosymmetric. It follows that instead of 32 point groups only the 11 which contain
an inversion center can characterize a diffraction pattern. These 11 point groups are
known as Laue groups (cf. Table 9.10).

As an example, the Laue groups of the tetragonal system will be explained. An
inversion center is added to each point group:

Laue group 4/m
4+ 1→ 4/m (Symmetry rule I)
4+ 1→ 4/m (cf. Fig. 6.13) The operation of an inversion center on the 4 array

in (a) results in the 4/m array in (b).
Laue group 4/m 2/m 2/m (4/mmm)
422+ 1→ 4/m 2/m 2/m (Symmetry rule I)
4 mm+1→ 4/m 2/m 2/m (Symmetry rule I)
42m+ 1→ 4/m 2/m 2/m (4+ 1→ 4/m as above and symmetry rule I)
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Fig. 13.11 Precession photograph of β-eucryptite, LiAlSiO4 (space group P6422): a∗ b∗-plane
(Photograph A. Breit)

Fig. 13.12
a∗ b∗-plane of a hexagonal
reciprocal lattice, cf.
Fig. 13.11
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Consideration of the first symmetry rule together with the relationships 3 + 1 ≡ 3
and 6+1 ≡ 6/m will allow the Laue groups of the other crystal systems to be derived
from each point group (cf. Table 9.10).

13.5
The Determination of a Crystal Structure

Powder diffraction patterns allow the determination only of relatively simple struc-
tures. Techniques have been developed which make use of measurements of the
intensities of the reflections of sets of lattice planes from single crystals. Study of
relationships among intensities and “systematic absences” in the diffraction pattern
can lead to the determination of the space group. Measurement of the density of
the crystals gives Z (cf. Sect. 13.2), the number of formula units in the unit cell.
The intensity of the individual reflections depends on the extent to which the sets
of lattice planes are occupied by atoms. Since different sets of lattice planes will vary
greatly in both the number of atoms occupying them and the “heaviness”(in terms
of electrons) of those atoms, the intensities of a very large number of reflections can
allow the determination of the arrangement of atoms in the unit cell.

For simple crystal structures, it is possible to make useful structural conclusions
from only a small amount of data. This may be illustrated by the structure of SnO2,
cassiterite, for which the following data have been determined:

1. Lattice constants: a0 = 4.74 Å, c0 = 3.19 Å.
2. Space group: P42/mnm
3. Density: 6.96 g cm–3.

The value of Z (the number of chemical formula units per unit cell) may be directly
calculated (cf. Eq. 4.5):

Z= � ·NA · V
M

= 6.96 · 6.023 · 1023 · 4.742 · 3 · 19 · 10−24

150.69
= 1.99 ≈ 2 (13.21)

Thus, there must be two formula units of SnO2 or two tin and four oxide ions per
unit cell. The Sn4+ ions must then occupy a set of 2-fold positions in the unit cell,
and the O2– ions a set of 4-fold positions, or (less likely) two sets of 2-fold posi-
tions. The space group, P42/ mnm, (Fig. 10.17) has two sets of 2-fold positions
(a and b), and five sets of 4-fold positions (c – g). Let us see whether the ionic radii
(R(Sn4+) = 0.71 Å, R(O2−) = 1.32 Å) can help to select the sites which are actually
occupied. In the following illustrations, the lattice constants and the ionic radii have
been drawn to the same scale.

First, consider the possible 4-fold position for the O2– ions.

• Positions (c): These include the fixed points 0,1/2,0 and 0,1/2,1/2 (Fig. 10.17). These
are shown as points on the line 0,1/2,z in Fig. 13.13c, in which the lattice repeat is
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scaled to the actual length c0. When the O2− ions are then drawn in to scale, it is
clear that they overlap badly.

• Positions (d): These also include fixed points 0,1/2,1/4 and 0,1/2,3/4, which are shown
as points on the line 0,1/2,z in Fig. 13.13d. When the O2− ions are then drawn in
to scale, the overlap is the same as in (c).

• Positions (e): Here, there is one degree of freedom to be considered. A pair of
points 0,0,z and 0,0,z must both lie within the range of the lattice constant c0
(Fig. 13.13e). Whatever value is chosen for z, the overlap will be at least as bad as
that in (c) and (d).

Clearly, these three sets of positions are not possible for the SnO2 structure.

• Positions (f): Again, there is one degree of freedom to be considered. In order
to limit the possibilities for the O2− ions somewhat, the Sn4+ ions have been
inserted at 0,0,0 (positions (a)) in a scale drawing of the x,y,0-plane (Fig. 13.14a).
It is then possible to draw in the O2− ions at x,x,0 and x̄,x̄,0 along the diagonal
between the Sn4− ions at 0,0,0 and 1,1,0. In fact, the ions fill the gaps precisely! It
is possible to estimate a value for x:

RSn4+ + RO2− = 0.71+ 1.32 = 2.03 Å (13.22)

2.03√
2
= 1.44 (13.23)

1.44
a0
= 0.304 = x (13.24)

Substituting the value x = 0.3(04) in the positions (f) gives 0.2,0.8,1/2 and 0.8,0.2,1/2
for ions 3 and 4. These are shown along with the Sn4+ ion at 1/2,1/2,1/2 in Fig. 13.14b.
Figure 13.14c shows the x,x,z section through Figs. 13.14a, b. Each Sn4+ ion occupies
an octahedral hole formed by six O2− ions.

Fig. 13.13 Investigation of sites c, d, e in the structure of SnO2. The O− ions cannot lie in the
given places as required by the positions c to e of space group P42/mnm



13.5 The Determination of a Crystal Structure 291

Fig. 13.14a–c Structure of SnO2. Placing the Sn4+ ions on positions a and the O2− ions on f leads
to an acceptable arrangement. (a) the x,y,0 plane. (b) the x,y,1/2 plane. (c) the x,x,z plane

The structural results may then be summarized thus: Space group P42/mnm
(Fig. 10.17). Sn4+ in 2a m.mm and O2– in 4f m.2m with x = 0.304. The currently
accepted value for x is 0.3053. SnO2 has the same structure type as rutile (Fig. 10.18).

• The positions (g) have not yet been considered. In fact, placing the O2− ions in
these positions leads to an alternative description of the same structure.

The following are a few still simpler examples; the calculation of Z will be
omitted.

• CsI: Z= 1. The space group is P4/m32/m, which has only two 1-fold positions:
• 1 b m 3 m 1/2,1/2,1/2
• 1 a m 3 m 0,0,0

Thus, the Cs+ may be placed at 0,0,0 and the I− at 1/2,1/2,1/2 or vice-versa (cf. Fig. 4.4).

• NaCl: Z = 4. The space group is F4/m32/m. Table 13.3 gives the coordinates of
the positions a to d for this space group. There are two 4-fold sets of positions, so
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Na+ may be placed on a and Cl− on b or vice-versa, cf. Fig. 12.10. In Fig. 12.10,
1/2,0,0 is given instead of the equivalent 1/2,1/2,1/2.

• CaF2: Z= 4. Space group F4/m32/m (Table 13.3). The F− ions occupy the 8-fold
positions c, while the Ca2+ ions may be placed either on a (0,0,0 etc.) or on
b (1/2,1/2,1/2 etc). Either choice leads to the same structure.

Table 13.3 Coordinates for some of the positions of space group F4/m3̄2/m., from [14].

(0, 0, 0)+ (0, 1
2 , 1

2 )+ ( 1
2 ,0, 1

2 )+ ( 1
2 , 1

2 ,0)+

24 d m.mm 0, 1
4 , 1

4 0, 3
4 , 1

4
1
4 ,0, 1

4
1
4 ,0, 3

4
1
4 , 1

4 ,0 3
4 , 1

4 ,0
8 c 4̄3m 1

4 , 1
4 , 1

4
1
4 , 1

4 , 3
4

4 b m3̄m 1
2 , 1

2 , 1
2

4 a m3̄m 0,0,0

13.6
Exercises

Exercise 13.1 Draw the (100)- and (001)-lattice planes of the rutile structure
(cf. Fig. 10.18 and Table 10.5). Using the introduction in Sect. 13.3, construct
the a∗c∗- and the a∗b∗-planes of the reciprocal lattice.

Exercise 13.2 For the crystal structure of thallium, the lattice parameters
are a0= b0= c0= 3.88 Å, α=β = γ = 90◦, and the density is 11.85 g cm-3.
Determine the crystal structure, and draw it, projected on x, y, 0.

Exercise 13.3 Derive the cubic Laue groups.

Exercise 13.4 A powder photograph has been taken of the cube-shaped crys-
tals of KI, using Cu Kα radiation (λ=1.54 Å). The first nine lines, measured
from the position of the direct beam, give the following 2Θ-values:

21.80; 25.20; 36.00; 42.50; 44.45; 51.75; 56.80; 58.45; 64.65.

1. Index these powder lines and calculate their d-values.
2. Determine the lattice constant a0.
3. What is the value of Z? (The density of KI is 3.13 g cm-3)
4. Suggest the structure type of KI.



14 Crystal Defects

A crystal with a volume of 1 cm3 will contain about 1023 atoms. Lattice theory
requires in principle that all of these atoms occupy a regular lattice. The array of
atoms must conform to one of the 230 space groups. The equivalent points of a
position of a space group must be fully occupied by atoms of the same type. This
theoretical model is only achieved conceptually, by an ideal crystal.

The observation of a large number of crystals will show that they in fact have
cracks and fissures, and that crystal faces are often not really flat. At cleavage sur-
faces, crystalline domains are often displaced with respect to one another. Inclusions
occur in crystals, which may themselves be crystalline, liquid or gas. In practice, a
real crystal deviates considerably from the ideal model described above.

All deviations from ideal crystalline behavior are described as crystal defects.
Many important properties of crystals derive from defects, including luminescence,
diffusion, mechanical properties, etc. Nevertheless, the ideal crystal structure is the
starting point for all studies of crystals.

Individual defects make themselves apparent in many ways. They can be catego-
rized in terms of their dimensionality (Table 14.1).

Table 14.1 Types of crystal defects

14.1 Point defects 14.2 Line defects 14.3 Plane defects

(a) Subsititution defects
(b) Solid solutions
(c) Schottky and Frenkel

defects

(a) Edge dislocations
(b) Screw dislocations

(a) Small angle grain
boundaries

(b) Stacking faults
(c) Twin boundaries

14.1
Point Defects

Point defects are concerned with atomic dislocations.

W. Borchardt-Ott, Crystallography, 3rd ed., DOI 10.1007/978-3-642-16452-1_14,
C© Springer-Verlag Berlin Heidelberg 2011
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14.1.1
Substitution Defects

An ideal crystal must consist entirely of the substance to which its formula refers,
and this situation never occurs. As there are about 1023 atoms in 1 cm3 of a crys-
tal, even a purity of 99.99999% implies the presence of some 1016 foreign atoms!
These foreign atoms will in general be larger or smaller than the atoms they replace.
Furthermore, the foreign atoms may have different bonding capacities. This can
result in the propagation of further irregularities in the crystal which may no longer
be of the point-defect type.

In some cases, crystals with specific impurities are actually required. It is such
impurities which control the electrical conductivity of many semiconductors.

14.1.2
Solid Solutions

The statistical distribution of atoms in solid solutions (cf. Sect. 12.6) are also point
defects.

14.1.3
Schottky and Frenkel-Defects

Every crystal contains voids. These are places in a crystal where the expected atoms
do not occur. If these missing atoms have “wandered” to a surface of the crystal, the
result is called a Schottky defect, while if they have moved to places between other
atoms (interstitial sites), the result is called a Frenkel defect. Both of these types are
illustrated for an ionic crystal in Fig. 14.1. The concentration of faults in a crystal
is in thermal equilibrium, and increases with rising temperature. The type of fault
which occurs depends on the structure itself, its geometry and its bonding type. In
alkali halides, Schottky defects predominate, while Frenkel defects predominate in
silver halides. Measurement of the density of a crystal gives an indication of the
defect type, since Schottky defects decrease the density (more volume for the same
mass) while Frenkel defects leave the volume and hence the density unchanged.

Fig. 14.1 a–c Schottky defects (a) and Frenkel defects (c) in an ionic crystal (� void); (b) the ideal
crystal
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Wuestite (NaCl-structure type) does not have the ideal stoichiometry FeO,
because the Fe2+ ions in some places are replaced by Fe3+.This unbalanced charge
results in a corresponding number of caption vacancies, giving a formula Fe1–xO.

The occurrence of these faults gives rise to a number of properties. The defects
make possible the diffusion of ions through the crystal. If a gold crystal and a silver
crystal are pressed firmly against one another as the temperature is raised, Ag-atoms
diffuse into the gold crystal, and Au-atoms into the silver, forming solid solutions
(cf. Fig. 12.20). At sufficiently high temperature, ionic crystals, such as NaCl, show a
small electrical conductivity. This does not result from electronic conduction, as in
metals, but is brought about by ionic movement. Without crystal defects, this would
not occur.

Solid-state reactions are almost always propagated by crystal defects. The heat-
ing of a mixture of finely powdered ZnO and Fe2O3 crystals to a temperature well
under their melting points brings about a reaction yielding crystals of the spinel
zinc ferrite, ZnFe2O4. The rates of solid-state reactions are much less than those
taking place in the gas or liquid phase. They do, however, rise with temperature as
the concentration of crystal faults and the rates of diffusion rise.

14.2
Line Defects

This type of defect forms along a line, the line of dislocation.

14.2.1
Edge Dislocations

The upper portion of the crystal in Fig. 14.2a has been displaced by the vector BC
(=B′C′) in the plane ABA′B′ relative to the lower portion in such a way that the line
AA′ (the line of dislocation) marks the limit of the displacement. Figure 14.2b shows
the structure of a plane normal to the line of dislocation AA′. The displacement
vector, which amounts to a displacement (=BC) is known as the Burgers vector �b,
and is normal to the line of dislocation AA′.

Fig. 14.2a,b Edge dislocation; pictorial (a), structural representation (b) (⊥ end of the line of
dislocation)
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14.2.2
Screw Dislocations

The crystal in Fig. 14.3 contains a screw dislocation which arises from a displace-
ment in the plane ABCD with the line of dislocation AD. In the region of the line
of dislocation, the crystal does not consist of neatly stacked lattice planes, but of an
arrangement of atoms which repeat through the structure in a helical manner (screw
dislocation). In this case, the Burgers vector �b is parallel to the line of dislocation.

Fig. 14.3
Screw dislocation after Read
([36])

Edge- and screw dislocations, as described here, are only limiting cases; interme-
diates also occur. Dislocations are important in the plastic deformation of metals
(Sect. 12.2) (movement of dislocations).

Screw dislocations also play an important role in crystal growth. The deposi-
tion of atoms on a step of the helix is always energetically favorable, and these steps
persist during the growth of the crystal, permanently.

Dislocations are active regions in crystal faces, and etching gives rise there to
characteristic etch-figures (cf. Table 9.11.21). By etching, the concentration of dislo-
cations per cm2 can be estimated. This varies from virtually zero in the most perfect
single crystals of germanium (semiconductor) to 1012 per cm2 in the most strongly
deformed metals.

“Whiskers”, or ultrathin, needle crystals, often form with the screw dislocation
parallel to the needle axis. They display remarkable mechanical properties. For
example, the breaking strength of a NaCl-whisker of 1 μm diameter is as much as
1080 N mm–2.

14.3
Plane Defects

14.3.1
Small Angle Grain Boundaries

It frequently occurs that different domains of a single crystal are tilted by a small
angle with respect to each other. Their boundary faces are small angle grain
boundaries, and are built up by a series of dislocations. A small angle grain
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Fig. 14.4
Small angle grain boundary
formed from edge
dislocations (θ = inclination
angle)

boundary, consisting entirely of step dislocations, is illustrated in Fig. 14.4. The
inclination angle θ which the crystal domains make with each other, may be cal-
culated from the Burgers vector �b and the separation of the displacements D, since

θ =
�b
D

14.3.2
Stacking Faults

Stacking faults are disturbances of the normal layer sequence in the building of
a structure. They are most frequently observed in metals (ccp and hcp, Figs. 12.2
and 12.3) and in some layer structures (e.g. graphite, Fig. 12.26). Cobalt crystallises
with both cubic and hexagonal closest packing, and it also occurs that both stack-
ing sequences (ABCA...and ABA...) may alternate irregularly. Such an array is only
periodic in two dimensions and thus does not qualify to be called a crystal.

14.3.3
Twin Boundaries

D A twin is the regular growing together of crystals of the same sort. The crystals
lie in a symmetric relationship to one another.

The commonest twinning symmetry elements are 2 and m. Twins can arise during
crystal growth (growth twins) or through mechanical stress (deformation twins). In
Fig. 14.5, the twin element is a mirror plane parallel to (101).

A spinel twin is shown in Figs. 14.6a and 15.8. The twin element is a mirror plane,
which is the boundary of the two twin domains. The twin crystal in Fig. 14.6a may be
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Fig. 14.5
Twin with twin-plane (101)

Spheres in cubic
closest packing

Spheres in cubic
closest packing

Spheres in
hexagonal
closest packing

Fig. 14.6a,b Spinel twin on (111) (a). Sequence of layers of closest-packed O-atoms in the twin.
The twin-boundary consists of an interruption with hexagonal closest packing.(b)

described formally as the upper half of an octahedron rotated through 180◦ relative
to the lower half about a direction normal to (111) (=[111]!) (Figs. 14.7 and 15.8).
The twin is bounded by octahedral faces, and the twin plane m is also an octahedral
face (111). This is called a spinel twin about (111).

The spinel structure MgAl2O4 is a ccp array of O2– ions with Mg in [4] and Al
in [6] (see also Sect. 12.4.2). The octahedral faces lie parallel to the layers of closest
packed O2– ions (Fig. 12.2b). A spinel twin is thus built about a plane parallel to
these layers. Since the twin element m is one of these layers, it results in the alteration
in stacking shown in Fig. 14.6b. There are two crystals with ccp layers joined by a
lamella of hcp stacking, and this results in the observed twinning.

Fig. 14.7
Octahedron. Rotation of the
upper part by 180◦ about an
axis normal to the octahedral
face results in the spinel twin
in Fig. 14.6a
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Spinel twins are growth twins. Should only Al3+ ions approach a surface of O2–

ions, the hcp packing of corundum (Sect. 12.2.3) will result. If, on the other hand,
both Al3+ and Mg2+ are present, the O2– ions will continue to lay down ccp layers.
Thus, if the solution containing Al3+ becomes enriched with Mg2+, a region of hcp
growth can revert to the more stable ccp layering, and this may then continue to
grow as a twin to the original ccp layers.

Metals with the Cu structure can also produce twins about (111) which build in
the same way as a spinel twin.

From an aqueous solution, NaCl will crystallize with cube-shaped crystals. If,
however, a small amount of MnCl2 is added to the solution, these cubes can form
twins as shown in Fig. 14.8a. These “pyramids” in the twins are the vertices of
cubes. The twin plane is (111) and the twin element m. The NaCl structure may be
described as cubic closest packing of Cl– with Na+ in all the octahedral [6] holes. The

Spheres in cubic
closest packing

Spheres in cubic
closest packing

Trigonal
prism

Fig. 14.8a,b NaCl twin on (111) (a). Sequence of layers of closest-packed Cl-ions in the twin.
The twin-boundary consists of an interruption in which the coordination polyhedron is a trigonal
prism.(b)

Fig. 14.9
Plane of a real crystal with
mosaic blocks. ([1])
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twin plane is once again parallel to the layers of closest packed ions. The twin ele-
ment m, unlike that in spinel twinning, requires two successive layers to lie directly
above one another. The Mn2+ ions can coordinate 6 Cl– to form a trigonal prism
(Table 12.1d). If NaCl crystallizes from such a nucleus of MnCl6 polyhedra, it is
possible for two twin components of NaCl to continue to develop cube faces as in
Fig. 14.8.

In general, because of the occurrence of a small angle grain boundaries, a crystal
may be thought of as being built up of small mosaic blocks, which are only slightly
displaced relative to one another. Figure 14.9 shows such a mosaic formation, with
the inclination angles grossly exaggerated.
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15.1
Symbols for Crystallographic Items

a, b, c Crystallographic axes
a1, a2; a1, a2, a3 Symmetrically equivalent crystallographic axes
〈a〉 Set of symmetrically equivalent crystallographic axes (a1, a2; a1,

a2, a3)
a
b : 1 : c

b Morphological axial ratio

→
a ,
→
b ,
→
c Lattice vectors of the unit cell

→|a| = a0→∣∣b
∣∣ = b0→|c| = c0

⎫
⎪⎪⎬

⎪⎪⎭

Lengths of vectors
Lengths of cell edges

α =→b ∧→c
β =→a ∧→c
γ =→a ∧→b

⎫
⎪⎪⎬

⎪⎪⎭
Interaxial angles

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Lattice parameters

a0
b0

: 1 : c0
b0

Structural axial ratio

Crystallographic “triples”

x,y,z Coordinates of the vector
→
r = x

→
a +y

→
b = z

→
c

Coordinates of a point in the unit cell, 0 ≤ x,y,z <1

uvw Coordinates of the lattice translation vector
→
τ = u

→
a +v

→
b + w

→
c

Coordinates of a lattice point, integers and integers + 1/2; 1/3; 2/3

W. Borchardt-Ott, Crystallography, 3rd ed., DOI 10.1007/978-3-642-16452-1_15,
C© Springer-Verlag Berlin Heidelberg 2011
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[uvw] Indices of a set of parallel lattice lines. Indices of a zone axis or
parallel crystal edges

<uvw> Indices of a set of symmetrically equivalent lattice lines or directions
(hkl) Miller indices: Indices of a crystal face or of a set of parallel lattice

planes
(hkil) Bravais-Miller indices: indices of a crystal face, or of a set of parallel

lattice planes, for the hexagonal axes a1, a2, a3, c
{hkl} Indices of a set of symmetrically equivalent crystal faces (crystal

form) or lattice planes
{hkil} Indices of a set of symmetrically equivalent crystal faces (crystal

form) or lattice planes, for the hexagonal axes a1, a2, a3, c
hkl Laue symbol (indices): indices of a X-ray reflection from a set of

parallel lattice planes (hkl)
→
a∗,
→
b∗,→c ∗ Vectors of the unit cell in the reciprocal lattice

→|a∗| = a∗0→∣
∣b∗
∣
∣ = b∗0→|c∗| = c∗0

⎫
⎪⎪⎬

⎪⎪⎭

Lengths of vectors
Lengths of cell edges

α∗=
→
b∗ ∧→c ∗

β∗=→a ∗ ∧
→
c∗

γ∗=
→
a∗ ∧

→
b∗

⎫
⎪⎪⎬

⎪⎪⎭
Interaxial angles

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

Parameters of the reciprocal lattice

15.2
Symmetry Elements

15.2.1
Symmetry Elements (Planes)

Table 15.1 Symmetry elements (planes)

Graphical symbol
Symmetry
element

Glide
component |�g| Symbol ⊥ Plane of projection ‖ Plane of projectiona

Mirror plane
Plane of
symmetry

– m

Glide plane with
axial glide
component

→
a
2

a

→
b
2

b

→
c
2

c ·····················
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Table 15.1 (Continued)

Graphical symbol
Symmetry
element

Glide
component |�g| Symbol ⊥ Plane of projection ‖ Plane of projectiona

Double glide
plane with two
glide vectors

→
a
2 ,
→
b
2

e

Glide plane with
diagonal glide
component

→
a +

→
b

2

n

→
a +

→
c

2

→
b +

→
c

2

→
a +

→
b +

→b
c

2

“Diamond” glide
plane

→
a +

→
b

4

d
→
a +

→
c

4

·
→
b +

→
c

4

→
a +

→
b +

→b
c

4

a If the z-coordinate is not 0 or 1
2 , its value is given.

b In tetragonal and cubic systems only.

15.2.2
Symmetry Elements (Axes)

Table 15.2 Symmetry elements (axes)

Symmetry element Screw
component |�s|

Symbol Graphical symbol

Onefold rotation axis≡ identity – 1

Inversion center
Center of symmetry

– 1̄ oa

Twofold rotation axis – 2
Plane of Projection

Plane of projectiona

Twofold screw axis 1
2

→|τ | 21
Plane of Projection

Plane of projectiona
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Table 15.2 (Continued)

Symmetry element Screw
component |�s|

Symbol Graphical symbol

Threefold rotation axis – 3

Threefold rotoinversion axis – 3

Threefold screw axes
1
3

→|τ | 31

2
3

→|τ | 32

Fourfold rotation axis – 4

Fourfold rotoinversion axis – 4

Fourfold screw axes

1
4

→|τ | 41

2
4

→|τ | 42

3
4

→|τ | 43

Sixfold rotation axis – 6

Sixfold rotoinversion axis – 6

Sixfold screw axes

1
6 c0 61

2
6 c0 62

3
6 c0 63

4
6 c0 64

5
6 c0 65

a If the z-coordinate is not 0 or 1/2, its value is given.

Symmetry directions in the seven crystal systems: cf. Table 8.2
Characteristic symmetry elements in the seven crystal systems: cf. Table 9.9.



15.3 Calculation of Interatomic Distances and Angles in Crystal Structures 305

15.3
Calculation of Interatomic Distances and Angles
in Crystal Structures

Specific interatomic distances (e.g. bond lengths) and the angles between the
corresponding vectors (bond angles) are often of great interest.

Interatomic Distances: The distance 1 between atoms A (x1,y1,z1) and B (x2,y2,z2)
may be calculated by use of the following formulae:

Table 15.3 Calculation of interatomic distances

Crystal system l

Triclinic {(Δx)2a2
0 + (Δy)2b2

0 + (Δz)2c2
0 + 2ΔxΔya0b0 cos γ

+2ΔxΔza0c0 cos β + 2ΔyΔzb0c0 cos α}1/2

Monoclinic {(Δx)2a2
0 + (Δy)2b2

0 + (Δz)2c2
0 + 2ΔxΔza0c0 cos β}1/2

Orthorhombic {(Δx)2a2
0 + (Δy)2b2

0 + (Δz)2c2
0}1/2

Tetragonal {((Δx)2 + (Δy)2)a2
0 + (Δz)2c2

0}1/2

Trigonal or hexagonal {((Δx)2 + (Δy)2 −ΔxΔy)a2
0 + (Δz)2c2

0}1/2

Cubic {((Δx)2 + (Δy)2 + (Δz)2)a2
0}1/2

Fig. 15.1
The triangle formed by
atoms, A, B and C

Angles: The angle ω, relating the atoms A, B and C (Fig. 15.1) may be readily calcu-
lated by calculating the lengths of the three edges, 11, 12 and 13 of the triangle ABC
and applying the cosine rule:

cosω = 12
1 − 12

2 + 12
3

21113
.
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15.4
Crystal Forms

Figure 15.2 shows the 47 crystal forms.

1. Pedion
    (Monohedron) Fig. 9.10d

2. Pinacoid
    (Parallelohedron), Fig. 9.7g

3. Dihedron
    (Sphenoid (2), Dome (m))

4. Rhombic disphenoid

5. Rhombic pyramid,
    Exercise 9.15(5), Fig. 15.5(2)

6. Rhombic prism,
    Exercise 9.15(1), Fig. 15.5(1)

7. Rhombic dipyramid,
    Exercise 9.15(9), Fig. 15.5(3)

Fig. 15.2a Forms of the triclinic, monoclinic and orthorhombic systems

8. Tetragonal pyramid,
    Fig. 9.10b, c, Fig. 15.5(5)

9. Tetragonal disphenoid

10. Tetragonal prism,
      Fig. 9.7e, f, Fig. 15.5(4)

11. Tetragonal
      trapezohedron

12. Ditetragonal pyramid,
      Fig. 9.10a

13. Tetragonal
      scalenohedron Fig. 15.7(2)

14. Tetragonal dipyramid,
      Fig. 9.7c, d, Fig. 15.5(6)

15. Ditetragonal prism,
      Fig. 9.7b

16. Ditetragonal dipyramid,
      Fig. 9.7a

Some of the drawings of crystal forms are copied from Niggli [32]

Fig. 15.2b Forms of the tetragonal system
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17. Trigonal pyramid,
      Exercise 9.15(7), Fig. 15.5(8)

18. Trigonal prism,
      Exercise 9.15(3), Fig. 15.5(7)

19. Trigonal trapezohedron

20. Ditrigonal pyramid

21. Rhombohedron,
      Exercise 9.15(16), Fig. 15.7(1)

22. Ditrigonal prism

23. Hexagonal pyramid,
      Exercise 9.15(8), Fig. 15.5(11)

24. Trigonal dipyramid,
      Exercise 9.15(11), Fig. 15.5(9)

25. Hexagonal prism,
      Exercise 9.15(4), Fig. 15.5(10)

26. Ditrigonal scalenohedron
      Fig. 15.7(3)

27. Hexagonal trapezohedron
      Fig. 15.7(5)

28. Dihexagonal pyramid

29. Ditrigonal dipyramid

30. Dihexagonal prism

31. Hexagonal dipyramid,
      Exercise 9.15(12), Fig. 15.5(12)

32. Dihexagonal dipyramid

Fig. 15.2c Forms of the hexagonal (and trigonal) system
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33. Tetrahedron,
      Exercise 9.15(15), Fig. 15.6(1)

34. Hexahedron (cube),
      Exercise 9.15(13), Fig. 15.6(3)

35. Octahedron,
      Exercise 9.15(14), Fig. 15.6(2)

36. Tetartoid (Tetrahedral
      pentagon-dodecahedron)

37. Pyritohedron
      (pentagon-dodecahedron)
      Fig. 15.7(4)

38. Deltoid-dodecahedron
      (deltohedron)

39. Tristetrahedron

40. Rhomb-dodecahedron,
      Fig. 2.1, Fig. 15.3

41. Diploid
      (disdodecahedron)

42. Trisoctahedron

43. Trapezohedron
      (deltoid-icositetrahedron)

44. Gyroid

45. Hexatetrahedron
      (hexakistetrahedron)

46. Tetrahexahedron
      (tetrakishexahedron)

47. Hexaoctahedron
      (hexakisoctahedron)

Fig. 15.2d Forms of the cubic system
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15.5
Patterns for Polyhedra

15.5.1
Patterns to Construct Models of Polyhedra

To use the following patterns, photocopy the pages, enlarging them to A4 (U.S. let-
ter) size onto heavy paper (about 200 gsm). Cut the patterns out, and score the
fold-lines with a knife. Fold inwards along all of these lines. Then use the flaps to
glue the model together; a glue stick is useful for doing this.

Fig. 15.3 Rhomb-dodecahedron
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Fig. 15.4 Crystal of galena (PbS)
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Fig. 15.5 cf. Figs. 5.37 (1–12)
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Fig. 15.5 (Continued)
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Fig. 15.5 (Continued)
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Fig. 15.5 (Continued)
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Tetrahedron (1)

Octahedron (2)

Cube (hexahedron) (3)

Fig. 15.6 Regular polyhedra that are crystal forms and platonic solids
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Rhombohedron (1)

Fig. 15.7(1)–(5) Patterns (2)–(5) were drawn using the program “Kristall2000” (www.
kristall2000.de). cf. Exercise 9.15 (16)–(20)
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Tetragonal scalenohedron (2)

Ditetragonal scalenohedron (3)

Fig. 15.7(1)–(5) (Continued)
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Pentagonal dodecahedron (4)

Hexagonal trapezohedron (5)

Fig. 15.7(1)–(5) (Continued)
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Fig. 15.8 Spinel twin on (111) in two parts, cf. Figs. 14.6a and 14.7
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Regular dodecahedron (1)

Icosahedron (2)

Fig. 15.9 Two non-crystallographic polyhedra, after [17]



16 Solutions to the Exercises

The solutions to a few exercises are incomplete, as the drawings would require too
much space.

Chapter 2

2.1 22.41 (the molar volume)/6.023×1023 (the Avogadro number, NA)= 37,191 Å3,
which corresponds to a cube with an edge of 33.4 Å.

2.2 0.046%

2.3 No glass can be a crystal, nor any crystal a glass!

Chapter 3

3.2 (a), (b)

(c) (112).

W. Borchardt-Ott, Crystallography, 3rd ed., DOI 10.1007/978-3-642-16452-1_16,
C© Springer-Verlag Berlin Heidelberg 2011
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3.3 (a)

(b) [001].

3.4 (11̄1), (102), (12̄0), (1̄11̄)
[11̄1], [101̄], [2̄10], [012̄].

3.5 a) β = γ= 90◦
b) a0 = b0; α = β = 90◦
c) a0 = b0 = c0; α = β = γ

3.6 (hkl) and (h k l) belong to the same set of parallel planes; [uvw] and [u v w] are
opposite directions.

Chapter 4

4.1 (a)

(b) Cu2O, Z = 2, (c) a0

4
3 = 1,85Å, (d) 6,1g/cm3.

4.2 (a)

(b) 2.37Å (c) 3.20g/cm3

4.3 All combinations of 0, 1/2, and 1 from 0,0,0, to 1,1,1. Figure 3.5 includes a partial
solution; see also Sect. 7.2.1.
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4.4 x,0,0; 0,y,0; 0,0,z
x,1,0; 1,y,0; 1,0,z
x,0,1; 0,y,1; 0,1,z
x,1,1; 1,y,1; 1,1,z

4.5 x,y,0; x,0,z; 0,y,z
x,y,1; x,1,z; 1,y,z

4.6 x,y,1/4; x,1/2,z; x,1/2,1/4. 4.7

Chapter 5

5.1 (1) + (2)= Fig. 5.13a (lower part).

(3) (4)

5.2 (1)= Solutions-Exercise 5.3 (4) (2)= Solutions-Exercise 5.3 (10).

5.3
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5.4 Cf. Exercise 5.3 (6) and (10).

5.5 1. Trigonal pyramid and pedion.
2. Tetragonal dipyramid.
3. Cube, tetragonal prism and pinacoid, rectangular box, orthogonal axes.
4. Hexagonal prism and pinacoid, hexagonal axes.

5.6 Cf. Fig. 5.18.

5.7

5.8 (a) 60◦/229◦; 58◦
(b) 46◦/260◦; 30◦
(c) 44◦/32◦; 69◦

5.9 100◦; 44◦ and 280◦;−44◦, parallel

5.10 They lie in a plane, perpendicular to the zone axis, cf. Fig. 5.3.

5.11 Cf. Fig. 7.13f (432).

5.12 The stereograms are identical.

5.13 Cf. Fig. 5.11. The stereograms in Exercises 5.12 and 5.13 are geometrically
equivalent.

5.14 (The pole faces with negative l have not been included)
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5.15 Cube 1 + ; Cube 2 • ©

5.16 Cf. Orthographic projection in 0,0,0 of Fig. 10.15

5.17

5.18 A sphere.

Chapter 6

6.1 See pp. 326 and 327.

6.2
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6.
1
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6.
1



328 16 Solutions to the Exercises

6.3 Parallel.

6.4

6.5 1̄≡ Inversion center, 2̄ ≡ m, 3̄≡ 3 + 1̄, 5̄≡ 5 + 1̄, 6̄ ≡ 3⊥m, 10 ≡ 5 ⊥ m.

6.6 X̄ (odd): 1̄, 3̄, 5̄ . . . .

6.7 Trigonal, tetragonal, and hexagonal pyramid; trigonal dipyramid.

6.8 Rhombus,1 equilateral triangle, square, regular hexagon.

6.9 Cf. Fig. 5.38.

Chapter 7

7.1 (a) Cf. Figs. 7.6 and 6.5b.
(b) (3) a0 = b0 because of the 4-fold axis

(4) a0 = b0 because of the 6-fold axis
(c) (3) m in x, 0, z and 0, x, z; m in x, x, z and x, x̄, z.

(4) m in x, 0, z; x, x, z and 0, x, z.
7.2 (1) (2) Cf. Fig. 7.6a, (3) Cf. Fig. 7.6c,

(4) (5) Cf. Fig. 7.6d, (6) Cf. Fig. 6.5b,

1 Solids with rectangular or parallelogram cross-sections are not prisms in the crystallographic
sense as their faces are not all equivalent (cf. Sect. 9.2.1).
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(7) (8)

(9) No symmetry except lattice translation.

(10)

7.3 (a) (b)
(1) 2 in x,1/2,0, (2) m in x,y,1/2,
(3) 1̄ in 1/2,0,1/2, (4) m in x,y,0,
(5) 1̄ in 1/2,1/2,1/2, (6) 2 in 1/2,y,1/2,
(7) 2 in 0,1/2,z.

7.4 (a) Cf. Fig. 7.9f (right) and Table 9.11.7
(b) (1) 2 in x,1/2,1/2, (2) m in x,y,1/2,

(3) 2 in 1/2,1/2,z, (4) m in x,0,z.

7.5 (a) cubic P, (b) monoclinic P, (c) triclinic P, (d) orthorhombic P, (e) tetragonal P,
(f) hexagonal P.

7.6 (a) Cf. Figs. 7.7a–7.12a,
(b) Cf. Figs. 7.7d–7.12d,
(c) and (d) Cf. Figs. 7.18–7.23.

7.7 (a) 2/m2/m2/m
(b) and (c): 1/2,0,0; 0,1/2,0; 0,0,1/2→ halving of the unit cell.

1/2,1/2,0→ C-lattice; 1/2,0,1/2→ B-lattice;
0,1/2,1/2→ A-lattice
1/2,1/2,1/2→ I-lattice
1/2,1/2,0; 1/2,0,1/2; and 0,1/2,1/2→ F-lattice

7.8 I.

7.9 Fig. 7.11d

7.10 In each case, a= b + c + d.
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Chapter 9

9.1 (a) The directions parallel and antiparallel to a polar axis have distinct physical
properties.

(b) (1) 1̄, (2) m⊥ X, (3) 2⊥ X [also valid for 4 and 6].
(c) On stereograms, the ends of neighboring polar axes are indicated by open

and filled symbols (cf Fig. 7.10f for point group 422); in tables, a subscript
p is placed by the axis, e.g. �p or 3p.

9.2 No. Rotoinversion implies rotation through an angle followed by inversion. The
two ends of the axis remain equivalent.

9.3 1̄, 2/m, 3̄, 4/m, 6/m.

9.4
622 6 mm 6̄ m2 6/m 2/m 2/m

422 4 mm 4̄ 2m 4/m 2/m 2/m

32 3m 3̄ 2/m 3̄ 2/m

222 mm2 mm2 2/m 2/m 2/m

Cf. also Figs. 7.9e, f–7.12e, f.

9.5
23 4̄ 3m 432

2/m 3̄ 4/m 3̄ 2/m 4/m 3̄ 2/m

Cf. also Fig. 7.13e, f.

9.6 3m, 32, 3̄, 3.

9.7 Cf. Table 9.10

9.8 Cf. Table 9.9

9.9 (1) 4̄2m, (2) m, (3) 32, (4) 6 mm, (5) mm2, (6) 4̄3m.

9.10 Cf. Figs. 7.8 e, f–7.13e, f.

9.11 (1) 6/m 2/m 2/m, (2)–(4) mm2, (5) 2/m 2/m 2/m, (6) mm2, (7) m, (8) 6̄ m2,
(9) 4/m 3̄ 2/m, (10) 4 mm, (11) 4/m 2/m 2/m, (12) mm2, (13) 3m, (14) mm2,
(15) 4̄ 3m, (16) 3m, (17) mm2, (18) = (16), (19) = (15), (20) 3m, (21) & (22)
6̄ m2, (23) m, (24) mm2, (25) m, (26) 2, (27) 2, (28) 3m, (29) m, (30) & (31)
1, (32) 3̄ 2/m, (33) mm2, (34) 2, (35) mm2, (36) 4/m 2/m 2/m, (37) 4 mm,
(38) 4̄ 2m, (39) 2/m 2/m 2/m, (40) mm2, (41) 2/m, (42) & (43) m, (44) & (45)
2, (46)–(49) 1
(a) Enantiomers: (26)&(27), (30)&(31), (44)&(45), (46)&(47), (48)&(49).
(b) Polar molecules: (2)–(4), (6), (7), (10), (12), (14), (16)–(18), (20),
(23)–(31), (33)–(35), (37), (40), (42)–(49)
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9.12 (1) Bent (Fig. 9.17a), (2) pyramidal, (3) Table 9.11.14, (4) Fig. 9.19.

9.13 mm2 (0◦); 2 (0◦ < ϕ < 180◦);

2/m (180◦); 2 (180◦ < ϕ < 360◦).

9.14 Yes; mm2(+); 2/m(0).

9.15 (1) 2/m 2/m 2/m, (2) 4/m 2/m 2/m, (3) 6̄ m2, (4) 6/m 2/m 2/m, (5) mm2,
(6) 4 mm, (7) 3m, (8) 6 mm, (9) 2/m 2/m 2/m, (10) 4/m 2/m 2/m, (11) 6̄ m2,
(12) 6/m 2/m 2/m, (13) & (14) 4/m 3̄ 2/m, (15) 4̄ 3m, (16) 3̄ 2/m.

9.16 (3), (5), (6), (7), (8), (11), (15).

9.17 Faces + vertices= edges + 2 (Euler’s equation for polyhedra – cf. Table 9.11).

9.18 (a) Cf. Fig. 9.8.
(b) Ditetragonal dipyramid; from (hk0) arise (hkl) and (hk1̄) etc., or from

(210) arise, for example, (211) and (211̄) etc.
9.19 (a) Cf. Fig. 9.12a.

(b) Hexagonal dipyramid; from (hki0) arise (hkil) and (hki1̄) etc. or from
(213̄1) arise, for example, (213̄1) and (213̄1̄).

9.20 (1), (2): Table 9.4; (3), (4): Table 9.7;
(5), (6), (7): Table 9.5; (8), (9): Table 9.6.

9.21

(Part of Fig. 9.15)

The pole (113) corresponds to the crystal form trapezohedron or deltoid
icositetrahedron {311} or {hkk}. (311) lies in the asymmetric face unit.

9.22 6̄ m2: (m..); ditrigonal prism {hki0}: hexagonal prism {112̄0}

3̄ 2/m: (.m.); rhombohedron {h0h̄l}: hexagonal prism {101̄0}

6 mm: (.m.); hexagonal pyramid {h0h̄1}: hexagonal prism {101̄0}

(..m; hexagonal pyramid {hh2h1}: hexagonal prism {112̄0}

3m: (.m.), trigonal pyramid {h0h̄1}: trigonal prism {101̄0}.
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9.23

2 mm

432

4

23

2

43 m

Chapter 10

10.1

10.2 (a) x,y,1-z, (b) x,1/2-y,z, (c) 1/2+x,y,1/2-z, (d) 1/2-x,1/2+y,z,
(e) x,1/2-y,1/2+z, (f) 1/2-x,1/2+y,1/2+z, (g) 1/2+x,1/2+y, z̄,
(h) 1/2+x, ȳ,1/2+z, (i) 1/2-x,y, z̄, (j) 1-x, ȳ,1/2+z, (k) x̄,1/2+y,1/2-z,
(l) 1/2-x,1/2-y,z, (m) ȳ,x,1/4+z; x̄, ȳ,1/2+z; y,x̄,3/4+z, (n) ȳ,x-y,1/3+z;

x̄+y,x̄,2/3+z

10.3 The difference between the operation of a glide plane and a 21 is only evident
when a “fully asymmetric point” is considered. An example is the asymmetric
pyramid in the following figure.
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10.5

10.6



334 16 Solutions to the Exercises

10.7

(1)

(a) (2) x,y,z; x̄,ȳ,z̄,2 (3) 2, (4) P1̄, (5) on all 1̄, 1-fold.

(1)

(b) (2) x,y,z; x, ȳ,z; 1/2+x,1/2-y,z; 1/2+x,1/2+y,z, (3) 4, (4) Cm, (5) on m,
2-fold.

(1)

(c) (2) x,y,z; 1/2+x,1/2-y,z; 1/2-x,1/2+y,z; x̄,ȳ,z, (3) 4, (4) Pba2, (5) on 2, 2-fold.

(1)

(d) (2) x,y,z; x,1/2-y,1/2+z; x̄,1/2+y,1/2+z; x̄,ȳ,z, (3) 4, (4) Pnc2, (5) on 2, 2-fold.

2 Coordinates are given as in International Tables [16], i.e. instead of 1-x,1-y,1-z is written x̄,ȳ,z̄.
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(1)

(e) (2) x,y,z; x,1/2-y,z; 1/2-x,y,1/2+z; 1/2-x,1/2-y,1/2+z; 1/2+x,1/2+y,1/2+z; 1/2+x,ȳ,1/2+z;
x̄,1/2+y,z; x̄,ȳ,z. (3) 8, (4) Ibm2, (5) on 2, 4-fold.

(1)

(f) (2) x,y,z; 1/2-x,1/2-z; 1/2+x,y,1/2-z; x̄,y,z; x,ȳ,z̄; 1/2-x,ȳ,1/2+z; 1/2+x,ȳ,1/2+z; x̄,ȳ,z̄,
(3) 8, (4) P2/m 2/n 21/a, (5) on m and 2, 4-fold, on 1̄, 2-fold.

(1)

(g) (2) x,y,z; x̄,ȳ,z; ȳ,x,1/2+z; y,x̄,1/2+z; 1/2+x,1/2-y,z; 1/2-x,1/2+y,z; 1/2-y,1/2-x,1/2+z;
1/2+y,1/2+x,1/2+z. (3) 8, (4) P42bc, (5) on 2, 4-fold.
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10.8 (a) 1. x,y,z; x̄,ȳ,z; x-y,x,z+1/3; x̄+y,x̄,z+1/3; ȳ,x-y,z+2/3; y,x̄+y,z+2/3
2. 2 in 1/2,0,z; 1/2,1/2,z; 0,1/2,z; 0,1/2,z; 32 in 2/3,1/2,z; 1/3,2/3,z
3. 32,2

(b) 1. x,y,z; ȳ,x-y,z; x̄+y,x̄,z; x-y,x,z+1/2; x̄,ȳ,z+1/2
2. 21 in 1/2,0,z; 1/2,1/2,z; 0,1/2,z; 3 in 2/3,1/3,z; 1/3,2/3,z
3. 3, 21

10.9
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(c)

Coordinates are not given for those points which are reflected by m to loca-
tions below the plane x,y,0. The third coordinate of each triple must be taken
to have both a plus and a minus sign.

10.10 Cf. the solution to Exercise 10.9.

10.11 Cf. Figure 10.17: the diagram in (2) and the general position in (7)
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10.12 P21/c (Fig. 10.9 a), Pna21 (Fig. 10.12), Pmna (Exercise 10.7f).

10.13 This is absurd: an a-glide plane cannot be normal to the a-axis . . .

10.14 P1̄: (a) AB2, (b) Z= 1, (c) linear, (d)∞/mm,
(e) 1̄.
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Pm: (a) AB2, (b) Z = 1, (c) bent, (d) mm2,
(e) m.

P2/m: (a) AB4, (b) Z= 1, (c) planar [4]-coordi-
nation (rectangular), (d) 2/m 2/m 2/m,
(e) 2/m.

P 2/m 2/m 2/m: (a) AB8, (b) Z = 1, (c) [8]-coordination
(rectangular parallelepiped), (d) and (e)
2/m 2/m 2/m.

Chapter 11

11.1 (a) for all coordinate systems �a′ = −�a, �b′ = −�b, �c′ = −�c;

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

(b) (1) m, o, t, c; �a′ = −�a, �b′ = �b′, �c′ = −�c;

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

(2) h; �a′ = −�a− �b; �b′ = �b; �c = −�c;

⎛

⎝
1 0 0
1 1 0
0 0 1

⎞

⎠
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(c) h; �a′ = −�a− �b; �b′ = �b; �c′ = �c;

⎛

⎝
1 0 0
1 1 0
0 0 1

⎞

⎠

(d) r, c; 31
[111] : �a′ = �b; �b′ = �c, �c′ = �a;

⎛

⎝
0 0 1
1 0 0
0 0 1

⎞

⎠

32
[111] : �a′′ = �c; �b′′ = �a; �c′′ = �b;

⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠

(e) c; �a′ = �c, �b′ = −�b; �c′ = −�a;

⎛

⎝
0 0 1
0 1 0
1 0 0

⎞

⎠

(f) h; �a′ = �a+ �b, �b′ = −�a; �c′ = �c;

⎛

⎝
1 1 0
1 0 0
0 0 1

⎞

⎠

11.2 For inversion, 2-fold rotation and reflection, the direct and inverse matrices
are identical.

11.3 Yes.

11.4 (a) (1) t; 2a · m[110] = 4 3
c ; (42

c ≡ 2c) · 2a = 2b;
2c · m[110] = m[110];42m

(2) h; 2a · m[110] = 35
c ; (33

c ≡ 1) · 2a = ma;
1̄ · m[110] = 2[110] etc.; 3 2/m

(b) 31
c · mc = 65

c ; 6

(c) 41
c · 1 = 41

c ; (42
c ≡ 2c) · 1 = mc; 4/m. In 4/m, of course, 4 is implied.

11.5 (a) 2b ·mb = 1; (42
b ≡ 2b) ·mb ≡ 1; (63

c ≡ 2c) ·mc = 1
(b) mb · 1 = 2b
(c) 2b · 1 = mb; (42

b ≡ 2b) · 1 = mb; (63
c ≡ 2c) · 1 = mc

11.6 41
c , 42

c ≡ 2c, 43
c , 2a, 2b, m[110], m[110], 1. Order 8 (hkl) cf. Table 11.1.

Tetragonal scalenohedron.

11.7 Cf. the group multiplication tables for 32 and 3m. No. Group multiplication
table for 32
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1 31
c 32

c 2a 2b 2[110]

1 1 31
c 32

c 2a 2b 2[110]

31
c 31

c 32
c 1 2[110] 2a 2b

32
c 32

c 1 31
c 2b 2[110] 2a

2a 2a 2b 2[110] 1 31
c 32

c

2b 2b 2[110] 2a 32
c 1 31

c

2[110] 2[110] 2a 2b 31
c 32

c 1

Chapter 12

12.1 Cf. Table 12.1d and h.

12.2 (a) cub. P; Po: 0,0,0 (b) cub. I; W: 0,0,0 (c) hex. P; Mg: 0,0,0; 2/3,1/3,1/2
(d) cub. F; Cu: 0,0,0 (e) 63 in 1/3,2/3,z; 6̄ in 0,0,z

12.3 (a) 1.675 Å, (b) 1.37 Å, (c) 1.605 Å, (d) 1.28 Å.

12.4 1.63.

12.5 (a) 0.52, (b) 0.68, (c) 0.74, (d) 0.74.

12.6 (a) Cf. Fig. 12.20

(b) 1.546 Å, (c) 8, (d) each C is tetrahedrally coordinated by 4C. (e) The two
structures have the same geometry.

12.7 (a) Cf. 11.15a

(b) 1.42 Å, (c) 4, (d) 3.35 Å, (d); ρD = 3.50 g cm–3; ρG= 2.27 g cm–3
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12.8 Li+: 0.76 Å; Cl−: 1.81 Å; 0.79

12.9

12.10 1.95 Å (distances indicated by thick lines), 1.97 Å (dis-
tances indicated by thin lines), cf. Fig. 10.18.
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12.11

The 3̄ are orientated parallel to < 111 >.
(3) 4, (4) Fe–S: 2.27 Å; S–S: 2.06 Å.

12.12

(1)

(2) HgNH4Cl3, Z= 1, (3) Hg[6] (octahedron), NH[8]
4 (cube),

(4) Hg–Cl: 2.38 Å 2.96 Å, NH4–Cl: 3.36 Å.
(5) Only if the NH4

+ ions are considered spherical.
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12.13

(2) 4, (3) S is tetrahedrally coordinated by 4O.

Chapter 13

13.1
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13.2 Z= 2, W-type (Fig. 12.5).

13.3 23
2 / 3m

2 + 1 2 m, = / 3 1 3+ = 2 / 3m

432
43m
4 m32 m/ /

4 1 4 m, + = / 3 1 3, + = 2 1 2 m+ = /
4 1 4 m, + = / 3 1 3, + = m 1 2 m+ = / 4 m32 m/ /

13.4 (1) 111 4.077; 200 3.534; 220 2.495; 311 2.127; 222 2.038; 400 1.766; 331 1.621;
420 1.579; 422 1.442.
(2) a0 = 7.06 Å. (3) Z = 4. (4) Because Z = 4, so KI must have either the
rock salt or the sphalerite structure. As RA/RX for KI is 0.61 (see Fig. 12.7) the
structure should be the rock salt (NaCl) type.
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Axial system 10, 52, 119–120, 170,

174, 193
Azimuthal angle 40

B

Basis 23, 211
BaSO4 274
bcc 251, 266–267
Benzene 1, 147–148, 212, 214, 252
B-lattice 105–106
Bragg equation 277–278, 280–281, 284,

286–287
Bravais lattice 75–118, 123, 189, 195, 201
Bravais-Miller indices 139, 302
Buerger 55, 207, 266, 287
Burgers vector 295–297

C

C60 252–253, 271
CaCO3 structure 266
CaF2 258–259, 261, 292
CaF2 structure 258
CaF2-type 259
Calcite 266–268
Calcite structure 267
ccp 249–251, 253, 257–258, 266, 269,

297–299
Centered lattice 103–109, 119, 123, 189, 191,

281
Centrosymmetric 67–68, 95, 155,

208, 287
Characteristic symmetry elements 77–78, 80,

149–150, 173, 304
Chemical bonding 245–246, 264
Chiral 154
C-lattice 103, 105–107, 189
Cleavage 3, 293
Column vector 224–225
Combination of symmetry operations 68–69,

71
Complication rule 46, 48–49
Compound symmetry operation 68–71,

189–190, 193
Conformation 148–149, 168, 183
Continuous 6–7
Coordination

number 246, 251, 261, 266–268, 274
polyhedron 246, 248–251, 253, 256, 260,

274, 299
Coronene 147–148
Corundum structure 258, 299
Coulombic force 253
Coulomb’s law 253
Covalent bonding 246, 252
Cristobalite 262
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Crystal
aggregate 35
chemistry 245–275
data-determination tables 120
defects 293–300
edge 29–30, 301
face 19, 29–31, 34–35, 38–40, 68, 129–130,

154, 183, 282, 293, 296
form 31, 37, 44, 128–146, 166, 169, 212,

246
growth 32–35, 212, 248, 296–297
structure

Ag, Au 250
AlB2 27
Antifluorite 257–258
BaSO4 274
Benzene 214
CaF2 258–259, 261
Corundum-type (Al2O3), 258, 299
Spinel-type 256–257
Cristobalite 262
CsCl-type 258–259, 266
Cu2O 322
Cu3Au 265, 269
CuAu 265, 269
Cubic closest packing 248, 252, 257
Cuprite 26
Cu-type 248–249
Diamond 246, 271
Ethylene 214
Fluorite 257–258, 262
Forsterite 258
Graphite 271, 297
Hexagonal closest packing 249, 252,

257, 261
Hexamethylenetetramine 212–213, 252
HgNH4Cl3 343
LiCl 259
Mg-type 249
NaCl-type 266
NiAs-type 262
Pyrite 154
Quartz(high) 268
Quartz(low) 268
RbF 259
Rutile (TiO2) 211, 259, 263
SiO2 260, 262
Sphalerite 260–261
Tridymite 268
W-type 251
Wurtzite 260–261, 266
ZnS 156
α-Polonium 9, 251

structure determination 26
system 81–82, 84, 86, 88, 90, 92, 119–121,

123–126, 133, 139, 149–151, 166, 195,
198–201, 210, 226–233, 239,
282, 289

Crystallographic axes 10, 16, 44–45, 48, 50,
71, 97, 119–120, 223, 226

CsCl 258–259, 261, 266
CsCl structure 258, 266
CsCl-type 261
CsI 25–26, 248, 259, 291
CsI structure 25
Cu2O 322
Cu3Au 265, 269
CuAu 265, 269
Cubic

closest packing 248, 252, 256–257, 261,
298–299

coordination 248, 257–260, 262, 267
Cu-type 248–249

D

Debye-Scherrer line 278
Debye-Scherrer method 278–282
Degree of freedom 130, 132–133, 203, 290
Deltohedron 308
Deltoid-dodecahedron 308
Deltoid-icositetrahedron 308
Density 16, 25–26, 268, 282, 289, 294
Determinant 17–18
Determination of point groups 149–154
Diadochy 265
Diamond structure 246, 263
Dihedron 306
Dihexagonal dipyramid 139, 307
Dihexagonal prism 307
Dihexagonal pyramid 307
Dilatational transformation 266–267
Diploid 308
Dipole moment 155–156, 166
Discontinuous 6
Disdodecahedron 308
Dislocation 293, 295–297
Displacive transformation 268–269
Dissymmetric 154
Ditetragonal dipyramid 132–135, 138, 146,

306
Ditetragonal prism 132–133, 138, 146, 306
Ditetragonal pyramid 134, 138, 146, 306
Ditrigonal dipyramid 307
Ditrigonal prism 307
Ditrigonal pyramid 307
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Ditrigonal scalenohedron 307
Dome 139, 306

E

Edge dislocation 293, 295, 297
Eigensymmetry 146
Electrical conductivity 294–295
Enantiomeric 155
Enantiomorphism 154–155
Equant 31
Equivalent 10, 49, 63–67, 71, 75, 99, 101, 103,

109, 120, 126–130, 139, 147–148, 166,
169, 201–203, 205–208, 211, 213, 216,
218, 220, 225, 235, 246, 249, 252–253,
258, 293

Equivalent by translation 10, 63–64
Etch-figure 154, 296
Ethane 148–149
Ethylene 212, 214, 252
Ewald 282, 286–287
Ewald construction 286–287
Extinct 281

F

Face centered 103, 105–106
Face symmetry 129–130, 132, 138–139, 213
Finite group 242
Fivefold rotation axis 65
Fluorite structure 257–258, 262
Fluorite-type 257–258, 262
Forsterite structure 258
Fourfold rotation axis 65, 304
Frenkel defect 293–295
Full symbol 125

G

Galena 6, 29–30, 32, 36, 41, 50–51, 128, 310
Garnet 3
Gas 5–7, 252–253, 293, 295
General form 129–130, 132–135, 138–139,

188, 208, 213, 238, 265
General plane lattice 63, 76–77
General position 202–205, 207–208, 210,

213, 225, 235
Generating symmetry 146
Glancing angle 277–279, 287
Glass 4, 7–8
Glide component 190–191, 193, 203,

302–303

Glide plane 69, 71, 77, 99, 108, 189–195,
198–199, 203–204, 208, 210, 223,
234–281, 302–303

Glide reflection 69, 189–190, 233, 239
Gnomonic projection 50–51
Goldschmidt 46, 245, 251
Goniometer 38–40, 48, 58
Graphite structure 271
Great circle 36–38, 40–42, 45, 56
Group

Infinite 166–167, 239
Laue 287–289
multiplication table 241–243

Growth rate 34
Gypsum 4, 61–62
Gyroid 308

H

Habit 30–31, 34
Handedness 193
Hardness 4
hcp 249, 251, 265–267, 297–299
Hermann 126, 153, 201
Hermann-Mauguin symbol 126, 153, 201
Heteropolar bonding 245
Hexagonal

closest packing 249, 252, 257–258, 261,
297–298

dipyramid 139, 307
prism 31, 53, 144, 154, 187, 307
pyramid 307
trapezohedron 186, 307, 319

Hexahedron 154, 308
Hexakisoctahedron 308
Hexakistetrahedron 308
Hexamethylenetetramine 212–213, 252
Hexaoctahedron 308
HgNH4Cl3 343
{hkil} 302
(hkil) 139, 302
{hkl} 129–130, 132–133, 135, 138, 145, 302
(hkl) 14–17, 19, 21, 26, 30, 32, 45–46, 48,

129–130, 132, 134–135, 138, 145, 223,
225–233, 278–282, 284, 287, 302

Homogeneous 6–7
Homopolar bonding 245, 263

I

Ideal crystal 293–294
Idea of sphere packing 245
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Identical 10–11, 23, 64, 70–71, 75–77, 106,
123, 125, 190, 193, 239, 242, 249

Identical points 10–11, 75, 123, 239
I-lattice 105–108, 189, 208, 251, 281
Indexing 14–15, 44–50, 129, 133, 139
Interaction principle 245
International symbol 65, 121, 127, 153
International tables for crystallography 1,

139, 206, 209–211
Interrelationship of point groups and space

groups 212–214
Inverse 224, 226, 238, 243
Inversion 62–63, 67–71, 75, 95–97, 99, 101,

103, 108, 124, 150, 166, 203, 208, 210,
238, 287, 303

Inversion center 62, 67–71, 75, 95–97, 99,
101, 103, 108, 124, 150, 166, 203, 208,
210, 287, 303

Ionic bonding 246
Ionic radii 253–254, 289
Ionic structure 253–263
Isomorphism 264–266
Isotropic 4, 6–7, 32
Isotypes 264–266

J

JCPDS 282–283

K

Kyanite 4

L

Lattice
line 12–13, 17–20, 29–30, 45, 64–65, 67,

106, 301
parameter 10–11, 13, 30, 44, 75, 78, 109,

277, 281, 286, 301
plane 11, 14–19, 29–30, 32, 45, 63–67, 78,

80, 96–97, 99, 103, 105–108, 277–279,
281–282, 284–285, 287, 289, 296, 302

point 9, 11–16, 63, 66–67, 95–96, 103,
105–107, 109, 123, 189, 284, 301

translation 9–11, 23, 30, 61, 64–65, 67–68,
75, 96, 123, 128, 190–191, 194–195,
205–206, 213, 234, 249, 301

A-lattice 105, 107
F-lattice 106–108, 208, 248–249, 267
Laue 277, 281, 287–289, 292, 302
Laue symbol 281, 302
Law constancy of the angle 35

Limiting form 129–130, 138–139
Line defect 293, 295–296
Line lattice 9–10
Liquid 5–8, 293, 295

M

Magnesium 150
Malonic acid 68
Metallic bonding 245–246, 248
Metal structure 248–252
Methane 150
Mg-type 249
Miller indices 14–15, 30, 34, 44–45, 129, 139,

154, 227, 279, 281, 284, 302
Mirror plane 38, 62, 66–67, 69, 75–77,

95–97, 99, 101, 105, 107, 119, 125, 130,
132, 147, 150, 153, 156, 166–167, 190,
195, 199, 202–203, 207–208, 210, 223,
226, 297, 302

Mixed crystals 265
Molecular dipole moment 166
Molecular structure 252
Molecular symmetry 147–149, 166, 212, 252
Monochromatic beam 277
Monoclinic 80, 82, 96–97, 103, 105–108,

118, 120–121, 124–125, 139–146,
173, 197–200, 208, 226, 282, 284–285,
305–306

Morphological axial ratio 50, 301
Morphology 7, 29–51, 64, 75, 120, 128, 154,

189, 212, 282
Mosaic blocks 299–300
Multiplicity 202–204, 206, 208, 210, 212–213

N

NaCl 3, 155–156, 248, 256–257, 259,
261–262, 264, 266, 291, 295–296,
299–300

NaCl structure 256–257, 262, 266, 295, 299
NaCl-type 266
Naphthalene 1, 147–148
Nepheline 154
NiAs structure 262
NiAs-type 258, 262
Noble gas structure 252–253
Non-crystallographic point group 147, 253
Nucleation 32–33
Nucleus 32–35, 253, 300
Number of chemical formula units per unit

cell 25, 289
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O

Octahedral coordination 248, 250, 256–258,
262

Octahedral hole 250, 256–258, 265–266, 290
Octahedron 44, 169, 250–251, 256–257, 262,

298, 308, 315
Olivine structure 265
One-circle reflection goniometer 39–40
Optical activity 154–155
Order-disorder transformation 269–270
Order (of a group) 101, 103, 126, 238
Order (of a rotation axis) 63, 95
Orthographic projection 50–51
Orthorhombic 84, 97–99, 101, 106, 108,

120–121, 124–125, 133, 139–146,
189–192, 200, 203, 212, 226, 278–280,
305–306

P

Packing efficiency 8, 250–252, 261, 263,
272–273

Parallelohedron 306
Pauling’s third rule 261–262
PDF index card 283
Pentagon-dodecahedron 308
Periodically homogeneous 7
Phenanthrene 147–148
Physical property 4
Piezoelectricity 155–156
Pinacoid 31, 34, 37–38, 53, 64, 68, 133, 139,

154, 306
Plagioclase 265
Planar 31, 147, 207–208, 268
Plane defect 293, 296–300
Plane lattice 9–10, 63, 67, 75–80, 107
Plastic deformation 252, 296
P-lattice 12, 80–99, 101, 103, 105–108, 118,

123, 206, 213, 251, 272, 282, 284–285
Pleochroism 3–4
Point

defect 293–295
equivalent by translation 10, 63
group 38, 120, 123–188, 190, 195,

197–201, 203–204, 208, 210, 212–214,
223, 225–226, 237, 241–243, 253, 287,
289

lattice 9, 11–12, 14, 63, 66–67, 95–96, 103,
105–107, 109, 123, 189, 284, 301

symmetry elements 71, 75, 77, 96, 99, 101,
103, 123, 202, 204, 208

symmetry operation 71, 123, 213, 227,
238–239

Polar 65, 149–150, 153–156, 245, 263
Polar axis 155–156

pole 42–43
Pole distance 39–40
Pole of the face 138
α-Polonium 9, 251
Polymorphism 266–271
Polytypism 271
Powder diagram 279–280, 282
Powder pattern 280–281
Precession method 287
Principle of closest packing 245
Prismatic 31
Pyrene 147–148
Pyrite 154
Pyritohedron 169, 308
Pyroelectricity 156–166

Q

Quartz
high 268, 270
low 155, 268, 270
structure 268

R

Radius ratio 247, 253, 256–261
Rate of crystal growth 32
Real crystal 293, 299
Reciprocal lattice 282–288, 302
Reconstructive transformation 267–269
Reflection 39–40, 48, 61–63, 66, 68–71,

189–191, 202, 210, 233, 238–239,
277–278, 280–282, 286–287, 289, 302

Reflection goniometer 39–40, 48
Repetition operation 9, 61
Rhomb-dodecahedron 308–309
Rhombic dipyramid 306
Rhombic disphenoid 306
Rhombic prism 139, 238, 306
Rhombic pyramid 208, 306
Rhombohedral 107, 120, 226, 267, 271
Rhombohedron 107, 267, 307, 316
R-lattice 107–108, 123
Rotation 38–39, 44, 61–66, 68–71, 75, 80,

95, 97, 119, 124–125, 147–150, 153–156,
166–167, 189, 193–195, 199, 207,
223–226, 233, 237–239, 268, 287, 298,
303–304
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Rotation axis 39, 62–66, 69, 95, 97, 125, 147,
150, 155–156, 167, 194, 199, 207, 223,
226, 303–304

Rotoinversion 38, 70–71, 119, 125, 153, 193,
210, 226, 304

Rotoinversion axis 70–71, 125, 210, 226, 304
Rotoreflection 71
Rotoreflection axis 71
Row Vector 225
Rutile 146, 211–212, 248, 256, 259, 262–263,

291
Rutile structure 212, 262–263
Rutile-type 259

S

Schonflies symbol 126–127, 153, 201, 210
Schottky defect 294
Screw

axis 69, 189, 193, 205, 210, 233–234, 268,
303

component 193–195, 303–304
dislocation 293, 296
rotation 69, 189, 193, 233, 239

Short symbol 125, 199
Single crystal 35, 64, 264, 287, 289, 296
SiO2 structure 262
Site symmetry 202–203, 205, 211–214
Sixfold rotation axis 65, 304
Small angle grain boundaries 293, 296–297,

300
Small circle 40–41, 44, 67
SnO2 structure 290
Solid solution 264–266, 269, 293–295
Space group

C2 198, 200
C2/c 199
C2/m 199
Cc 198, 200
Cm 199–200
Ibm2 335
P1̄ 96, 108, 124, 200
P1 200, 239
P21 199–200
P2 199–200
P21/b 21/c 21/n 235
P21/c 199
P21/m 199–200
P2/c 199–200
P2/m 2/m 2/m 99, 124, 190
P2/m 2/n 21/a 335
P2/m 97–99, 103, 124, 190, 198–200,

203–206

P422 200
P42bc 200
P4/m 3̄ 2/m 124, 206–207, 220, 251, 261,

291
P4/m 2/m 2/m 101, 124
P61 201, 205–206
P6/m 2/m 2/m 101, 124
Pba2 200
Pc 199–200
Pm 199–200
Pmm2 200–203, 208
Pna21 200, 203–204, 208
Pnc2 200
R 3̄ 2/m 108

Space lattice 9–16, 61, 65–68, 75, 80–94, 120,
166

Special form 120, 130, 133, 138, 271
Special plane lattice 75–79
Special position 145, 202–204, 210–213
Sphalerite 156, 260–261, 263, 266, 269
Sphalerite-type 266
Sphenoid 139, 146, 306
Spinel structure 256–257, 298
Stacking faults 293, 297
Statistically homogeneous 6–7
Steno 35
Stereographic projection 36–38, 40–42, 44,

48, 50–51
Structural axial ratio 50, 301
Subgroup 120, 124, 126, 133, 195, 198–199,

238–239
Substitutional solid solution 265
Substitution defect 294
Supergroup 126, 223, 238, 239
Superstructure 265, 269
Symmetry

direction 97–101, 103–104, 108, 120–121,
123, 125, 130, 134, 151, 153, 210, 304

element 61–64, 66, 69–71, 75, 77–78, 80,
95–96, 108, 119–120, 123–125, 128–132,
134–135, 147, 149, 153, 189, 198–199,
201–202, 204, 206–208, 210, 212, 223,
226, 234, 237, 239, 241, 297, 302–304

operation 61–64, 66–71, 96, 101, 123,
126, 129, 132, 134–135, 138, 146,
156, 189–190, 193, 201, 204, 210, 213,
223–239, 242

operation matrix 223–237
principle 245
rules 95, 124–125, 243, 287, 289
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T

Tabular 31
Tartaric acid 155–156
Tautozonal 31–32
Tetragonal

dipyramid 41, 132–135, 138, 146, 306
disphenoid 138, 146, 306
prism 37–38, 99, 129–130, 132–133, 138,

146, 306
pyramid 37–38, 41, 129–130, 134–135,

138, 146, 306
scalenohedron 135, 146, 306
trapezohedron 135, 146, 238, 306

Tetrahedral coordination 260–263
Tetrahedral hole 249–250, 256–258, 261
Tetrahedral pentagon-dodecahedron 308
Tetrahedron 169, 188, 260, 263, 268, 308,

315
Tetrahexahedron 308
Tetrakishexahedron 308
Thermal conductivity 4, 6, 252
Threefold rotation axis 64, 304
TiO2 58, 211, 259, 263
Topaz 44–50
Tourmaline 156
Transformation of first coordination 267
Transformation involving changes in type of

bonding 271
Transformation in secondary

coordination 268, 270
Translational subgroup 239
Trapezohedron 135, 146, 238, 306–308
Triclinic 80–81, 96, 108, 120–121, 124–125,

139–146, 173, 200, 226, 305–306
Tridymite structure 268
Trigonal 88, 107–108, 119–121, 123–125,

139–140, 144, 147, 200, 226, 258,
299–300, 305, 307

Trigonal dipyramid 147, 307
Trigonal prism 258, 299–300, 307
Trigonal pyramid 226, 307
Trigonal trapezohedron 307
Trisoctahedron 308
Tristetrahedron 308
Twin 293, 297–300, 319

Twin element 297–300
Two-circle reflection goniometer 39–40, 48
Twofold rotation axis 303

U

Unit cell 10–12, 23–26, 30, 32, 67–68, 75, 80,
96–97, 99, 103, 105–107, 109, 202–207,
210, 213, 248–252, 262, 271, 281–282,
286, 289, 301–302

Unit length 48, 50
Unit mesh 10, 16, 65–67, 75–78, 80, 97, 99,

107
uvw 11–14, 17, 301
[uvw] 12–13, 16, 19, 26, 30, 32, 45, 99, 129,

223, 226, 301
<uvw> 129, 301

V

Van der Waals bonding 245–246
Vitamin B12 253

W

Whisker 296
W-type 251
Wulff net 40–45
Wurtzite structure 261

X

X-ray 277–292, 302
X-ray diffraction 277–292
x, y, z 23, 25–26, 191, 193, 201–208, 224–228,

234, 236, 301

Z

Zinc blende 260
ZnS 156
Zonal equation 16–19, 32, 45–46
Zone

axis 31, 36, 39, 42, 45, 301
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