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Summary

Annually, motor vehicle crashes world wide cause over a million fatalities and over a
hundred million injuries. Of all body parts, the head is identified as the body region
most frequently involved in life-threatening injury. To understand how the brain
gets injured during an accident, the mechanical response of the contents of the head
during impact has to be known. Since this response cannot be determined during an
in-vivo experiment, numerical Finite Element (FE) modelling is often used to predict
this response. Current FE head models contain a detailed geometrical description of
anatomical components inside the head but lack accurate descriptions of the brain
material behaviour and contact between e.g. skull and brain. Also, the numerical
solution method used in current models (explicit Finite Element Method) does not
provide accurate predictions of transient phenomena, such as wave propagation, in
the nearly incompressible brain material.
The aim of this study is to contribute to the improvement of FE head models used to
predict the mechanical response of the brain during a closed head impact. The topics
of research are the accuracy requirements of explicit FEM for modelling the dynamic
behaviour of brain tissue, and the development of a constitutive model for describing
the nearly incompressible, non-linear viscoelastic behaviour of brain tissue in a FE
model.
The accuracy requirements of the numerical method used depend on the type of
mechanical response of the brain, wave propagation or a structural dynamics type
of response. The impact conditions for which strain waves will propagate inside
the brain have been estimated analytically using linear viscoelastic theory. It was
found that shear waves (S-waves) can be expected during a traffic related impact,
(frequencies between 25 and 300 Hz), while compressive waves (P-waves) are
expected during short duration, high velocity, ballistic impacts (frequencies between
10 kHz and 3 MHz). For this reason FE head models should be capable of accurately
replicating the wave front during wave propagation, which poses high numerical
requirements.
An accuracy analysis, valid for one-dimensional linear viscoelastic material behaviour
and small strains, revealed that modelling wave propagation phenomena with explicit
FEM introduces two types of errors: numerical dispersion and spurious reflection.
These errors are introduced by the spatial and temporal discretisation and cause
the predicted wave propagation velocity to be lower than in reality. As a result,
strain and strain rate levels will deviate from reality. Since both strain and strain

xi
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rate are associated with the occurrence of brain injury they should be predicted
correctly. However, given the element size in current state of the art 3-D human
head models, accurate modelling of wave propagation is impossible. For accurate
modelling of S-waves the typical element size in head models (5 mm) should be
decreased by a factor of ten which can be accomplished by mesh refinement. For
accurate modelling of P-waves the typical element size should be decreased by a
factor of hundred. For this reason mesh refinement is not feasible anymore and
developments on spatial and temporal discretisation methods used in the Finite
Element Method are recommended. As these developments are beyond the scope
of this research, shear behaviour is emphasised in the remainder of the study.
The mechanical behaviour of brain tissue has been characterised using simple shear
experiments. The small strain behaviour of brain tissue is investigated using an
oscillatory strain (amplitude 1%). Frequencies relevant for impact (1-1000 Hz) could
be obtained using the Time/Temperature Superposition principle. Strains associated
with the occurrence of injury (20% simple shear) were applied in stress relaxation
experiments. It was found that brain tissue behaves as a non-linear viscoelastic
material. Shear softening (i.e. decrease in stiffness) appeared for strains above 1%
(approximately 35% softening for shear strains up to 20%) while the time relaxation
behaviour was nearly strain independent.
A constitutive description capable of capturing the material behaviour observed in
the material experiments was developed. The model is a non-linear extension of
a linear multi-mode Maxwell model. It utilises a multiplicative decomposition of
the deformation gradient tensor into an elastic and an inelastic part. The inelastic,
time dependent behaviour is modelled using a simple Newtonian law acting on the
deviatoric part of the stress only. The elastic, strain dependent behaviour is modelled
by a hyper-elastic, second order Mooney-Rivlin material formulation. Although
isotropy was assumed in this study, the model formulation is such that implementing
anisotropy, present in certain regions of the brain, is possible. Brain tissue material
parameters were obtained from small strain oscillatory experiments and the constant
strain part from the stress relaxation experiments.
The constitutive model was implemented in an existing explicit FE code (MADYMO).
In view of the nearly incompressible behaviour of brain tissue, Heun’s (predictor-
corrector) integration method was applied for obtaining sufficient numerical accuracy
of the model at time steps common for head impact simulations. As a first test, the
initial part of the stress relaxation experiments, which was not used for fitting the
material parameters, was simulated and could be reproduced successfully.
To test both the numerical accuracy of explicit FEM and the constitutive model
formulation at conditions resembling a traffic related impact a physical (i.e.
laboratory) head model has been developed. A silicone gel (Dow Corning Sylgard
527 A&B) was used to mimic the dynamical behaviour of brain tissue. The gel
was mechanically characterized in the same manner as brain tissue. It was found
that silicone gel behaves as a linear viscoelastic solid for all strains tested (up to
50%). Its material parameters are in the same range as the small strain parameters
of brain tissue, but viscous damping at high frequencies is more pronounced. It was
concluded that for trend studies and benchmarking of numerical models the gel is
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a good model material. The gel was put in a cylindrical cup that was subjected to
a transient rotational acceleration. Gel deformation was recorded using high speed
video marker tracking. The gel was modelled using the new constitutive law and the
physical model experiments were simulated. Good agreement was obtained with
experimental results indicating the model to be suitable for modelling the nearly
incompressible silicone gel. It was shown that correct decoupling of hydrostatic and
deviatoric deformation in the stress formulation is necessary for correct prediction of
the response of the nearly incompressible material.
Finally, the constitutive model was applied in an existing 3-D FE model of the human
head to asses the effect of non-linear brain tissue material behaviour on the response.
The external mechanical load on the 3-D FE head model (an eccentric rotation) was
chosen such as to obtain strains within the validity range of the material experiments
(20% shear strain). This resulted in external loading levels values below the ones
associated with injury in literature. A possible explanation for this is the fact that
shear stiffness values, commonly used in head models in literature, are too high
in comparison with material data found in recent literature and own experiments.
Also the estimated injury threshold of 20% strain, indicated by studies on isolated
axons, might be to conservative. Another possible explanation may be that a certain
degree of coupling between hydrostatic and deviatoric parts of the deformation in the
stress formulation might exist in reality which is not modelled in current constitutive
formulation.
Application of the non-linear behaviour in the model influences the level of stresses
(decrease by 11%) and strains (increase by 21%) in the brain but not the temporal
and spatial distribution. However, it should be noted that these effects on stresses and
strains hold for one specific loading condition in one specific model only. For a more
general conclusion on the effects of non-linear modelling in brain tissue, application
in different models is recommended.
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Chapter 1

General introduction

A general introduction in the field of injury biomechanics is provided. First epidemiology and the
importance of head injury biomechanics is presented. To facilitate a discussion on the development
of head injuries during impact basic anatomy of the head is presented. Furthermore, the events
during an impact are classified as a mechanical part which leads to an internal mechanical
response of the brain inside the head and a subsequent part which involves the development of
injury, the injury mechanism. This classification is used to point out the limitations of existing head
injury criteria and to discuss the various types of head models used for improving insight in the
relation between a load on the head and the resulting injury. The present study focuses on gaining
insight in the internal mechanical response. Finite Element (FE) models are found to be a powerful
tool to investigate the mechanical response of the head. When used in combination with biological
or physical models they can provide insight into which mechanical quantities are responsible for the
occurrence of injury. If this knowledge is established they even can predict the occurrence of injury.
The status of FE head modelling is reviewed in a separate section paying attention to geometry,
constitutive behaviour, interface conditions between various structures inside the head, numerical
solution methods and experimental validation. The scope of the present research, presented in the
final section, is on the improvement of FE models, in particular on constitutive modelling of brain
tissue and on numerical artefacts present in the predictions of current FE head models.

1



2 Chapter 1

1.1 Introduction to head injury biomechanics

1.1.1 Epidemiology of head injury

Annually, motor vehicle crashes worldwide cause over a million fatalities and over a
hundred million injuries. In 1998, traffic accidents were the leading cause of death for
the age groups of 1 to 34 years in the United States [163]. Focusing on the European
Union (EU) countries only, there were about 45000 reported fatalities and 1.5 million
casualties in 1995 [47]. The socio-economic costs (the pure economic costs plus the
value of lost human lives and seriously injured persons) of traffic accidents in the EU
for 1999 were estimated to exceed 160 billion Euro [48].
Of all body parts, the head is identified as the body region most frequently involved in
life-threatening injury in crash situations [46]. In the United States, 2 million cases
of traumatic brain injury (TBI) were recorded in 1990, 51600 of which resulted in
fatal outcome [160]. Despite development of injury protection measures (belts, air
bags, helmets), and increase of governmental regulations, traffic accidents were still
responsible for about 40% of all TBI cases in the United Kingdom in 1997 [157].
Furthermore, about one third of the hospitalized victims suffered from permanent
disability [31; 158]. As a result, TBI due to crash impacts provide a high contribution
to societal costs [32; 166]. For prevention of head injuries, the mechanism how an
impact on the head leads to injury has to be understood. This is the subject of study
in the field of head injury biomechanics.

1.1.2 Basic anatomy of the head

To ease the discussion on the mechanics of head injuries, the relevant aspects of the
anatomy of the head are presented here. The head consists of a facial area and the
cranial skull surrounded by the scalp. The face is not of interest in this study and will
not be discussed. The outer surface of the head is covered by the scalp, which is a
soft tissue layer with a thickness of about 5 to 7 mm. Underneath, the cranial skull,
or neuro cranium, is present. It is the part of the skull that covers the brain. Further

Dura mater
Skull

Subdural space
Arachnoid

Brain
Pia mater
Subarachnoid space

Cerebellum
Spinal cord

oblongata
Medula
Pons
Midbrain

Cerebrum

Brain
stem

Falx cerebrum

Tentorium
Foramen Magnum

Figure 1.1: Overview of important anatomical components of the head. based on [121]. Left:
Coronal section of the meninges of the brain. Right: Principal parts of the brain in
sagittal section.
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inwards, three membranes are present that surround the brain: the meninges. From
outside to the inside these are: the dura mater, the arachnoid and the pia mater
(refer to Figure 1.1). These meninges are separated from each other by subdural
and subarachnoidal spaces respectively. These spaces contain water-like liquid, the
cerebrospinal fluid (CSF). It is believed that this fluid plays an important role in the
shock absorbing capacities of the head. Blood vessels called bridging veins, cross
the meninges. The brain itself, consists largely of a network of nerve cells, neurons
and supportive cells, glia. These are functionally arranged into areas that are gray
or white in color. Gray matter is composed primarily of nerve cell bodies (neurons)
while white matter is composed of myelinated nerve cell processes (axons). Also
blood vessels are present inside the brain tissue. The brain is structurally separated
in several parts. The most important ones are, the cerebrum, the cerebellum, and the
brain stem which consists of midbrain, pons and medulla oblongata. It connects the
brain to the spinal cord via an opening in the skull called foramen magnum (see Figure
1.1). The cerebrum and cerebellum are divided in left and right hemispheres by falx
cerebri and the falx cerebelli respectively. These are invaginations of the dura mater.
A similar invagination, the tentorium, separates cerebrum and cerebellum. Also CSF
filled cavities are present in various parts of the brain, the ventricles.

1.1.3 Load-injury scheme

The processes leading to head injury during an accident are shown schematically
in Figure 1.2. The mechanical load applied on the head during an accident is
called the external mechanical load. The nature of this load acting on the head
itself can be influenced by the application of injury prevention measures such as
helmets and airbags. The external mechanical load can be a contact load by an
object hitting the head or a non-contact (inertial) load, transfered to the head via the
neck (acceleration). Depending whether the object hit penetrates the head or not,
contact loads can be categorised as penetrating impact and non-penetrating (or blunt)
impact. This research will focus on closed head impacts, i.e. transient loading due to

External mechanical head load

Internal mechanical response

Injury mechanism

Load transfer

Load application

ACCIDENT

INJURY

Figure 1.2: Load-injury scheme showing stages from accident to head injury. Labels on the
right indicate mechanisms between stages.



4 Chapter 1

non-penetrating impacts or inertial loading. The external mechanical load causes an
internal mechanical response of the various anatomical components of the head which
can be expressed in local quantities such as stresses and strains. When the internal
mechanical response exceeds an injury tolerance level of an anatomical component,
injury to this component occurs via an injury mechanism (i.e. the sequence of
physiological changes leading to injury due to a mechanical stimulus). Different parts
of the head may be injured through a variety of different injury mechanisms.
This research will focus on traumatic brain injury (TBI). The internal mechanical
response of the brain is a key quantity for understanding the transformation of the
external mechanical load to injury. It originates from the external mechanical load
that is transfered from the scalp to the brain tissue via the skull and an interface
consisting of meninges and CSF. The internal mechanical response is influenced by
magnitude and time duration of the external mechanical load. The magnitude of
the external mechanical load has to be such that stresses and/or strains associated
with injury do occur inside the brain tissue. This means that certain tolerance levels
have to be exceeded. The duration of an impact determines the nature of the strain
field in the brain. Short duration impacts are defined here as impacts in which the
characteristic loading time is on the order of the characteristic time period of the
head system (determined by the eigenfrequencies). They occur when a projectile
with low mass (e.g. a bullet) hits (the protected) head at high velocity. These will
also be called ballistic impacts. The internal mechanical response of the brain then
is dominated by wave propagation. This means that a wave front that consists of a
large stress or strain gradient propagates in the brain tissue. The behaviour of the
strain or stress field at the wave front is important. The propagation of stress waves
inside brain tissue has, since long, been hypothesised to be of importance in the
internal mechanical response [54; 59; 62; 114; 115] but, to this authors knowledge,
it has never clearly been pointed out under which circumstances wave propagation is
likely to be present in the internal mechanical response. When the head hits a heavy
object with lower velocity, a longer duration impact occurs. The internal mechanical
response then is called of structural dynamics type. Wave fronts propagating as such
cannot be distinguished anymore, instead the response will be more of a low gradient
type. At even slower loading conditions a quasi-static response will occur in which
inertia effects can be neglected. However, this type of response is not relevant for
impact conditions.

1.1.4 Head injury criteria

To assess the risk of sustaining a head injury, and to assess the effectiveness of
potential protection measures, an injury criterion is needed (i.e. a physical parameter
which correlates well with injury severity of the body part in question [115]). The
first extensive quantification of head tolerance to impact is the Wayne State Tolerance
Curve (WSTC) [66; 67; 85]. The WSTC shows that, in linear acceleration loading,
the risk of brain damage due to non-penetrating impacts is determined by both
the magnitude and the duration of the acceleration pulse. Short duration, high
acceleration impacts (2 ms and 400 g respectively) lead to similar injury risk as
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long duration, low acceleration impacts (30 ms and 80 g respectively). The curve
is developed using a combination of linear skull fracture data in (embalmed) cadaver
heads (short duration impacts), brain concussion data in animal heads (medium
duration impacts) and, non injury producing, low acceleration, volunteer data. The
later is considered as asymptotic value of the curve for long impact durations. The
validity of the curve was confirmed through a series of experiments on subhuman
primates by Ono et al. [116]. The WSTC served as the basis for the injury criterion
currently used in automotive impact regulations, the Head Injury Criterion (HIC), It is
defined as [155],

HIC =

(
(t2 � t1)

�
1

t2 � t1

Z t2

t1

a(t)dt

�2:5
)

max
(1.1)

in which a(t) is the resultant translational head acceleration and t1 and t2 the,
varying, initial and final times of the interval during which HIC attains a maximum
value. For regulations the maximum interval t2 � t1 is set to 15 or 36 ms [42]. For
cadaver data in frontal impact, HIC has been shown to be a reasonable discriminator
between severe and less severe injury [140]. It also correlates with the risk for cranial
fracture in cadavers after impact [124]. However, for impacts in various directions,
bad correlation between HIC and injury severity has been found [107]. An important
drawback of HIC is that head rotation is not taken into account although rotation is
debated to be the primary cause for various types of traumatic brain injury [2; 60; 70].
Head injury criteria including head rotation also were proposed but never extensively
validated (e.g. GAMBIT in [108] and HIP in [109]).
The injury criteria presented so far predict injury risk from the external mechanical
load on the head, which can be measured directly from a crash dummy head, but
do not take into account the internal mechanical response. Furthermore, they do
not discriminate between various types of traumatic brain injury, such as such as
subdural hematoma (SDH, disruption of the bridging veins between skull and brain),
blood brain barrier breakdown, (BBB, (temporary) breakdown of blood vessels within
the brain) or diffuse axonal injury (DAI, neural damage involving prolonged loss of
consciousness).
Recent research focuses on so called next-generation injury assessment tools that use
computational head models. A more detailed injury prediction is obtained using a
computed internal mechanical response resulting from dummy-measured external
mechanical loading [15]. An example of such injury assessment tool is SIMon, a
simulated injury monitor, recently proposed by Bandak et al. [15]. It includes a simple
Finite Element model of the head originally developed in [12; 40]. It addresses both
the load transfer from external mechanical load on the head to internal mechanical
response and prediction of the risk of injury using tissue level injury tolerances.
However, these tolerance levels and the underlying injury mechanisms are not yet
well established and need additional research. The various types of head models
used in head injury research will be discussed in more detail in next section.
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1.1.5 Head models

Head models are often used in approval tests for cars and helmets. Moreover
they can be used for research on the internal mechanical response and injury
mechanisms. In the subsequent section head models used in research will be
emphasised. These can be divided in three categories: biological models, physical
models and numerical models. For each model category advantages and disadvantages
in terms of mechanical accessibility (to what extent can the internal mechanical
response be measured), injury information (does the model provide information on
how injury occurs), and biofidelity (how realistic is the model for modelling the
human head) will be discussed.

Biological models For the purpose of this study the following four types of
biological models are distinguished: in-vivo human models, animal models, human
cadavers and tissue level models. The first three types of models, the so called whole
head biological models in Figure 1.2, in principle allow the investigation of the internal
mechanical response after impact. However, capturing this response is complicated
due to the inaccessibility of the brain in the cranial cavity. The experiments needed
to exercise biological models are complicated by precautions needed when working
with in-vivo models or for keeping in-vitro models fresh. Furthermore, ethical aspects
have to be considered when using a biological model.

In-vivo human models provide maximum biofidelity. However their use is severely
limited since external head loading has to be applied below the injury range [161].
Victims in accidents can constitute as a source of in-vivo human data within the
injury range however the external mechanical loading history during such accident
is not available. For this reason the external mechanical load on the head of the
victim is reconstructed using data found on the site of the accident. Subsequently,
the internal mechanical response of the head is reconstructed using Finite Element
modelling. Finally, this response is correlated to the physical injury sustained,
visualised using MRI scanning or CT scanning, or to functional injuries, determined
using cognitive investigation methods. A disadvantage of this method is that the
accuracy of the reconstruction method is low due to many uncertainties encountered
in the reconstruction process of the mechanical response [154].

Animal models enable extension of the external mechanical load into the injury
range. They are subjected to a well prescribed external mechanical load after which
the resulting injury is investigated [60; 98; 99; 100; 131]. In this manner a
relation between external mechanical load and injury sustained can be obtained. In
early studies, a qualitative idea of the internal mechanical response was obtained
using invasive methods such as the cranial window [64; 65; 133]. More recently,
the use of the non-invasive MRI tagging method is investigated [43]. Also Finite
Element modelling of the animal head is used to reconstruct the internal response
[99; 131; 152]. Exact translation of external mechanical loading from animal data
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to human values is generally impossible due to geometry differences in combination
with viscoelastic material behaviour of the brain tissue.

Human cadaver models also allow experiments within the injury range. Detailed
information on the topology of the resulting injuries can be gained from dissection
after the impact experiments. Some information on the internal mechanical
response has been obtained using intracranial pressure measurements [104; 150],
intracranial miniature accelerometers [68; 150] or by high speed x-ray marker
tracking techniques [3]. However, these methods are always invasive. Furthermore it
is unknown how postmortem changes influence the mechanical response measured.

Tissue level biological models are living tissue specimens on which mechanical
experiments are performed [10; 56; 141]. A load is applied on for example an
isolated axon and physiological changes in terms of resting potential (depolarization)
are determined [56]. Since these models are not exercised in situ (i.e. not inside the
head), they are not suited for prediction of internal mechanical response. However,
tissue level injury tolerance levels can be obtained. Apart from potential differences
between animal and human tissue characteristics the biofidelity is good.

Physical head models are widely used in the evaluation of protective measures.
Most well known are the rigid crash dummy heads and head impactors, used in
approval tests for cars and helmets. The resultant acceleration history of the head
is measured and HIC is determined. Head models that include some anatomical
structures such as the brain, can provide insight into the internal mechanical response
of the head at impact loading. The most simplified method is to model the contents
of the head as lumped masses connected by a damped spring system [162]. Other
models include deformable brain tissue mimicking materials such as water [73], oil
[69] or silicone gel [24; 71; 90; 157]. A more complete overview of physical models
can be found in Bradshaw et al. [24].
It is relatively easy to perform experiments with physical models. Furthermore,
models with deformable brain tissue materials can provide validation data for
numerical head models since model properties are well defined. However, differences
between the models and the real head prevent quantitative derivation of tissue
level tolerance levels. Furthermore, it is unknown to which extend the mechanical
behaviour of the model materials used resembles the real head material behaviour.

Numerical head models commonly used for gaining insight in the internal
mechanical response of the head in terms of field parameters such as stresses and
strains, are Finite Element Models (FEM) [11; 36; 37; 40; 72; 94; 126; 127;
136; 150; 151; 167; 168; 169]. Numerical models, in principle, can offer a good
biofidelity when thoroughly validated. However validation of such model is not
trivial and has been a topic of research for many years. When a validated model is
established it is easy to exercise it in different impact situations. Furthermore these
models can also serve as a tool for development of injury prevention measures.
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It can be concluded that biological models can provide data on injury sustained due
to some external mechanical load, but provide only minor information on internal
mechanical response. This is due to mechanical inaccessibility. FE models and
physical models can be used for obtaining information on the internal mechanical
response of brain tissue during an impact but do not allow for prediction of injury
without prior assumptions about tissue level injury tolerance levels. This means that
for obtaining insight in the complete pathway between external mechanical load on
the head and TBI a combination of head models and research methods has to be
used. An example of this is to use a biological model (animal or cadaver) to provide
data on external mechanical load and injury sustained, while the internal response
is reconstructed using numerical or physical models. By comparing the internal
response obtained from numerical or physical models with histological data on injury
locations in the head of a biological model, insight can be gained in tissue tolerance
levels in terms of stress and strain quantities.
Table 1.1 provides an overview of the various research techniques for assessment of
tissue tolerance levels, as well as potential stress and strain candidates for prediction
of injury. It can be seen that tissue tolerance levels are formulated in virtually all
strain and stress measures. Von Mises stress (VMS) and maximum principal strains
(MPS) showed statistical correlation with the occurrence of DAI. MPS also could be
associated with BBB. Pressure has been proposed as an injury criterion especially in
relation with cavitation in the CSF layer due to negative pressures at the contre-coup
site of an impact, but research on the validity of this theory is ongoing [112].
Bandak and co-workers developed a cumulative damage strain measure (CDSM). It
is based on the assumption that DAI can be associated with the cumulative volume
of the brain matter experiencing tensile strains over a critical level sometime during
impact [11]. This tensile strain is represented by the maximum principal strain in
the criterion. A similar measure based on negative pressure, the dilatation damage
measure (DDM) was proposed in [13]. The application of these criteria implies the
use of a FE model to predict the internal mechanical response.

Table 1.1: Overview of stress/strain quantities associated with injury by various authors. NUM:
Numerical study only, no direct correlation, PHY: Physical model study only, TLB:
Tissue level biological models, NCA: Animal models combined with numerical
model, PCA: Physical model combined with animal experiments.

Method Max shear Max. Principal Von Mises Pressure
strain strain stress

NUM [35; 70; 150; 167] [11] [14; 33; 165; 167]
PHY [157] [14; 63; 111; 157]
TLB [9; 10]�,[141]�

NCA [152] [99]�,[131]+ [99]�,[131; 152]
PCA [90; 92]

� Statistical correlation with Diffuse Axonal Injury.
+ Statistical correlation with Blood Brain Barrier damage.
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1.2 Finite Element modelling of head impact

In the previous section two stages were distinguished in the pathway from external
mechanical load on the head to brain injury during an accident: the development
of the internal mechanical response and the development of TBI when this internal
mechanical response exceeds tissue level tolerance levels. For this reason it is
expected that insight in the internal mechanical response of the head will lead to
improved understanding of the subsequent injury mechanisms causing certain types
of injury. In this study Finite Element (FE) head modelling will be used for obtaining
insight in the internal mechanical brain response.
The use of FE techniques for modelling the head started in the early seventies of
the last century. FE head models that have been developed from 1971 until 1998
are reviewed in literature in [74; 130; 154]. A FE head model basically consist
of a set differential equations, the mathematical model, that is solved numerically
using the Finite Element Method. To create the mathematical model, assumptions
for the geometry, material behaviour and interface conditions between of the various
substructures of the head have to be made. These assumptions present in current FE
head models are reviewed in section 1.2.1. When solving the resulting equations,
numerical artefacts are introduced by the FE method used. For this reason the
numerical solution method typically used for these models will be discussed next.
Finally the methodology used for validating these complex models is discussed in
section 1.2.3.

1.2.1 Mathematical model

Geometry modelling In the first FE models, the skull-brain system was usually
approximated by a two or three-dimensional spherical or elliptical fluid filled shell
[74]. With the advancement of imaging techniques such as for example Computed
Tomography scanning (CT) and Magnetic Resonance Imaging (MRI) an increasing
amount of geometrical data has become available in digital format. With the
additional increase of CPU power, this resulted in an increase in geometric complexity
in FE models, leading to three-dimensional models with many anatomical details (e.g.
[36; 37; 40; 72; 94; 126; 127; 167; 168; 169]). Also, two-dimensional models with
even higher geometrical detail (including temporal lobes and sulci (folds) at brain
surface) have been presented recently [99; 100; 110].

Interface modelling Interfaces exist between the various structures within the
cranial cavity. Experiments show that relative motion occurs between the various
brain parts during impact [3; 132]. This is especially true for the skull and
brain separated by meninges and CSF. Until now, modeling each of these structures
individually has been infeasible, amongst others because of the problems associated
with the combination of solid and fluid behaviour in one model. Instead, interface
mechanical behaviour is modelled with a certain degree of suppression of the
relative tangential and normal motion of skull and brain. For the tangential motion,
descriptions range from no slip via different friction levels to frictionless motion
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[37; 99]. Some models use a failure criterion, above which skull and brain can
separate [40; 41]. Other models approximate the interface by a layer of soft, easily
deformable elements [72; 99; 167].

Modelling of brain tissue material behaviour It has been shown experimentally
that brain tissue exhibits non-linear, time dependent material behaviour [4; 44; 120].
Regional differences in material behaviour are present [5; 123]. Furthermore, fibrous
parts of the brain show anisotropy (brainstem [8], corpus callosum [123]). The
bulkmodulus of brain tissue is about 106 times higher than the shear modulus,
indicating nearly incompressible material behaviour [45; 61; 83; 84].
Most FE head models to date assume isotropic linear viscoelastic material behaviour
for brain tissue. Regional differences in brain material behaviour have been
incorporated in some models in that grey and white matter were modelled using
different material parameters [3; 99; 167; 168]. Physical model simulation
results show that deformations occurring in the brain exceed the validity range
of infinitesimal strain theory [24; 141]. Also the nearly incompressible material
behaviour puts special demands on the constitutive formulations used. It is not
obvious whether correct large strain formulations have been used in every FE head
model reported [113].
Application of non-linear material models for modelling impact in 3-D human head
FE models has not been found in literature. Application in a 2-D animal FE model was
found but no comparison with linear models was presented [99; 100]. Low velocity
indenter animal experiments have been simulated using a 3-D animal FE model in
[98]. The material models used in these studies all were based on hyperelastic
Strain Energy Density functions (SED) expressed in strain invariants (Green elastic
materials). First- [95; 118] and second-order [96; 97] versions of the Mooney-Rivlin
SED (original by Mooney [101]) are used as well as a first-order Ogden, or Seth
[137] SED. Viscoelastic behaviour is modelled by making the constants in the SED
time dependent using a Prony series, akin to the definition of the stress relaxation
function in linear viscoelastic theory (quasi-linear theory [53]). As such, the time
dependent behaviour is independent of the strain applied.
The material parameters for the Ogden variant have been fitted to large deformation
shear tests and have been checked for unconfined compression behaviour and
reasonable agreement has been found [123]. The Mooney-Rivlin based models are
fitted on results of unconfined compression experiments found in [44; 57; 96]. No
check on the simple shear behaviour has been reported.

1.2.2 Numerical solution method

The accuracy of the numerical solution depends on spatial and temporal discretisation
used by the Finite Element Method. The requirements for the discretisation used are
determined by the type of internal mechanical response to be expected at certain types
of impact. When a wave propagation response is expected, numerical requirements
to accurately replicate the wave front are higher than when a structural dynamic type
of response is expected. The numerical accuracy is almost never treated in references
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found on head modelling. However, they have been shown to have a significant effect
on simulation results in a FE code commonly used for head modelling [113].

1.2.3 Model validation

To assess the quality of FE head models, usually the computed brain response is
compared with experimental results obtained from cadaver experiments. In doing so,
two problems are encountered. Firstly the suitability of the data set used for complete
model validation. Apart from post-mortem effects, the suitability of the experimental
results is influenced by limited spatial resolution and invasive techniques used to
obtain quantitative data. This will be illustrated with some examples. Most commonly
used for model validation (e.g. in [37; 72; 128; 168]) are pressure histories
measured at four points in the CSF-layer of a cadaver subjected to frontal impact
by Nahum et al. [104]. Apart from effects discussed before an other drawback is
that shear effects inside the brain are not represented in the experimental pressure
data used. Al-Bsharat et al. [3] simulated low speed occipital impact and compared
relative skull-brain displacements with three-dimensional x-ray marker trajectories
determined in a cadaver. Although the primary objective of this study was to gain
insight in the skull-brain interface, this data set also can be used for providing insight
in the shear behaviour. Turquier et al. [151] used intra-cranial acceleration as well
as epi-dural and ventricular pressure signals obtained from cadaver experiments in
[150]. They found qualitative agreement with experimental data but also found
oscillations in their response which they attributed to numerical artefacts. This
raises a second limitation of this type of validation methods. Even if these datasets
would contain sufficient information to completely validate a FE model, there is still
a methodological problem in that the identification of the origin of discrepancies
between model and experimental results is difficult since errors can be introduced by
the experimental method, mathematical model assumptions or the numerical solution
procedure.
Physical models which include a deformable brain structure can be used as a tool to
assess the quality of the numerical solution method separately. Such experimental
model can be designed to minimise the number of mathematical modelling
assumptions while maximising mechanical accessibility. This can be achieved by
using a known, simplified geometry, materials with known material properties, using
transparent components for optical measurement techniques, etc. When confidence
in the numerical method is gained in this manner, the recommendations obtained
from this method can be applied in a complete head model, thus reducing effects of
numerical artefacts in the solution method. However, references found in literature
which compare numerical model results with physical model results, only focus on
determining the effects of interface modelling at the skull-brain interface and not on
numerical accuracy [34; 55; 149].
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1.2.4 Conclusion

It can be concluded that current state of the art head FE models contain detailed
geometrical description of anatomical components inside the head but lack accurate
descriptions of non-linear brain material behaviour and interfaces inside the head.
Furthermore it is not obvious to which extent numerical artefacts influence the
responses obtained especially when a wave propagation response is expected. Current
model validation methods involve complete biological head models. Although this
provides maximum biofidelity, the method lacks the capability of distinguishing
between sources of discrepancies between model and experiment results, e.g
experimental errors, mathematical model assumptions and the numerical solution
procedure artefacts. Physical models can be a valuable tool to obtain more insight in
the presence of numerical artefacts as they can be designed such as to minimise the
number of modelling assumptions and maximising mechanical accessibility.

1.3 Scope of study

It has been shown that the development of TBI during an impact on the head consists
of two stages. In the first stage the external mechanical load on the head is transfered
into the head and causes the internal mechanical response of the brain inside the
head. The second stage consists of the development of traumatic brain injury via an
injury mechanism. The present research focuses on the first stage: the determination
of the internal mechanical response of brain tissue. This will be done using Finite
Element models. Important aspects of these models are: geometry, constitutive
models, interface conditions between of the various intracranial substructures and
numerical accuracy. The focus in this study will be on constitutive modelling of brain
tissue and on the accuracy of the solution method.

1.3.1 Objectives

The aim of this study is to contribute to the improvement of FE head models used
to predict the mechanical response of the brain during a closed head impact. More
specifically the objectives are:

� to investigate the accuracy of numerical methods commonly used for predicting
brain response (explicit FEM) in crash impact, especially in relation to wave
propagation

� to develop a constitutive model for describing the nearly incompressible, non-
linear viscoelastic behaviour of brain tissue in a Finite Element model,

� to asses the effects of non-linear material behaviour on the internal mechanical
response by applying the constitutive model in a 3-D Finite Element model, and

� to discuss the consequences of this research for current state of the art head
modelling.
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It has to be noted that developments on spatial and temporal discretisation methods
used in the Finite Element Method are not a topic of this research.

1.3.2 Strategy

Numerical accuracy As the numerical requirements for predicting a wave
propagation response are higher than for a structural dynamics response, it will be
estimated when wave propagation inside brain tissue is likely to occur. This will be
done using small strain linear viscoelastic theory. The accuracy of current explicit
Finite Element Models then will be treated in terms of a wave propagation problem.
It will be shown that if wave propagation is predicted correctly, lower frequency
(structural dynamic) response is also predicted correctly. Accuracy requirements
will be developed using a simple one dimensional wave propagation problem. The
capability of current head models to predict a wave propagation response accurately
will be estimated. Recommendations are given on required temporal and spatial
discretisation needed for accurate modelling of wave propagation.
The validity of these recommendations at large strains cannot be tested using
analytical solutions anymore. For this reason, a simple physical head model is
developed that mimics the brain behaviour during a traffic related impact. In this
model geometry and boundary conditions are known. The material behaviour of
the brain tissue mimicking material is mechanically characterised. In this manner,
uncertainties in the mathematical model are eliminated as much as possible, leaving
differences between numerical model and experimental results to be caused by
numerical artefacts.

Constitutive modelling The constitutive behaviour of brain tissue is characterised
using shear experiments in a strain and frequency range representative for traffic
related impacts. This provides data on the non-linear viscoelastic behaviour of brain
tissue. This data is used for the development of a constitutive model suitable for large
deformations and rotations. The constitutive model is implemented in an existing
explicit Finite Element code commonly used for crash impact simulations [148]. The
accuracy of the model in predicting the large strain response of nearly incompressible
materials such as brain tissue is tested using the simple physical model.

Application The non-linear viscoelastic material model is applied in an existing 3-D
FE model of the human head in order to asses the effect of non-linear brain tissue
material behaviour on the computed response. The quality of the response calculated
will be discussed using the knowledge on numerical accuracy obtained before.

1.3.3 Outline of the thesis

Chapter 2 contains the investigation on the presence and accurate modelling of
wave propagation inside brain tissue. Chapters 3 and 4 deal with the mechanical
characterisation of brain tissue as well as the material for mimicking the brain
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tissue in the physical model. First a comparison for small strains (1%) but realistic
frequencies (1-1000 Hz) is presented in Chapter 3. Then the comparison is extended
to large strains (up to 20% and 50% for brain tissue and model material respectively)
in Chapter 4. In Chapter 5 a non-linear viscoelastic material model will be developed
and brain tissue material parameters will be fitted to the experimental data. Chapter
6 contains the experimental and numerical results of the physical model experiments
which serve for the investigation to numerical artefacts at large strains as well as
for testing the newly developed material model. The material model with non-linear
brain tissue material parameters will be applied in a three-dimensional Finite Element
Model of the head in Chapter 7. Finally the result of this study will be discussed in
Chapter 8.



Chapter 2

Numerical accuracy: analysis of
wave propagation in blunt head

impact

The numerical accuracy of the explicit finite element method (explicit FEM), commonly used for
modelling the internal mechanical response of the human head during impact, is treated in terms
of a wave propagation problem. First the conditions for strain waves to propagate inside the head
have been estimated. It was found that, due to the nearly incompressible, viscoelastic nature of
brain tissue, dilatational (P) waves and distortional (S) waves exist at different frequency ranges.
S-waves can be expected during a traffic related impact, with frequencies between 25 and 300 Hz,
while P-waves are expected during ballistic impacts with frequency between 10 kHz and 3 MHz.
Therefore, wave propagation inside brain tissue should be considered a real possibility and FE head
models should provide an accurate replication of it. When modelling wave propagation phenomena
with explicit FEM, two types of errors occur: numerical dispersion and spurious reflection. The
first error is influenced by the mesh density applied while the latter error is influenced by mesh
inhomogeneities. An analysis with P-waves yielded the rule of thumb that for modelling wave
propagation correctly, at least 24 elements per maximum wavelength should be used (error in
strain rate less than 2.5%). Theory indicates that this rule also holds for S-waves. Considering the
mesh density used in current state of the art 3-D human FE head models, accurate modelling of
wave propagation is impossible. For modelling S-waves mesh refinement in current explicit FEM is
an option. For modelling P-waves changes in spatial discretisation are recommended.

15
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2.1 Introduction

As explained in Chapter 1, FE models are an important tool for assessment of the
internal mechanical response. A FE head model basically consist of a set differential
equations, the mathematical model, that is solved numerically using the Finite
Element Method. In this Chapter, numerical artefacts, introduced by the FE method
during solving of the mathematical model equations, are investigated. Only FE
methods commonly used for head impact modelling (so called explicit FEM) will be
considered in this Chapter.
The internal mechanical response of the head may be either of wave propagation
nature or of structural dynamics nature, depending on the type of impact subjected
to the head. The modelling requirements for wave phenomena are higher than
for modelling a structural dynamics response. For this reason a wave propagation
problem will be used to estimate the accuracy of the explicit FEM.
The outline of this Chapter is as follows. First, elementary theory on wave
propagation is presented. It is used to investigate the impact conditions for which
wave propagation inside brain tissue is likely to occur in section 2.3. Section 2.4
contains an analytical investigation of numerical errors introduced by the explicit
FEM. This theory is checked numerically by simulation of wave propagation in a
1-D beam in section 2.5. Section 2.6 contains a discussion on: the likelihood of
wave propagation inside the brain due to impact type, implications for the modelling
accuracy in existing head models and potential improvements. Conclusions are shown
in section 2.7.

2.2 Elementary theory on wave propagation

Biological tissues, including brain tissue, behave like viscoelastic solids. It will be
assumed that elementary wave theory in semi-infinite, isotropic, linear viscoelastic
media can be used for the analysis in this Chapter. The theory presented is based on
[19].

2.2.1 Elastic wave equation

In absence of body forces the three-dimensional equations of motion in a continuum
are given by,

~r � � = �
@2~u

@t2
(2.1)

where � is the mass density of the material, ~r � � the divergence of the symmetric
Cauchy stress tensor, t the time, and ~u the displacement vector. The linear strain, ",
is defined as,
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1
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in which superscript c denotes the conjugate of a tensor. Linear elastic material
behaviour is described by Hooke’s law,

� = �Ltrace(")I + 2�L" (2.3)

in which �L and �L are the Lamé parameters for the material. Substitution of Hooke’s
law into equation (2.1) gives the Navier equations for the medium,
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in which r2 � ~r � ~r. By applying the vector identity,
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and introducing both dilatation 4 = ~r � ~u, which represents the change in volume of
the material, and rotation ~! = 1

2

�
~r� ~u

�
[76], equation (2.4) can be rewritten as,

(�L + 2�L) ~r4� 2�L~r� ~! = �
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Equation (2.6) is the three-dimensional wave equation for unbounded linear elastic
media. It describes the propagation of two types of waves through the medium:
waves of distortion or S-waves, in which particle motion occurs perpendicular to
the direction of propagation of the wave, and waves of dilatation or P-waves, which
correspond with the change of volume.
The dilatational wave equation is derived by taking the divergence of equation (2.6),

r24 =
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with cp =
q

�L+2�L
� the propagation velocity of the P-wave.

The distortional wave equation is obtained by taking the cross-product of the gradient
operator and equation (2.6),
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in which cs =
q

�
� represents the propagation velocity of the S-wave.

Often, linear elastic material parameters are provided in terms of Young’s modulus E
and Poisson’s ratio �. They are related to the Lamé parameters �L and �L by,

�L =
�E

(1 + �) (1� 2�)
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E

2 (1 + �)
(2.9)

Alternatively, bulk modulus K and shear modulus G can be used.

K = �L +
2

3
�L and G = �L (2.10)

With these parameters, the expressions for the wave propagation velocities become,
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2.2.2 Solution for 1-D elastic wave equation

A general solution of the 1-D wave equation for P-waves will be derived using
elementary theory to serve as analytical solution for comparison with the numerical
solution in section 2.5. This theory supposes that the motion due to the wave is
primarily one-dimensional. In a linear elastic material this can be accomplished
by setting Poisson’s ratio � to zero. The Lamé parameters then become �L = 0
and �L = E

2 . Substituting this in the three-dimensional wave equation (2.6) and
accounting for one-dimensional motion by ~u = u, gives the one-dimensional wave
equation,

@2u

@x2
� 1

c2
@2u

@t2
= 0 (2.12)

were c =
q

E
� is the phase velocity of the one-dimensional wave. Taking the partial

derivative of one-dimensional wave equation (2.12) with respect to x,

@2

@t2

�
@u

@x

�
= c2

@2

@x2

�
@u

@x

�
(2.13)

shows that the strain, " = @u=@x, is governed by the same one-dimensional wave
equation that governs the displacement. A general solution of this equation was given
by d’Alembert as,

" = f1 (k (x� ct)) + f2 (k (x+ ct)) (2.14)

where f1 and f2 are arbitrary, twice-differentiable functions. k represents the wave
number, defined as,

k =
2�

�
=

!

c
(2.15)

with �, the wavelength and !, the angular frequency. It can be seen that f1 describes
a wave propagating in positive x direction and f2 one propagating in negative x
direction. The boundary conditions applied determine which solution occurs in the
real material. Since we are dealing with a linear relation between stress and strain,
the general d’Alembert solution, equation (2.14), can be written as a series of time-
harmonic waves,

" = Re

0@X
j

j"j j ei(kjx�!t))
1A ; j = 1 to1 (2.16)

in which i denotes the imaginary number and Re(a) the real part of number a.

Wave propagation in a slender elastic beam of infinite length will be used in this
chapter for determination of the numerical quality of Finite Element Models. It is
assumed that the beam consists of the domain x � 0. It is loaded with a prescribed
force history, F (x = 0; t) at its edge, x = 0. Since there is only one-dimensional
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motion, the cross-area of the beam remains constant (A = A0), so the resulting strain
at the beams edge can be written as,

"(x = 0; t) =
F (x = 0; t)

EA0
(2.17)

Since x � 0 and since the boundary condition is applied at x = 0, the only physical
realistic wave will be a forward propagating one. The general solution for the strain
wave propagating the beam therefore will be of the form,

"(x; t) = f (k (x� ct)) (2.18)

Applying boundary condition (2.17) the analytical solution for the strain history
inside the slender beam becomes,

"(x; t) =
F (k (x� ct))

EA0
(2.19)

2.2.3 Viscoelastic theory

Linear viscoelastic material behaviour can be included in the linear elastic theory by
simply writing both bulk modulus and shear modulus as complex quantities (denoted
with superscript *), as,

G�(!) = G0(!) + iG00(!) and K�(!) = K 0(!) + iK 00(!) (2.20)

in which G0(!) and K 0(!) are called elastic or storage moduli and, G00(!) and K 00(!)
are loss moduli and i =

p�1 the imaginary number. Note that all properties depend
on the angular frequency, !. The complex moduli reduce to the real linear elastic
moduli, defined by equation (2.10), when the loss moduli are zero and the storage
moduli are independent of frequency.
The complex moduli are used in equation (2.11) to obtain complex phase velocities
for P-waves,

c�p(!) =

s
K�(!) + 4

3G
�(!)

�
(2.21)

and for S-waves,

c�s(!) =

s
G�(!)

�
(2.22)

or more generally,

c�(!) = kc�(!)k ei' (2.23)

in which kc�(!)k is the 2 norm and '(!) the phase angle of the complex phase
velocity. The general solution for a forward propagating time-harmonic displacement
wave in a viscoelastic material can be written in complex notation as,

~u = A~dei(k
�(!)~x�~p�!t) (2.24)
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in which , k�(!) is the complex wave number, ~x the position vector, and ~p and ~d unit
vectors in the directions of wave propagation and particle displacement respectively.
k�(!) can be obtained by substituting the complex phase velocity, c�(!) in equation
(2.15) while assuming that the angular velocity, !, is a real number,

k�(!) =
!

kc�(!)k (cos'(!)� isin'(!)) = kre(!) + ikim(!) (2.25)

In this equation, index re and im denote the real and imaginary parts of a complex
quantity respectively. Substitution in equation (2.24) yields,

~u = A~de�kim~x�~peikre(~x�~p�
kc�k2

cre
t) (2.26)

Attenuation Equation (2.26) shows that the amplitude of the wave decreases as
function of the imaginary part of the wave number, kim(!), and the distance traveled
~x � ~p. This is called wave attenuation. For this reason, kim(!), is often denoted in
literature as attenuation coefficient, �(!).

Dispersion The effective phase velocity, which we define here as the phase velocity
by which a wave with certain frequency actually travels in the material, is given in
equation (2.26) by,

ceff (!) =
kc�(!)k2
cre(!)

(2.27)

Note that ceff (!) is frequency dependent, i.e. components with different frequencies
will travel at different phase velocities. This is called dispersion. For linear elastic
material behaviour, ceff reduces to the real, frequency independent, elastic wave
velocity according to equation (2.11).

2.3 Importance of wave phenomena in the human
head

The extent to which wave phenomena are present in the human head during an
impact is estimated using elementary wave theory. Lower and upper frequency
bounds for which wave propagation occurs will be estimated using boundary
conditions, posed by geometry, and viscoelastic material damping. Furthermore,
waves, traveling inside the head, will reflect at boundaries between the various
substructures within the head. As a result P-waves can convert to S-waves and vice
versa. This mode conversion can act as a different source for the presence of a certain
wave type.

2.3.1 Lower bound of frequency range

As explained in Chapter 1, the dynamic response of the contents of the head is said
to be dominated by wave propagation when the characteristic loading time is on the
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order of the time constants of the system, reflected in the system eigenfrequencies. A
lower bound for the frequency range at which waves exist can be found by observing
the largest wavelength, �max, that fits within the head diameter, L, i.e.

�max =
c

fmin
= L (2.28)

Assuming a head diameter of 0.2 m and applying a typical shear wave velocity of
5 m=s [102] provides a typical lower frequency bound of 25 Hz for S-waves. For
P-waves the propagation velocity equals 1550 m=s [45; 83], providing a minimum
frequency of 7750 Hz.

2.3.2 Upper bound of frequency range

Since brain tissue behaves like a viscoelastic solid, waves traveling in the tissue will
display frequency dependent attenuation. An upper bound of the frequency range for
wave propagation in the head is defined as the frequency at which an incident wave
will be attenuated by 99% after having propagated 0.2 m through the head, i.e. from
one side to the other.

S-waves Values for storage and loss shear modulus do depend significantly on
frequency (see for example [120]). Also there is a large spread between values
reported by various authors. Values at upper and lower end of the measured
frequency spectrum found in literature, are used to obtain an impression of the
extreme situations of material damping (see Table 2.1). Application in the viscoelastic
solution, equation (2.26), provides the amplitude of the wave as a function of
frequency f and distance traveled ~x � ~p. The normalised amplitude of S-waves as
function of frequency and distance traveled, is shown in Figure 2.1. The attenuation
when using the Peters et al. data is larger than in the Shuck et al. data. For this
reason, the upper bound for the relevant frequency range for S-waves in the head has
been estimated to be 300 Hz using the Shuck et al. data.

P-waves Etoh et al. [45] determined the attenuation coefficient, �, of brain tissue
for frequencies between 0.35 and 5 MHz using ultra sound. Their data was found
to be in range of older data by Goldman and Hueter [61], and could be fitted by the
following function,

� = af2 +
b

2�
f (2.29)

Table 2.1: Material parameters used for estimating the viscous behaviour of brain tissue.

Reference G
0 [Pa] G

00 [Pa] Frequency [Hz]
Peters et al. [120] 600 150 16

Shuck et al. [134] 1:5 � 105 8:0 � 104 400



22 Chapter 2

The values of the fit parameters a and b were not mentioned in their paper but were
determined graphically from fit results presented instead; a = �1:7 � 10�12 s2=m and
b = 7:1 � 10�5 s=m. This function fits the experimental data well for frequencies
up to 3 MHz approximately. Figure 2.2 shows the normalised amplitude of a P-
wave obtained using the fitted attenuation coefficients as function of frequency and
propagation distance. The attenuation at 0.2 m equals 53% at 350 kHz and increases
to 98% at 3 MHz. When assuming equation (2.29) to be valid for frequencies below
350 kHz also, it can be seen that the attenuation at 0.2 m is less than 10% for
frequencies up to 50 kHz.

2.3.3 Reflection: mode conversion

In general, two phenomena can be observed when a wave hits a boundary of two
media with different material properties. First, part of the incident wave will be
reflected and another part will be diffracted into the other medium. Second, mode
conversion can occur, i.e. a P-wave transforms into an S-wave and vice versa (refer
to e.g. [1] for more information on mode conversion). In the head however, mode
conversion is expected to be irrelevant. This is due to the different frequency ranges
at which P- and S-waves can propagate inside a head. When a P-wave would be
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Figure 2.1: Normalised amplitude of S-waves in brain tissue as a function of frequency and
propagation distance, based on linear viscoelastic theory. Shear moduli taken from
Table 2.1.
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converted in to an S-wave, its frequency would be that high that the S-wave would
be attenuated in very short distance, thus disabling effective propagation. When
a S-wave will be converted in a P-wave, the frequency will be that low that the
resulting pressure will more be of a structural dynamical response instead of a wave
propagation response.

2.4 Simulation of wave propagation:
theoretical considerations

When simulating elastic wave propagation using the explicit Finite Element Method,
both accuracy and numerical stability are important. These phenomena are
influenced by both the spatial and temporal discretisation used.

2.4.1 Numerical stability

In typical FE codes used for impact modelling, time discretisation is performed using
explicit time integration methods such as the Central Difference Method (e.g. LS-
DYNA3D [86], PAM-CRASH [117], MADYMO [148]). In such explicit time integration
method, quantities for the next time increment are predicted from known quantities
at current and previous moments in time. No iteration is performed during one time
increment, providing low computational effort per time step. However, small time
steps have to be used because explicit integration methods are only conditionally
stable. For the Central Difference Method, the maximum time step �tmax to be used
for stability is determined by the the Courant number [38], C,

C =
c ��tmax

�x
� 1 (2.30)

This requirement means that, during one time step, the distance traveled by the
fastest wave in the model (c � �tmax) should be smaller than the smallest typical
element size in the mesh (�x). The stability requirement gives an upper bound for
the time step to be used. If a smaller the time step is taken the time integration
procedure becomes more accurate.

2.4.2 Numerical accuracy

Two error sources appear when wave propagation is modelled using FEM: numerical
dispersion and spurious reflections. Both error sources depend mainly on the
spatial discretisation used (element formulation and mesh density). In explicit FE
codes, spatial discretisation is usually achieved by constant strain elements with
linear displacement functions and lumped mass matrices. A three-dimensional
brick element contains eight integration points when full integration is applied.
Computational costs can be reduced by using a reduced integration technique in
which only one integration point per element is used. Both methods will be
considered.
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Numerical dispersion is the phenomenon that waves of different wavelength travel
at different phase velocities due to numerical artefacts. For constant strain elements
with lumped mass matrices, it can be shown analytically that, in a one-dimensional
situation, the phase velocity in the discrete mesh cFEM is related to the theoretical
phase velocity c via [20],

cFEM
c

=
sin��x

�
��x
�

(2.31)

This means that the phase velocity in the discrete mesh is dependent on the
wavelength � and element size �x. Also it can be seen that there cannot be any
wave propagation when �x = �. Since wavelength � is related to its frequency f
by the phase velocity c, an upper bound on the frequency in the mesh for which no
waves will be propagated can be found as [17; 20],

fcutoff =
c

�x
(2.32)

Mullen and Belytschko [103] extended this analysis to two-dimensional Finite
Element semi-discretisations. They considered the two dimensional wave equation
which is valid for both P-waves and S-waves. Figure 2.3 shows the dispersion cFEM

c
in square elements, as a function of the angle between the elements and wave
propagation direction. �. It can be seen that the dispersion increases when �
increases from 0 to 45Æ. Moreover, numerical dispersion depends on the element
integration scheme used, full versus reduced integration. For � = 0, no differences
between fully and reduced integrated elements exist and dispersion is governed by
equation (2.31). However, when a wave arrives at a certain angle � 6= 0, the
dispersive errors in the reduced integrated elements increase stronger than in the
fully integrated ones.
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It can be concluded that for constant strain elements with lumped mass matrix,
commonly used in explicit FE codes, 18 elements per wavelength should be used
to reduce the dispersion error to less than 1%, independent of incident angle.

Spurious reflection due to mesh non-uniformity In a uniform Finite Element
mesh, elastic waves propagate without reflection. However, due to non-uniformity
in the mesh distribution, spurious reflections can occur in the computed solution.
Bažant et al. [17] analyzed a compressive wave traveling in a rectangular mesh
consisting of two uniform parts with different element sizes (�x1 and �x2 in Figure
2.4). Amplitudes of the waves diffracted and reflected at the transition plane between
the mesh parts were derived analytically. Influences of element size ratio �x2

�x1
, and

number of elements per wavelength of the second mesh part, �
�x2

, were determined
and shown in Figure 2.5. In the ideal case there would be no reflection, so the
amplitude of the, normalised, diffracted wave would be equal to one. Figure 2.5
shows that spurious reflection occurs when a wave passes between two elements of
different sizes. For increasing element size difference this reflection increases. It can
also be seen that this effect is more prominent when wavelength � covers only a few

1
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∆ x
1 2

x∆

Figure 2.4: Rectangular Finite Element Mesh used by Bažant et al. [17]
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Finite Element sizes �x2. If � > 10�x2 the normalised amplitude of the reflected
wave will be less than 2.5% for all mesh size ratios shown.

2.5 Simulation of wave propagation: numerical
results

The theory presented in previous section is valid for single frequency waves only
and does not take into account effects of the temporal discretisation. In a realistic
loading history, multiple frequencies are present. The resulting wave form therefore
will be a wave envelope consisting of components with various wavelengths. In
this section, suitable discretisation requirements for realistic input conditions are
investigated. This has been done by modelling the propagation of one-dimensional P-
waves in a slender linear elastic beam in an explicit Finite Element Code (MADYMO),
thus taking in to account both temporal and spatial discretisation. The reason for
modelling P-waves is to obtain a true one-dimensional problem which is impossible
while modelling S-waves.

2.5.1 Analytical solution

For slender beams in which the wavelength is much longer than the beam diameter,
one-dimensional elementary wave theory can be used. The beam is loaded at one
edge by a prescribed force history, F (t), resembling a pulse obtained obtained by
impacting a head of a seated cadaver [104]. This pulse is often used for benchmarking
head models (e.g. [37; 72]). For reasons of simplicity the pulse is approximated by,

F (t) = Fmax sin
4(2�f0t)

�
Fmax = 6900N 0 � t � 1

2f0

Fmax = 0N t > 1
2f0

(2.33)

with f0 = 62:5Hz (see Figure 2.6). The analytical solution for the strain wave is
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obtained by substituting F (t) into equation (2.19),

" (x; t) =
Fmax

EA0
sin4

�
2�f0
c

(x� ct)

�
(2.34)

2.5.2 The numerical model

A slender linear elastic beam has been modelled in MADYMO. The length of the beam
was chosen as 30 m and its square cross-sectional area, A0, was set to 9 � 10�4m2.
The material properties of the beam are such that the wave propagation velocity c0
approximates the speed of sound in brain tissue (1500 m

s [45; 83]). To obtain a true
one-dimensional wave propagation response, Poisson’s ratio, �, is set to zero. The
material parameters are shown in Table 2.2.

Spatial discretisation The beam has been modelled using cubic elements, with one
element over the cross-section of the beam. As shown in section 2.4, choices of both
spatial and temporal discretisation depend on the wavelength expected in the mesh.
In Figure 2.6, the Power Spectral Density of the input force pulse normalised to its
maximum value is shown. It can be seen that frequencies which contribute with more
than 1 percent to the total power cover a wide frequency range (normalised PSD
> 0.01 for 0 � f � 830 Hz). In the absence of a distinct characteristic frequency,
the discretisation will be arbitrarily related to the longest wavelength present. It is
determined by the duration of the force applied and equals, �max = c0

2f0
= 12m. Mesh

densities ranging from 12 to 100 elements per maximum wavelength have been used.
When changing the mesh density, the initial shape of all elements was kept cubic by
adapting the area of the beam edge, A0.

Boundary conditions The impact on the beam has been modelled by a prescribed
nodal force at the beam edge at x = 0 according to equation (2.33). In order to
enable comparison of the strain results, the prescribed load has been scaled to the
beam area, A0, such that the applied stress remains the same for all mesh densities.

Temporal discretisation The maximum time step required for stability is
determined by the Courant number in equation (2.30). The Courant number is
kept at constant value when applying different mesh densities. In the reference

Table 2.2: linear elastic material parameters used for modelling one-dimensional P-wave
propagation in a linear elastic slender beam with MADYMO.

Material parameter Value
E 2.25 GPa

� 0.0 [-]
� 1000 kg=m3

c =
q

E
�

1500 m=s
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simulations, a Courant number of 1
2 was used. Also a Courant number of 0.8475

(the maximum Courant number MADYMO allows) has been used to study the effect
of the time discretisation on the accuracy of the solution. The simulation time has
been set to 20 ms, which is the theoretical time for the wave to reach to end of the
beam. In this manner no reflection at the end of the beam should occur during the
simulation.

2.5.3 Results

Strain histories obtained with 12 elements per longest wavelength are compared
to the theoretical results at various positions in the beam in Figure 2.7. In theory
the pulse propagates through the beam without any dispersion, i.e its shape remains
the same. In the numerical solution three types of error arise: the amplitude is
overestimated, the amplitude reduces during propagation, and the shape of the wave
envelope changes. This latter error is characterised by decrease and increase of the
strain gradients at the front and rear of the wave envelope respectively. Furthermore
additional waves trailing the actual wave envelope occur.
The errors will be analysed more quantitatively in terms of maximum absolute strain,
strain rate and wave envelope propagation velocity.

Strain and strain rate Figure 2.8 shows the relative error, Erel, in the strain
amplitude and maximum strain rate at various points in the beam as function of
mesh density used. The relative error is defined as,

Erel =
jSnum:max � Sth;maxj

jSth;maxj (2.35)

in which Snum;max and Sth;max represent maximum values of numerical and
theoretical solutions respectively.
The left plot in Figure 2.8 shows the error in the strain amplitude. This error seems
to decrease while the wave travels through the beam. However, this is caused by the
fact that the maximum strain is overestimated in the numerical solution. As the wave
travels further the maximum amplitude will become less than the theoretical one and
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the error will increase again. To reduce the relative error in the strain amplitude to
less than 1%, mesh densities of approximately 24 elements per maximum wavelength
have to be used. For coarser meshes the error increases strongly.
The relative error in the strain rate (Figure 2.8, right plot) increases while the wave
propagates through the beam. For decreasing element sizes the error decreases.
When 50 elements per maximum wavelength are used, the error decreases to less
than 1%.

Wave propagation velocity Due to numerical dispersion, the shape of the wave
envelope changes, making the determination of a single wave propagation velocity
impossible. For this reason phase velocities are determined at five strain levels,
1000�"=-1, -1.5, -2, -2.5, -3, during increasing and decreasing phase of the strain.
The mean, maximum and minimum phase velocities in the wave envelope obtained
with two time step sizes, are shown in Figure 2.9 for increasing mesh density. It can
be seen that increasing the element size provides lower wave propagation velocities,
as expected theoretically. For the reference simulation (C = 0:5), the mean dispersion
error becomes larger than 1% when less than 16 elements per maximum wavelength
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are used. The phase velocity values determined at the wave front, are smaller than
the ones at the rear of the wave (indicated by the maximum and minimum values in
the plots). This effect is larger for coarser meshes.
Comparing the left and right plots in Figure 2.9 shows that the errors obtained at the
smallest time step (C = 0:5) are larger than the ones obtained at the larger time step.
So, decreasing the time step size leads to an increasing dispersion error.

2.6 Discussion

Finite Element head models are used to assess the dynamical behaviour of the head.
Most 3-D FE head models found in literature are developed using the explicit Finite
Element Method. Linear (visco)elastic material behaviour for the brain tissue is
assumed in all cases. For this reason the theory of the previous section can be
used to assess if current headmodels are capable of describing wave phenomena
correctly. First it will be estimated during which type of impacts the presence of
wave propagation in brain tissue is likely. Then numerical requirements for accurate
modelling will be summarised from previous sections. Implications of these findings
for current state of the art headmodels will be provided next. Finally, some methods
for improvement will be provided.

2.6.1 Wave propagation during head impact

The conditions for strain waves to propagate inside the head have been estimated
using linear viscoelastic theory for isotropic material behaviour. A lower bound of the
relevant frequency range is obtained by defining that waves can propagate only when
the wavelength fits inside a typical head measure (0.2 m). The upper bound of the
relevant frequency range is defined as the frequency at which an incident wave will be
attenuated by 99% after having propagated 0.2 m. It was concluded that dilatational,
or P-waves exist in a frequency range between 8 kHz and 3 Mhz. This is consistent
with findings of Young and Morphey [165], who numerically analysed a fluid filled
sphere and concluded that impact durations less than 0.1 ms were needed to obtain
a wave propagation response instead of a structural dynamic one. Distortional or
S-waves exist at frequencies between 25 Hz and 300 Hz. The contribution of mode
conversion at reflection at the boundaries of brain substructures is considered to be of
no importance, since the relevant frequency ranges for P- and S-waves are distinctly
different.
The presence of wave propagation in the head also depends on impact loading
applied. The analysis of the Power Spectral Density in section 2.5 showed that the
upper bound for the frequency in typical. low velocity, traffic related impacts is on
the order of 1 kHz. For this reason P-waves will not be present in such impact but
S-waves will. During a non-penetrating ballistic impact, first a direct impact with a
duration of approximately 2 to 100 �s [18; 23] will occur. After this, inertia will
cause the head to rotate with a typical duration on the order of ms [22]. This means
that P-waves can be present at the start and S-waves might develop later on. For this
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reason it can be concluded that, from a mechanics point of view, wave propagation
inside the head should be considered a real possibility for both low velocity, high
mass, traffic related impacts as well as high velocity, low mass, ballistic impacts.

2.6.2 Numerical accuracy

When modelling wave propagation with explicit FEM two types of errors can appear:
numerical dispersion and spurious reflection due to mesh inhomogeneities. Although
only P-waves were considered in the accuracy analysis, the theory presented in section
2.4 is valid for both P- and S-waves. For this reason we assume that for modelling
S-waves the same accuracy requirements hold.

Numerical dispersion The wave velocity calculated will always be lower than
the analytical one due to numerical dispersion. For single frequency waves this
could be investigated analytically. Taking less elements per wave length increases
numerical dispersion. When the element size equals the wave length waves are
not propagated anymore (see equation (2.32)). When modelling a realistic input,
multiple frequencies are present. Waves with long wavelengths travel faster in the
mesh than short ones (see Figure 2.3). As a result the strain gradient at the front
of a wave envelope decreases in time while the gradient at the rear of the envelope
increases. These effects have been quantified numerically using errors in maximum
strain, strain rate and average propagation velocity of a wave envelope propagating in
a beam. It was found that the strain rate requirement is the most stringent. When 24
elements per maximum wavelength are used, the strain rate error equals 2.5% after
a wave has traveled 1.66 times its maximum wavelength (the length of the beam).
The dispersion error (average propagation velocity) and maximum strain error then
are less than 1%. Further increase of the mesh density leads to small improvements
of the accuracy only. For this reason, 24 elements per maximum wavelength will be
used as a guideline for accurate modelling of wave propagation.
However, some remarks have to be made. First, this value should be seen as a
lower bound since it is determined for 1-D wave propagation only. The analytical
results in Figure 2.3 on page 24 show that in the two-dimensional case, where waves
do not necessarily propagate along the mesh direction, the number of elements
per wavelength should be increased by 40%. Although not investigated here, it is
expected that this effect will be stronger in a three dimensional mesh. However,
this effect can be partially made ineffective by accounting for the effect of temporal
discretisation. The error introduced by the Central Difference time integration scheme
used by MADYMO proved to be compensatory with the dispersion error caused by
the spatial discretisation. It can be derived theoretically, that for a Courant number
C = 1 no dispersion will occur when elements with linear displacement interpolation
functions are used [20]. Since all results presented are valid for C = 0:5, numerical
dispersion can be reduced by taking the time step close to the critical time step
determined by the Courant number. However, in a realistic mesh, multiple element
sizes are present. This means that the Courant number varies per element. As a
result, the gain in accuracy will vary per element also. Also, choosing the Courant



32 Chapter 2

number close to one may result in instabilities when severe deformations occur. A
solution of this problem it to update the time step during the simulation using the
Courant criterion based on the deformed mesh. Finally, it has to be noted that the
exact number of elements per maximum wavelength depends on the actual pulse
shape used. For this reason the mesh density proposed should be used at reasonable
smooth input signals only.

Spurious reflection due to mesh size inhomogeneities is expected to play a minor
role when the mesh requirements for numerical dispersion are met. A numerical
investigation in a simple one-dimensional layout showed that the dispersion
requirements are indeed stronger than the ones on mesh homogeneity [26]. However
it has to be reminded that only cubic elements were used in that study. The effect of
strongly deformed or even degenerated elements was not investigated.

2.6.3 Implications for existing head models

As wave propagation in the brain is a real possibility, FE head models should be
capable of accurate description of wave propagation. With given constraints such
as temporal and spatial integration techniques currently present in explicit Finite
Element codes, this accuracy is mainly determined by the element size used. It
was seen that a wave can propagate in a one dimensional FE mesh with reduced
integrated, lumped mass, constant strain elements, when the frequency is lower than
the cut-off frequency provided in equation (2.32) on Page 24. For obtaining an
accurate solution in a typical traffic related impact, at least 24 elements per maximum
wavelength are needed. These facts will be used for estimating the performance of
current FE head models.
The element size used in 3-D FE head models ranges from approximately 5 mm to 18
mm [36; 37; 40; 72; 77; 128; 167]. Assuming an element size of 5 mm and knowing
that P-waves travel in brain tissue at approximately 1550 m

s [45], provides a cut-off
frequency of 310 kHz while an accurate solution is provided for frequencies up to
13 kHz only. S-waves travel at approximately 5 m

s (1-10m
s [102]) yielding a cut-

off frequency of 1000 Hz and a maximum frequency for accuracy of 42 Hz. These
values are plotted in Figure 2.10 for comparison with the frequency ranges expected
during traffic related and ballistic impact. Also, the frequency range for which S- and
P-waves are expected inside the head are plotted. These numbers indicate that only
the lower end of the relevant frequency spectrum can be modelled accurately. This is
especially true since the frequency limits best case values based on one-dimensional
theory and smallest element size reported. Given current estimations, it can be seen
that the modelling demands for correct modelling of P-waves in a high velocity impact
are most stringent. A coarse estimation is that for modelling S-waves, the frequency
that limits the accuracy has to be increased by a factor of 10 while for P-waves this is
a factor of 100.
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2.6.4 Methods of improvement

The results presented here hold for explicit FEM which use constant strain elements
with a lumped mass matrix and the Central Difference time integration scheme.
A method to prevent spurious wave reflection as well as wave dispersion from
overshadowing the true dynamic response in explicit FE packages is to eliminate
all wavelengths which are smaller than the critical wavelength determined using the
accuracy requirement in equation (2.31) or Figure 2.3. This can be done by expanding
the applied load in a Fourier series and delete all frequency terms corresponding to
wavelengths smaller than the critical one [17]. An other possibility is to adjust the
mesh size such that the greatest part of the frequency contents of the applied load
can be modelled correctly.
Although it is beyond the scope of this thesis to make alterations to element type and
time integration scheme used, some comments on how to improve the prediction of
wave propagation by using different spatial discretisation methods will be provided.
Elements with lumped mass matrices are known to be computationally effective, but
underestimate the wave propagation velocity. Elements with consistent mass matrix
tend to overestimate wave velocities. The least dispersion was obtained when a
generalised mass matrix M = 1

2Mconsistent +
1
2Mlumped was used [20]. Elements

with quadratic interpolation functions were found to display negligible numerical
dispersion. However, these elements can introduce a significant amount of additional
noise into the solutions due to the existence of two solutions at each wavelength
(refer to [20] for background information).
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2.7 Conclusions

The following conclusions can be drawn from previous discussion.

� Wave propagation inside brain tissue should be considered a real possibility for
both low velocity, high mass, traffic related impacts as well as high velocity, low
mass, ballistic impacts.

� Typically 24 elements per wave length are needed for accurate modelling.

� When decreasing the number of elements per wave length, the predicted wave
propagation velocity decreases. As a result, computed maximum strain values
and strain rate values will be incorrect

� In current state of the art 3-D human head models the smallest element size
equals 5 mm, making accurate modelling of wave propagation impossible.

� For modelling S-waves the frequency that limits the accuracy of the model
should be increased by a factor of 10. Reducing the mesh size of 0.5 mm is
a possible solution, especially with the advances in computer hardware.

� For modelling P-waves current explicit FEM the frequency that limits the
accuracy of the model should be increased by a factor of 100. Reducing the
mesh size is not a realistic option anymore. Instead alternative methods should
be pursued such as the use of elements with quadratic displacement functions
or generalised mass matrix.

As developments on spatial and temporal discretisation methods are not a topic of
this research, it is decided to emphasise shear phenomena in brain tissue for the
remainder of this research.
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Comparison of the dynamic
behaviour of brain tissue and

two model materials

This section has been published in the Stapp Car Crash Conference proceedings1. It contains the
small strain characterisation of porcine brain tissue as well as that of two potential model materials
for use in the physical head model. Brain measurement data are evaluated against literature data,
and a model material has been chosen for use in the physical model in Chapter 6.

1Brands, D.W.A., Bovendeerd, P.H.M., Peters, G.W.M., Paas, M., Bree ,van J. and J.S.H.M. Wismans
(1999): “Comparison of the dynamic behaviour of brain tissue and two model materials”, Proceedings of
the 43th Stapp Car Crash Conference, Paper no. 99sc21, pp. 57-64.
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Abstract

Linear viscoelastic material parameters of porcine brain tissue and two brain
substitute materials for use in mechanical head models (edible bone gelatin
and dielectric silicone gel) were determined in small deformation, oscillatory
shear experiments. Frequencies to 1000 Hertz could be obtained using the
Time/Temperature Superposition principle. Brain tissue material parameters (i.e.
dynamic modulus (phase angle) of 500 (10Æ) and 1250 Pa (27Æ) at 0.1 and 260 Hz
respectively) are within the range of data reported in literature. The gelatin behaves
much stiffer (modulus on the order of 100 kPa) and does not show viscous behaviour.
Silicone gel resembles brain tissue at low frequencies but becomes more stiffer and
more viscous at higher frequencies (dynamic modulus (phase angle) 245 Pa (7Æ)
and 5100 Pa (56Æ) at 0.1 and 260 Hz respectively). Furthermore, the silicone gel
behaves linearly for strains up to at least 10%, whereas brain tissue exhibits non-
linear behaviour for strains larger than 1%.

3.1 Introduction

Mechanical head models are used for head injury assessment and research. Most well
known are crash dummy heads and head impactors used in approval tests for cars
and helmets. Head models that include some anatomical structures such as the brain,
can provide insight into the response mechanisms within the head at impact loading,
thereby avoiding the technical and ethical problems related to in vivo and in vitro
experiments on animals and humans. Moreover, they can provide validation data for
numerical head models. An important component of such a detailed mechanical head
model is the model material, mimicking the behaviour of real brain tissue.
In this study, linear viscoelastic material parameters of two brain substitute materials
will be presented and compared with those of porcine brain tissue. The substitute
materials are a gelatin mixture used by the North Atlantic Treaty Organisation (NATO)
as a tissue mimicking material [105] and transparent silicone gel from Dow Corning
(Sylgard 527 A&B dielectric silicone gel), a brain model material used previously in
mechanical head models by Viano et al. [157] and Meaney et al. [92]. Both model
materials and the porcine brain tissue were subjected to oscillatory shear experiments
up to 16 Hz, on the same apparatus, making one on one comparison possible. By
applying the Time/Temperature Superposition Principle for both brain tissue and
model materials, the frequency range could be extended up to 1000 Hz [51].

3.2 Materials and methods

Experimental Setup

Experiments are performed on two rotational viscometers, Rheometrics Fluids
Spectrometer II (RFS) and Rheometrics ARES (ARES) [125], using a plate-plate
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configuration. These viscometers are basically the same. The temperature control on
the ARES is more accurate, while the torque transducer of the RFS is more sensitive.
Samples are centered between 50-mm diameter flat parallel disks. A prescribed
oscillatory strain is applied on the one plate, while the torque is measured on the other
plate that is fixed. The frequency range of the measuring devices is limited by inertial
effects (0.1 to 16 Hz). The strain applied is defined as the plate displacement at the
edge of the sample divided by the sample height. This sample height is determined
by adjusting the distance between the plates such that the normal force measured
reaches 0.1 mN . The plate distance then is measured with an accuracy of 1 �m using
the build-in distance measurement device of the viscometers. When necessary a moist
chamber is used to prevent dehydration of the sample.
For the oscillatory experiments a sinusoidal strain is imposed on the sample,

(t) = 0 sin(!t) (3.1)

When steady state is reached and strain amplitude 0 is sufficiently small, the shear
stress � will also be sinusoidal, but with a phase shift Æ due to the viscous behaviour.

�(t) = Gd0 sin(!t+ Æ) (3.2)

Both viscoelastic characteristics, phase shift Æ(!; T ) and dynamic modulus Gd(! T ),
are functions of the angular frequency ! and temperature T . In principle we are
interested in these parameters at one temperature (e.g., 38ÆC for brain tissue) for a
frequency range up to several kHz. However, the frequency range of the viscometer
is limited to 16 Hz. To obtain information on the material behaviour at higher
frequencies the Time/Temperature Superposition principle (TTS) can be employed
[120]. A set of isothermal characteristics, such as the phase angle, Æ, and dynamic
modulus, Gd, are determined within the measurable frequency range at different
temperatures. Next, these characteristics are shifted along the logarithmic frequency
axis to an arbitrarily chosen reference characteristic of this set, to form one smooth
curve: the master curve. This whole curve, then, is valid for the temperature at which
the reference characteristic is measured (i.e., the reference temperature Tref ). In this
manner, frequencies higher than the maximum allowed test frequency can be assessed
by lowering the temperature below the reference temperature. The frequency range
that can be obtained in this manner thus depends on the temperature range that
is used and on the temperature sensitivity of the material parameters. The TTS
principle can be applied for linear viscoelastic material behaviour only. Its application
is valid when indeed a smooth master curve can be obtained from the isothermal
characteristics2

Materials

Brain tissue Porcine brain tissue was harvested from six-months-old pigs obtained
from a local slaughterhouse, immediately following sacrifice by electrical shock.
During transportation and preparation, the brain material was wetted with a

2For more details on the applicability of the TTS principle the reader is referred to Ferry (1980) [51].
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physiological saline solution to prevent dehydration. Samples were cut using a cork
bore. The time span between sacrifice and testing was approximately four hours.
The limited sensitivity of the torque transducers requires a certain minimum diameter
of the sample. Cylindrical samples of 12-mm diameter were needed to provide
measurement results within the measuring range. Since it proved to be impossible
to obtain a sample of this diameter, consisting purely of white or grey matter, a
sample was prepared from tissue out of the thalamus of porcine brain. This tissue
is located near the center of the brain. Visual inspection showed that this tissue
consists of a homogeneous mixture of grey and white matter. To eliminate scattering
of measurement data by anisotropy, all samples were cut in the same direction with
their cylinder axis perpendicular to the sagittal plane. The sample heights varied
between 1 and 2 mm.

Gelatin model material Edible bone gelatin, used within NATO as a tissue
mimicking material, was prepared by dissolving gelatin powder in water at 50ÆC.
This liquid mixture was cooled down to room temperature to become a solid that
could be tested. In this paper gelatin was tested in two mass ratios, a 20% solution
(1 part gelatin and 4 parts water), as prescribed by the NATO regulation [105] and a
4% solution.
The 20% gelatin was shaped to cylindrical 10-mm diameter samples of thickness 1 to
2 mm. The 4% gelatin proved to be difficult in handling and could not be shaped.
For this reason the warm, liquid, gelatin mixture was poured directly between the
plates of the viscometer and cooled down in-situ. After cooling down the sample
height was determined as previously described under EXPERIMENTAL SETUP. By
this method, 50-mm-diameter samples with a height between 1.5 and 2 mm were
obtained. An advantage of this method is that the maximum plate diameter can be
used for measuring, providing better reproducibility of measurements due to absence
of centering inaccuracy.

Silicone gel Silicone dielectric gel from Dow Corning (Sylgard( Dielectric Gel 527
A&B) is a brain substitute material previously used in physical head models by Viano
et al. [157] and Meaney et al. [92]. This gel consists of two components that
were mixed together in a one-to-one ratio. The gel was cured between the plates
of the viscometer for four hours at a temperature of 65 ÆC. After cooling it down
to room temperature (25ÆC) the height was re-adjusted as to account for possible
shrinkage during curing (see EXPERIMENTAL SETUP). The diameter of the samples
thus became 50 mm and the height was on the order of 0.35 mm.

Experimental protocol

Linear strain regime As explained before, linear viscoelastic theory can be applied
only for sufficiently small shear strains. The boundaries of this linear regime were
examined by carrying out oscillatory shear experiments with constant frequency
(1.6 Hz) but increasing strain amplitude (0.1 to 10%). The linear range was
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determined using the criterion that the material behaves linearly if the measured
material parameters Gd and Æ are independent of the applied strain amplitude .
Different reference temperatures were used for different materials. The properties
of the brain tissue were determined at 38ÆC, thus resembling the animal’s body
temperature. The material properties of the gelatin were determined at 10ÆC, which
is its recommended temperature for use [105]. The silicone gel was measured at
25ÆC, resembling the laboratory environmental temperature at which it can be used
in a mechanical head model.

Frequency sweep After the determination of the linear regime, experiments were
carried out at increasing frequencies (0.1-16 Hz) with a chosen, constant strain
amplitude in the linear range (frequency sweep). In this it was assumed that this
chosen strain amplitude lies in linear range for the complete measuring frequency
range. The experimental results of porcine brain tissue, gelatin and silicone gel are
compared with each other.

Time/Temperature superposition Frequency sweeps at different, constant,
temperatures were performed to expand the frequency range using TTS. The master
curves for the brain tissue were composed of 7 isothermal characteristics determined
at temperatures between 4 and 40ÆC. This temperature range is bounded by the
phase transition of water at 0ÆC and the permanent brain damage that can result
due to, for example, the solidifying of proteins at 41ÆC [58]. The master curve for
silicone gel was composed of 9 isothermal characteristics. Temperatures between -
50ÆC and 25ÆC were used. The wide temperature range necessary for the silicone gel
could not be met by the RFS. For this reason, the ARES was used for both materials.
Differences in measurement results of both viscometers under the same conditions
were within the experimental spread of one viscometer. For gelatin no master curves
were determined, for reasons that will be explained further on.
Finally, it was checked whether the measurements at different temperatures had
influenced the material properties of the sample by repeating a test at room
temperature. Table 3.1 provides an overview of the experimental conditions.

Table 3.1: Overview of experimental conditions. n: number of samples, 4T: temperature
range, MC: Moist chamber (yes/no), d: sample diameter.

Material n 4T [ÆC] Tref [ÆC] MC d [mm] Device
Porcine brain 4� 4, 40 38 y 12 RFS-ARES
Gelatine 4% 7 10, 15 10 y 50 RFS
Gelatine 20% 4 10, 15 10 y 10 RFS
Silicone gel 2 -50, 25 25 n 50 RFS-ARES
�Each sample taken from a different animal.
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3.3 Results

Linear strain regime

The results of the four brain tissue samples are shown in Figure 3.1. For strain
amplitudes larger than 1%, the brain tissue was considered to behave non-linearly.
All model materials were found to show linear viscoelastic behaviour within the strain
range tested (i.e., up to 10% strain). For this reason, it was decided to use a strain
amplitude of 1% for both frequency sweep as well as TTS.

Frequency sweep

In Figure 3.2, the results of the frequency sweep are shown. The dynamic modulus
of the porcine brain tissue increases with frequency. It can be seen that the results
of three samples spread within 30% range of their average, while the result of the
fourth sample is significantly higher. Averaged over all samples, the dynamic modulus
increases from 500 Pa at 0.1 Hz to 665 Pa at 10 Hz. The phase angle of brain tissue
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Figure 3.1: Dynamic modulus Gd (left) and phase angle Æ (right) of four brain samples,
versus strain amplitude at constant frequency f =1.6 Hz, and temperature
Tbrain =38ÆC. Results of different samples denoted with different symbols.
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increases from 10Æ�2:5Æ at 0.1Hz to 20Æ�5Æ at 10 Hz. For frequencies higher than 10
Hz, strong deviations with respect to the previous trends at lower frequencies can be
seen. Since these deviations even lead to negative phase angles, these are considered
to be an experimental artefact. For this reason, results at frequencies higher than 10
Hz will not be used for application of TTS.
The dynamic modulus for silicone gel is in the range of the one for brain tissue.
It starts at approximately 150 Pa at 0.1 Hz and increases to 1100 Pa at 16 Hz.
The phase angle starts off at approximately 5Æat 0.1 Hz and increases strongly with
increasing frequency to 45Æ at 16 Hz. The dynamic moduli for the gelatin mixtures
are significantly higher than the dynamic moduli for brain and silicone gel. The
dynamic modulus for the 20% gelatin mixtures equals approximately 470 kPa and
does not increase with frequency (maximum and minimum values within 7% range).
The phase angle for the 20% gelatin mixture is less than 2 degrees. Decreasing the
proportion of gelatin to 4% decreases the dynamic modulus to approximately 11.6
kPa, which is still higher than the moduli of brain tissue and silicone gel. The phase
angle also decreases. It can be concluded that the gelatin behaves nearly perfectly
elastic.

Time/Temperature Superposition

In the previous section it was shown that gelatin is too stiff and too less viscous to
resemble the material behaviour of brain tissue. For this reason it was decided to
exclude the gelatin from further investigation.
The master curves for brain tissue and silicone gel shifted to their reference
temperatures, are shown in Figure 3.3. Overlapping parts of all isothermal curves
matched well, so TTS was considered to be applicable.
The frequency range of the master curves for brain tissue, shown in Figure 3.3, ranges
up to 1000 Hz. At 1000 Hz the dynamic modulus and the phase angle are about 2
kPa and 30Æ respectively. For the silicone gel the master curve ranges to 260 Hz. The
dynamic modulus of the silicone gel increases more strongly for increasing frequency
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Figure 3.3: Master curves of 4 samples of porcine thalamus tissue (Treference= 38ÆC) and 2
samples of silicone gel (Treference= 25ÆC) obtained by oscillatory tests with 0 =
1%. Dynamic modulus Gd (top) and phase angle Æ (bottom) versus frequency.
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than the one of brain tissue. At 260 Hz it reaches 5100 Pa whereas the average
dynamic modulus for brain tissue equals 1250 Pa. The phase angle for the silicone
gel also increases more progressively. At 260 Hz for example, the phase angle for the
silicone gel reaches 56Æ whereas the one for brain tissue equals approximately 27Æ.
The re-tests of silicone gel and brain tissue at their reference temperatures showed
that the temperature changes did not permanently alter the material properties.

3.4 Discussion

Mechanical head models that include some anatomical structures, such as the brain,
can be used for head injury assessment, for gaining insight into the response
mechanisms within the head at impact loading or for validation purposes for
numerical head models. An important component of such a model is the material
that mimics the dynamical behaviour of brain tissue.
In this study, two brain mimicking materials and porcine brain tissue were subjected
to small strain, oscillatory shear experiments. It was shown that both model materials
behave linear viscoelastic for strains up to at least 10% while brain tissue behaves
linearly to only 1%. In the linear strain range, the Time/Temperature Superposition
principle could be applied for capturing the high frequency behaviour of the materials.

Brain Tissue

Master curves that span a frequency range to 1000 Hz could be obtained. Peters
et al., who investigated the validity of the TTS principle on white matter tissue of
calf brains, obtained a frequency range to 1 MHz, by measuring between 6 and
38ÆC [120]. Apart from different animal origin, no explanation for the different
frequency range can be provided. These findings on the applicability of the principle
are in contrast to findings of Arbogast et al. [14] who could not find any temperature
dependency of the material behaviour of brain tissue within the temperature range
mentioned above.
For the brain tissue both the dynamic modulus and the phase angle show an
increasing tendency for increasing frequencies. Our results are within the range of
the data reported in literature, shown in Figure 3.4. These are presented in terms
of elastic (or storage) modulus G

0

and viscous (or loss) modulus G
00

. They can be
obtained from the dynamic modulus Gd and phase angle Æ using [51],

G
0

= Gd cos(Æ) (3.3)

and

G
00

= Gd sin(Æ) (3.4)

For reasons of clarity, data by Shuck and co-workers, who performed material
characterisation on human cerebral brain tissue [135; 134], are not included in Figure
3.4. In a frequency range of 5 to 350 Hz, they found a storage modulus ranging
from 7.6 kPa to 33.9 kPa and a loss modulus ranging from 2.8 kPa to 81.4 kPa
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(0=1.3%). These values are significantly higher than the ones shown in Figure 3.4.
The reason for this is unknown, but differences that are expected to influence the
material parameters, might exist in post-mortem time, amplitude of applied strain
and different donors.

Model Materials

The applicability of the model materials in a mechanical head model is predominantly
determined by the mimicking qualities of the model materials, but also by their
experimental manageability. The latter includes factors such as aging, temperature
sensitivity and ease of preparation, which are important in every day laboratory
practice. Both considerations will be discussed.
For the Sylgard 527 A&B silicone gel a frequency range up to 260 Hz could be
obtained by applying TTS in the chosen temperature range of 25 to -50ÆC. It is
believed that the frequency range can be expanded to higher frequencies, without
any problems, by measuring at temperatures below -50ÆC.
Our results correspond well with the findings of Arbogast et al. [6]. They presented
the dynamic shear modulus of the same silicone gel for testing their high frequency
shear device. Unfortunately they did not report the phase angle so this could not be
compared with our data.
The dynamic modulus of silicone gel equals that of brain tissue in a range up to
10 Hz. For higher frequencies, up to 260 Hz, the silicone gel becomes stiffer than
brain tissue. Thus, when applied in a head model at room temperature, strains in the
silicone gel are expected to be lower than in real brain tissue, for those frequencies.
Moreover, these high frequency strains will be damped stronger in the silicone gel
than in brain tissue, since the phase angle and hence the loss modulus, of the gel is
higher than that of brain tissue.
The experimental manageability of the silicone gel proved to be good. The effect of
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[5], 4. porcine cerebrum (0=2.5%) [142], 5. calf cerebrum (0=1.0%) [120], 6.
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material aging is tested by repeating a frequency sweep test, at room temperature,
after the material had been in the measuring device for three days at 25ÆC. The
dynamic modulus showed an increase of approximately 10% over the complete
frequency range. The phase angle showed a decrease of 2.5 degrees. Repeating the
experiment one day after this, did not reveal additional differences. For this reason it
can be concluded that the influence of material aging is low.
The dynamic modulus of the gelatin model material was decades higher than the
modulus of brain tissue (a factor of 50 for the 4% gelatin solution and a factor of 2000
for the 20% solution). The phase angle remained almost zero (0-2Æ). Both quantities
did not depend on frequency. This indicates that, within the frequency range tested
(0.1-16 Hz), the gelatin behaves as a nearly perfect elastic solid that is too stiff
for mimicking brain tissue. In theory, the stiffness of the gelatin can be lowered
by using lower percentage mixtures than the 4% mixture. However, in practice this
is not possible because of the high damage sensitivity of the material, causing it to
break up at very low strains. Furthermore, the material behaviour of the gelatin
was very sensitive to aging (parameters change with in hours after preparation) and
mechanical failure. For these reasons it can be concluded that gelatin is not suitable
as a model material for brain tissue.

Accuracy analysis
The accuracy of the measurement is determined by the accuracy with which the shear
can be applied on the oscillating plate, and the measuring accuracy of torque on the
fixed plate. The rotation of the plates can be applied with discrete steps of 5 � 10�6
rad [125]. With the diameters and thickness’ used, the relative discretisation error in
the applied shear becomes 4% of the shear strain amplitude for the silicone gel. For
brain tissue this is 0.15%. The torque can be measured with a relative error of 0.16%
[125]. In translating the measured torque into the dynamic modulus, this relative
error has to be increased with relative errors in the sample height, the applied strain
and four times the relative error in the sample diameter [164]. In this manner the
total relative error in the dynamic modulus was estimated to be 20% for the brain
tissue and 5% for the silicone gel measurements.
In the experiments, the assumed pure shear deformation requires that the sample is
in an stress-free state before loading. Indeed the samples are stress-free, immediately
after they are mounted in between the plates (neglecting earth gravity). However,
since they stick to the plates, depending on possible shrinkage during cooling down
and/or curing, the stress-free state might be lost. By adjusting the plate distance
before each measurement such that the normal force on the (cured) sample is close
to zero, we tried to restore the stress-free state as much as possible. Finally, during
curing of the gels, and by adhesion to the plates, the molecular structure, and thus
the mechanical behaviour, of the gel near the plates might differ from that in the
bulk material. As a consequence the measured material parameters would depend on
sample thickness. A test using silicone gel with a sample thickness of 0.9 mm revealed
that the difference with the 0.35-mm results presented in Figure 3.2, is smaller than
the spread between the 0.35-mm results themselves. Thus the measured properties
are believed to be bulk properties.
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Limitations of current work

For determining the material behaviour of a model material to be used in a
mechanical head model under real impact conditions, the material has to be
investigated at finite strains and high frequencies. Typical frequencies are on the order
of 1000 Hz, whereas studies on isolated axons indicate strains of about 15% to be
responsible for injury [141]. In this paper the small strain behaviour was determined
in the complete relevant frequency range using the Time/Temperature superposition
theory. For determination of the large strain behaviour the TTS theory is not valid.
Even if linear viscoelastic parameters, such as Gd and Æ, are obtained from oscillatory
strain measurements outside the linear range, they have no meaning, since the basic
assumption of these experiments, that a sinusoidal strain input leads to a sinusoidal
stress output, has been violated. For this reason, material properties in the 1% range
cannot be extended into the 15% range, relevant for injury. Characterisation of the
materials at large strains requires additional test methods such as stress or strain
relaxation experiments. This will be subject of future work (Chapter 4).
Finally, this study is limited in that reasonable large brain samples had to be used
which did not exist of white or grey matter only. For this reason, the reported material
properties are to be considered as average properties of grey and white matter. Also
effects of anisotropy, resulting from fibre structure, were averaged in this way.

3.5 Conclusions

It can be concluded that 4% and 20% edible bone gelatin mixtures are not suitable
for application as a brain tissue model material in a mechanical head model. The
dynamic modulus of Dow Corning Sylgard 527 A&B silicone dielectric gel is similar to
that of porcine thalamus tissue for strains up to 1% at frequencies up to approximately
10 Hz. For higher strains brain tissue behaves non-linear while the silicone gel
behaves linear for strains up to at least 10%. Above 10 Hz the dynamic modulus of
the silicone gel increases much stronger with frequency than the one of brain tissue.
At 1% strain, the phase angle of silicone gel is similar to that of brain tissue only up
to 1 Hz. Above 1 Hz it increases more with frequency than that of brain tissue. Thus,
silicone gel may be used in mechanical head models to obtain a qualitative impression
of the behaviour of the brain tissue during accident conditions but strain levels in the
gel will differ from those in the real brain.
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Chapter 4

Large shear strain dynamic
behaviour of brain tissue and

silicone gel model material

This chapter contains a paper presented at the Stapp Car Crash Conference in Atlanta, GA, USA.
November 20001 It is a continuation the material experiments presented in Chapter 3 in that the
mechanical characterisation of brain tissue as well as the silicone gel material model for large
shear strains is concerned. These results will be used for determination of a material model and
material parameters in the following chapters.

1Brands, D.W.A., Bovendeerd, P.H.M., Peters, G.W.M and J.S.H.M. Wismans (2000): “The large strain
dynamic behaviour of in-vitro porcine brain tissue and a silicone gel model material”, The Stapp Journal,
44, pp. 249-260.
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Abstract

The large strain dynamic behaviour of brain tissue and silicone gel, a brain substitute
material used in mechanical head models, was compared. The non-linear shear strain
behaviour was characterised using stress relaxation experiments. Brain tissue showed
significant shear softening for strains above 1% (approximately 30% softening for
shear strains up to 20%) while the time relaxation behaviour was nearly strain
independent. Silicone gel behaved as a linear viscoelastic solid for all strains tested
(up to 50%) and frequencies up to 461 Hz. As a result, the large strain time
dependent behaviour of both materials could be derived for frequencies up to 1000
Hz from small strain oscillatory experiments and application of Time Temperature
Superpositioning. It was concluded that silicone gel material parameters are in the
same range as those of brain tissue. Nevertheless the brain tissue response will not
be captured exactly due to increased viscous damping at high frequencies and the
absence of shear softening in the silicone gel. For trend studies and benchmarking of
numerical models the gel can be a good model material.

4.1 Introduction

Mechanical head models that include anatomical structures such as the brain, can
provide insight into the response mechanisms within the head at impact loading.
Moreover, they can provide validation data for numerical head models. An important
component of such detailed mechanical head model is the model material, mimicking
the behaviour of real brain tissue in the relevant mechanical range. This range
comprises strains up to 20%, the strain level associated with injury [141], and
frequencies up to 1000 Hz, a frequency typical for traffic related impacts.
A model material previously used for mimicking the behaviour of brain tissue
in physical head models is Dow Corning Sylgard 527 A&B dielectric silicone gel
[71; 92; 157]. In a previous study we compared the small strain dynamic behaviour
of the model material with that of porcine brain tissue [27] and with the small strain
brain tissue results by other authors [5; 50; 91; 120; 142; 143]. It was concluded
that for strains up to 1%, the dynamic behaviour of silicone gel resembles that of
brain tissue for frequencies up to 260 Hz.
In this study, oscillatory shear experiments and stress relaxation experiments have
been performed at finite strain levels on both silicone gel and porcine brain tissue,
completing the material characterisation in the full relevant dynamic range.

4.2 Materials and methods

Experimental setup

Simple shear experiments have been performed on a rotational viscometer
(Rheometrics ARES [125]). Samples were placed between 25-mm diameter flat
parallel disks. A prescribed rotation was applied on the one plate, while the torque, T,
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was measured on the other plate that was fixed. For determining the sample height,
the distance between the plates was lowered until the normal force measured reached
0.1mN . The plate distance was then measured with an accuracy of 1 �m using a
build-in measurement device of the viscometer. Correct temperature conditions were
obtained by controlled air temperature. Dehydration of the brain tissue samples was
prevented by controlling humidity using a custom build moist chamber. To prevent
slip between the brain tissue samples and the plates two methods of sample fixation
were investigated. First a cyanoacrylate adhesive (Sicomet 85, Henkel, Germany) has
been used to fixate the samples to the plates and second the coefficient of friction of
the plates has been increased by fixing waterproof sandpaper (P220) to the plates
using two-sided adhesive tape.

Data acquisition

If we assume that there is no material displacement perpendicular to the plate
surfaces, the strain in the sample can be written as a function of time t and radius r
as,

(r; t) =
�(t)r

H
=

R(t)r

R
; 0 < r < R (4.1)

were � represents plate rotation, H the sample height, R(t) the strain at the sample
edge and R the sample radius. The total transient torque can be written as a function
of the strain at the sample edge as,

T (t; R) = 2�

Z R

0

�(r; t)r2dr (4.2)

For linear strain independent material behaviour, the integral can be solved exactly.
By introduction of the shear modulus G(t) = �(r; t)=(r; t), the modulus, Ga(t), can
determined as a function of total transient torque and the strain at the plates edge,

Ga(t) =
2T (t; R(t))

�R3R(t)
(4.3)

This modulus, which is obtained directly from the viscometer, represents the true
material parameter, G(t), for strains within the linear regime of the material only. For
strains outside the linear range, Ga(t) denotes an apparent modulus that represents
some average modulus over the strain range present in the material.
All moduli and strains, presented in this paper, are apparent moduli, defined by
equation (4.3), and strains at the sample edge unless stated otherwise.

Sample preparation

Brain Tissue Porcine brain tissue was harvested from six-months-old pigs obtained
from a local slaughterhouse, immediately following sacrifice by electrical shock.
During transportation, complete hemispheres were submerged in a physiological
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saline solution to prevent dehydration. Sagittal slices were cut using a standard
rotating-disk meat slicer (Bizerba GmbH & Co., Balingen, Germany). From these
slices, 24-mm diameter cylindrical samples were cut using a cork bore. Samples were
prepared from tissue located near the centre of the brain (thalamus region). Visual
inspection showed that this tissue consists of a mixture of grey and white matter
parts. To eliminate scattering of measurement data by anisotropy, all samples were
cut in the same direction with their cylinder axis perpendicular to the sagittal plane.
The sample heights varied between 2.3 and 3.6 mm. The time span between sacrifice
and end of testing was approximately four hours. All samples were kept refrigerated
at 4ÆC and submerged in a physiological saline solution until the actual experiment
started.

Silicone gel Silicone dielectric gel from Dow Corning (Sylgard Dielectric Gel 527
A&B) is a brain substitute material previously used in physical head models [71; 92;
157]. This gel consists of two components that were mixed together in a one-to-one
ratio. The gel was cured between the plates of the viscometer for four hours at a
temperature of 65ÆC. After cooling it down to room temperature (25ÆC) the height
was re-adjusted as to account for possible shrinkage during curing (see section 4.2).
The diameter of the samples thus became 25 mm and the height was on the order of
1.3 mm.

Loading conditions

Two types of loading conditions have been used: oscillatory strain for characterising
the linear behaviour of the materials and step strain with subsequent stress relaxation
for the non-linear behaviour.

Oscillatory strain During the oscillatory experiments a sinusoidal strain is imposed
on the sample,

(t) = 0 sin(!t) (4.4)

When steady state is reached and strain amplitude 0 is sufficiently small, the shear
stress � will also be sinusoidal, but with a phase shift Æ due to the viscous behaviour,

�(t) = Gd0 sin(!t+ Æ) (4.5)

Both viscoelastic characteristics, phase shift, Æ(!; t), and dynamic modulus, Gd(!; T ),
are functions of the angular frequency, !, and temperature, T . To obtain information
on the material behaviour at higher frequencies than the maximum frequency of
the viscometer, 16 Hz, the Time/Temperature Superposition principle (TTS) can be
employed [27; 120]. A set of isothermal characteristics, such as the phase angle Æ
and dynamic modulus Gd, was determined within the, viscometer-limited, frequency
range at different temperatures, !T . Next, the phase angle characteristic was shifted
along the logarithmic frequency axis to an arbitrarily chosen reference characteristic
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of this set, to form one smooth curve: the master curve. This master curve is valid for
the temperature at which the reference characteristic is measured (i.e., the reference
temperature Tref ). The amount of horizontal shift per isothermal characteristic was
quantified by the horizontal shift factor, aT , and the effective frequency for which a
shifted result is valid, !eff , was obtained by,

!eff = aT!T (4.6)

Next, the horizontal shift factors obtained in this manner, were applied to the dynamic
modulus, Gd. A small vertical shift, bT , was then applied to the modulus to obtain
a smooth dynamic modulus master curve. This vertical shift factor is commonly
associated with density changes due to temperature changes and is usually on the
order of 1 [21]. In this manner, frequencies higher than the maximum allowed
test frequency can be assessed by lowering the temperature below the reference
temperature. The TTS principle is valid when indeed a smooth master curve can
be obtained from the isothermal characteristics [51].

Stress relaxation For investigating the non-linear strain behaviour of a material,
oscillatory experiments can only be used when a material model is assumed, just as
Gd and Æ are linear viscoelastic material model parameters. Investigation of the non-
linear strain behaviour of the material without making model assumptions can be
achieved by performing stress-relaxation experiments.
During stress relaxation experiments, in principle, a step strain, 0, is imposed on the
sample. Since this is not possible in reality, stress relaxation was achieved by imposing
a strain, R, on the sample within 0.1 s and keeping it constant thereafter (see
Figure 4.1 ). The resulting torque was measured and used to calculate the apparent
shear modulus, Ga(t; R) by means of equation (4.3). The relaxation modulus thus
obtained corresponds to,

Ga(t; R(t)) = �(t; R(t))=R(t) (4.7)

It represents the real stress relaxation modulus (i.e. the relaxation modulus as if
obtained from a true step strain) only when the strain is at constant value and inertia
effects have faded away.
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Figure 4.1: Example of strain history applied on silicone gel sample. indicating that a constant
strain value was reached within 0.1 s.
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During the brain tissue experiments it was observed that the relaxation curves for
different strain values have a tendency to be parallel. This suggests that, the stress
relaxation modulus can be separated into a strain and a time dependent part,

Ga(t; R) = ha(R)G(t) (4.8)

In this equation the time dependent behaviour, which is represented by G(t), equals
the linear viscoelastic modulus (which does not depend on strain). ha(R) equals the
damping function determined from the apparent modulus, Ga [87]. The damping
function thus quantifies the effect of the strain applied on the shear modulus.
When time strain factorisation can be carried out, the material characterisation will
be simplified considerably, since the time dependent behaviour can be obtained for
high frequencies using the linear oscillatory experimental results. The validity of this
time strain factorisation for brain tissue has been investigated by applying equation
(4.8) on the experimental data. For each sample, a scaling function, H(t; R; 

ref
R ),

was defined as,

H(t; R; 
ref
R ) =

Ga(t; R)

Ga(t; 
ref
R )

(4.9)

If factorisation is valid, the scaling function H(t; R; 
ref
R ) will be independent of time

and correspond to the damping function ha(R) when refR is chosen in the linear
range of the material. The scaling function, H(t; R; 

ref
R ), was time-averaged to

�H(R; 
ref
R ), and the large strain relaxation moduli, Ga(t; R) then were normalised

to refR using,

Gnorm(t; refR ) =
Ga(t; R)

�H(R; 
ref
R )

(4.10)

Experimental protocol

Linear strain regime: Oscillatory strain Silicone gel has been shown to behave
linear for strains up to at least 10% at 16 Hz [27]. In this paper the behaviour
of the silicone gel has been investigated up to 50% strain and higher frequencies.
First, isothermal measurements at constant strain amplitudes of 1% and 20% but
increasing frequencies (0.1 Hz to 32 Hz) were performed at temperatures ranging
from 25 to -60ÆC (Dynamic Frequency Sweeps, DFS). Master curves were created
from the isothermal DFS results using Time Temperature Superpositioning and shift-
factors were determined. Next, oscillatory experiments with constant frequency, 16
Hz, but increasing strain amplitudes, up to 50% (Dynamic Strain Sweeps, DSS) were
performed at 24, -40, -50 and -60ÆC. At each temperature, the linear range of the
material was determined by checking for which strain values the material parameters
were strain independent. Possible permanent effects of these low temperatures on the
material properties were checked by repeating a measurement at 24ÆC after the low
temperature measurements were completed. Effective frequencies for the DSS results
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were obtained by using the horizontal shift-factors obtained from the TTS results, and
f=16 Hz in equation (4.6).
Oscillatory strain experiments on brain tissue were performed to study the effects of
the different adhesion methods on brain tissue by comparing the results obtained with
adhesion methods with those obtained without adhesive methods in our previous
study [27]. For brain tissue it has been shown that the linear range is on the order of
1% strain [27]. For this reason all master curves were constructed from isothermal
characteristics at 1% strain and frequencies up to 16 Hz. Temperatures between 4ÆC
and 38ÆC have been used. Low temperature measurements have been performed first
to minimise the effect of sample ageing due to autolytic processes in the brain tissue.

Non-linear strain regime: Stress-relaxation Strain values ranging from 5% to
20% were applied on 4 samples of brain tissue and the apparent modulus was
measured during 100 s. The temperature used equals 38ÆC. Two samples of silicone
gel were tested at 24ÆC and at 10, 30 and 50% strain values to provide results
for comparison with those of brain tissue. By testing two samples an indication of
reproducibility of the measurement could be obtained. Given the ramp shape of the
prescribed strain in Figure 4.1, it has been assumed that the measured shear modulus
equals the stress relaxation modulus due to a step response for t > 0.1 s. An overview
of all experimental conditions is provided in Table 4.1.

Time-strain factorisation To compare the relaxation behaviour of the various
samples more quantitatively, time dependent and strain depend behaviour were
observed separately. First, scaling function, H(t; R; 

ref
R ), was determined from the

stress relaxation results using equation (4.9), and choosing refR = 5% (n=3) and
6% (n=1). The value of H was evaluated for t = 0.1 to 9.6 s with time intervals
of 0.5 s. Then these values were time averaged, as to obtain damping function
values, �H(R; 

ref
R ), from which the normalised relaxation moduli, Gnorm(t), were

determined using equation (4.10).

Table 4.1: Overview of experimental conditions. n: number of samples, �T temperature
range, MC: Moist camber (yes/no), d sample diameter, �: strain range

Material Measurement n �T Tref MC d �

type [-] [ÆC] [ÆC] [mm] [%]
Silicone gel DSS 1 -60;24 24 n 25 1;50

DFS+TTS 3 -60;24 24 n 25 1;50
SR 2 24 24 n 25 10&50

Brain tissue DFS+TTS 5* 4,38 38 y 24 1
SR 4* 38 38 y 24 5;20

DSS = Dynamic Strain Sweep, DFS+TTS = Dynamic Frequency Sweep and application of
Time Temperature Superpositioning, SR = Stress Relaxation
* 2 adhesive fixed samples, 2 sandpaper fixed samples
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4.3 Results

Oscillatory strain experiments
Silicone gel Figure 4.2 shows master curves of silicone gel obtained from dynamic
frequency sweeps at 1 and 20% strain (three samples used), together with the
horizontal shift factors aT .
The dynamic modulus ranges from 258 Pa to 15.2 kPa at 0.16 and 1150 Hz
respectively, while the average phase angle values vary from 9.4Æ to 57Æ at 0.16 and
417 Hz. Maximum differences with respect to the mean value, due to different
samples, were 21% for the dynamic modulus and 15% for the phase angle, both at
f=0.16 Hz. For dynamic modulus and phase angle respectively, these differences
decrease to 7.2% and 2.8% at 50Hz and 0.4 and 0.26% at 260 Hz. Horizontal shift
factors up to 28 were obtained at -60ÆC. Between the three samples, the horizontal
shift factors coincided within 2%.
The results of the 16 Hz, Dynamic Strain Sweeps on silicone gel, performed at 24,
-40, -50 and -60ÆC, are shown in Figure 4.3 . The change in dynamic modulus over
a strain range from 1 to 50% equals less than 1.6% for all temperatures except at
-60ÆC. At this temperature the dynamic modulus increases 8.3% with respect to its
minimum value. For strains up to 36% the difference remains within 5%. When
increasing the strain from 1 to 50%, the change in phase angle is less than 2.3%
for all temperatures. Repeating the 24ÆC measurement after the low temperature
measurements gave maximum differences in dynamic modulus and phase angle of
1.35% and 0.58% respectively. The effective frequencies at which the results are valid
were determined using the average shift factors, aT;mean, from the master curves.
They are shown in Table 4.2.

Brain tissue To estimate the effect of the fixation methods (adhesive and
sandpaper) on small strain oscillatory results, master curves have been constructed
and compared with those obtained without fixation in Figure 4.4 . It can be seen
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Figure 4.2: Master curves for Dow Corning Sylgard 527 A&B silicone gel (T = 24ÆC and
25ÆC [27]) at strain amplitudes from [27]. Dynamic modulus (left), phase angle
(middle), horizontal shift factor, aT (right).
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that the dynamic moduli of the fixed samples lie between the non fixed ones for
frequencies above 0.7 Hz. Fixed values tend to be in the lower regions of the non
fixed range. The phase angle values of the fixed samples lie between the results
obtained without fixation except for one sandpaper fixed sample.
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Figure 4.3: Determination of the linear strain range of silicone gel at several temperatures.

Dynamic Strain Sweeps performed at 16 Hz and at 24ÆC, -40ÆC, -50ÆC and -
60ÆC and repeated thereafter on 24ÆC (2). Dynamic modulus (left) and phase
angle (right) versus strain amplitude.

Table 4.2: Shift factors aT;mean�range from Dynamic Frequency Sweep tests, at temperatures
used in Dynamic Strain Sweep Experiments. Effective frequency, feff , calculated
using average shift factor aT;mean and the DSS frequency of 16 Hz.

T [ÆC] n [-] aT � range [-] feff [Hz]
24 3 1�0 16
-40 2 9.3�0.1 149
-50 2 16.4�0.2 262
-60 1 28.8 461
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Figure 4.4: Master curves of porcine brain tissue to show the effect of fixation method
(adhesive (glue), n=2 and sand paper (sand), n=2, no adhesion method (no fix),
n=1) on small strain response (R = 1%, Tref = 38ÆC). Results presented in
[27] (n=4), obtained without adhesion method, printed as reference (no fix*).
Dynamic modulus (left) and phase angle (right) versus frequency.
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Stress relaxation experiments

Silicone gel In Figure 4.5 the shear moduli of the silicone gel were determined
from the strain history depicted in Figure 4.1 and application of equation (4.3). Note
that the strain is not at constant value for times less than 0.1 s. Although also shear
moduli were determined for times less than 0.1 s, only moduli obtained after 0.1 s
were considered to be pure relaxation moduli. The average relaxation modulus of
sample 1 obtained from measurements at three strain values (shown in Figure 4.5,
upper plot), equals 357�12.8 Pa and 216�10.6 Pa at 0.1 and 100 s respectively
(mean values standard deviation). When the strain is increased from 10% to 50% the
time-averaged increase of the modulus of sample 1 equals 12.6% (t=0.1s to 100s).
The shear modulus of sample 2 increases by 4.1% at the same strain range. The
strain-averaged relaxation moduli of both samples differ by 3.8% with respect to their
mutual average (Figure 4.5, right plot). With respect to time dependent behaviour it
can be observed that both relaxation moduli reach a plateau value. Between 27 and
100 s the average modulus changes by 1 percent only.

Brain Tissue Stress-relaxation experiments were performed on four brain tissue
samples. Strain values applied vary between 5 and 20%. In Figure 4.6 stress
relaxation moduli of brain samples are shown. Results obtained with the silicone
gel at R = 10% were included for comparison. All brain tissue samples show shear
strain softening for strains up to 20%, i.e. the relaxation modulus decreases as a
function of strain applied. While shear strain softening seems consistent per sample,
the associated change of relaxation modulus (approximately 35%) is less than the
spread between relaxation moduli of different samples (approximately 90%). Also
it can be observed that the relaxation modulus does not reach a plateau value after
100 s.
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Figure 4.5: Stress relaxation results for one sample of silicone gel at three strain levels,
indicating presence/absence of strain dependency (left) (T = 24:3ÆC, R =10,
30 and 50%). Average shear moduli per sample, (n=2) obtained at 3 strain levels,
indicating reproducibility (right). Moduli represent relaxation moduli for t > 0:1 s.
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Time-strain factorisation The scaling function, H(t; R; 
ref
R ), was determined by

choosing refR = 5% (samples G1, G2 and S1) and 6% (sample S2). The values of H ,
evaluated for t = 0.1 to 9.6 s with time intervals of 0.5 s, are shown in figure 4.7 .
The scaling functions of sample G1 do not seem to depend on time (maximum change
in time less than 3.4% with respect to the time-averaged value). Also the 10% result of
the G2 sample, and the 20% result of sample S1 do not show a clear trend (maximum
changes 4.1% and 12% respectively). The 20% result of sample G2 and the 16% and
20% results of the S2 sample show a decreasing trend in time (maximum changes
16% for G2 (R=20%) and 26% for S2 (R=20%), respectively). This trend is
predominately present during the first 0.6 s. This means that if time-strain separation
is applied according to equation (4.10), the maximum error in the time-dependent
normalised relaxation modulus, Gnorm(t; 

ref
R ), equals 26%. If we neglect the 0.1s

value of H, the largest error decreases to 13.8%. The effect of leaving out the 0.1s
results on the time averaged damping function values, �H , equals 1.1% at maximum.
Time averaged damping function values, �H(R; 

ref
R ), as well as normalised

relaxation moduli, Gnorm(t; refR ), are shown in Figure 4.8 .
The results for sample G1 deviate from those of G2, S1 and S2. For the latter three
samples the average shear softening at 20% strain is 30% 6.8% (mean standard
deviation). The mean relaxation modulus varies from 367 130 Pa at 0.1 s to 173

10
−2

10
0

10
2

10
2

10
3

Time [s]

R
el

ax
at

io
n 

m
od

ul
us

 [P
a]

Sample: G1

γ=5% 
γ=10%
γ=15%
gel       

10
−2

10
0

10
2

10
2

10
3

Time [s]

R
el

ax
at

io
n 

m
od

ul
us

 [P
a]

Sample: G2

γ=5%   
γ=10%  
γ=20%  
silicone gel

10
−2

10
0

10
2

10
2

10
3

Time [s]

R
el

ax
at

io
n 

m
od

ul
us

 [P
a]

Sample: S1

γ=5%   
γ=20%  
silicone gel

10
−2

10
0

10
2

10
2

10
3

Time [s]

R
el

ax
at

io
n 

m
od

ul
us

 [P
a]

Sample: S2

γ=6%   
γ=16%  
γ=20%  
silicone gel

Figure 4.6: Stress relaxation results of porcine brain tissue (n = 4, T = 38ÆC) compared with
Sylgard 527 A&B silicone gel response (sample 1,  = 10%, T = 24ÆC). Each
figure shows a result of a single brain sample. G1 and G2: glued samples, S1 and
S2: sand paper fixed samples. Moduli represent relaxation moduli for t > 0:1 s.
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47.2 Pa at 10 s for these samples. The coefficient of variation (standard deviation
normalised with mean value) remains within 35% for all times to 50 s.
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Figure 4.7: Time dependency of scaling function H(t; r; ). Results of four samples shown in
separate figures. Measurements marked (2) indicate repeated measurements.
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Figure 4.8: Overview relaxation moduli normalised to 5% (samples G1, G2 and S1) and 6%
(sample S2) results (right) and damping functions of the four brain tissue samples
tested, time averaged from 0.1 to 10 s (left). Double damping function values of
S1 at 16% and S2 at 5%, indicate repeated measurements.
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4.4 Discussion

The mechanical behaviour of brain tissue and silicone gel, a brain substitute material
used previously in mechanical head models were compared in a strain and frequency
range representing impact conditions. Oscillatory shear experiments were used
to characterise the material within the linear range, the non-linear behaviour is
characterised using shear stress relaxation experiments.

Silicone gel results

The results of the stress relaxation experiments at room temperature, show a 4.9%
variation of shear modulus when strains varying from 10 to 50% were applied.
To obtain an idea on the high frequency large strain behaviour of the silicone gel
Dynamic Strain Sweeps were carried out at low temperatures. It was observed that
increasing the strain from 1 to 50% leads a maximum variations of 8.1% and 2.3%
for isothermal dynamic modulus and phase angle respectively. To asses the effective
frequencies at which these low temperature results were valid, horizontal shift factors
were determined from master curves that were obtained by applying TTS in the same
temperature range as the DSS experiments. If we assume an increase of modulus by
8.3% due to a strain increase by 500% (from 1 to 50% strain) to be negligible, it
can be concluded that Dow Corning Sylgard 527 A&B behaves as a linear viscoelastic
solid for strains up to 50% and frequencies up to 461 Hz.

Repeatability/Reproducibility It has been shown that the room temperature
material behaviour of the silicone gel was repeatable after low temperature, high
strain, experiments (a maximum difference 1.4%).
The reproducibility of the stress relaxation experiments is checked by comparing the
results obtained with two different samples, cured from two different batches. It was
observed that differences were within 3.8%. Reproducing the TTS experiments with
three different samples obtained from three different batches provided differences in
horizontal shift factor values of less than 2%. Differences in dynamic modulus ranged
from 20% to 0.2% for increasing frequencies. Differences in phase angle ranged from
15% to 0.2%. From these results it can be concluded that the reproducibility of the
experiments was within 20%.

Comparison with literature Ivarsson et al. [71] performed a Dynamic Frequency
Sweep on Dow Corning Sylgard 527 A&B silicone gel in a frequency range from
1 to 20 Hz (R =0.65%, T =30ÆC, thickness, 3 mm). They found dynamic
modulus values that were approximately 50% higher than ours. The phase angle
was approximately 25% lower. A possible explanation for these differences might be
different curing circumstances of the gel (temperature, time duration). Unfortunately
no information was provided on the curing circumstances of the gel tested.
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Brain Tissue results

Sample fixation When large strains were applied to the brain tissue, sample slip
occurred when the standard smooth metal plates were used. The presence of sample
slip could be observed best in stress relaxation experiments. When no slip precaution
was taken, the measured time relaxation behaviour seemed to be dependent on the
strain applied, i.e. strain-time factorisation was not valid anymore. It is believed
that this effect is caused by sample slip since it was absent when either sandpaper
or glue were used to fix the sample to the plate. It could be seen that the small
strain results were in range of the results without slip precautions. This finding is
supported by Arbogast et al. [4] who also did not find differences when a cyano-
acrylate gel was applied in a dynamic frequency sweep experiment on porcine brain
tissue. The large strain stress relaxation results did not reveal consistent differences
between the fixation methods results. Both time relaxation behaviour as well as strain
softening showed same tendencies. A drawback of using the adhesive, is the unknown
adhesive thickness which could not be accounted for in the results. When sandpaper
was used the thickness of paper and tape can easily be accounted for by zeroing the
plate height with paper and tape attached to them. A drawback of sandpaper is that
sample slipping might still be possible, but as indicated before it was believed that
this was not the case in the results presented.

Adhesive fixed samples When comparing the damping functions and normalised
moduli of the four brain tissue samples, the results of the G1 sample were found
to deviate from the results of the other samples. This deviation might have been
caused by a relatively thick glue layer present at G1, that could not be accounted for
in the data processing. Since the glue behaves as a rigid solid when compared to
the very compliant brain tissue, the real brain sample thickness will be lower than
the measured plate distance. As a result the reported shear strain, R, will be lower
than the real strain at the samples edge (see equation (4.1)). For this reason the
damping function values of sample G1, are valid at higher strains than shown in
Figure 4.7. Furthermore the reported shear modulus will also be higher than in reality
(see equation (4.3)) [164]. This is apparent in Figure 4.7. For this reason the results
of sample G1 will not be considered in the further discussion.

Sandpaper For the sandpaper fixed samples, S1 and S2, measurement repeatability
was investigated. When the 5% measurement of sample S1, was repeated, a 1.8%
difference of the damping function was found. For sample S2 the 16% measurement
was repeated after the 20% strain measurement and a 5.0% difference in damping
function was found. Further more the damping function value of the repeated
measurement were higher than the value at 20% strain, indicating that the shear
softening observed cannot be caused by structural sample damage due to the high
strains applied.

Time-strain factorisation In the constant strain part (i.e. after t=0.1 s) of the
log-log relaxation plots, the curves for different strain values have a tendency to be
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parallel. This suggests that the stress relaxation modulus can be separated into a
strain and a time dependent part. It was estimated that the maximum error made
by assuming time-strain factorisation to be valid is on the order of 26% and 13% if
the 0.1s result is omitted. However, no final conclusions on the applicability of strain
time factorisation could be drawn yet, since the number of samples is too low to
illustrate statistical significance. Our findings are supported by findings of Prange et
al. [122], who concluded that time-strain factorisation could be performed on their
measurement results.
With respect to the stress dependent behaviour it was noted that all brain tissue
sample tested exhibit shear softening when strains up to 20% were applied. The
average shear softening equals 30% (n=3). The spread between samples given by
the coefficient of variation equals 23%. The presence of shear softening was also
found by Prange et al. [122]. Arbogast et al. [7] presented shear moduli at t=60
s for grey and white matter. These data corresponded to an average shear softening
of approximately 30% when 5% strain was taken as reference strain, as done in this
paper.
The spread of the normalised relaxation moduli, characterising the time dependent
behaviour, equals 35% (coefficient of variation, n=3). It was also observed that the
relaxation modulus does not reach a plateau value after 100 s. This is not uncommon
for biological tissues; Fung for instance investigated the creep behaviour of muscle
tissue under tension (i.e. he applied a constant stress and measured the resulting
strain) and did not find a plateau value even after one day [53].

Comparison brain tissue and silicone gel

Stress-relaxation The large strain behaviour of both materials is compared in the
stress relaxation results depicted in Figure 4.6. The relaxation modulus of the silicone
gel lies within the spread of the brain sample results. Nevertheless two differences
can be seen. First, strain dependent shear softening, found in brain tissue, is absent
in the silicone gel results. Second, the time dependent relaxation behaviour differs.
The modulus of silicone gel shows a plateau value whereas the brain tissue does not.
Also the silicone gel relaxation modulus decreases faster than the one of brain tissue.

High frequency behaviour For assessing the large strain, high frequency behaviour
of the brain tissue, use can be made of the fact that time-strain factorisation seems
to be valid. This implicates that the large strain viscous behaviour can be derived
completely from small strain oscillatory experiments. This is also true for silicone gel,
since the material behaviour of the silicone gel proved to be independent of strain for
strain values of at least 50%. For obtaining insight in the high frequency behaviour
of brain tissue and silicone gel in the linear strain range, it has been shown before
that Time Temperature Superpositioning can be applied [27][120]. A summary of
the small strain results is provided in Figure 4.9 which contains all silicone gel data,
brain tissue data and data obtained from [27].
It can be concluded that, at 0.1 Hz, the phase angle of silicone gel lies at the lower
boundary of the brain tissue samples range. It stays within range for frequencies
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between 0.1 and 1 Hz. For frequencies exceeding 1 Hz, the phase angle becomes
higher than the one of brain tissue. For the reasons mentioned above, it can be
concluded that also at finite strains, more viscous damping will be present in the
silicone gel response.
The small strain dynamic modulus of the silicone gel is higher than the modulus
of brain tissue for frequencies above 25 Hz. Due to the shear softening behaviour
of the brain tissue, it can be expected that for large strains the modulus will be
overestimated even more by the silicone gel. Furthermore the non-linear strain
behaviour of brain tissue, in principle, might lead to multiple dynamic states during
a certain excitation, while this will not be the case in the linear silicone gel (see e.g.
[106]).

Methods

Strain field the large strain experiments were conducted on a rotational viscometer.
As a result a non-homogeneous strain field will be present between the plates. The
shear strain increases linearly from zero at the centre of the plate, to a maximum
value at the plate edge. As long as the material behaves linearly elastic, as for the
silicone gel, the computed relaxation modulus represents the true material property.
For the large strain relaxation experiments on the brain tissue, the computed modulus
represents some average over the strain range imposed on the material. Correction
for non-homogeneous strain fields during stress-relaxation experiments is possible
without assuming a specific type of constitutive equation [138]. However the
application of this correction requires measurements at smaller strain intervals than
presented here.

Inertia effects In deriving material behaviour from the experimental data it is
assumed that inertia effects are absent in the samples. For the Dynamic Frequency
experiments, this was checked using theory found in [21]. The torque measured,
which involves inertia to some extent, will be called Ti. The torque to be expected
from quasi-static theory, i.e. without inertia effects, will be called Tqs. It can be shown
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Figure 4.9: Comparison of small strain ( =1%) master curves for porcine brain tissue (n=9)
and silicone gel (n=3). Dynamic modulus (left) and phase angle (right).



Large shear strain dynamic behaviour of brain tissue and silicone gel model material 63

that,

Ti =
h�

sin(h�)
Tqs where � =

s
!2�

Gd
(4.11)

and ! is the angular frequency, � the mass density, Gd the dynamic modulus and h
the sample height. Checking in Figure 4.4 at the most suspicious result, i.e. when the
actual frequency used in the experiment is at maximum and the dynamic modulus
is at minimum (i.e. at !=100 rad/s, f = 16 Hz), reveals moduli varying between
400 and 1200 Pa (approximately). Applying a mass density of 1000 kg/m (estimate)
and thickness varying from 2.3 mm to 3.6 mm, provides errors ranging from 2.2% to
5.4% in the torque measured. For the stress relaxation experiments the inertia effects
at 0.1 s are estimated by assuming a frequency of 10 Hz in equation (4.11). The
maximum overestimation of the torque then equals 2.9%.

Limitations of current research

In-vitro versus in-vivo The main limitation of this kind of research is the fact
that in-vitro brain tissue was used. Changes between living tissue and post-mortem
tissue will occur due to absence of e.g. pressurization of the vascular network
inside the brain tissue. With current test methodology it is impossible to asses the
effect of these changes on the mechanical behaviour. Furthermore, the mechanical
properties of brain tissue will change after death due to autolytic processes. Although
inevitable, this effect can be reduced by proper sample handling. In this research
we minimised these effects by minimising time between sacrifice and end of the
experiments. Furthermore the samples were stored refrigerated, submerged in a
physiological solution. And finally, in the TTS measurements the low temperature
measurements were performed first. Peters et al. [120] showed that repeating a DFS
at R=1%, 110 minutes after the start of the TTS experiments, provided differences
less than 10% in both dynamic modulus and phase angle.

Statistical significance The results presented, are obtained using a very limited
amount of samples. This is especially true for the brain tissue samples were a large
spread in measurement results could be observed. For this reason it has been chosen
to present the results as is, i.e. without performing statistical post processing on
the data. The results should therefore be interpreted in terms of trends rather than
absolute values.

Measurement accuracy In determining the damping functions of brain tissue, a
strain value of 5% was chosen as reference strain. To obtain the true damping
function, h(), refR should be chosen in the linear range of the material. For brain
tissue this means below 1% strain [27]. Unfortunately, in our relaxation experiments,
the torque signal displayed too much measurement noise for strains below 5%,
attributed to the fact that the signal was close to the lower measurement limit of
the viscometer.
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When large shear strains are applied upon a body, the resulting stress will not be a
shear stress only, but a normal force will be present also. However, since a constant
plate distance was used the experiment is still a simple shear test (with a shear strain
depending on the radius). It proved to be impossible to determine the normal force
during the large strain experiments. Since the normal force level was within the noise
level of our normal force transducer in our viscometer (0.1 mN). For this reason the
use of a more accurate rheometer is recommended for future research.

4.5 Conclusions

In this study, the large strain behaviour of Dow Corning Sylgard 527 A&B silicone
gel was compared with the one of porcine brain tissue. The non-linear behaviour
was characterised using stress relaxation experiments. It was shown that silicone
gel behaves as a linear viscoelastic solid for strains up to 50% and frequencies up to
461Hz (less than 8% strain stiffening). Brain tissue exhibits shear softening (30%
at 20% strain) and it seems that the time dependent behaviour of brain tissue does
not depend on the strain level. This implicates that the large strain time dependent
behaviour of both materials can be derived completely from small strain oscillatory
experiments and application of the Time Temperature Superpositioning Theory. From
these it has been shown that, for frequencies above 1 Hz, the phase angle of silicone
gel increases stronger with frequency than the phase angle of brain tissue. For this
reason it is believed that silicone gel will not predict the response of brain tissue
exactly in a physical head model. This is due to increased viscous material damping at
high frequencies and absence of shear softening in the silicone gel. However, for trend
studies and benchmarking of numerical models the gel can be a good alternative.

4.6 Acknowledgments

The authors would like to thank TNO Prins Maurits Laboratory and Ford Motor
company for their financial support to this research and B. de Wit of abattoir de
Wit Geldrop BV, for providing the porcine brain tissue.



Chapter 5

A non-linear viscoelastic
material model for brain tissue

A non-linear viscoelastic material model for describing the dynamical behaviour of brain tissue is
presented. The model is based on a generalised Maxwell model. A multiplicative decomposition
of the deformation gradient tensor into an elastic and an inelastic part has been applied. The
inelastic, time dependent behavior is described with a simple Newtonian law that acts on the
deviatoric stress contribution only. The elastic part is modelled by a, non-linear, second-order
Mooney-Rivlin model1. In both inelastic and elastic parts deviatoric and volumetric stress
contributions are separated. A rotation invariant strain update law for the inelastic right Cauchy-
Green deformation tensor is derived using kinematics only. For time integration, the improved
Euler method (Heun’s method) is used in order to obtain adequate accuracy at time steps commonly
used in explicit impact simulations. Finally, the biofidelity of the model has been tested by
simulation of the stress relaxation experiments presented in Chapter 4.

1Parts on strain dependent behaviour are also presented in: Brands, D.W.A, Bovendeerd, P.H.M., and
G.W.M. Peters (2000): “Finite shear behaviour of brain tissue under impact loading”, ASME-WAM, Conf. on
Crashworthiness, Occupant Protection and Biomechanics in Transportation Systems, AMD-Vol. 246/BED- 49,
pp.175-188.
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5.1 Introduction

In the two previous chapters the mechanical behaviour of brain tissue under shear
strain loading has been determined experimentally for frequencies up to 1000 Hz
and strains up to 20%. It has been shown that for small strains the material behaves
like a linear viscoelastic solid. In stress relaxation experiments, it was observed that
the material exhibits shear softening. i.e. decreasing shear stiffness as a function of
strain applied. Furthermore, the time dependent behaviour seems to be independent
of the strain applied. In this chapter, a non-linear viscoelastic material model is
presented that can describe the phenomena observed experimentally. First a rather
general formulation of the model is given after which constitutive choices are made.
Relevant material parameters are identified and fitted to experimental data. Next,
the numerical solution of the equations in the time domain will be treated. Finally
the model will be tested by simulating the stress relaxation experiments presented in
previous section.

5.2 General formulation of the model

The basic idea behind the constitutive modeling is a generalised multi-mode Maxwell
model for a solid, in which the Cauchy stress is additively composed in an elastic
part, �0, and one or more viscoelastic parts, �i (Figure 5.1). First, theory valid for
a single mode will be presented. Then, the extension to a multi-mode model will be
presented.

5.2.1 Multiplicative strain decomposition

For an arbitrary material element in a loaded configuration, Ct, the local actual
deformation with respect to a predefined reference state, C0, is determined by the
deformation gradient tensor F (see Figure 5.2). The supposition is made that the
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Figure 5.1: A spring-dashpot model as a mechanical analog of the constitutive model. S0 to
Sn are (non-linear) springs, d1 to dn are (linear) dashpots.
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deformation gradient tensor can be split multiplicatively into an elastic part, Fe, and
an inelastic part, Fp (as is done in e.g. [81]),

F = Fe � Fp (5.1)

The inelastic contribution refers to the deformation (with respect to the reference
state), of the relaxed stress-free configuration, Cp, which is determined as a fictitious
state that would be recovered instantaneously when all loads were removed from
the material element considered. The velocity gradient tensor, L = _F � F�1, can be
decomposed additively into an elastic part, Le and an inelastic part, Lp,

L = Le + Lp (5.2)

in which,

Le = _Fe � Fe�1 and Lp = Fe � _Fp � F�1
p � F�1

e (5.3)

Both parts of the velocity gradient tensor can be decomposed additively as,

L =D +
 (5.4)

in which D = 1
2 (L + Lc) represents the symmetric rate of deformation tensor (Ac

denotes the conjugate of tensor A) and 
 = 1
2 (L � Lc), the skew-symmetric spin

tensor. Application of this decomposition to the elastic part, Le, yields,

De =
1

2
(Le +Le

c) and 
e =
1

2
(Le �Le

c) (5.5)

The inelastic part of the velocity gradient tensor, Lp, can be decomposed likewise
into Dp and 
p. However, this decomposition does not provide a unique fictitious
stress free state, Cp, since rigid-body rotation can be assigned to F p as well as to F e.
Uniqueness is achieved by requiring that the inelastic deformation occurs spin free
[81], i.e.


p = 0 (5.6)

C0
Ct

CP

F

Fp Fe

Figure 5.2: Graphical representation of the multiplicative decomposition of the deformation
gradient tensor F . A inelastic part Fp transforms the reference state C0 to the,
fictitious, stress free state Cp while the elastic part Fe transforms the stress free
state, Cp, to the deformed state Ct.
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Deformation update For numerical implementation of the model, it is necessary to
describe the time evolution of the elastic and inelastic contributions to the complete
deformation. For this reason an evolution law will be derived based on kinematics
only. The inelastic right Cauchy-Green tensor, Cp, is defined as,

Cp = F
c
p � F p = F

c �B�1
e � F (5.7)

in which Be represents the, objective, elastic Finger tensor. Taking its time derivative
yields,

_Cp = �F c �Be

�1 � [ _Be �Be � F�c � _F c � _F � F�1 �Be] �Be

�1 � F (5.8)

Application of the definition L = _F � F = 
 +D, and the assumption of spin free
inelastic deformation, 
 = 
e, 
p = 0, provides,

_Cp = �F c �Be

�1 � [
Æ

Be �Be �D �D �Be] �Be

�1 � F (5.9)

in which,
Æ
Be equals the objective Jaumann rate of Be.

Æ

Be= _Be �
e �Be �Be �
c
e (5.10)

After some rewriting the invariant evolution equation is derived as,

_Cp = 2Cp � F�1 �Dp � F (5.11)

This evolution equation is insensitive for large rigid-body rotations and therefore will
be used for updating Cp numerically in the time integration procedure.

5.2.2 Constitutive assumptions

Brain tissue behaves like a nearly incompressible solid. Therefore, the Cauchy stress
is split into a deviatoric part, �d = � � 1

3 trace(�)I , and a volumetric part, �v, that
depends on hydrostatic compression only,

� = �d + �v (5.12)

Inelastic behaviour The time dependent behaviour of a viscoelastic mode, is
governed by the inelastic rate of deformation,Dp, and modelled as simple Newtonian
with viscosity, �s,

Dp =
�d

2�s
(5.13)

Elastic behaviour The elastic behaviour is modelled using an isotropic hyperelastic
formulation. In such formulation, the Cauchy stress is derived from a strain energy
density function (SED), W (Be). For isotropic materials this function can be written
in rotation invariant quantities of the elastic Finger tensor I1;2;3,

W (Be) =W (I1; I2; I3) (5.14)
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with,

I1 = trace(Be)

I2 = 1
2

�
trace(Be)

2 � trace(B2
e)
�

I3 = det(Be)
(5.15)

For obtaining a consistent separation of deviatoric and volumetric parts in the Cauchy
stress tensor, the SED is formulated in a separated isochoric part, �W and a volumetric
part,Wv,

W = W (I1; I2) +Wv(I3) (5.16)

In this equation, I1;2 = I1;2(Be) with Be, the isochoric elastic Finger tensor,

Be = J�2=3e Be (5.17)

in which, Je = det(F e), represents the normalised volume of the elastic part of the
deformation. The resulting Cauchy stress can be written as,

� =
2p
I3

�
@W

@I1
B

d

e �
@W

@I2

�
B
�1

e

�d�
+ 2

p
I3
@Wv

@I3
I (5.18)

in whichB
d

e equals the deviatoric part of the isochoric elastic Finger tensor. Note that
the first part of the stress, in the square brackets, is completely deviatoric whereas the
second part occurs by the hydrostatic deformation only.
SED equation (5.16) can be rewritten as a general series approximation,

W =
NX

i+j=1

Cij(t)(�I1 � 3)i(�I2 � 3)j +
MX
k=1

Ck(t)(I3 � 1)k (5.19)

The parameters N and M determine the general character of the material behaviour.
For simple shear, it has been shown in Chapter 4 that brain tissue exhibits shear
softening. For this reason it is required that N > 1. The simplest choice then
becomes N = 2, thus obtaining a second-order Mooney-Rivlin SED. Miller et al. [96]
successfully fitted results of unconfined compression experiments with brain tissue
with of N = 2 and i 6= j. In [29], we did show that shear softening during simple
shear could be predicted well using negative second-order constants. The isochoric
part of the SED then becomes,

W = C10(I1 � 3) + C01(I2 � 3) + C20(I1 � 3)2 + C02(I2 � 3)2 (5.20)

This yields the deviatoric part of the Cauchy stress tensor,

�
d = 2

Je

�
C10 + 2C20

�
I1 � 3

�	
B

d
e

� 2
Je

�
C01 + 2C02

�
I2 � 3

�	 �
B
�1
e

�d (5.21)

Only few literature data on linear viscoelastic hydrostatic behaviour of brain tissue
is present. Furthermore it is shown in Chapter 2 that significant damping due
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to hydrostatic deformation occurs as high frequencies only. For this reason, the
volumetric part of the stress is modelled as simple as possible as,

�
v = K(Je � 1)I (5.22)

with K being the bulk modulus.
Note that, as the Cauchy stress is expressed in terms of (invariants of) the elastic
Finger tensor, conservation of objectivity is guaranteed when indeed the spin is
attributed to the elastic deformation, as done here. Furthermore, since a true hyper
elastic material law is used for the Cauchy stress, the elastic part of the deformation
will cause no energy dissipation at repeated loading and unloading of the elastic part
of the deformation. So the inelastic part completely controls energy dissipation, as
required.

5.2.3 Multi-mode description

The theory presented is extended to a multi-mode model by applying the strain
decomposition in each mode i separately. For each mode, the modal strain
decomposition will be applied in constitutive equations (5.21) and (5.22) to provide
the viscoelastic modal stress contribution �i. The elastic contribution, �0 is
determined by substituting the total Finger tensor, B, for Be in equations (5.21)
and (5.22). Finally the complete Cauchy stress can be obtained by simply adding all
modal stress contributions,

� = �0 +

nX
i=1

�i (5.23)

5.3 Determination of brain tissue material parameters

The experimentally found time-strain separability of the shear stress behaviour
will be used to determine the material parameters for brain tissue. The time
dependent behaviour is determined using small strain oscillatory experiment data
while the strain dependent behaviour is obtained from large strain stress relaxation
experiments.
The material data shows a large spread caused by measurement noise as well as
biological variation of the various samples used. However trends observed were
present for all samples. To eliminate the spread by biological variation, material
parameters will only be fitted on experimental data of the single sample that has
been used in both small strain oscillatory experiments as well as large strain stress
relaxation experiments (sample G2 in Chapter 4). The bulk behaviour was not
determined in current experiments and will be determined from literature data on
ultrasound experiments [45; 61; 83].
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5.3.1 Small strain experiments: Multi-mode Maxwell model

For small shear strains, the non-linear viscoelastic constitutive equations used reduce
to a multimode Maxwell model. The Maxwell model can be presented in terms of
storage modulus, G

0

and loss modulus, G
00

,

G
0

= G0 +

nX
i=1

Gi
�2i!

2

1 + �2i!
2

(5.24)

G
00

=

nX
i=1

Gi
�i!

1 + �2i!
2

in which i indicates the contribution of the separate modes, while n is the number
of modes used. For a given number of modes, the optimal sets of relaxation times,
�i and shear moduli Gi are determined from linear viscoelastic data obtained from
small strain oscillatory tests, using a Levenbergh-Marquardt fit algorithm [170]. The
equilibrium mode, G0, cannot be obtained from the oscillatory data since the lowest
frequency used is too large, as can be seen by the absence of a plateau value for G

0

on the lower frequency range in Figure 5.3. For this reason, G0 was determined from
the stress relaxation experiments (refer to page 73).
The experimental data as well a the fit obtained with a four mode Maxwell model are
shown in Figure 5.3. The figure shows that the material behaviour is not fitted well at
low frequencies in that G

0

is underestimated. A possible explanation will be provided
in the discussion in section 5.5.3.

Relation with non-linear model

The relation between the linear Maxwell relaxation moduli Gi and the non-linear
model parameters C10;i and C01;i can be found by linearising constitutive equation
(5.21) for simple shear. This results in,

(C10;i + C01;i) = 0:5Gi (5.25)

10
0

10
2

10
4

10
2

10
3

10
4

Frequency [Hz]

G
’  [P

a]

Exp
Fit

10
0

10
2

10
4

10
2

10
3

10
4

Frequency [Hz]

G
’’  [P

a]

Figure 5.3: Storage and loss modulus G
0

and G
00

from sample G2 in Chapter 4 together with
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With respect to the inelastic behaviour it is assumed that the inelastic part of the
deformation is governed by linear Newtonian behaviour. Viscosity, �s;i now can be
found using,

�s;i = Gi�i (5.26)

5.3.2 Large strain stress relaxation experiments

The large strain shear behaviour of porcine brain tissue was characterised using
a rotational plate-plate viscometer. The strain field present between the plates is
non-homogeneous. As a result, apparent material parameters were measured, i.e.
parameters valid for some average strain present between the plates. A correction
method by Soskey and Winter [138] will be used to obtain the true material
parameter, G(t; R). The approach is valid for stress relaxation experiments in a
rotational plate-plate viscometer.

Method

Based on kinematics only, the true relaxation modulus, G(t; R), can be obtained from
the experimentally determined apparent modulus, Ga(t; R), via,

G(t; R) = Ga(t; R)

�
1 +

@ lnGa(t; R)

4@ ln R

�
(5.27)

In Chapter 4 the relaxation modulus was successfully factorised into a time dependent
part, the linear relaxation modulus, G(t), and a strain dependent part, h(), the so-
called damping function. Applying this to equation (5.27) leads to,

G(t; R) = ha(R)

�
1 +

@ lnha(R)

4@ ln R

�
G(t) (5.28)

with ha(R), the apparent damping function that is obtained directly from the stress
relaxation data. Thus, when time strain separation is valid, only the apparent
damping function needs to be corrected to obtain the real relaxation modulus.

Damping function

For simple shear the damping function of a hyper elastic material can be written as,

h() =

�()


lim
0!0

�(0)
0

=
2
�
@W ()
@I1

+ @W ()
@I2

�
lim
0!0 2

�
@W (0)
@I1

+ @W (0)
@I2

� (5.29)

with,  the shear strain, �() the shear stress, I1 and I2 the first and second invariant
of the Finger tensor B, and W () the hyper-elastic strain energy density function for
simple shear. Substituting SED equation (5.20) into equation (5.29) while applying
Finger tensor B for simple shear, and I1 = I2 = 2 + 3, gives,

h() = 1 + 22fnls and fnls =
C02 + C20

C01 + C10
(5.30)
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in which fnls will be referred to as non-linear shear parameter. This function is fitted
to the experimentally found damping functions, H(R; 

ref
R ), obtained in Chapter

4, using a Nelder-Mead simplex (direct search) method [89]. This fit is used to
correct the data using equation (5.27) and equation (5.30) has been fitted again to
the corrected data to obtain the true non-linear shear parameter, fnls. The quality of
the fitted data is quantified by the average error of the fit at each experimental data
point and the standard deviation of the error.

Fit results

To obtain realistic fits for the damping function, (i.e.
lim
!0 h() = 1), the damping

function value at 5% strain is assumed to be valid at 1% strain also. The left plot
in Figure 5.4 shows the damping function, fitted on the experimental data of sample
G2. The non-linear shear parameter, fnls, equals -2.99. The mean fit error� standard
deviation equals 3:0 �10�3�8:0 �10�3. The corrected experimental results in the right
plot in Figure 5.4, show that the shear softening of sample G2 equals 37.1% at 20.3%
strain. Fitting the second-order Mooney-Rivlin model to the corrected data provides
fnls= -4.49. The mean error equals 3:0 � 10�3 � 8:6 � 10�3, i.e approximately 1% of
the experimental values.

Determination equilibrium mode

As mentioned in section 5.3.1, the small strain equilibrium mode, G0, is determined
from the stress relaxation results. It will be defined as the small strain relaxation
modulus at t= 0.5 s, since the behaviour of brain tissue at later moments in time
is not of interest in impact situations. Since the smallest strain used in the stress
relaxation experiments, 5%, is outside the linear range of the material behaviour
(refer to Chapter 3) the small strain modulus is obtained by rewriting equation (4.8)
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Figure 5.4: Correction for non-homogeneous strain field using second-order Mooney-Rivlin on
results of sample G2 in [28]. Left: Fit results on uncorrected experimental data
(filled diamond denotes copied 5% result). Right: Corrected data using 2nd order
Mooney-Rivlin model.
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as,

G(t) =
Ga(t;  = 5%)

ha( = 5%)
(5.31)

with ha( = 5%) obtained from equation (5.30) and fnls = -2.99. This results in G0

= 255 Pa.

Relation with non-linear model

It is assumed that the experimentally determined non-linear shear parameter, fnls,
can be applied on the elastic part of every mode, i.e.,

C20;i + C02;i

C10;i + C01;i
= fnls for i = 1 ton (5.32)

Note that applying this constant ratio for each mode, reduces the number of material
parameters, but introduces a difference with the description of the stress in the
experimental results. The value of the experimentally determined damping function
is determined by the complete shear strain whereas the non-linear behaviour in the
material model, is governed by the elastic part of the deformation. So time-strain
separability is not guaranteed in the model.
To ultimately determine the material parameters C10;i, C01;i, C20;i and C02;i, the
ratios f1;i =

C10;i

C01;i
and f2;i =

C20;i

C02;i
have to be known. It is not possible to determine

these from results of shear experiments. Miller and Chinzei [96] fitted a second-order
Mooney-Rivlin model to results of low velocity, unconfined compression experiments
on porcine brain tissue using f1 = f2 = 1. In the present study it is assumed that
f1;i = f2;i = 1 for all modes i = 0 to n.

5.3.3 Bulk behaviour: Ultrasonic experiments

The hydrostatic behaviour was chosen to be purely elastic. As a consequence, the
hydrostatic pressure will be attributed to the elastic stress part �v0 only,

K0 = K and Ki = 0; i = 1 ton (5.33)

From ultrasonic experiments, the velocity of dilatational waves in brain tissue, cp, is
known to be approximately 1550 m=s [45; 61; 83]. Using linear elastic theory, and
knowing that the material is nearly incompressible (i.e. K >> Gi), the bulk modulus
is determined as,

K = c2p � (5.34)

in which mass density, �, equals approximately 1040 kg=m3 for brain tissue. This
provides a bulk modulus of 2.5 GPa.
Table 5.1 provides an overview of all material parameters fitted.



A non-linear viscoelastic material model for brain tissue 75

5.4 Numerical implementation

The material model is implemented in a Finite Element Code (MADYMO). First it is
explained how time integration is performed in the existing code. Then the stress
update routine utilising a predictor-corrector scheme, will be presented. Finally the
accuracy of the model is investigated.

5.4.1 Time integration in MADYMO

The general outline of the MADYMO FEM integration scheme is presented in Figure 5.5
[147]. Nodal displacements at the next time step, u(t+�t) are predicted starting from
the displacements at the current moment in time, u(t). The integration cycle consists
of four steps. In the first step deformation gradient tensors, F (t), at the element
integration point are computed from the nodal displacements, u(t). The second step
deals with the computation of the stresses at the element integration points, �(t).
From these stresses, the internal nodal forces at the current time, fint(t), are obtained
in the third step. Finally nodal accelerations at time, t are calculated by applying the
momentum equilibrium equations. From these accelerations the nodal displacements

Table 5.1: Material parameters obtained from fitting the non-linear material model on brain
tissue shear data (sample G2 in Chapter 4)

Mode Maxwell parameters Non-linear parameters Bulk modulus
i Gi [Pa] �i [ms] fnls [-] f1 [-] f2 [-] K [GPa]
0 255.3* 1 -4.49 1+ 1+ 2.5
1 269.08 70.1 -4.49 1+ 1+ 0
2 322.63 7.62 -4.49 1+ 1+ 0
3 426.96 1.42 -4.49 1+ 1+ 0
4 3299.4 0.122 -4.49 1+ 1+ 0

* G0 obtained from stress relaxation data using equation (5.31)
+ Constants chosen arbitrarily, could not be determined from shear experiments

f int

F (t)

σ(t)

σ(t)

int

u(t)

extMu(t) = f     - f

t=t+  t∆
σ ∆(t-  t)

Figure 5.5: General layout MADYMO FEM time integration scheme, conform [147].
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on the next moment in time, u(t + �t), are determined using an (explicit) Central
Difference integration scheme. Then the complete sequence can start again for the
next time increment.

5.4.2 Stress computation

The stress computation scheme needed for calculation of the Cauchy stress at present
time, �(t), (step two in Figure 5.5), is provided in Figure 5.6. The following quantities
should be known at the start of the current time, t: F (t��t),Cp;i(t��t), and �di (t�
�t), stored in the previous time step and F (t), computed from the displacements,
u(t), computed from the momentum equilibrium equations at previous time step.
This is generally true. However, the deformation and stress state at the start of the
simulation should be specified. It is assumed that there is no initial deformation, i.e.
F (0) = F e;i(0) = Cp;i(0) = I , and no initial stress, �(0) = 0.
The next steps in Figure 5.6 are straightforward, except for step 4. To determine
Cp;i(t), an explicit time integration scheme, the so-called improved Euler method or
Heun’s method, is used. Explicit time integration is chosen because modelling the
transient material behaviour during impacts requires many small time steps.

1. Get data from previous time step F (t ��t), Cp;i(t ��t), �di (t ��t) and F (t) for each mode
i=1 to n.

2. Reconstruct inelastic deformation rate for mode i,

Dp;i(t��t) =
�di (t ��t)

2�s;i

3. Determine time derivative of inelastic right Cauchy-Green strain tensor for mode i, using equation
(5.11),

_Cp;i(t��t) = 2Cp;i(t��t) � F�1(t ��t) �Dp;i(t ��t) � F (t ��t)

4. Determine Cp;i(t) using Cp;i(t��t) and _Cp;i(t��t) in improved Euler time integration scheme.

5. Calculate Be;i(t) = F (t) �C
�1
p;i
(t) � F (t)c.

6. Apply Be;i(t) in hyper elastic law (equation (5.21)) to determine �di (t).

7. Repeat steps 2 to 6 for every mode i=1 to n.

8. Determine elastic stress contribution �0(t) = �d0(t) + �
v
0
(t), using B(t) in equations (5.21) and

(5.22).

9. Add modal stress contributions and elastic part via equation (5.23).

10. Store Cp;i(t), F (t) and �
d
i (t) for use in next time step.

Figure 5.6: Stress computation scheme for determining the Cauchy stress at the current
moment in time, �(t), using the non-linear viscoelastic material model (the second
box in the general time integration scheme in Figure 5.5. n denotes the number of
viscoelastic modes.
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First an estimation of the inelastic right Cauchy-Green strain, eCp;i(t), is made by
using the Euler forward method,eCp;i(t) = Cp;i(t��t) + _Cp;i(t��t)�t (5.35)

in which _Cp;i(t � �t) was obtained in step 3 using evolution equation (5.11). The
predicted tensor, eCp;i(t), is used in steps 5, 6, 2 and 3 in Figure 5.6 to determine a

prediction of the deformation rate e_Cp;i(t) . The predicted eCp;i(t) then is corrected by
applying the trapezoidal rule,

Cp;i(t) = Cp;i(t��t) +
1

2

�
_Cp;i(t��t) +

e_Cp;i(t)
�
�t (5.36)

5.4.3 Accuracy of the time integration scheme
In this section it is investigated whether the accuracy of the improved Euler method is
sufficient for modelling nearly incompressible materials, such as brain tissue, at time
steps commonly used in impact simulations (�t = O(10�6) s). To do so, the stress
update scheme of Figure 5.6 is implemented in MATLAB 5.3 [89]. Simple shear (0 =
20%) is applied step wise at t = 0.5 s and kept constant thereafter. A single mode
model is used with shear modulus G1 = 2(C10 + C01) = 1000 Pa, C20 = C02 =0,
bulk modulus, K1 = 1 GPa and time constant �1 = 1 s. In this section only results
interesting for the accuracy analysis are shown. A complete overview of numerical
and analytical results can be found in Appendix A.
The upper left plot in Figure 5.7 shows the computed shear stress versus time. The
initial stress equals approximately 200 Pa and decreases in time. The slope of the
semi-logarithmic plot equals -1 corresponding with the time constant applied. Two
types of error appear in the stress results. The first type of error acts on the relaxation
behaviour of the shear stress. The time history of the relative error in the shear stress,
�Erel(t), is defined as,

�Erel(t) =
j�num(t)� �th(t)j

�th(t)
(5.37)

in which �num(t) and �th(t) represent the numerical and theoretical obtained shear
stress histories respectively. The upper right plot in Figure 5.7 shows that the relative
error, �Erel decreases to approximately 1% when a time step of 0.01 s or less is used.
The second error appears in the volumetric stress. Since simple shear is an isochoric
deformation, the volumetric stress should be zero. It decreases quadratically with
decreasing time step, as shown in the lower plot in Figure 5.7.

Discussion

The error in the volumetric stress is determined by the limited accuracy of the
integration method used. For brain tissue, this error becomes relevant since the bulk
modulus is approximately 106 times higher than the shear modulus. The residual
volumetric stress at �t = 10�6 s, typical in automotive impact simulations, is
determined by extrapolating the results in the lower plot Figure 5.7 and equals 10�5
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Pa. This error is on the order of 10�7 times the initial shear stress and is considered
to be sufficiently small.
The error during stress relaxation is determined by ratio time step over time constant
used. In the present simulation the time constant, �, was set to 1 s. Taking a time
step of 0.01 s yielded an error of 1%. This implies that the time step has to be chosen
such that �t=� < 0:01 for accurate shear stress results. The smallest relaxation time
for brain tissue equals 1:2 � 10�4 s (refer to Table 5.1 on page 75). This means that
accurate solutions are indeed obtained when a time step of 10�6 s , common in impact
simulations, is used.
An issue not discussed on is the objectivity of the stress formulation. Although this
should be trivial, Nusholtz and Shi (1998) showed that in a commercially available
explicit FE package, objectivity of the stress results during large rotations was not
guaranteed to that date [113]. When undeformed solid elements were rotated by 4
revolutions, an artificial normal stress on the order of 9 GPa appeared (linear elastic
material behaviour, E = 200 GPa and � = 0:3). Applying this rotation provided a
maximum error on the order of 10�7 Pa for the model presented in this section. This
indicates correct objective behaviour. Different loading types such as cyclic loading
and unloading, did not lead to different error causes than the ones discussed for the
simple shear simulation in this section. For more information on these simulations
the reader is refereed to appendix A.
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5.5 Simulation of stress relaxation experiments

The time dependent behaviour of the material model is obtained from small strain
experiments only, while all information on strain dependent behaviour comes from
the constant strain phase of large strain stress relaxation experiments. In this
section it is investigated whether the model predicts the stress relaxation experiments,
presented in Chapter 4, including the transient phase.

5.5.1 Model description

A three-dimensional FE model of the rheometer experiments has been developed.
Brain tissue constitutive behaviour is modelled using the material parameters in Table
5.1. The geometry of the brain sample is modelled by a quarter cylinder only with
diameter 25 mm and thickness 2 mm, to reduce CPU time. Symmetry boundary
conditions are applied on the cross-sectional planes. The lower plane is rotated
according to the experimental obtained rotation history obtaining the strain histories,
reprinted in Figure 5.8, which are valid at the sample edge. The upper-plane is rigidly
supported and the resulting torque along the axis of rotation is determined. The
apparent stress is calculated from the resulting torque in the same manner as in the
experimental results (refer to equation 4.3) for comparison.
Spatial discretisation is obtained using cubic elements with linear interpolation
functions. To prevent mesh locking, likely to occur due to the nearly incompressible
material behaviour, reduced spatial integration is used. Seven element layers are
used in thickness direction whereas approximately twelve elements are used in radial
direction. The time step used is determined via the Courant criterion (refer to
equation 2.30) and equals 1:66 �10�7 s. This is approximately 10�3 times the smallest
time constant and should provide accurate solutions.

5.5.2 Results

In Figure 5.8 the apparent shear stresses, experimentally obtained at 5, 10 and 20%
maximum edge strain, are plotted together with the numerical results. The model
peak stress values are over estimated by 12 to 23% during the transient part of the
loading (t < 0:1 s) ( �Epeak in Table 5.2). Then, during the subsequent relaxation
phase, the stress decay is faster than in reality. The numerical results even drop

Table 5.2: Overview of the maximum relative differences between numerical results and
experimental results. �Epeak: difference between peak values during transient
loading part , �Erelax: maximum negative difference during relaxation, �Et=0:5s:
difference at t = 5 s.
Max. strain 0 [-] �Epeak [%] �Erelax [%] �Et=0:5s [%]

0.05 19.5 0.4 3.8
0.1 22.8 0.9 6.5
0.2 12.2 2.3 5.1



80 Chapter 5

below the experimental results providing a maximum difference of 2.3% at 5% strain
(�Erelax in Table 5.2) . At the end of the simulation, at t = 0:5 s, no relaxation is
present any more in the numerical stresses which are higher than the experimental
results at that time by 4% at 10% strain (�Et=0:5s in Table 5.2).

5.5.3 Discussion and conclusions

Stress relaxation experiments have been simulated including the transient loading
part at times less than approximately 0.1 s. It could be observed that the model
correctly predicts the overall behaviour of the brain tissue, i.e. the presence of shear
softening and the stress relaxation. Nevertheless differences between experimental
data and numerical results are present.

Relaxation behaviour During the transient phase of the loading, the model predicts
higher stresses than found experimentally. Then, during subsequent relaxation,
the stresses are described within 6% accuracy. However, after 0.1 s the predicted
stresses decay faster and tends to reach a plateau value which is not present in the
experimental results. Two causes can be found for this. Firstly, the equilibrium mode
was fitted to the 0.5 s value. As a result there will be no relaxation from that moment
of time on. Secondly, when the modal contributions to the relaxation behaviour are
studied, it can be seen that the behaviour from 0.2 to 0.5 s is governed by a single
mode only. This can be improved by using more modes in the model.

Peak values The differences in peak values during transient loading might be
caused by the fact that the linear material parameters and non-linear parameters are
derived from separate sets of experiments. The linear parameters were determined
from a master curve constructed from several dynamic frequency sweep experiments
at various temperatures (DFS). Subsequently, stress relaxation experiments (SR) were
carried out from which the non-linear behaviour was taken as well as the small strain

0 0.1 0.2 0.3 0.4
0

10

20

30

Time [s]

S
tr

ai
n 

[%
]

0 0.1 0.2 0.3 0.4
0

20

40

60

80

Time [s]

S
tr

es
s 

[P
a]

γ
0
=0.05

γ
0
=0.1

γ
0
=0.2

Num
Exp

Figure 5.8: Simulation results of stress relaxation experiment at three strain levels versus
experimental results (apparent stresses sample G2 in Chapter 4). Left: sample
edge shear strain histories, Right: apparent shear stresses, Num = MADYMO result,
Exp = Experiment.
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equilibrium mode. In the process of performing these experiments, experimental
data will be influenced by factors as material ageing and differences in humidity
conditions, which always exist between separate experiments. A clue for the presence
of such differences can be found by observing the trends of the errors while predicting
DFS and SR experiments. The trends in the errors in the SR experiments are strain
independent, i.e. overestimated initial stress followed by better prediction of long
term behaviour. For this reason trends in the error in the DFS experiment should
resemble those of the SR experiments, i.e. overestimated moduli at high frequencies
and about correct ones at low frequencies. The opposite however is true, low
frequency values of the elastic modulus are underestimated while high frequency
values are approximately correct (refer to Figure 5.3). This indicates that the general
stiffness of the brain tissue was higher during the DFS experiments than in the SR
experiments.
Finally it should be mentioned that the time-strain separability, assumed in the
derivation of the material parameters, has never been validated for times less than
0.1 s (i.e. frequencies above 10 Hz). Darvish and Crandall recently presented
experimental results that indicate that for frequencies above 27 Hz, also time
dependent non-linearities might be present in brain tissue [39].

5.6 Conclusion

In this chapter a non-linear viscoelastic material model for the large strain shear
behavior of brain tissue in impact conditions has been presented. The inelastic,
time dependent behavior is described with a simple Newtonian law that acts on the
deviatoric stress contribution only. Based on the experimental data in Chapters 3
and 4, the deviatoric elastic part is modelled by a non-linear, second-order Mooney-
Rivlin model. Since this experimental data did not provide information on potential
anisotropic behaviour present in brain tissue [8; 123] isotropic material behaviour is
assumed. However, anisotropic behaviour can be included in strain energy density
equation (5.20). The hydrostatic part is assumed to be linear elastic. The model
has been implemented in an explicit Finite Element code. Care has been taken
that the numerical accuracy of the model suffices for predicting the behaviour of a
nearly incompressible material such as brain tissue at large strains and large rotations
expected during impact by using the improved Euler integration scheme for time
integration of the inelastic deformation.
Material parameters have been determined from simple shear experiments presented
in Chapters 3 and 4. In elaborating these parameters, time-strain separability was
assumed to be valid. Linear parameters were determined from small strain oscillatory
experiments, whereas the strain dependent non-linearity was determined from stress
relaxation experiments. It was found that the strain dependent behaviour could be
fitted well when negative second-order parameters, C20 and C02 were used. As a
result negative stiffness can occur at strains exceeding the strain range for which the
model has been fitted on. When the model is used during a transient simulation, this
has to be kept in mind.
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The ratios C10

C01

and C20

C02

could not be determined from the experimental data. This
is a result of the fact that the first and second invariant of the elastic Finger tensor
are equal to each other in simple shear. In principle, these ratios can be determined
from unconfined compression experiments, available from literature [96]. However, a
large spread exists between the experimental results obtained from different samples
and also between various literature sources (refer to Figure 3.4 in Chapter 3). For this
reason no efforts have been made in fitting the material parameters of our sample to
the literature data. Instead the ratios C10

C01

and C20

C02

were set to 1 as done in [96].
The material model has been tested by simulation of brain tissue stress relaxation
experiments including the transient part of the shear strain. It was found that during
this transient part, the model over-predicts the stress values. In the constant strain
phase, the strain dependent behaviour of brain tissue is described quite well although
differences were present in relaxation behaviour. It is expected that these results can
be improved by putting more effort in fitting material parameters.
It can be concluded that the present model and it’s current parameters, capture the
most important features of the material behaviour, i.e. shear softening for strains up
to 20% and viscoelastic material behaviour.



Chapter 6

FE modelling of transient
rotation of a simple physical

head model

The objective of this chapter is to investigate errors related to material modelling and spatial
discretisation in an explicit Finite Element code during traffic related impacts. A silicone gel
filled cylindrical cup was subjected to a transient rotational acceleration. Two variants of the
model exist, an open cup, allowing large strains at modest impact conditions, and a closed cup,
mimicking the closed geometry of a real head. In both geometries gel response was measured using
optical markers. The open cup experiments could be simulated very well using the material model
developed in Chapter 5 in which hydrostatic and deviatoric parts of the strain were separated in
the stress formulation. The error in angular marker displacements was less than 22%. The closed
cup trajectories were overestimated by 62% but the time history looks realistic. Increasing the
mesh density from 28 to 56 elements per cup diameter yields changes of displacements of 4% only.
This supports the rule of thumb derived in Chapter 2, that 24 elements per maximum wave length
are needed for accurate modelling. Without decoupling the hydrostatic and deviatoric parts of the
stress, the stiffness at finite shear strain was overestimated severely, especially in the closed cup
simulation. This illustrates the dangers of extrapolating small strain theory to finite deformations,
especially with nearly incompressible material behaviour.

83
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6.1 Introduction

Physical, i.e. mechanical, head models, that contain deformable representations of
substructures of the head can be used for gaining insight in strain levels occurring in
the dynamic response of the head during impact [71; 90; 93; 141]. However, physical
models can also be used for investigating the accuracy of Finite Element Models used
in impact simulations.
Finite Element models of the head, potentially suffer from two kinds of errors. The
first kind of errors, mathematical modelling errors, arise by assumptions made in
translating the reality to a mathematical description of that reality in terms of a set
of differential equations. These errors are caused by assumptions about material
behaviour, boundary conditions, geometry etc. The second kind of errors, numerical
errors, are introduced by the numerical method used for solving the mathematical
differential equations; in this case the Finite Element Method. Numerical errors
are caused by the spatial and temporal discretisation needed to translate the
mathematical model to a numerical model. Examples of numerical errors are
numerical dispersion and spurious reflections investigated in Chapter 2 for small
strains.
In this chapter, the capability of an explicit Finite Element code to predict transient
brain response during a traffic related impact will be investigated. Emphasis will be
given to numerical errors introduced by the spatial discretisation, and mathematical
errors caused by material modelling assumptions, in particular the effect of separating
the deviatoric and volumetric deformation in the stress formulation presented in
Chapter 5.
During impacts at which brain injury occurs, strain levels of approximately 20% can
be expected (refer to Chapters 3 and 4). At such deformation levels, validation of
numerical models using analytical solutions is impossible. For this reason a physical
model is developed with emphasis on straightforward translation to a mathematical
model rather than for prediction of a real head impact response. This has been
achieved by using a simple geometry, well characterised brain tissue model material
and known boundary conditions. The model was subjected to a known, transient
rotational acceleration and the mechanical response of the brain model material was
measured. In this manner, errors that arise from translating the physical model to a
mathematical model are eliminated as much as possible. The experiments have been
simulated with a Finite Element model that includes that material model developed
in previous chapter. The influence of mesh density on the response is investigated by
varying the mesh density. The effect of decoupling the deviatoric and volumetric
parts of the deformation in the stress formulation was investigated by repeating
the simulations with a linear viscoelastic material model that does not use such
decoupling.
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6.2 Experimental model

6.2.1 Experimental setup

The dynamical response in a traffic related impact will be dominated by shear wave
phenomena instead of pressure waves (see Chapter 2). For this reason, a rotational
acceleration is applied to a cylindrical, silicone gel filled cup by means of a spring
driven loading device. The rotation of the cup as well as the deformation of the gel
within the cup is determined by marker tracking using a high speed video camera. The
marker images thus obtained are post-processed in order to obtain marker tracks in
real world coordinates. The setup, shown schematically in Figure 6.1 , can be divided
in three parts: the actual physical model, the spring driven loading device and the
deformation recording section, consisting of camera and post processing unit. They
will be discussed in this order.

Physical model The physical model consists of a silicone gel filled cylindrical
polymethylmetacrylate (PMMA) cup. Two geometry variants were tested. In the
first one, the cup is left open to create a stress free top surface of the gel. Simulation
of the open cup experiments will provide insight into the model performance at large
strains. In the second geometry variant, the top surface is closed by a transparent
cover. This closed cup will provide insight in the model performance at isochoric
deformations. For practical reasons, the cup dimensions are chosen smaller than real
human head dimensions. The cup inner diameter was set to 70 mm and its depth
equals 26 mm.
The cup is filled with Dow Corning Sylgard 527 A&B silicone gel that serves as
brain tissue model material. This material resembles brain tissue reasonable well
under both shearing and compression loading (see Chapters 3 and 4). The material
shows linear viscoelastic material behaviour at large shear strains (refer to Chapter

High-speed
video camera
(4500 fps)

Physical model

Loading device

Post processing

Marker trajectories

Marker images

Figure 6.1: Schematic overview of the experimental setup.
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4). Ultrasonic experiments on the silicone gel indicate that the P-wave propagation
velocity in silicone gel equals 1048 � 43m=s [139] compared to 1550m=s in brain
tissue [45; 83]. From this it can be derived that the bulk modulus of the gel equals
approximately 1 GPa, which is about half the bulk modulus of brain tissue. An
additional advantage of this gel is that it sticks to the PMMA walls (and cover) of the
(closed) cup, thus providing a well defined, no-slip, boundary condition. The A and
B components of the gel were mixed in a one-to-one mass ratio and left hardening in
the cup for at least two weeks before experiments commenced.

Loading device The cup is rotated along its axis of symmetry by a spring, connected
to the cup via a ratchet wheel. The maximum rotation angle over which the cup is
accelerated is set to 2.2 rad. When the cup reaches its end of motion range it hits
the support frame and is stopped abruptly. The design of the spring driven loading
device is such that strain and strain rate levels associated with injury can be reached.
Strain levels ranging from 15% to 21% have been associated with the occurrence of
axonal injury [10; 141] whereas 19% natural strain (i.e. 21% stretch) has been
associated with the breakdown of the blood brain barrier [131]. The strain rate
associated with injury is unknown but is estimated as follows. Animal data revealed
that, at a change of angular velocity, �! = 150 rad=s, an angular acceleration, _!, of
1:5�104 rad=s2 could be associated with the occurrence of Diffuse Axonal Injury [141].
From these experiments, a typical time duration for the impact can be estimated
using, Timpact =

�!
_! = 10ms. If it is assumed that indeed strain values of 15 to 21%

occurred during these impacts and that a constant strain rate was present, a lower
bound estimate of the typical strain rate becomes, _ = max

Timpact
= 15 to 21 s�1.

Deformation recording Histories of both gel deformation and cup rotation were
determined using marker tracking. 4-mm diameter markers were perforated out of a
slide of black plastic material and placed in the gel (gel markers) and on the cup edge
(cup markers) (refer to Figure 6.2) . The mass density of the markers is less than that
of the gel. For the open cup the gel markers were placed on top of the silicone gel
while for the closed cup, the gel markers were placed at half cup height in a plane
parallel to the top plane. During the experiment all marker positions were recorded

Open cup: side top Closed cup: side top

Figure 6.2: Side and top view of the cylindrical model. Left two pictures: open cup. Right two
pictures: closed cup. Note that cup markers are placed on top of cup edge whereas
gel markers are placed on top (open cup) or in the center plane (closed cup).
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at 4500 frames per second by a high-speed video camera (Kodak Ektrapro ES Motion
Analyser) at a resolution of 256X256, 8-bit gray-scale pixels. The optical axis of the
camera was positioned as to approximately coincide with the axis of rotation of the
cup (refer to Figure 6.1). Special lighting equipment utilizing infrared filters has
been used to reduce object heating and reflections have been eliminated by the use
of diffuse lighting.
The markers were tracked using the MATLAB Image Processing Toolbox [89]. Marker
positions in pixels were computed from contour plots of the images using a circle
fit method based on a least square approximation. The image coordinates were
converted to real world coordinates using a linear transformation according to,

x
˜mm = T � x

˜pix
(6.1)

in which x
˜mm denotes real world marker coordinates in mm, x

˜pix
the image

coordinates in pixels and T a 2 � 2 transformation matrix. To determine the
transformation matrix, the positions of the cup markers were determined beforehand
using an X-Y measuring device. The initial coordinates of the cup markers in
pixels were determined from the first recorded frame. The components of the
transformation matrix were determined using a least square approximation using
MATLAB [89]. The Cartesian coordinates thus obtained were converted to polar
coordinates. To do this, the rotation point was determined using the fact that
the trajectories of the cup markers should be a (part of a) circle. First, the
initial and end position of every cup marker was determined. Then, the bisectors
perpendicular to the lines connecting initial and end position of each cup marker
were determined. These perpendicular bisectors should cross in the rotational point.

t = 20 ms t = 26.6 ms t = 33.2 ms

t=39.8 ms t=46.4 ms t=53 ms

Figure 6.3: Sequence of frames starting at t = 20ms (upper left) to 53 ms (lower right). Cup
rotation is clock wise.
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In this manner, the rotation point has been determined for each couple of cup markers
with approximately perpendicular bisectors. The average value has been taken as the
best estimate of the real rotation point.

6.2.2 Experimental results

Open cup Figure 6.3 shows a sequence of frames of the open cup during the
acceleration part of the loading. In these pictures, the markers can clearly be
distinguished. From the positions of the cup markers, rotation and angular velocity
for the cup have been determined as a function of time. They are shown in the upper
left plots in Figure 6.4. The angular velocity of the cup increases during the first 53
ms to a value of 90 rad=s approximately. At 53 ms, the cup is stopped at its end of
motion range at 2.2 rad. The deformation of the gel will be studied until that moment
in time only since this part of the loading was designed to reproduce a typical impact
load. The upper right plot of Figure 6.4 shows marker trajectories of three selected
markers in the gel as well as the trajectories of the markers on the cup. It can be seen
that the rotation of the cup is axisymmetric, as expected. In the lower left plot the
rotation of the gel markers, relative to a cup-fixed co-rotating coordinate system, is
shown. It can be seen that the markers lag behind in motion with respect to the cup.
Also it can be seen that the relative marker rotation increases for increasing radial
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Figure 6.4: Results of open cup experiment. Top left: cup rotation and angular velocity. Top
right: Marker trajectories: initial positions of gel markers numbered 1 to 3, initial
positions of cup markers labeled *. Bottom left: Circumferential displacements
of gel markers relative to cup circumferential displacement. Bottom right: Radial
displacements of gel markers.
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distance from the edge of the cup. This is expected since there is decreasing influence
of edge boundary conditions towards the centre. Peak relative rotation occurs first
at about 40 ms at marker 1 close to the cylinder edge and occurs a few ms later
in marker displacements 2 and 3. The lower right plot of Figure 6.4 shows that
maximal radial gel marker displacements are on the order of 2 mm. The accuracy
of the radial measurements is determined by observing the radial displacements of
the cup markers. For the open cup it was observed that the radial position of the cup
markers is constant within 0.3 mm. For this reason it can be concluded that the radial
gel marker displacements are significant. They are related to the three-dimensional
deformation present during this experiment as shown in Figure 6.5.

Closed cup Figure 6.6 shows the experimental results of the closed cup. It can
be seen that the applied load is similar to the one applied on the open cup. The
maximum relative rotations equal 0.12 and 0.24 rad for markers 1 and 2. The
radial displacements of the markers are on the order of 0.1 mm while the radial
displacements of the cup markers are on the order of 0.5 mm. For this reason no
conclusions can be drawn on the exact radial displacements of the gel markers.

6.2.3 Discussion on experiment

Accuracy of the experiment The accuracy of the experiment is determined by two
factors. The first factor is the accuracy of the measurement system used. This is
determined by the resolution used in combination with marker size. Since the cup
image fills the complete field of view, 256 pixels cover approximately 80 mm. Thus,
the typical pixel size equals 256=80 = 0:3mm. As a result, a marker diameter will be
covered by 12 pixels. The accuracy by which marker positions are obtained is roughly
estimated as pixel size over number of pixels per marker and equals 0.03 mm. This
corresponds with the noise level seen in the lower right plot of Figure 6.6.
A second factor determining the accuracy are errors induced by performing the
experiment itself. In this case, the loading spring is released manually. As a result,
a small translational motion of the cup with respect to the camera can be present.
Furthermore the optical axis of the camera is not positioned exactly perpendicular
to the marker plane. The magnitude of these inaccuracies has been estimated by
observing the change in radial position of the cup markers which was on the order of
0.3 and 0.5 mm for the open and closed cup experiment respectively.

Figure 6.5: Side view of open cup experiment showing the three-dimensional deformation
field present. Time history from left to right.
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Impact loading conditions The gel response during the experiment, in terms of
strain and strain rate, should be representative for impact conditions. For estimating
the strain levels in the experiment, it is assumed that the marker motion is two-
dimensional in the image plane recorded by the high-speed camera. A lower bound
for the shear strain, (t), occurring in this plane can be found using,

(t) =
(R0 +�R) sin��(t)

Rcup � (R0 +�R) cos��(t)
(6.2)

in which R0, Rcup, and �R represent the initial radial position of the marker, the
cup radius and the change of marker radial position respectively while ��(t) is the
angular marker displacement relative to the cup (refer to Figure 6.7). This strain
represents a shear strain that would occur at the edge of the cup. When simple shear
is assumed the maximum principal strain, �(t), can be determined as,

�(t) =

"
1 +

(t)2

2
+ (t)

r
1 +

(t)2

4

# 1

2

� 1 (6.3)

The principal strain histories thus obtained are shown in Figure 6.7. For the open
cup the maximum principal strain values range from 10% to 49% while for the closed
cup experiments strain values of 9% and 15% were found. The maximum strain
rate values were determined using numerical differentiation and equal 45 s�1 for the
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Figure 6.6: Experimental results of closed cup experiment. Top left: cup rotation and
angular velocity. Top right: Marker trajectories: initial positions of gel markers
numbered 1 and 2, initial positions of cup markers labeled *. Bottom left: Relative
circumferential displacements of gel markers. Bottom right: Radial displacements
of gel markers.
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open cup and 20 s�1 for the closed cup. Although these values are rough estimates,
it is concluded that both maximum strain values as well as strain rate values in the
physical model are within the impact range estimated in section 6.2.1 (i.e. strain
values of 15% to 21% and strain rate values of 15 s�1 to 21 s�1).

6.3 Numerical model

The experiments, described in previous section, have been simulated in MADYMO. The
material model presented in Chapter 5 was used to describe the material behaviour
of the silicone gel.

6.3.1 Methods

Mathematical model In the mathematical model it is assumed that no slip occurs
between the gel and the cup and that the cup and its cover behave rigidly. For this
reason the cylindrical geometry of the gel is modelled only. For the closed cup, radial
and axial motion of all outer surfaces are suppressed while circumferential motion
is prescribed according to the experimentally obtained rotation history in Figure 6.6.
For the open cup, the same boundary conditions hold except for the upper surface,
which is considered stress free while the other outer surfaces are subjected to the
rotation history in Figure 6.4.
The silicone gel used behaves like a linear viscoelastic solid for strains up to 50%
and frequencies up to 461 Hz (refer to Chapters 3 and 4). For this reason, a linear
four-mode Maxwell model has been fitted to the experimental data using the method
already presented in Chapter 5. The fitted relaxation times, �i, and shear moduli,
Gi, are shown in Table 6.1. Figure 6.8 shows that the model fits the experimental
data well. The bulk modulus applied has been determined from ultrasonic data, as
K = c2p� where cp = 1048m=s [139] and mass density � = 970 kg=m3 (refer to the
theory in Section 2.2, Chapter 2).
These material parameters have been applied in the material model presented in
Chapter 5 in which the non-linear material behaviour was disabled (fnls = 0) and
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Figure 6.7: Left: Graphical representation of strain computation. Middle and Right: Estimated
maximum principal strain histories. Middle: Open cup, Right: Closed cup.
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again it was assumed that c10;i = c01;i =
1
2Gi. The model will be referred to as REF

material model in this Chapter.
To investigate the influence of the degree of coupling between hydrostatic and
deviatoric stress, the simulations of open and closed cup were also performed using
the linear viscoelastic material model already present in MADYMO (LINVIS) [148].
In this model, which will be referred to as the CPL material model from now on,
correct large deformation behaviour has been achieved by linearly coupling the
Green-Lagrange strain, E = 1

2 (F
c � F � I), to the Second Piola-Kirchoff stress tensor,

S, according to,

S = Ktrace(E)I + 2

Z t

�1

G(t� �) _E
d
d� (6.4)

in which, for small deformations, K resembles the bulk modulus and G(t) a time
dependent relaxation modulus. The Cauchy stress then is obtained using,

� =
1

det(F )
F � S � F c (6.5)

Numerical implementation Spatial discretisation of the mathematical model has
been achieved using brick elements with linear interpolation functions and reduced

Table 6.1: Four-mode Maxwell parameters for Sylgard 527 A&B silicone gel fitted to oscillatory
data presented in Chapter 4.

Mode Maxwell parameters Bulk modulus
i Gi [Pa] �i [ms] K [GPa]
0 216.41 1 1.065
1 122.32 309.8 -
2 378.79 24.71 -
3 1717.2 2.156 -
4 27599 9:743 � 10�2 -
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integration. The element size is based on the error analysis in Chapter 2.
Approximately 24 elements per maximum wave length in the model have to be used
to reduce errors due to numerical dispersion to less than 1%. If we assume that
the maximum wavelength present equals the diameter of the cup, the lower bound
for the mesh density equals at least 24 elements over the diameter. In this case 28
elements over the diameter have been used. To keep the initial element shape close
to cubic, twelve element layers have been used over the cup height. To investigate
the effect of spatial discretisation on the numerical results, the simulation of the open
cup experiments has been repeated with both a more coarse and a more refined mesh.
The coarse mesh has been created by merging eight elements of the reference mesh
into a single, larger element. Mesh refinement has been achieved by splitting every
element in the reference mesh into eight new elements. To reduce computational
time using this finest mesh, a quarter cylinder was modelled only while symmetry
conditions were applied on the cutting planes. The meshes are shown in Figure 6.9.

Post processing Nodes have been selected with radial distances as close as
possible to the distances determined experimentally. Trajectories in the x-y plane
were determined and are presented in polar coordinates for comparison with the
experimental results.

6.3.2 Numerical results: REF material model

Reference mesh open model Figure 6.10 shows the time histories of nodal
displacements in polar coordinates corresponding to the marker displacements of
markers 1, 2 and 3 in the open cup (see Figure 6.4). The experimental results
are plotted in the figure for comparison. It can be seen that the model predicts

Coarse mesh Reference mesh Refined mesh

Figure 6.9: Meshes used for modelling open and closed cup. Refined mesh consists of quarter
mesh only with symmetry boundary conditions applied on cutting planes.
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the marker trajectories quite well. The general shape of the curves is the same for
both experiment and simulation. The numerical model however, overestimates the
relative rotation of the markers by 17%, 14% and 24% for markers 1, 2 and 3,
respectively. The time history of the radial displacement shows that the numerical
results are within range of the experimental ones. The radial displacements remain
approximately zero until 30 ms. After this, they increase to 2 mm approximately.

Reference mesh closed model The experimental closed cup results are compared
with the numerical reference mesh results in Figure 6.11. The numerical model over-
predicts the amplitude of the angular rotation by 62% and 46% for marker 1 and 2,
respectively. The predicted radial displacements are on the order of 0.1 mm and are in
the same of order of magnitude as the experimental results. However, the reliability
of the radial displacements from the experiment was low (refer to page 89).

Mesh density variation The simulations of the open cup have been repeated with
two different mesh densities. The results in Figure 6.12 show that the trends in all
results remain the same. The average maximum value of the angular displacements
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Figure 6.10: Marker trajectories obtained with reference mesh and REF material model versus
experimental results open cup (dotted line). Left: Angular displacements relative
to cup. Right: Radial displacements.
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increases by 10.8% when refining the mesh from coarse to reference mesh. Further
refinement provides an increase of peak values by 4.0%. The moment of time on
which these maxima are reached also increases with mesh density (4.1% (1.7 ms)
and 1.0% (0.44 ms) respectively). The radial displacements show a decreasing trend
when the mesh density is increased.

6.3.3 Numerical results: CPL material model

Figure 6.13 shows time histories of nodal displacements in polar coordinates as
obtained with the CPL material model. The results of the open cup simulation in the
upper plots show that relative marker rotations are under-estimated by 28%, 32% and
32% for markers 1,2 and 3, respectively. Also the time history of the marker rotations
deviates from the experimental results in that the oscillations appear with shorter time
duration. As a result, the peak values appear earlier in time than the experimental
values. The radial displacements in the upper right plot are overestimated 4 mm and
appear also ahead of the experimental values. The lower plots show the results of the
closed cup simulation with the CPL material model. The marker displacements are
very small in both angular as well as radial direction. Only a very small oscillation
can be seen that does not resemble the experimental time history at all. This means
that the gel displays a nearly rigid-body motion when the closed cup is simulated.
This phenomenon is independent of mesh density used.
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Figure 6.12: Effect of mesh density on the response of the open cup simulation with REF

material model. Left: Angular displacements relative to cup. Right: Radial
displacements. Top row: Coarse mesh. Middle row: Reference mesh. Lower
row: Finest mesh.
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6.4 Discussion

The open cup experiments could be simulated quite well with the REF material
model. The time history of the marker angular displacements could be reproduced
with 22% accuracy. This difference may be caused by errors in the choice of the
material parameter values. The values used were determined on a different gel
specimen than the one used in this experiment. The experimental data of three
different samples in Chapter 4 differed by approximately 0.2 to 20% depending on
the frequency used. The effect of this spread has been investigated by performing
an additional simulation with material parameters increased by 10%. The results
obtained with the reference mesh are shown in Figure 6.14. It can be observed that
the model with increased parameters provides good predictions of the experimentally
determined marker displacements. Maximum numerical errors in angular rotation
equal 8.9%, 0.23% and 2.5% for marker 1,2 and 3 respectively.

The closed cup simulation results with REF material model also show overestimated
experimental angular displacements but correct trends in time history. A possible
explanation for this overestimation is again the uncertainty in the material
parameters. However, the fact that the overestimation in this isochoric deformation
state is more pronounced than in the open cup simulations suggests a second
hypothesis.
In the REF material model, the hydrostatic behaviour is decoupled from the deviatoric
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Figure 6.13: Marker trajectories obtained with reference mesh and CPL material model versus
experimental results (dotted line). Top: Open cup results. Bottom: Closed cup
results. Left: Angular displacements relative to cup. Right: Radial displacements.
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part of the Cauchy stress (refer to equations (5.21) and (5.22) in Chapter 5).
Furthermore the deviatoric stress depends on the deviatoric part of the isochoric
deformation only. As a result, the shear behaviour of the model is independent of the
hydrostatic deformation. If, in reality, some coupling between shear and hydrostatic
deformation is present, implementation of this coupling in the material model will
lead to reduced displacements in the simulation results. This will be more pronounced
in the closed cup simulation than in the open cup simulation. However, the presence
of this partial coupling could not be validated in the present material experiments
and remains to be investigated. This can be done by determining the normal force
history during a simple shear experiment or by applying a different deformation, for
example an unconfined compression.

Mesh density Increasing the mesh density using the REF material model, revealed
differences in amplitude of the marker displacements on the order of 4%. The time
history behaviour, i.e. the ’shape’ of the time history, did not change. This indicates
that the results of the reference mesh can be used to indicate where and when peak
strain or stress values occur. Although it is unclear whether the results of the finest
mesh used were not mesh-size independent yet, no further mesh refinement has been
performed since this would yield excessive computational times.

Effect of decoupled hydrostatic and deviatoric stress The importance of
decoupling the hydrostatic strain from the deviatoric stress was clearly illustrated
by the results with the CPL material model. The open cup simulation showed
underestimation of the strain response, whereas in the closed cup simulation virtually
no strains were present at all. The reason for this behaviour will be illustrated using
an example.
In absence of time dependent behaviour (G(t) = G), the constitutive equation (6.4)
reduces to,

S = (K � 2

3
G)trace(E)I + 2GE (6.6)
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Figure 6.14: Marker trajectories obtained with reference mesh, REF material model and 10%
increased material parameters, versus experimental results (dotted line). Left:
Angular displacements relative to cup. Right: Radial displacements.



98 Chapter 6

which in fact represents Hooke’s law for linear elastic materials in which the
infinitesimal strain measure " is replaced by the Green-Lagrange strain E. Let us
assume that the deformation patterns in the closed cup resemble that of isochoric
simple shear. The resulting shear stress component of the Cauchy stress ,� , then
depends on both shear modulus, G, and bulk modulus, K,

� = G

�
 +

2

3
3
�
+

1

2
K3 (6.7)

Due to the nearly incompressible material behaviour (G = 1000 Pa and K = 109 Pa
approximately, refer to Table 6.1), the last term in equation (6.7), related to the bulk
modulus, will dominate the shear behaviour already for very small strains: for  = 1%
this term will be a factor of 50 larger than the first term, related to the shear modulus.
This behaviour does not correspond with the behaviour observed experimentally.

6.5 Conclusions

A simple physical model was used to create a response in silicone gel model material
resembling that of brain tissue in a traffic related impact. Two variants were used, an
open cup and a closed cup. In both geometries gel responses resembling brain tissue
impact response could be obtained. Maximum principal strain values of 49% and
15% occurred during open and closed cup experiments, respectively. These are in the
order of the 20% strain threshold above which tissue damage was induced in animal
experiments. The strain rates obtained in the experiments (45 s�1 and 20 s�1 for
open and closed experiment, respectively) are also of correct magnitude compared to
the 20 s�1 value estimated to be present in a real head during impact.
The open cup experiments could be simulated very well using the material model
developed in Chapter 5. Maximum errors in angular marker displacements where
less than 22% and reduced to 8.9% when the material properties were increased
within the experimental range shown in Chapter 4 (10% increase). The closed
cup trajectories were overestimated by 62% but time history looked realistic. A
possible explanation might be the assumed decoupling between shear and hydrostatic
deformation in the constitutive formulation (refer to section 6.4). Increasing the mesh
density from 28 to 56 elements per cup diameter yielded changes of displacements
of 4% only but did not alter the nature of the time history. This supports the rule of
thumb derived in Chapter 2, that 24 elements per maximum wave length are needed
for accurate modelling.
The closed cup simulations showed that without decoupling the hydrostatic and
deviatoric parts of the stress, the stiffness at finite shear strain was severely
overestimated. This effect was largest for the closed cup simulation. This
illustrates the importance of correct constitutive modelling when dealing with nearly
incompressible behaviour, especially when applying such material model in a head
model which also consists of a more or less closed geometry. The presence of this
effect in a real head model will therefore be studied in the next chapter.



Chapter 7

Effects of constitutive
modelling on brain response in

a 3-D FE head model

It is investigated how the choice of brain constitutive model affects the dynamic response of brain
tissue in a three-dimensional head model. Three brain models are used: the model presented
in Chapter 5 with and without shear softening included, and the standard linear multi-mode
viscoelastic material model present in MADYMO 5.4.1. In the latter model, the deviatoric and
hydrostatic response is not decoupled, in contrast to the first two model variants. The head
model is subjected to a transient eccentric rotation in the sagittal plane and the brain response is
investigated in quantities, commonly associated with injury. It was found that large strains occur
at modest impact conditions. This is most likely caused by the values for the shear moduli applied
in the model. These are at least a factor of ten lower than the ones used in head models in literature
but comparable to material data in recent literature and own experiments. Shear softening
influences the strain and stress levels but not the spatial distribution. The pressure response
was of quasi-static nature and did not depend on non-linear material behaviour. Decoupling of
deviatoric and hydrostatic deformation in the constitutive model was found to be necessary for
correct prediction of brain response in head modelling.
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7.1 Introduction

In previous chapters a non-linear viscoelastic material model capable of describing
the material behaviour of brain tissue under simple shear conditions was presented.
The model is capable of describing the shear softening observed for strains up to
20%. Physical model simulations in the previous chapter pointed out that the model
is capable of accurately predicting the dynamical response of a nearly incompressible
linear viscoelastic material under impact conditions. It was found that decoupling
of the deviatoric and volumetric deformation in the stress tensor was crucial for the
good performance under isochoric deformations.
In the present chapter, the constitutive model is applied in a three-dimensional head
model, subjected to rotational acceleration history in posterior-anterior direction.
To investigate the effect of shear softening as well as decoupling of volumetric and
deviatoric deformation, brain tissue’s constitutive description is changed accordingly.
The effect of the various modelling approaches will be analysed by comparing
predicted local brain responses, expressed in quantities associated with injury in
literature.

7.2 Numerical model

The head model used was originally developed in the implicit Finite Element Code
MARC [88] by Claessens [36] and has been evaluated using intracranial pressure
responses obtained from a cadaver experiment by Nahum [37; 104]. This model was
transfered to the explicit Finite Element Code LS-DYNA3D [86] for use in an accident
reconstruction study [154]. In that study improvements with respect to element size
and shape were carried out. Furthermore, the anatomical detail of the model was
increased by including a more realistic geometry near the skull base and falx cerebri
and by including an element layer between cerebri and skull to model the dura mater.
In the present study, the model is transformed to MADYMO 5.4.1 format[146]. All
material descriptions were retained except for the constitutive model and model
parameters of the brain tissue. In the next sections the model will be presented
briefly. More detailed information about the model can be found in the work of
Claessens [36; 37] and Verhoeve [154].

Geometry The geometry of the model is based on the Visible Human data set
[153] which consists of MRI (Magnetic Resonance Imaging) and CT (Computed
Tomography) transversal images of a male person. Head length (195 mm), width
(155 mm) and height (225 mm) have been scaled to 50th percentile measures
according to Pheasant [119]. The anatomical structures, included in the model,
are shown in Figure 7.1. They are grouped in three components; the cranium, the
meningeal layers and CSF, and the brain tissue. Table 7.1 provides information on
each component and constitutive models used. All substructures in the head model
are assumed to be rigidly connected to each other. The brain is tied to the skull via
a layer of compliant elements and the motion of brain tissue through the foramen
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magnum is suppressed. The head is meshed in one continuous mesh consisting of
8-node brick elements. Spatial integration is achieved using one integration point per
element only (reduced integration). Hourglass control is used to suppress the zero
energy deformation modes that exist for reduced integrated brick elements [148].

Constitutive assumptions In this study we will not model a direct contact impact.
For this reason the cranium is assumed to be rigid. The meningeal layers were
modelled as in the original model by Claessens [36; 37], i.e. linear elastic material
model with material parameters taken from Ruan et al. [126] (refer to Table 7.2).
The brain tissue is modelled using a four mode viscoelastic material model. Three
modelling variants have been investigated:

1. REF: In the reference simulation, the brain tissue is modelled using the newly
developed material model with linear material parameters, i.e. shear softening
is not included.

2. SOF: Like REF but with shear softening added.

Cerebellum

Cerebrum

Falx Cerebelli

Falx cerebri

Brainstem

Dura mater

Neurocranium

Viscerocranium

Tentorium cerebelli

Figure 7.1: Overview of the head model [154]. The right half of the head model is shown with
the brain, the meningeal layers (dura mater with falx and tentorium) and the skull
separated. In the model, these structures are connected to each other, resulting in
a continuous Finite Element mesh.
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3. CPL: The linear viscoelastic material model as present in MADYMO version 5.4.1
has been used (LINVIS). This model linearly couples the second Piola-Kirchoff
stress tensor to the Green-Lagrange strain and includes viscous behaviour using
an integral form. As a result deviatoric and hydrostatic part of the deformation
are not decoupled. (Refer to the Discussion section of Chapter 6 for more
details).

Comparing the REF and SOF results provides insight into the effect of shear softening
on the dynamic response of brain tissue. Comparing the REF and CPL results shows
the importance of decoupling the deviatoric and hydrostatic parts of the deformation
in the stress formulation in a realistic head geometry.
The decoupled non-linear viscoelastic material model used in the SOF simulation, is a
slightly adapted version of the model presented in Chapter 5. The latter model, was
capable of predicting the shear softening observed within the experimental strain
range (up to 20% shear strain). However, for strain levels outside the experimental
strain range, negative shear stiffness can occur. To prevent numerical problems
associated with negative stiffness, an extra deviatoric stress was added to the
deviatoric stress part of the original model. The stress formulation was chosen such
that its effect on the response is minimal within the experimental strain range while
negative stiffness is prevented for shear strains beyond that range. However, this extra
stress will cause shear stiffening to occur for strains beyond the experimental range.
For this reason extra care has to be taken in interpreting results at strains outside the
experimental range. The complete theory on the model adaptation is presented in
Appendix B.

Table 7.1: Configuration of the head model used; presentation of the structures included, the
number and type of elements used, and constitutive models used.
Anatomical structure No. of elements Constitutive model
Cranium (skull) 3212 Rigid
viscerocranium (facial bones) 188
neurocranium 3024
Meningeal layers & CSF 3188 Linear elastic
Dura mater 2536
- falx cerebri 448
- falx cerebelli 18
- tentorium cerebelli 186
Brain tissue 7692 Viscoelastic*
cerebrum/corpus callosum 6758
cerebellum 732
brainstem 202
* Three variants are used:
REF: decoupled-linear viscoelastic: no shear softening
SOF: decoupled non-linear viscoelastic: shear softening.
CPL: linear viscoelastic, coupled deviatoric / hydrostatic behaviour
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Brain tissue material parameters are taken from Chapter 5. Except for the non-linear
parameter, fnls which has been fitted again to eliminate the small effect within the
experimental range caused by the model adaptation (refer to Appendix B). They are
shown in Table 7.2.

Loading conditions An eccentric rotation in posterior-anterior direction has been
applied to the model using a time history obtained from [11]. The axis of rotation
is positioned at 155 mm below the anatomical origin of the model which is located
in the ear hole projected to the sagittal plane. The eccentricity resembles a typical
neck length [49; 144]. The rotational acceleration time history consists of two sine
functions shown in Figure 7.2, where the initial acceleration portion equals twice the
amplitude and half the duration of the subsequent deceleration portion. The total
rotational pulse duration was set to 30 ms whereas the maximum angular velocity
was set to 5 s�1 as to obtain strain values inside the brain tissue within the range
of the material characterization experiments in Chapter 4, i.e. 20% shear strain

Table 7.2: Material properties used for the anatomical components in the three-dimensional
head model.

Structure Shear modulus Time constants Bulk Non linear Mass
Gi i = 0� n �i, i = 0� n modulus K par. fnls density

[Pa] [ms] [GPa] [�] [ kg
m3 ]

Cranium
(skull)

1 - 1 - 2070

Meninges
& CSF

1:086 � 106 - 0:105 - 1130

Brain tissue
REF, CPL 255, 269, 323 1,70.1, 7.63 2.5 0 1040

427, 3299 1.41, 0.12
SOF 255, 269, 323 1,70.1, 7.63 2.5 -5.5553 1040

427, 3299 1.41, 0.12
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Figure 7.2: Angular rotation history used according to [11]. Left: Angular acceleration and
schematic indicating direction of acceleration. Right: Angular velocity. Time
duration set to 30 ms and maximum angular velocity to 5 s�1.
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corresponding to a Von Mises strain of approximately 0.22. This results in a maximum
head rotation angle of 0.075 rad.

Time discretisation The MADYMO Finite Element module uses the conditionally
stable Central Difference Method for time integration, as is common in explicit Finite
Element codes. The maximum time step for obtaining a stable solution is determined
by the Courant criterion which depends on mesh size and wave propagation velocity.
In Chapter 2 is shown that application of the maximum time step provides the most
accurate solution. In the present simulations this maximum time step is multiplied
by 0.85 and kept constant during the complete simulation. This yields a time step of
4 �10�4 ms, which results in 75000 time increments to simulate the full 30 ms impact.

Post processing The effect of the various brain tissue modelling approaches on
the dynamical brain response will be investigated in terms of parameters associated
with injury. In Chapter 1 (Table 1.1) it has been shown that shear strain, maximum
principal strain, Von Mises stress and pressure have been identified by various authors
as potential causes for brain injury. These parameters can be described by the
following three quantities,

� Von Mises, or effective, strain, EVM =
q

3
2 trace(Ed �Ed): This rotation

invariant strain measure depends on the deviatoric Green-Lagrange strain,
E
d, only and is a measure of distortional deformation. As such, it provides

information on shear deformation present in the brain tissue. Furthermore,
this measure closely resembles the maximum principal strain due to the nearly
incompressible nature of the brain tissue.

� Von Mises stress, �VM =
q

3
2 trace(�d � �d): As viscoelastic material behaviour

is assumed, the stress measure depends both on strain and strain rate quantities.
Differences between Von Mises stress and Von Mises strain distributions
therefore reflect the contribution of strain rate effects.

� Pressure, p = � 1
3 trace(�): Apart from being a potential injury cause, this

quantity has been used in many studies [37; 72; 128; 129; 168], for evaluating
head models against cadaver experiments by Nahum [104].

For each element in the brain mesh, maximum values appearing during the impact
time history are determined and shown in contour plots of various para-sagittal cross-
sections. Areas of interest will be determined and the time history of the quantities in
these areas will be plotted.

7.3 Results

All simulations are performed on a Silicone Graphics Origin computer, with a 180
MHz, IP 27, R10.000 processor. The computational time equals approximately 10
hours and 30 minutes for all model variants.
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7.3.1 Reference model: REF

Figure 7.3 shows contour plots of the maximum Von Mises strain and stress values
during the impact in various para-sagittal cross-sections in the brain. The Von Mises
strain ranges up to about 0.3 while the Von Mises stress ranges up to approximately
400 Pa. Both stresses and strains show similar, concentric, contour patterns with
minimum values concentrated in the center of the cerebri. Maximum values appear at
the upper part of the cerebral cortex (cross-sections 2 and 3 in Figure 7.3), in the mid-
brain section (cross-section 1) and superior to the tentorium cerebelli (cross-sections
3 and 4). Another concentration of maximum values is found in the concave region
near the temporal lobes. These will not be taken into account in the next discussion
since it is believed that this maximum is severely influenced by bad element quality
in that region.
The Von Mises stress and Von Mises strain histories in two elements, located in the
superior cerebral cortex region (C) and in the mid-brain (M) are plotted in Figure
7.4. Both Von Mises strain and Von Mises stress time histories show the same
tendencies. The mid-brain time histories of both stresses and strains lag behind the
time histories in the cortical region. In turn, the cortical time histories lag behind
the input rotational acceleration pulse in Figure 7.2. In both regions the strain time
history lags behind the stress time history. Finally, superior cortex stress and strain
values approach to zero at about 20 to 25 ms, while midbrain stress and strain levels

Stress [Pa]70 3502802101400.0

0.25 Strain [-]0.05 0.10 0.15 0.200.0 1
2
3
4

1 2 21

3 4

Maximum Von Mises stressesMaximum Von Mises strains

43

Figure 7.3: Para-sagittal cross-sections (1 to 4) showing Von Mises strains (left) and stresses
(right) in the brain section of the three-dimensional head model in reference
simulation ( REF). Maximum values appearing during complete impact time history
are shown.
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remain relatively high.
The pressure response of the REF model is shown in Figure 7.5. The upper contour
plot, in the left part of Figure 7.5, shows the pressure distribution at t = 5ms, which
is at maximum positive angular acceleration. Positive pressures arise in the posterior
region while negative pressures are present in anterior region. The lower plot is taken
during maximum deceleration of the head, at t = 20ms. It can be seen that pressures
in anterior and posterior region changed sign while absolute values are lower than
during acceleration. In both plots the spatial pressure gradient in A-P direction is
nearly a constant. This is also true for other moments in time not shown in Figure
7.5.
To study the pressure time history, two elements were selected located on posterior
(P) and anterior (A) regions (see left plot of Figure 7.5). The pressure time histories
in both P and A element are plotted in the right part of the figure. As seen in the
contour plots, the pressures differ in sign. Their time behaviour follows the rotational
acceleration input history of Figure 7.2. The largest pressure difference between P
and A element occurs at 5.0 ms and equals 27.8 kPa.
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Figure 7.4: Time histories of Von Mises stress (left) and Von Mises strain (right) in two
elements located in Mid-brain region (M) and superior cerebral Cortex region (C).
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7.3.2 Model variants: cpl and sof

Figures 7.6 and 7.7 show contour plots of maximum values of Von Mises strains and
stresses for all model variants. The SOF variant provides approximately the same
spatial distribution of maximum Von Mises stresses and strains than the REF model.
However, maximum strain values increase by approximately 21% whereas maximum
Von Mises stresses tend to decrease by 11%.
The CPL variant clearly provides completely different stress and strain patterns than
the REF model. Strain levels are lower by a factor of 10 and the concentric patterns
present in REF and SOF are less evident. The Von Mises stresses are higher by
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Figure 7.6: Para-sagittal cross-sections (1 to 4) showing maximum values of the Von Mises
strains in the brain section of the three-dimensional head model. Top row, SOF:
shear softening. Middle row, REF: reference simulation. Lower row, CPL: coupled
hydrostatic part (strains � 10).
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approximately a factor of five but the concentric pattern remains present.
The Von Mises stress and Von Mises strain time histories for the element located
in the mid-brain region selected previously (M) are shown in Figure 7.8. The left
plot shows that the maximum strain level increases in the SOF simulation whereas it
occurs later in time. The stress history in the right plot, shows that shear softening
leads to decreasing maximum stresses which again appear later in time than in the
REF simulation.
The results of the CPL variant differ strongly from the reference results. The Von
Mises strain values remain close to zero during the complete simulation while the
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Figure 7.7: Para-sagittal cross-sections (1 to 4) showing maximum values of the Von Mises
stresses in the brain section of the three-dimensional head model. Top row, SOF:
shear softening. Middle row, REF: reference simulation. Lower row, CPL: coupled
hydrostatic part (stress � 0.2).
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stress shows high peaks. Furthermore higher frequencies seem to be present in both
stress and strain histories.
The spatial pressure response shows constant gradients for all model variants and is
therefore not plotted. The pressure time history of elements located in anterior (pA)
and posterior region (pP ) is shown in Figure 7.9 as well as the pressure difference,
�p = pP � pA. Since the spatial pressure gradient is a constant in posterior-
anterior direction, the pressure difference over head length provides a measure for
the pressure gradient. The effect of shear softening on the pressure response is
negligible (maximum difference 0.3 Pa). The element pressure histories of the CPL

model variant differ completely from the reference model; the time history does
not follow the input angular acceleration any more. Instead the pressure shows
an oscillatory history that remains mainly negative for both posterior and anterior
element. However, the A-P pressure difference in the CPL model equals the one
obtained with REF variant within 2 kPa.
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Figure 7.8: Effect of brain tissue modelling variants, Von Mises strain (left)and Von Mises stress
(right) histories of element in mid-brain region (M). Note: �VM �0:2 at CPL result.
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7.4 Discussion

In this chapter three modelling variants of the constitutive behaviour of brain tissue
are applied in an existing Finite Element head model. The effects on the response
caused by shear softening and by the decoupling of hydrostatic and deviatoric
deformation in the brain tissue material model have been investigated. Other model
assumptions such as geometry and constitutive behaviour of different parts of the
head were left unaltered. As such the conclusions presented hold within the current
head model. Extrapolation to reality depends on the quality of the other model
assumptions which were not subject of research in this chapter.

7.4.1 Numerical model accuracy

The accuracy of the Finite Element procedure used, is determined by time-step and
the mesh density. In Chapter 2 it is shown that maximum accuracy is reached when
the time step is chosen close to the required step for stability. For this reason the
maximum allowable time step in MADYMO was used. The mesh density will be
characterized by the number of elements over the head diameter. For the brain
section in the model 20, 22 and 22 elements are used in anterior-posterior, superior-
inferior and lateral direction respectively. In Chapter 6 it was concluded that typically
28 elements over the diameter are needed for accurate prediction of the dynamical
response of a physical model. As a result, the computed solutions will not be at
maximum accuracy. This is especially true since the required mesh density was
obtained in a homogeneous model, without substructures of different stiffness and
mass density as is the case in the head model. However, for practical reasons the use
of a higher mesh density has been omitted. Furthermore, it was shown in Chapter
6 that a coarse mesh (11 elements per diameter) did not alter the nature of the
response. For this reason it is believed that the response predicted by the model will
reflect trends due to different material modelling correctly.
In the head model, linear (constant strain) elements with reduced integration and
lumped mass matrixes are used. Although computational effective, these elements
allow zero energy modes or hourglass modes to be present which can be suppressed
by adding a small stiffness capable of stopping the formation of the anomalous modes
but having negligible effect on the stable global modes. No details on the hourglass
suppression method in MADYMO were found, but examples of suppression methods
can be found in [52] and [78]. During the simulations in this chapter, the hourglass
suppression routine contributed less than 4.5% to the total internal energy of the
model.

7.4.2 Reference model response

The level of the angular velocity used, is chosen as to obtain strains within the range
for which the material properties measured are valid (20% maximum engineering
shear strain). The resulting maximum acceleration equals 750 rad=s2 and the
angular velocity equals 5 rad=s. This is lower than typically used in other model
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studies. Bandak & Eppinger (1995) applied the same time history with maximum
rotational velocity set to 35 rad=s and found principal strains on the order of 0.1
[11]. Application of this loading history on the present REF model leads to maximum
principal strains and Von Mises strains exceeding 1.0. Zhang et al (2001) modelled
a direct impact and found maximum shear strains on the order of 0.06 [167].
Unfortunately no acceleration histories were provided.
To explain the discrepancy between present findings and those in literature, the levels
of shear moduli used will be investigated. The material parameters used in present
model were obtained from the brain material data in Chapter 4. This data was within
range of that found in recent literature. However, older literature data suggests that
the shear modulus of brain tissue is much higher. The shear moduli used in head
models in literature are often based on this older data and are at least a factor of ten
higher than those used here [11; 37; 72; 99; 167; 169].
To illustrate the effect of higher shear moduli in present model, a simulation was
performed using a single mode linear variant of the new material model. Material
parameters for brain tissue as used by Zhang et al. [167] were taken: G0 = 7:1 kPa,
G1 = 30:4 kPa, �1 = 1:43 ms and K = 2:19 GPa. The time duration and maximum
angular velocity were set to the average values used by Bandak & Eppinger [11]; 20
ms and 25 rad=s respectively. This results in a maximum angular acceleration of 6000
rad=s2. The maximum Von Mises strains equal approximately 0.15, which is within
the expected range especially since the moduli used here were on the lower bound of
those found in literature. For this reason it can be concluded that the discrepancy in
strain levels between the present model and those in literature, most likely originates
from the shear moduli used.

Pressure response In Chapter 2 it was analytically estimated that the frequencies
present in traffic related impacts are too low for pressure waves to exist inside brain
tissue. This has been verified using the simulation results in this chapter. The contour
plots show that the pressure distribution over the brain displays a nearly constant
gradient. The posterior-anterior pressure difference qualitatively follows the linear
acceleration time history of the head. This indicates a quasi-static pressure response.
In that case, the pressure difference at a certain moment in time, �p(t), can be
estimated from the balance of momentum as,

�p(t) = ��x(t)l (7.1)

in which �x(t) equals the linear acceleration, � the mass density and l a typical length
measure. The linear acceleration can be estimated from the product of the angular
acceleration and the neck length (155 mm), while the head length (195 mm) serves
as typical length measure, l. Inserting the maximum angular acceleration 750 s�2, at
t = 5 ms, provides an estimated �p of 24 kPa which agrees qualitatively with the
maximum value in Figure 7.9, �p = 28 kPa.
The pressure difference is independent of the material behaviour assumed in both
numerical results and quasi-static theory. Furthermore, it was shown in Chapter 2
that the pressure distribution poses the least demands on numerical accuracy due to
its high wave propagation velocity. For these reasons it can be concluded that pressure
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difference is not a critical measure for testing the quality of both material model and
numerical model during traffic related impacts.

7.4.3 Variation of material models

Shear softening The contour plots in Figures 7.6 and 7.7 reveal that the shear
softening does not alter the overall pattern of the stress and strain field present in the
head, however the level of stress and strain quantities is changed. The histograms in
Figure 7.10 show the distribution of maximum Von Mises stress and strain values for
all elements inside the brain. The left plot shows that, due to shear softening, higher
Von Mises strains occur in favor of strains in the region of 0.12 to 0.2. The Von Mises
stress distribution, shown in the right plot, shifts to lower values despite the larger
strains. Also the time history of stresses and strains shown in Figure 7.9 changes
in level but not in shape. The pressure response was not significantly changed by
application of the shear softening. This is as expected since shear softening acts on
the deviatoric part of the stress only.

Coupling deviatoric and hydrostatic parts The decoupling of deviatoric and
hydrostatic parts of the stress has large influence on spatial and temporal stress
and strain distribution. As seen in Figure 7.10, the coupled LINVIS model present
in MADYMO 5.4.1 provided low strains with high stresses. This trend agrees with
the results of the physical model simulations in Chapter 6. In that chapter it
was concluded that stresses were over predicted when an isochoric deformation
was enforced. It can be concluded that, even when surrounded by a relatively
compressible modelled skull-brain interface, coupling of deviatoric and hydrostatic
deformation parts in the stress formulation leads to severe overestimation of the stress
while the strain is underestimated.
The pressures in posterior and anterior brain region showed large differences with
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Figure 7.10: Histograms showing the distribution of maximum Von Mises strain, EVM (left)
and maximum Von Mises stress, �VM (right) over the elements in the brain.
Results of all modelling variants shown.
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respect to the reference simulation. The pressure response did not follow the input
angular acceleration anymore. However, posterior-anterior pressure differences were
similar to the reference simulation, indicating that conservation of momentum has
been satisfied.

7.5 Conclusions

In this chapter, it is investigated how the choice of brain constitutive model affects the
dynamic response of brain tissue in a three-dimensional head model. Effects of shear
softening and decoupling of deviatoric and hydrostatic behaviour on the response
have been investigated leading to the following conclusions:

� Shear softening mainly influences the levels of deviatoric strain and stress but
not their spatial and temporal distributions.

� The decoupling of deviatoric and hydrostatic parts of the deformation in the
stress formulation has large influence on both spatial and temporal distribution
of stress and strain. Using a fully coupled model (linearly coupling second-order
Piola-Kirchoff stress to Green-Lagrange strain) causes severe overestimation of
material stiffness for nearly incompressible materials such as brain tissue.

� With the fully decoupled model large strains at modest impact conditions were
found. This is probably caused by the shear stiffness used which were a factor
10 lower than those used in head models in literature but comparable to recent
material measurement data on brain tissue.

� The pressure history, and especially the pressure gradient history is a poor
measure for determining the quality of a head model, as often done in literature.
During the load applied in present study, which is typical for traffic related
impacts, the pressure gradient is completely determined by the equilibrium of
momentum, and thus independent of the choice of the brain material model.
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Chapter 8

Discussion, Conclusions and
Recommendations

In this Chapter, an integral discussion of the results of the previous chapters will be provided.
Conclusions will be drawn and recommendations for further study will be provided.
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8.1 Introduction

The head is identified as the body region most frequently involved in life-threatening
injury in crash situations [46]. For a better understanding of the way in which an
external mechanical load applied on the head during an impact leads to brain injury,
the internal mechanical response of the brain tissue has to be known. Finite Element
head models are an important tool for assessment of the internal mechanical response
in various research strategies. This research aims to contribute to the improvement
of these FE models. The objectives of this research were formulated in Chapter 1 as:

� to investigate the accuracy of numerical methods commonly used for predicting
brain response (explicit FEM) in crash impact, especially in relation to wave
propagation,

� to develop a constitutive model for describing the nearly incompressible, non-
linear viscoelastic behaviour of brain tissue in a Finite Element model,

� to asses the effects of non-linear material behaviour on the internal mechanical
response by applying the constitutive model in a 3-D Finite Element model, and

� to discuss the consequences of this research for current state of the art head
modelling.

Developments on spatial and temporal discretisation methods used in the Finite
Element Method were not a topic of this research. In section 8.2 the way in which
these objectives were met are discussed. Then conclusions will be drawn in section
8.3. Finally, recommendations for future research will be provided.

8.2 Discussion

8.2.1 Requirements for the numerical accuracy of FE head models

The internal mechanical response of the head may be either of wave propagation
nature or of structural dynamics nature, depending on the type of impact on the head.
The modelling requirements for wave phenomena are higher than for modelling a
structural dynamics response since higher strain gradients are present over smaller
volumes of material. The relevance of wave propagation in the internal mechanical
response was investigated on the basis of a small strain analysis in Chapter 2. It was
found that shear waves (S-waves) can be expected during a traffic related impact,
(frequencies between 25 and 300 Hz), while compressive waves (P-waves) are
expected during short duration, high velocity, ballistic impacts (frequencies between
10 kHz and 3 MHz). For this reason FE head modes should be capable of accurate
replication of strain wave propagation inside brain tissue.
When modelling wave propagation using the explicit Finite Element Method with
reduced integrated elements and lumped mass matrices (common in crash research
FE modelling) two types of error appear in the solution: numerical dispersion and
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spurious reflection due to mesh inhomogeneities. These errors cause the predicted
wave propagation velocity to be too low and strain and strain rate levels will deviate
from reality. These errors can be reduced by choosing spatial discretisation sufficiently
small. From one-dimensional simulation results in Chapter 2 it was estimated that
at least 24 elements per maximum wave length are required for reducing the error
in wave propagation velocity to less than 1%. The errors in strain and strain rate,
which increase with distance traveled, then equal 1% and 2.5% respectively after
a wave has traveled 1.66 its maximum wavelength. The physical model simulation
results in Chapter 6 indicate that this mesh density requirement is also valid for a
three-dimensional deformation situation. The error made by applying the Central
Difference time integration scheme proved to be compensatory for the error by the
spatial discretisation. For this reason the time step was kept as large as possible, but
within the range for obtaining a stable solution (Courant number close to 1).

8.2.2 Brain tissue constitutive behaviour: experiments and model

In Chapter 3, the small strain behaviour of porcine brain tissue was determined using
oscillatory shear experiments on a rotational plate-plate viscometer. Frequencies to
1000 Hz could be obtained using the Time/Temperature Superposition principle. The
large shear strain behaviour was investigated in Chapter 4, at strain levels associated
with the occurrence of injury (20% shear strain [141]). Stress relaxation experiments
were performed since these allow interpretation of the experimental results at
constant strain without making constitutive choices beforehand. Brain tissue showed
shear softening (i.e. decrease in stiffness) for strains above 1% (approximately 35%
softening for shear strains up to 20%) while the time relaxation behaviour was nearly
strain independent. The validity of the time-strain factorization is valid still needs
to be investigated for frequencies above 10 Hz, especially since recent experimental
data suggests that time-dependent non-linearities might be present in brain tissue at
higher frequencies [39].
A non-linear viscoelastic material model for the large strain behaviour of brain tissue
in impact conditions has been presented in Chapter 5. Hydrostatic and deviatoric
parts of the strain are separated in the stress formulation. The hydrostatic part
is assumed to be linear elastic and depends on volumetric deformation only. The
inelastic, time dependent behavior is described with a simple Newtonian law that
acts on the deviatoric stress contribution only. The shear softening observed is
described by the deviatoric elastic part which is modelled by a non-linear second-
order Mooney-Rivlin model, based on isochoric deformation only. The constitutive
behaviour is formulated in differential form, in which the Cauchy stress is calculated
in a total Lagrangian formulation. This allows easy alterations to both elastic and
viscous behaviour when needed. Furthermore, in contrast to an incremental Updated
Lagrangian approach commonly used, no time-step dependent approximation errors
are introduced when large rotations are present. To this authors knowledge this is
the first time that a non-linear viscoelastic model is implemented in this manner
in an explicit Finite Element code. Brain tissue material parameters were obtained
from small strain oscillatory experiments and the constant strain part from the stress
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relaxation experiments.
The deviatoric part of the model has been tested by 3-D simulations of the rotational
viscometer stress relaxation experiments including the transient loading part. It was
found that the model captures the mechanical phenomena observed experimentally,
shear softening and viscous behaviour, for strains within the experimental region i.e.
shear strains up to 20%. For strains outside this region the model is not validated.
In fact, for simple shear exceeding 20% shear strain the model predicts a negative
tangential stiffness. To prevent this from happening, the constitutive model was
extended with third order terms. For shear strains over 40% the extended model
predicts shear stiffening behaviour instead of shear softening which is probably not
realistic for brain tissue (refer to Appendix B). Furthermore it is unknown whether the
method used for preventing negative tangential stiffness is valid for every arbitrary
deformation.
The importance of correct separation of deviatoric and volumetric parts of the
deformation in the stress formulation was illustrated in simulations of physical model
experiments (Chapter 6). In these experiments, a cylindrical cup filled with silicone
gel, mimicking the brain material, was subjected to a transient rotation. It was
shown that the model could predict measured gel displacement within 20% error
range. Application of a material model without correct decoupling of isochoric and
volumetric strain parts in the formulation, clearly showed that the response in a
closed geometry was severely underestimated resulting in a nearly rigid body like
motion of the gel.

8.2.3 Application in a three-dimensional head model

The non-linear material model was applied in a three-dimensional head model in
Chapter 7. The external mechanical load on the 3-D FE head model (an eccentric
rotation) was chosen such as to obtain strains within the validity range of the material
model (i.e. up to to the tissue level tolerance level of 20% shear strain). It was
observed that, in the head model, the tissue tolerance level was reached at external
loading values below the ones associated with injury in literature (e.g. in [109]).
This discrepancy may be partly explained by the fact that shear stiffness in the model
is low compared to that in other models presented in literature. However, the stiffness
values used are considered to be realistic since they fit the experimental data well (see
Chapter 5), while the experimental data is in range of material data found in recent
literature (see Chapter 3).
Another possible explanation may be that hydrostatic and deviatoric parts of the
deformation are completely decoupled in the stress formulation, which has not been
verified experimentally. An indication for the presence of some degree of coupling
is provided by the simulation results of the physical model in Chapter 6. The gel
response in the open cup was less overestimated than in the closed cup. This indicates
that, at least for the silicone gel used, volumetric behaviour (open versus closed cup)
influences deviatoric behaviour (shear strain levels) in the physical model.
Finally the reason for limiting the validity of the material model to 20% shear strain
can be discussed. This range was based on two observations: first, obtaining reliable
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experimental data at strains outside this range was not possible with current test
setup, second, a 20% strain threshold for axonal injury was found in literature [141].
For this reason it was assumed that 20% strain represents an upper boundary for
strains present in brain tissue during impact of the head. However, in a recent study
there was no evidence of mechanical damage during brain tissue stress relaxation
experiments up to 50% [123]. This implies that strain values exceeding 20% shear
strain might be present during head impact.
The effect of shear softening on the brain response was investigated by applying the
material model with and without shear softening in the head model. The results
showed that maximum Von Mises strain values increased by approximately 21%
whereas maximum Von Mises stress values decreased by approximately 11% when
shear softening was applied. When interpreting these differences it should be noted
that maximum strain levels were concentrated in relatively small areas inside the
model. As a result, only a small fraction of the brain material experiences strains
large enough to be influenced by shear softening. Furthermore, it should be noted
that these differences hold for one specific loading condition in one specific model
only.

8.2.4 Consequences for head modelling

In Chapter 2 is is concluded that wave propagation is likely to occur during impacts
on the head. For this reason, head models should be capable of accurate prediction
of wave propagation. When using explicit FEM, this accuracy depends on element
size used. In current state of the art 3-D human head models the element size equals
typically 5 mm. This means that S-waves can be modelled accurately for frequencies
up to 42 Hz, about one tenth of the upper relevant frequency for S-waves to be
present in the head. P-waves can be modelled for frequencies up to 13 kHz, about
one hundredth of the upper relevant frequency for P-waves to exist. This means that
none of these models will accurately predict wave propagation. As a result, computed
maximum strain values and strain rate values will be incorrect. Both quantities are
associated with the occurrence of brain injury (refer to Table 1.1 in Chapter 1) and
should be predicted correctly.
Despite the limited accuracy of current head models, reported validation results
suggest good performance of these models. The reason for this is that current 3-D
head models are almost exclusively tested against pressure data obtained by Nahum
et al. [104] from human cadavers subjected to frontal impact. The duration of this
impact is typical for traffic related impacts and equals approximately 8 ms. This is
too long to introduce P-waves. As a result, a constant spatial pressure gradient will
occur which is completely determined by the equilibrium of momentum, and thus
independent of the choice of the brain material model. This has been confirmed by
the invariance of the pressure (gradient) response on the material model used in the
numerical model results in Chapter 7. Correct simulation of this pressure response,
does not imply correct simulation of shear wave response.
In current 3-D head models, brain tissue is modelled as a linear viscoelastic solid.
The simulation results with the non-linear material model in Chapter 7 indicate
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that the reported strain values, obtained with linear models, are under estimated
while stress values are overestimated. However, the validity of these conclusions
in different models and loading conditions is not straight forward due to many
differences between models such as different skull-brain interface models, different
(linear) material parameters, etc.

8.3 Conclusions

� Wave propagation is likely to be present during impacts on the head.
Dilatational (P) waves will propagate during ballistic impacts whereas
distortional (S) waves will propagate during traffic related impacts.

� For correct numerical modelling of propagation of both P-waves and S-waves,
in explicit FE models, typically 24 elements per wavelength should be used.
Furthermore the time step should be chosen as large as possible, i.e. the Courant
number should be close to 1.

� Spatial discretisation in current 3-D Finite Element head models is too coarse
to model wave propagation accurately. As a result, predicted maximum strain
levels and strain rate values will deviate from the real solution.

� Pressure history, measured in traffic related impact experiments is often used
to assess FE head model quality. Since pressure history during traffic related
impacts is completely determined by static equilibrium of momentum, it is not
a critical measure for testing.

� For simple shear, brain tissue behaves as a non-linear viscoelastic solid. It
displays shear softening (i.e. decrease in stiffness) for strains above 1%.

� The time relaxation behaviour of brain tissue is nearly strain independent.
However, for frequencies above 10 Hz this remains to be investigated.

� A three-dimensional non-linear viscoelastic material model that describes the
shear softening observed in brain tissue under simple shear has been developed
and implemented in the explicit MADYMO FE code. It has been shown that
the model is capable of predicting realistic deformations by simulating physical
model experiments and material experiments.

� The material model has been applied in a three-dimensional head model for a
single loading case. It was found that shear softening influences mainly strain
and stress levels but not their temporal and spatial distribution. Differences in
pressure history were negligible.
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8.4 Recommendations

8.4.1 Numerical quality, validation of head models

Head models in explicit FEM can be made suitable for modelling S-waves by reducing
the mesh size to 0.5 mm. This seems feasible considering the rapid advances in
computer hardware. However, for P-waves, reducing the mesh size to 0.05 mm is not
a realistic option. Instead alternative spatial discretisation methods should be pursued
such as the use of elements with quadratic displacement functions or generalised
mass matrix. Another method for increasing mesh density while maintaining realistic
computational costs it the use of two-dimensional head models. A trend can be
seen towards the development of two-dimensional head models that represent a
cross sectional area of the head with very detailed geometry [100; 110]. However,
additional assumptions on stress and strain boundary conditions are needed (plain
stress / plain strain). Furthermore, out of plane phenomena cannot be studied in this
type of models.
Validation methods for head models for traffic related impacts should focus on the
deviatoric strain response. A potential method to gain data on the deviatoric strain
response in biological models is the MRI tagging method [43]. In principle this
method enables non-invasive quantification of the strain field inside the brain in
animal experiments with high spatial resolution. However, application in the high
frequency range is not trivial and requires further investigation. A different source of
data from ongoing research are human cadaver experiments in which high speed
x-ray marker tracking techniques are used [3]. Drawbacks of this method are
the invasiveness (application of physical markers is required) and the low spatial
resolution that can be reached. However, it main advantage is the high temporal
resolution, sufficient for impact recording. Finally, the present research showed that
physical models can be used to obtain more insight in the presence of numerical
artefacts when they are designed to minimise the number of modelling assumptions
and to maximise mechanical accessibility. For this reason the use of physical models
in this manner should be encouraged.

8.4.2 Constitutive modelling of brain tissue

The high-strain, high-frequency behaviour of brain tissue has to be determined.
Inertial effects will have to be taken into account during analysis of the high frequency
experimental data. This makes the analytical correction of the inhomogeneous
strain field applied in the rotational viscometer impossible. For this reason it
is recommended to use a translating shear device that better approximates the
homogeneous simple shear conditions (see e.g. [39; 123]). Furthermore such device
allows the investigation of anisotropic material behaviour inside brain tissue. Also
the validity range of the material model has to be increased up to at least 50% [123].
The interaction between hydrostatic compression and deviatoric response in brain
tissue has to be investigated. For this reason material experiments in future studies
should aim at acquiring three-dimensional stress data by for instance recording the
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normal force during stress relaxation experiments.
The simple shear deformation, applied in the material experiments, is insufficient
to reveal the complete constitutive behaviour of brain tissue. Using a different
deformation mode, such as unconfined compression, allows determination of the
remaining material parameters.
Finally, the non-linear viscoelastic material model has to be applied in a three-
dimensional head model under different impact conditions. This will provide more
insight in the effect of the non-linear constitutive model on stresses and strains in the
brain.

8.4.3 Geometry and interface description in head models

The work in this thesis focused on numerical quality of head models and constitutive
modelling of brain tissue. The strain field inside the head (and so the effect of shear
softening) is also influenced by geometry and the interfaces present between the
various parts of the brain (e.g. meninges and CSF, tentorium, falx).
Insight in the effect of geometrical detail on the internal response can be gained using
physical models [24; 71; 157]. It has been shown that, for example, the presence of
the CSF filled ventricles in the brain can reduce strain levels inside brain tissue by
40% [71].
FE simulations of physical model experiments indicate that introducing relative
motion between skull and brain leads to strain reduction at smooth parts of the
brain whereas strain increases at relatively sharp invaginations such as the falx
[34; 55; 149]. In the FE head model used in Chapter 7, the sliding effect in the
skull-brain interface is modelled by using a single layer of elements with low shear
modulus tied to the brain tissue as done previously by various authors [72; 99; 167].
It has been shown that this method does not suffice to predict the relative motions
observed experimentally [3].
For this reason a more realistic manner of modelling the skull-brain interface should
be investigated. However, detailed insight in the mechanics of the skull-brain
interface is still lacking. A problem in this is that the effect of this interface depends on
the pressure in the CSF which depends on blood pressure. For this reason experiments
on in-vivo biological models should be aimed for. The internal response then should
be measured by preferably a non-invasive method such as MR tagging [43].
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Appendix A

Test of numerical
implementation

A series of benchmark tests are performed for determining which integration method has to
be used for obtaining sufficient accuracy at time steps commonly used in impact simulations
(�t = O(10�6) s). It will be shown why the Euler Improved method was chosen instead of a
less computationally expensive Euler Forward method. Both methods are compared in the simple
shear experiment discussed in Chapter 5. Furthermore different deformation histories have been
applied to check the accuracy of the Euler Improved integration method with respect to objectivity
and correct decoupling of hydrostatic and deviatoric parts.
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A.1 Introduction

As explained in Chapter 5, a time integration scheme is needed to update the inelastic
right Cauchy-Green strain tensor Cp using the evolution equation (5.11). In section
5.4 it is shown that the Euler Improved integration scheme is accurate for a simple
shear stress relaxation experiment. In this chapter, different loading conditions
for testing the numerical accuracy of the material model are applied. It will be
shown why the Euler Improved method was chosen instead of a less computationally
expensive Euler Forward method. Also analytical solutions are provided which are
not shown in the main text. The loading conditions and their motivation are listed
below,

1. Simple shear stress relaxation: For comparison of Euler Forward and Euler
Improved integration schemes

2. Uni-axial deformation followed by rotation: For testing the objectivity of the
formulation

3. Hydrostatic compression: For testing whether the hydrostatic part is purely
elastic

4. Combined shear and extension: Checking for residual stresses after cyclic
loading and unloading

To perform the simulations, the stress update scheme of Figure 5.6 and both time
integration schemes, were implemented in MATLAB 5.3 [89]. Single mode, brain-like
material properties were applied according to Table A.1.

A.2 Simple shear stress relaxation

In this section, it will be investigated if the Euler Improved method, which is
computational expensive per time step, is really needed for numerical accuracy. The
computation time is important when performing crash impact simulations since many
degrees of freedom and small time steps are used. A simple shear stress relaxation
experiment has been simulated using both Euler Improved and the less computational
expensive Euler Forward method (equation (5.35)) and results have been compared.

Material parameter Value in load case Equation number
1 2 3 4

C10 = C01 [Pa] 250 250 250 250 ( 5.21,5.25)
C20 = C02 [Pa] 0 0 0 0 (5.21)

K [Pa] 1�109 2000 1�109 1�109 (5.22)
� [s] 1 1�109 1 1 (5.13,5.26)

Table A.1: Material parameters typical for brain like tissue used in the simple one-mode test
problems performed in MATLAB. Load case numbers correspond with summary in
text.
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The following deformation gradient tensor history is used,

F (t) =

24 1 (t) 0
0 1 0
0 0 1

35 with
�

(t) = 0 0 � t < 0:5��t
(t) = 0 0:5 < t � 20

(A.1)

in which �t represents the time step used. The maximum shear strain, 0, was set to
0.2, a strain value commonly associated with brain injury.
For single mode linear viscoelastic material behaviour the analytical solution for the
stress history can be obtained (see e.g. [80]) in matrix form,

�(t) =

24 2
3(t)(2C10 + C01) 2(C10 + C01) 0

2(C10 + C01) � 2
3(t)(C10 + 2C01) 0

0 0 0

35M(t) (A.2)

in which,8<:
M(t) = 0 t < 0:5��t
M(t) = _0�(1� e�(t�0:5+�t)=�) 0:5��t � t � 0:5

M(t) = _0�(1� e��t=�)e�(t�0:5)=� t > 0:5
(A.3)

Note that the stress consists of a deviatoric part only, so there will be no volumetric
contribution, i.e. �v = 0.

Results

Stress data of a run with the Euler Improved scheme and a time step of 10�4 s
is shown in the left column of Figure A.1. As expected, �zz , �yz and �zx remain
zero. The other stress components show a relaxation behaviour, which is present
in the deviatoric stress part only (compare middle and right plots). Furthermore,
the right plot shows a straight line indicating indeed a single time constant to be
present. However, when observing the volumetric normal stresses in the middle part
of the figure, it can be seen that these do not remain zero. This error is caused
by numerical inaccuracy in combination with the high bulk modulus, K, used. It
decreases with decreasing time step, as shown in Figure A.2. The Euler Improved
scheme shows a quadratic convergence whereas the Euler Forward scheme provides
linear convergence. The residual stresses were plotted against CPU time in the same
figure. It can be concluded that the Euler Improved method provides the best result
for a certain, fixed, CPU time.
To investigate the error during stress relaxation in shear stress component, �xy, the
time histories of the relative error at various time steps used have been plotted in
Figure A.3. It can be seen that for both methods the relative error decreases to
approximately 1% when sufficient small time steps are used. However for the Euler
Improved method a time step of 0.01 s suffices to achieve this accuracy whereas
�t = 10�4 s is required for the Euler Forward scheme.
It can be concluded that the Euler Improved method is computationally more
beneficial compared to a simple Euler Forward integration rule, which takes less CPU
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effort per time step but requires smaller time steps for given accuracy. For this reason
the Euler Improved method is chosen in the numerical model formulation in Chapter
5.
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Figure A.1: Simulation results of step response using Euler Improved time integration . �t =
10�4 s, 0 = 0:2. Left: Stress components versus time. Middle: volumetric part
�v. Right: deviatoric part �d.
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A.3 Objectivity: uni-axial deformation

For testing the objectivity of the material model, the following deformation history
has been applied to a material body,

F = R �U
with,

R =

24 cos�(t) sin�(t) 0
� sin�(t) cos�(t) 0

0 0 1

35 and U =

24 �(t) 0 0
0 1 0
0 0 1

35 (A.4)

the rotation and the elongation tensors,R andU , in matrix notation respectively. The
time histories for �(t) and �(t) are shown in Figure A.4. First an uni-axial compression
is applied. Then the compressed material is rotated twice. After this the compression
is released and a uni-axial stretch is applied. The compressed material is rotated
twice again. After this the material deformation is released again. Elastic material
behaviour is obtained by setting the time constant of the damper to 109 s. This
prevents stress relaxation of the deviatoric stress for better observing the objectivity
of the stress. Furthermore the bulk modulus, K, has been lowered to 2000 Pa, since
otherwise the hydrostatic part of the stress will overshadow the deviatoric part.
The accuracy of the solution has been determined via the analytical solution for the
principal stresses. Since U is a diagonal matrix, the principal stresses, �11; �22 and �33,
can be calculated by substituting U for F in constitutive equations (5.21) and (5.22).
Written in terms of stretch, �(t), this yields,

�11 =
4
3C10

�
�1=3 � ��5=3

�� 4
3C01

�
��7=3 � ��1=3

�
+K (�� 1)

�22 =
2
3C10

�
��5=3 � �1=3

�� 2
3C01

�
��1=3 � ��7=3

�
+K (�� 1)

�33 =
2
3C10

�
��5=3 � �1=3

�� 2
3C01

�
��1=3 � ��7=3

�
+K (�� 1)

(A.5)

The principal stresses of the numerical solution have been determined as the
eigenvalues of the Cauchy stress matrix using the EIG command in MATLAB [89].
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Results

The resulting Cauchy stresses are shown in Figure A.4 in both fixed coordinates (lower
left graph) as well as in principal directions (lower right graph). The relative error
in the principal stresses is on the order of 5 � 10�9 when �t = 0.01 s. Increasing the
bulkmodulus to 2 GPa provides relative errors on the order of 10�13 while K = 0
provides maximum relative errors of 6 � 10�9.

A.4 Hydrostatic compression

A hydrostatic compression is applied as to asses whether the deviatoric part is
completely decoupled from the hydrostatic part in the numerical implementation.
Since viscous behaviour acts on the deviatoric part only, no viscous effects are
expected during hydrostatic compression. The following deformation tensor is
applied,

F = �(t)I (A.6)

From this it follows that B = �2(t)I and B
d
= 0. As a result the Cauchy stress will

be purely volumetric and elastic,

�(t) = �v(t) = �3(t)K1I
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The elongation factor �(t)= 0.8 for 0.5 < t < 5 s and �(t) = 1.2 for 10 < t < 15
s. At other moments in time between 0 and 20 s , �(t) = 1. Viscoelastic material
parameters according to Table A.1 are used.

Results

The results of a simulation using �t = 0:1 s are shown in Figure A.5 . It can be seen
that the deviatoric stress remains indeed close to zero (10�14), whereas relaxation
is absent in the volumetric stress. The relative error found when comparing the
volumetric stress values during the with analytical ones was on the order of 10�32.

A.5 Combined shear and extension: cyclic loading and
unloading

A cycle of applying simple shear, stretching the sheared volume in one direction with
elongation factor �(t), releasing the shear strain and releasing the stretch has been
simulated. The objective of this exercise is to investigate the residual stresses after
this cyclic loading.
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The deformation gradient tensor can be written as,

F (t) =

24 1 (t) 0
0 �(t) 0
0 0 1

35 (A.7)

in which �(t) and (t) are chosen as shown in Figure A.6. The residual volumetric
normal stresses and normal deviatoric stresses at the end of the simulation for both
integration methods are compared with each other.

Results

It is shown in Figure A.7 that the residual normal volumetric stresses converge to zero
when a sufficiently small time step is used. This convergence is quadratic when the
Euler Improved scheme is used. Extrapolating this result to a time-step �t = 10�6 s
provides a volumetric stress on the order of 10�5 Pa as was the case in the simple
shear experiment. The residual deviatoric stresses converge to a constant value which
corresponds with the relaxed stress present at that time.
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A.6 Conclusions

� Application of the Euler Improved integration method is needed for reducing
errors to acceptable values when time steps on the order of 10�6 s, typical in
automotive impact simulations are used.

� The numerical implementation of the Cauchy stress formulation meets the
objectivity requirement.

� Hydrostatic deformation is completely decoupled from the deviatoric
deformation.

� Cyclic loading and unloading, another potential cause of errors did not lead to
different error causes than the ones discussed for the simple shear simulation in
Chapter 5.
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Appendix B

Modification of non-linear
viscoelastic material model

The non-linear material model presented in Chapter 5 describes the behaviour of brain tissue for
simple shear strains up to 20%. However, for strains outside this strain region, negative stiffness
can occur due to the negative second order Mooney-Rivlin parameters applied. To prevent this
from happening, the model is modified as to ensure that the influence of this correction within the
validated range of 0 to 20% shear strain is as small as possible. To retain maximum biofidelity,
the model is fitted to the experimental results again. As with the original model, the predicted
response outside the experimental strain range does not resemble brain tissue behaviour, in fact
strain stiffening behaviour will be predicted whereas brain tissue is expected to show shear softening
(recall that shear softening only means a decrease in stiffness, not negative stiffness). The solution
presented in this appendix should be seen as a method for preventing numerical problems in cases
when localised high strains in a model a unavoidable.
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B.1 Modification of the model

The fits on the damping functions in Chapter 5 provide negative second order
Mooney-Rivlin parameters, C02 and C20. This results in negative stiffness values
when strains are beyond the 20% shear strain for which the model is validated
experimentally. This is not wanted since this does not resemble brain tissue behaviour
[123]. Furthermore it causes numerical problems.
The simplest manner of preventing negative stiffness without altering the complete
material model is by adding a stress contribution that has negligible effect at small
strains but overrules the negative stiffness induced by the second order parameters
at large strains. In present model this is achieved by adding positive third order
Mooney-Rivlin terms. The isochoric part of the SED, equation (5.20), then becomes,

W = C10(I1 � 3) + C01(I2 � 3) +C20(I1 � 3)2 + C02(I2 � 3)2

+C30(I1 � 3)3 + C03(I2 � 3)3
(B.1)

The deviatoric part of the Cauchy stress tensor, �d, derived from this SED, becomes,

�
d = 2

Je

n
C10 + 2C20

�
I1 � 3

�
+ 3C30

�
I1 � 3

�2o
B

d

e

� 2
Je

n
C01 + 2C02

�
I2 � 3

�
+ 3C30

�
I1 � 3

�2o�
B
�1

e

�d (B.2)

The volumetric part is left unaltered. In this manner, the occurrence of negative
stiffness is prevented without losing the advantages of a hyperelastic formulation.

B.2 Requirements for positive stiffness

To prevent negative stiffness during an arbitrary deformation the incremental stiffness
tensor, or Jacobian J = @�=@" should be be determined (in which " is the
incremental, infinitesimal strain). When all eigenvalues of the Jacobian tensor are
greater than 0, the incremental stiffness is larger than zero [159]. For an incremental
material formulation this check can be performed relatively easy. However, for the
present material model a total Lagrangian form is used. To check for negative stiffness
then would imply explicit derivation of the incremental stiffness matrix at every time
step before its eigenvalues can be determined. This is unwanted from a computational
costs point of view.
For this reason, a more simple approach is chosen in this dissertation. It is assumed
that simple shear is the strain situation most critical for the occurrence of negative
incremental stiffness. During simple shear, the shear stress, �ij , given by the third
order Mooney-Rivlin equation (B.2) can be written as,

�ij = 2(C10 + C01) + 4(C20 + C02)
3 + 6(C30 + C03)

5 (B.3)

Positive incremental stiffness now can be obtained by requiring,

@�ij
@

= Gmin (B.4)
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for every shear strain, . Stiffness, Gmin, is an arbitrarily chosen minimum, positive,
stiffness that is allowed in the simple shear solution. By writing Gmin as a fraction,
�, of the small strain shear stiffness,

Gmin = 2�(C10 + C01) (B.5)

the sum of the third order terms can be solved from equation (B.4),

C30 + C03 =
3f2nls
5� 5�

(C10 + C01) (B.6)

in which fnls = C20+C02

C10+C01

, the non-linear shear parameter. By posing the additional
assumption that C30 = C03, as done for the first and second order parameters, the
third order parameters are defined.

B.3 Determination of brain tissue material parameters

As the modification acts on the strain dependent behaviour only, the only parameter
influenced by this modification is the non-linear shear parameter, fnls. This parameter
has been fitted again to the experiment data. The damping function used for fitting
is already corrected for inhomogeneous strain field with the original model (refer to
Chapter 5)).
For simple shear, the damping function of the third order Mooney-Rivlin formulation
can be written as,

h() = 1 + 22
C02 + C20

C01 + C10
+ 34

C03 + C30

C01 + C10
(B.7)

By eliminating C03 + C30 from equation (B.7) using equation (B.6), the damping
function becomes,

h() = 1 + 22fnls +
9

5
4

f2nls
1� �

(B.8)

This function, with � = 0 is fitted to the damping function.

Fit results

Fitting the damping function of equation (B.7) to the corrected data of Chapter 5
provides fnls= -5.5553. Figure B.1 shows the fits of the damping functions within the
experimental range. It can be seen that the modified model (MR3) fit differs slightly
from the original fit presented in Chapter 5. This is confirmed by the mean error and
standard deviation of the error at each experimental data point. This error equals
4:5 � 10�3 � 8:8 � 10�3 and is higher than the original fit (error: 3:0 � 10�3 � 8:6 � 10�3)
but still acceptable. The damping functions for strains beyond the experimental range
are shown in the right graph in Figure B.1. The original fit decreases below zero while
the modified fit starts to increase again after a certain strain. Table B.1 provides an
overview of all material parameters fitted with the modified material model.
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B.4 Implications for material behaviour

The implications of the modification for the elastic stress behaviour are illustrated
using simple shear results using the elastic mode of Table B.1 only. The left graph in
Figure B.2 shows that differences between modified and original model are indeed
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Figure B.1: Effect of modification on dampingfunction. Fits of original (MR2) and modified
(MR3) model versus corrected experimental data from G2 sample (Exp) (refer to
Chapter 4). Left: Experimental strain range. Right: Larger strain range.

Table B.1: Material parameters obtained from fitting the modified non-linear material model
on brain tissue shear data (sample G2 in Chapter 4)

Mode Maxwell parameters Non-linear parameters Bulk modulus
i Gi = 2(C10 + C01) [Pa] �i [ms] fnls [-] f1 [-] f2 [-] K [GPa]
0 255.26* 1 -5.5553 1+ 1+ 2.5
1 269.08 70.1 -5.5553 1+ 1+ 0
2 322.63 7.63 -5.5553 1+ 1+ 0
3 426.96 1.41 -5.5553 1+ 1+ 0
4 3299.4 0.123 -5.5553 1+ 1+ 0

* G0 obtained from stress relaxation data using equation (5.31)
+ Constants chosen arbitrarily, could not be determined from shear experiments
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Figure B.2: Shear stress versus strain. Elastic material behaviour assumed by modelling only
the elastic mode in Table B.1. Fits of original (MR2) and modified (MR3) model
used. Left: Experimental strain range. Right: Larger strain range.
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small for strains up to 20%. The right graph shows that the original model already
predicted negative incremental stiffness for strains exceeding approximately 19%.
For larger strains the stress decreases until negative values occur at 32% strain
approximately. The modified model shows a monotonically increasing stiffness. For
strains over 34% the stiffness exceeds the initial small strain stiffness, whereas for
strain above 42% the model predicts higher stresses than a linear material model
would have done.

B.5 Discussion and conclusions

The non-linear viscoelastic material model presented in Chapter 5 has been modified
to prevent negative stiffness at strains beyond the validity range of the original model
by adding a third order Mooney-Rivlin term to the original second order formulation.
In this manner advantages of a hyper elastic formulation (no energy absorption,
objectivity) are maintained.
As the stress dependent behaviour of the material has been altered, the non-linear
shear parameter is fitted to the experimental determined dampingfunction again.
Simple shear simulations showed that negative strains are indeed prevented by the
modification, but for strains over 34%, the incremental stiffness exceeds the initial
small strain stiffness. The model then actually does not predict shear softening
anymore but shear stiffening. Furthermore, this may lead to instability of the,
conditionally stable, explicit Central Difference Time integration scheme used (refer
to section dealing with the Courant number in Chapter 2 for details).
It can be concluded that the model still describes the shear behaviour of brain tissue
when strains do not exceed 20%. For larger strains, biofidelity is not guaranteed
but numerical problems due to negative stiffness are prevented. However, it is
recommended to prevent these strains from being present in the model.
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Samenvatting

Jaarlijks overlijden er meer dan een miljoen mensen aan verkeersongevallen terwijl
er meer dan honderdmiljoen gevallen met letsel voorkomen. Bij een ongevalssituatie
is het hoofd een van de meest kwetsbare delen van het menselijk lichaam. Om
te begrijpen hoe een inslag op het hoofd tot hersenletsel leidt, is het belangrijk
de mechanische responsie van het hoofd te kennen. Het is niet mogelijk om
deze responsie met behulp van in-vivo experimenten (experimenten met levende
wezens) te bepalen. Daarom worden vaak numerieke eindige-elementenmodellen
(E.E.M.) gebruikt. De huidige E.E.M. van het hoofd bevatten een zeer gedetailleerde
weergave van de anatomie maar zijn sterk vereenvoudigd m.b.t. de beschrijving
van het materiaalgedrag van het hersenweefsel en de contact interacties tussen de
verschillende anatomische delen van het hoofd. Ook treden er fouten op door de
gebruikte numerieke benaderingsmethode, de expliciete eindige-elementenmethode.
De doelstelling van deze studie is het verbeteren van eindige-elementen
hoofdmodellen, met name de volgende twee aspecten: de nauwkeurigheid van de
numerieke methode en de beschrijving van het materiaalgedrag van de hersenen.
Om de nauwkeurigheid van de numerieke methode te bepalen dienen we eerst
te weten welk type mechanische responsie te verwachten valt. Met name
golfverschijnselen zijn hierbij van belang daar deze hoge eisen stellen aan de
numerieke methoden. Een analytische studie naar de inslagomstandigheden waarbij
golffenomenen in de hersenen kunnen voorkomen gaf aan dat het waarschijnlijk
is dat ze aanwezig zijn. Afschuifgolven (S-golven) worden verwacht tijdens
verkeersongevallen (frequenties tussen 25 Hz en 300 Hz). Druk golven (P-golven)
kunnen ontstaan bij hoge-snelheidsinslagen (bijvoorbeeld kogel inslagen op het
beschermde hoofd) bij frequenties tussen de 10 kHz en 3 MHz.
Uit het voorafgaande volgt dat de numerieke methode voor het modelleren van
een hoofd gedurende een inslag geschikt moet zijn om golffenomenen nauwkeurig
te kunnen beschrijven. Daarom is een analytische nauwkeurigheidsanalyse van
bestaande hoofdmodellen uitgevoerd. Deze analyse is geldig voor kleine rekken
en laat zien dat er twee typen fouten ontstaan in eindige-elementensimulaties
van golffenomenen: numerieke dispersie en numerieke reflecties. Deze fouten
worden bëınvloed door de discretisatie in ruimte en tijd. Bijgevolg zullen de
voorspelde rekken en reksnelheden incorrect zijn. Daar deze grootheden geassocieerd
worden met het ontstaan van letsels is correcte voorspelling noodzakelijk. Met
de elementgrootte typisch voor huidige hoofdmodellen (meer dan 5 mm) kunnen
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golffenomenen niet nauwkeurig gemodelleerd worden. Voor het modelleren van
afschuifgolven moet de elementgrootte met een factor tien verkleind worden. Voor
het modelleren van drukgolven zou de elementgrootte met een factor honderd
verkleind moeten worden. Dit geeft echter onrealistisch grote modellen. Daarom zal
er voor dit type golven gezocht dienen te worden naar andere discretisatie methoden
in ruimte en tijd. Daar dit geen doelstelling was van dit onderzoek wordt in het
vervolg alleen nog maar afschuifgedrag beschouwd.
Het mechanische gedrag van hersenweefsel is onderzocht met behulp van
afschuifexperimenten. Voor kleine rekken werden experimenten met een harmonisch
geëxciteerde rek (amplitude 1%) gebruikt. Door toepassing van het zogeheten Tijd
Temperatuur Superpositie beginsel konden materiaal gegevens verkregen worden
bij frequenties die relevant zijn bij verkeersongevallen (maximaal 1000 Hz).
Afschuifrekken die verantwoordelijk geacht worden voor het ontstaan van van
letsel (20% afschuifrek) werden toegepast in spanningsrelaxatie experimenten.
Hersenweefsel blijkt zich als een niet-lineair viscoelastisch materiaal te gedragen bij
rekken boven 1%. De afschuifstijfheid neemt af bij toenemende rekken terwijl het
tijdsafhankelijke gedrag bijna onafhankelijk is van de opgelegde rek.
Gebaseerd op de experimentele bevindingen is een materiaalmodel ontwikkeld.
Het model is een niet-lineaire uitbreiding van het multi-mode Maxwell model.
De rektensor wordt gesplitst in een elastisch en een inelastisch deel via
een multiplicatieve decompositie. Het inelastische, tijdsafhankelijke gedrag is
gemodelleerd als een eenvoudige Newtonse vloeistof. Het rekafhankelijke, elastische
deel is gemodelleerd met een hyperelastische formulering (2de orde Mooney-
Rivlin). De modelformulering is geschikt om anisotroop gedrag (zoals aangetoond
aanwezig in sommige delen van de hersenen) te implementeren maar voor deze
studie is vooralsnog isotroop materiaalgedrag aangenomen. Materiaalparameters
voor hersenweefsel werden bepaald uit de kleine-rekexperimenten en het constante
rekdeel van de spanningsrelaxatie experimenten.
Het materiaalmodel is gëımplementeerd in het expliciete eindige-elementenpakket
MADYMO. Om bij modelleren van het bijna incompressibele hersenweefsel, met
gangbare tijdstappen, nauwkeurige oplossingen te krijgen is een predictie-correctie
integratie methode toegepast. De spanningsrelaxatie-experimenten, inclusief het
transiënte deel van de rekgeschiedenis dat niet voor parameterfitten gebruikt is, zijn
met succes gesimuleerd.
Om zowel de bevindingen over numerieke nauwkeurigheid en de constitutieve
formulering te testen is een laboratorium hoofdmodel ontwikkeld. Het dynamische
gedrag van de hersenen is nagebootst met Dow Corning Sylgard 527 A&B
siliconengel. De mechanische eigenschappen van deze gel zijn op de zelfde manier
bepaald als die van hersenweefsel. De gel gedraagt zich lineair viscoelastisch voor de
geteste rekniveaus tot 50% afschuiving. De materiaalparameters van de siliconengel
liggen dicht bij die van hersenweefsel al is er meer materiaaldemping bij hoge
frequenties. Er is geconcludeerd dat deze siliconengel gebruikt kan worden in een
laboratorium hoofdmodel voor trend studies en testen van numerieke modellen.
Een cilindervormig bakje, gevuld met siliconengel, is belast met een trans̈ıente
hoekversnelling zoals die bij een verkeersongeval kan voorkomen. De vervorming
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van de gel is geregistreerd met behulp van marker detectie in high-speed video-
opnamen. De gel is gemodelleerd met het nieuwe constitutieve model en de
laboratorium hoofdmodel experimenten zijn gesimuleerd. De experimentele en
numerieke resultaten vertoonden grote overeenkomsten. Dit geeft aan dat het
materiaalmodel inderdaad een realistische responsie kan beschrijven. Ook het belang
van een correcte splitsing van volumetrische en deviatorische deformatie in de
spanningsformulering bij het modelleren van bijna niet-samendrukbare materialen
is aangetoond.
Tenslotte is het materiaalmodel toegepast in een bestaand 3-dimensionaal model van
het menselijke hoofd. De belasting op het hoofd (een excentrische rotatie) was zo
gekozen dat de rekniveaus in de experimentele range lagen. Resultaten met en zonder
toepassing van niet-lineair materiaalgedrag werden vergeleken. Het niet-lineaire
materiaalgedrag zorgde ervoor dat de rekniveaus met 21% toenamen terwijl de
spanningsniveaus met 11% daalden. De ruimtelijke verdeling en de tijdsgeschiedenis
veranderden echter nauwelijks. Het effect van het niet-lineaire materiaalgedrag is
echter maar voor één belasting conditie onderzocht. Ook de manier waarop andere
structuren in het hoofd gemodelleerd zijn zullen de responsie, en dus het effect
van niet-lineair materiaalmodel bëınvloeden. Verder onderzoek hierna wordt sterk
aanbevolen.
Verder was het opvallend dat rekken in het model bereikt werden die geassocieerd
worden met het ontstaan van letsel (20%) bij een belasting op het hoofd die veel lager
was dan belastingen die in de literatuur met letsel in verband gebracht worden. Een
mogelijke oorzaak hiervoor is dat de stijfheid van het hersenweefsel in hoofdmodellen
uit de literatuur te hoog is in vergelijking met materiaalgegevens uit de recente
literatuur en uit eigen experimenten. Een andere mogelijke verklaring kan zijn dat er
wellicht toch een (zwakke) koppeling tussen deviatorisch en volumetrisch deel van
de rek in het materiaalmodel aanwezig dient te zijn.
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