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Abstract. This approach introduces a coupling of a specification framework with a verification sys-
tem. Given a system, represented in a formal specification framework, one can verify its properties
by translating the specification to a Higher-Order Logic and subsequently using the theorem prover
Isabelle/HOL or the point of disagreement will be found. Moreover, using this approach one can vali-
date the refinement relation between two given systems, as well as make automatic correctness proofs
of syntactic interfaces for specified system components. The approach uses particularly the idea of
refinement-based verification, where a verification of system properties can be treated as a validation
of a system specification with respect to the specification of the properties.

1 Motivation

Embedded systems is one of the most challenging fields of systems engineering: such a system must most of
the time meet real-time requirements, is safety critical and distributed. The current practice in the industry
of ensuring that a software system fulfills its requirements is testing. However, testing can only demonstrate
the presence, but not the absence of errors. Using formal methods we can not only test correctness and
safety, which is not enough for such kinds of interactive systems, but also prove them: verification guarantees
fulfillment of the requirements. Coupling a specification framework with a verification system will reduce
the lavishness and error-proneness of system specifications. A formal specification is in general more precise
than a natural language one, but it can also contain mistakes or disagree with requirements. Therefore,
for safety critical systems it is not enough to have detached formal specifications – for this case verified
formal specifications are needed. Having a verified formal specification we can be sure that the specification
conforms to its requirements and is consistent.

In this paper we present a coupling of a specification framework with a verification system. Given system
and requirements specifications, represented in a formal specification framework, our method validates the
refinement relation between them by translating the specifications to a Higher Order Logic and subsequent
using the theorem prover Isabelle/HOL. This approach contains also schemata for automatic correctness
proofs in Isabelle/HOL of syntactic interfaces for specified system components.

In order to design systems in a step-wise, modular style we use Focus [5], a framework for formal specifi-
cations and development of interactive systems. A specification scheme of Focus is inspired by specification
approaches like Z (see [25]), but the Focus framework is much more powerful and expressive – it supports
a variety of specification styles which describe system components by logical formulas or by diagrams and
tables representing logical formulas. Focus is preferred here over other specification frameworks since it has
an integrated notion of time and modeling techniques for unbounded networks (specification replications,
sheaves of channels), provides a number of specification techniques for distributed systems and concepts of
refinement. For example, the B-method [1] is used in many publications on fault-tolerant systems, but it has
neither graphical representations nor integrated notion of time. Moreover, the approaches B-method also is
slightly more low-level and more focused on the refinement to code rather than formal specification. Formal
specifications of real-life systems can become very large and complex, and are as a result hard to read and
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to understand. Therefore, it is too complicated to start the specification process in some low-level frame-
work, First-Order or Higher-Order Logic etc. directly. To avoid this problem Focus supports a graphical
specification style based on tables and diagrams.

In our approach we chose a prover for Higher-Order Logic, because the power of First-Order Logic is not
enough to represent in a direct way several specifications of distributed interactive systems. As the verification
system Isabelle/HOL we have chosen Isabelle/HOL [16,27], an interactive semi-automatic theorem prover
for Higher-Order Logic. The disadvantage of only semi-automated proofs is compensated by the advantage
of using Higher-Order Logic.

The whole and detailed description of the methodology is presented in [23]. In this paper we show the
application of its main contributions on the example of a verified specification of the FlexRay communication
protocol. This protocol has been developed by the FlexRay Consortium for embedded systems in vehicles.
The advantages of FlexRay over a CAN protocol (Controller Area Network), which is the most currently
used protocol for such kind of systems, are deterministic real-time message transmission, fault tolerance,
integrated functionality for clock synchronization and higher bandwidth. The Focus specification [11] of
FlexRay was chosen for the case study because the protocol is very well suited for our method – its domain
is safety-critical real-time applications.

Outline. The rest of the paper is structured as follows: In Section 2 we introduce Focus and the represen-
tation of its main concepts in Isabelle/HOL. In Section 3 we describe the application of represented ideas
within a case study – a verified specification of the FlexRay. In Section 4 we present the related work. Finally,
in Section 5 we summarize the presented work.

2 FOCUS on Isabelle

Isabelle [16] is a specification and verification system implemented in the functional programming language
ML. Isabelle/HOL is the specialization of Isabelle for Higher Order Logic. To specify a system with Is-
abelle means creating theories. A theory is a named collection of types, functions (constants), and theorems
(lemmas). The base types in Isabelle/HOL are bool, the type of truth values and nat, the type of natural
numbers. The base type constructors are list, the type of lists, and set, the type of sets. Function types
are denoted by ⇒. The type variables are denoted by ’a, ’b etc. Terms in Isabelle/HOL are formed as in
functional programming by applying functions to arguments. Terms may also contain λ-abstractions. For a
detailed description of Isabelle/HOL see [16,27].

Focus is a framework for formal specifications and development of distributed interactive systems. A
distributed system in Focus is represented by its components1. Components that are connected by com-
munication lines called channels, can interact or work independently of each other. The channels in Focus
are asynchronous communication links without delays. They are directed, reliable, and order preserving. Via
these channels components exchange information in terms of messages of specified types. Messages are passed
along the channels one after the other and delivered in exactly the same order in which they were sent.

In Focus any specification characterizes the relation between the communication histories for the external
input and output channels. The formal meaning of a specification is exactly this external input/output
relation. The specifications can be structured into a number of formulas each characterizing a different
kind of property, the most prominent classes of them are safety and liveness properties. A specification
can be elementary or composite. Composite specifications are built hierarchically from the elementary ones.
Elementary specifications are divided into untimed, timed, and time-synchronous according to their level of
time abstraction.

A mapping of operators in Focus to the corresponding definitions in HOL alone is not sufficient for
the method to become easy. Because of this, we also need a specification and proof methodology. The main
point in our methodology is an alignment on the future proofs to make them simpler and appropriate for
application not only in theory but also in practice. For this we have performed a number of case studies,

1 A component in Focus means a “logical component” and not a physical one.

105



whose results have helped us to find out different problem points (like representation of mutually recursive
functions, specification replications, sheaves of channels, a large number of refinement layers, etc.) and
corresponding solutions for the coupling Focus and Isabelle/HOL. The proofs of some system properties can
take considerable (human) time since the Isabelle/HOL is not fully automated. But considering the framework
“Focus on Isabelle”, which is presented here, we can influence on the complexity of proofs already doing
the specification of systems and their properties, e.g. modifying (reformulating) specification to simplify the
Isabelle/HOL proofs for a translated Focus specification. Thus, the specification and verification/validation
methodologies are treated as a single, joined, methodology with the main focus on the specification part.

2.1 Concept of Streams

The central concept in Focus are streams, that represent communication histories of directed channels.
Streams in Focus are functions mapping the indexes in their domains to their messages. For any set of
messages M , M ω denotes the set of all streams, M∞ and M ∗ denote the sets of all infinite and all finite
streams respectively. M ω denotes the set of all timed streams, M∞ and M ∗ denote the sets of all infinite
and all finite timed streams respectively.

A timed stream is represented by a sequence of messages and time ticks, the messages are also listed
in their order of transmission. The ticks model a discrete notion of time. Specifying embedded real-time
systems we always need to argue about time. The notion of time takes center stage for this kind of systems
and abstracting from time we may loose very important properties, e.g. the causality property, that are not
only very important for the system, but also help us to make proofs easier. Thus, the timed domain is the
most important one for representation of distributed systems with real-time requirements. Therefore, the
better way to represent a real-time system in Focus is to use timed specification. All input, output and local
streams in such specifications are timed or time-synchronous and, by the Focus definition of timed stream,
infinite.

Specification of a real-time system in the untimed frame may be in some cases shorter or more elegant
from mathematical point of view, but case studies have shown, that to understand such specifications and
to argue about their properties is in many cases much more difficult in comparison to the corresponding
specifications in the timed frame that use causality property explicitly. Moreover, abstraction from timing
aspects can easily lead to specification mistakes because of difficulties of correct abstraction.

Hence, we can restrict the Focus specification domain for representation embedded real-time systems
to only timed and time-synchronous systems. This simplifies the translation into Isabelle and also allows us
to concentrate on the timing properties to have not only more clear and readable specifications, but also
simpler proofs about them. Considering causality (weak or strong) it is simpler and also more readable to
argue not about single messages in a timed stream, but about a sequence of messages that are present in this
stream at some time interval. This sequence can be in general empty, contain a single message or a number
of messages. In the case of time-synchronous stream this sequence must always contain exactly one message.

The definition in Isabelle/HOL of the Focus stream types is given below. Another ways of streams
formalizations are discussed in Section 4.

– Finite timed streams of type ’a are represented by the type ’a fstream, which is an abbreviation for the
type ’a list list. This type will be used in Focus specifications of real-time systems to argue about a
timed stream that was truncated at some point of time.

– Finite untimed streams of type ’a are represented by the list type: ’a list. This type will be used to
argue about a sequence of messages that are transmitted during a time unit.

– Infinite timed streams of type ’a are represented by the type ’a istream that represents the functional
type nat ⇒ ’a list.

– To cover all types of Focus streams the type infinite untimed streams is also specified: nat ⇒ ’a. We
do not advise to use this kind of streams to specify real-time systems, because a specification a real-time
system to untimed domain implies the loss of a most important information about a system.

For easier argumentation about the behavior of a component at some time interval we have introduced a
special kind of Focus tables and a number of new operators. Here only small part of them will be used,
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e.g. the operator ti(s,n) yields the list of messages that occur in the timed stream s at the nth time unit,
the operator msgn(s) holds for a timed stream s, if this stream contains at every time unit at most n
messages. According to our representation of the timed Focus streams the operator ti(s,n) corresponds
in Isabelle/HOL simply to s n, to represent the msgn(s) operator we specify in Isabelle/HOL a predicate
maxmsg n s that is equal to the Focus operator modulo syntax. The whole translation schema – from Focus
to Isabelle/HOL – is presented in [23].

2.2 Sheaves of Channels

A specified system can contain a number of copies of channel of the same type or several instances of the
same component. If this number of copies is finite, fixed and small enough, we can use the simple composition
kinds, but if the number of copies must be specified as some variable of type N or if the number of copies is
finite and fixed, but too large to have a readable system specification, the notions of sheaf of channels and
replication of specifications must be used (see [5]). A sheaf of channels in Focus can be understood as an
indexed set of channels.

We define a sheaf of channels x1, . . . , xn as a correct one, if all the channels x1, . . . , xn are of the same
type and the number n is greater than zero. To represent a sheaf of timed infinite streams x1, . . . , xn of some
type Streamtype in Isabelle/HOL we propose to use the following kind of functional types:

types nStreamtype = "nat ⇒ streamtype istream"

The corresponding bounds of sheaves used to specify a component C will be added as extra-parameters to
the Isabelle/HOL predicates which represent the semantics of the component C (see Sections 3.2 and 3.3 for
examples).

A sheaf will be specified in Isabelle/HOL as a single variable of corresponding type, e.g. the sheaf x1, . . . , xn

will be represented as a variable nX of type nStreamtype. To translate the Focus formula over channels
(streams) from a sheaf, e.g. to say that the predicate p is true for any stream of the sheaf send1, . . . , sendn

(in Focus this formula is represented by ∀ i ∈ [1..n] : p(si)) the following notation can be used2: ∀ i < n.
p (nSend i).

To argue about sheaves of channels in Isabelle/HOL we need to make sure that the sheaf is nonempty3.
For this propose the Isabelle/HOL predicate CorrectSheaf n is used. This predicate is true, if the number n

of channels is greater than zero.

2.3 Specifications and the Concept of Refinement

Focus specifications can be elementary or composite. Syntax of an elementary specification looks like follows:

Name (Parameter Declarations) Frame Labels

in Input Declarations

out Output Declarations

Body

Name is the name of the specification; Frame Labels lists a number of frame labels, e.g. untimed, timed or
time-synchronous, that correspond to the stream types in the specification (see Section 2.1); Parameter Declarations
lists a number of parameters (optional); Input Declarations and Output Declarations list the declarations

2 The relation < must be used, because the elements in Isabelle/HOL are counted from 0, in contrast to Focus,
where the count goes from 1.

3 In Focus this is automatically true: the notation x1, . . . , xn implies that 0 < n.
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of input and output channels respectively. Body characterizes the relation between the input and output
streams, and can be a number of formulas, or a table, or diagram or a combination of them.

Definition 1. For any timed elementary specification S we define its semantics, written [S], to be the
formula:

is ∈ I∞S ∧ os ∈ O∞
S ∧ BS (1)

where iS and oS denote lists of input and output channel identifiers, IS and OS denote their corresponding
types, and BS is a formula in predicate logic that describes the Body. 2

We define semantics of an elementary specification in Isabelle/HOL in the same way as it is defined in Focus:
as a predicate that describes the relation between the input and output stream (the Body).

Composite specifications are built hierarchically from elementary ones using constructors for composition
and network description and can be represented in the graphical, the constraint and operator style. Semantics
of a composite Focus specification is defined in [5] as follows:

Definition 2. For any composite specification S consisting of n subspecifications S1, . . . ,Sn , we define its
semantics, written [S], to be the formula:

[S]
def
= ∃ lS ∈ L∞S :

n∧
j=1

[Sj ] (2)

where lS denotes a list of local channel identifiers and LS denotes their corresponding types. 2

We define semantics of a composite specification in Isabelle/HOL analogous: a composite specification S is
a predicate

∃ lS ∈ istreamS :
n∧

j=1

predicateSj (3)

where lS denotes a list of local channel identifiers and istreamS denotes their corresponding types, and
predicateSj denotes the predicate is a representation in Isabelle/HOL of the Focus specification Sj .

The approach “Focus on Isabelle” contains a number of Isabelle/HOL theories and the corresponding
schemata to prove correctness of the relations between the sets of input, output and local channels of a
specified system. E.g., the following properties must be proven for every composite specification: No input
stream i of a system S can be an output stream of any subcomponent.

iS =
⋃n

j=1(iSj ∈ I∞S ) \ lS ∧ iS ∩
⋃n

j=1 oSj = ∅

Every local stream l of the system S (consisting of n subcomponents) must be both an input stream of some
subcomponent Sj1 , 1 ≤ j1 ≤ n, and an output stream of some subcomponent Sj2 , 1 ≤ j2 ≤ n (j1 6= j2):

lS =
⋃n

j=1 iSj
∩

⋃n
j=1 oSj

The proof schemata (for the correctness properties) specified in our approach are standard and can be used
automatically for all refinement layers. If the proof fails, the specification of the corresponding set is incorrect
and must be changed. But the main part of proofs about a system that we need are the proofs that a system
fulfills its requirements.

In Focus we can have a general specification S0 of a system that corresponds to the formalization of
system requirements. To show that a concrete specification Sn , which we get after n refinement steps, fulfills
the system requirements, we only need to show that the specification Sn is a refinement (see also [5] and
[3]) of the specification S0. For this purposes also the idea of a refinement-based verification of interactive
real-time systems can be used (see [23] and [24]).
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Definition 3. A specification S2 is called a behavioral refinement (S1 ; S2) of a specification S1 if they
have the same syntactic interface and any I/O history of S2 is also an I/O history of S1. 2

Therefore, in order to show that our concrete specification S2 fulfills the system requirements S1, we only
need to show

[S2] ⇒ [S1] (4)

Formally, we need to show that any I/O history of S2 is an I/O history of S1, but S1 may have additional
I/O histories. In Isabelle it means to prove that the formula that corresponds to [S2] implies the formula
that corresponds to [S1]. This definition of refinement does not exclude that the set of I/O histories of S2

can be empty. It means [S2] is false and the refinement relation is true. This can happen if the specification
S2 is inconsistent. Thus, the consistency of S2 must also be proved doing the proof in Isabelle/HOL.

3 Case Study: From Specification to Verification of the FlexRay
Communication Protocol

The feasibility of the approach “Focus on Isabelle/HOL” was evaluated on a number of case studies that
cover different application areas: process control, memory and processing components, data transmission etc.
The proofs for these case studies have taken from 200 to ca. 2000 lines of proof. The following has been done
within every case study: The Focus specifications of all components of the system have been translated
schematically to Isabelle/HOL and the refinement relation between the requirement and the architecture
specification of the system has been proved. The correctness of the input/output relations has been also
proved for all components of the system (automatically, according to the specified proof schemata). The
FlexRay case study was chosen for the case study to show how we can deal with sheaves of channels ans
parameters, as well as with specification replications.

FlexRay [8] is a static time division multiplexing network protocol developed for embedded systems in
vehicles. It is based on deterministic real-time message transmission between a number of nodes. FlexRay
contains a set of complex algorithms to provide the communication services. From the view of the software
layers above FlexRay only a few of these properties become visible. The most important ones are static
cyclic communication schedules and system-wide synchronous clocks. These provide a suitable platform for
distributed control algorithms as used e.g. in drive-by-wire applications. The formalization described here
is based on the “Protocol Specification 2.0”[8]. A formal verification of the clock synchronization algorithm
and of the bus guardian of FlexRay is in progress at INRIA [28].

The static message transmission model of FlexRay is based on rounds. FlexRay rounds consist of a
constant number of time slices of the same length, so called slots. A node can broadcast its messages to other
nodes at statically defined slots. At most one node can do it during any slot.

We have presented the first version of the formal specification of FlexRay in Focus in [11]. We have
discussed the general introduction to the FlexRay formalization also in [12] and [13]. Now we are going to
present a schematically translation of this formal specification into Isabelle/HOL using the representation of
Focus streams presented above. After that the proof of the refinement lemma is discussed – the refinement
lemma says that the FlexRay architecture specification fulfills the FlexRay requirements. Since the overall
representation of FlexRay in Focus and Isabelle/HOL as well as the proofs of auxiliary lemmas are too
extensive for this paper, we describe here only some aspect of the specifications and proofs, and show only
a simple and short parts of the specifications to give a feeling how the approach works. For the technical
details of the case study we would like to refer to [23].

3.1 Representation of Datatypes

The specifications of the following types are equal modulo syntax to the corresponding types in the Focus
specification of FlexRay. The type Message consists of a slot identifier slot and the payload data. The type
of payload is defined in Focus as a finite list of type FT CNI Entity that consists of a message ID of
N (type of natural numbers) and data of type DataType. Because the type DataType is not specified in
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Focus exactly (to have a polymorphic type), it must be polymorphic in Isabelle/HOL also. This implies
furthermore that the types FT CNI Entity and Message are polymorphic. The type Config represents the
bus configuration and contains the scheduling table schedule of a node and the length of the communication
round cycleLength. A scheduling table of a node consists of a number of slots in which this node should be
sending a message with the corresponding identifier (identifier that is equal to the slot). We present here as
example only the Isabelle/HOL representation of the type Message:

record ’a Message =

slot :: nat

data :: "(’a FT_CNI_Entity) list"

The types nMessage and nSlot are used to represent sheaves of channels of corresponding types. In a similar
way we define the type nConfig for the list of parameter constants c1, . . . , cn of the type Config .

types ’a nMessage = "nat ⇒ (’a Message) istream"

types nSlot = "nat ⇒ nat istream"

types nConfig = "nat ⇒ Config"

3.2 Requirements Specification

The requirements specification FlexRay , which is represented in Focus, contains the assumptions (asm)
and guarantees (gar) for the FlexRay network (an A/G specification). This means whenever input from the
environment behaves in accordance with the assumption, the specified component is required to fulfill the
guarantee. The assumptions are the following ones:

– For all nodes the scheduling tables of the system are disjoint.
– The communication cycles have the same length on each node.
– In every time interval on each input channel returni can come at most one FlexRay frame (a message

of type Message).

Having this assumptions the specification requires fulfillment of the following properties:

– The message transmission is correct: If at some slot a node should be sending a message according to
it’s scheduling table, this message is requested from the local buffer and is sent over the channels to the
other nodes of the system.

– In every time interval on each output channel geti as well as can come on each output channel storei at
most one FlexRay frame.

FlexRay (const c1, ..., cn ∈ Config) timed

in return1, ..., returnn : Message

out store1, ..., storen : Message; get1, ..., getn : Slot

asm ∀ i ∈ [1..n] : msg1(returni)

DisjointSchedules(c1, ..., cn)

IdenticCycleLength(c1, ..., cn)

gar

MessageTransmission(return1, ..., returnn , store1, ..., storen , get1, ..., getn , c1..., cn)

∀ i ∈ [1..n] : msg1(geti) ∧msg1(storei)
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The Focus predicate MessageTransmission defines the correct message transmission according the definition
above: If at time t the node k should be sending a message according to its scheduling table, this message
is requested over the channel getk and received over the channel returnk from the local buffer. This message
is then sent over the channels storej , j ∈ [1..n], j 6= k to the other nodes of the system.

The predicates DisjointSchedules, IdenticCycleLength, MessageTransmission from the Focus specifica-
tions are equal modulo syntax to predicates the same name that we specify in Isabelle/HOL. The predicate
DisjointSchedules is defined to be true for a sheaf of channels, if all bus configurations have disjoint schedul-
ing tables. The predicate IdenticCycleLength is defined to be true, if all bus configurations have the equal
length of the communication round.

The predicate FlexRay represents the semantics of the Focus specification FlexRay. In the case the
relation between the input and output streams is specified in Focus as a number of formulas the corre-
sponding representation of the semantics will be the conjunction of these formulas. The first argument of
the predicate FlexRay corresponds to the number n of streams in the sheaves store1, ..., storen , get1, ..., getn ,
return1, ..., returnn and the number of parameters c1, ..., cn .

constdefs
FlexRay ::

"nat ⇒ ’a nMessage ⇒ nConfig ⇒ ’a nMessage ⇒ nSlot ⇒ bool"

"FlexRay n nReturn nC nStore nGet

≡
(CorrectSheaf n ∧
(∀ i < n. maxmsg 1 (nReturn i)) ∧
(DisjointSchedules n nC) ∧ (IdenticCycleLength n nC)

−→
((MessageTransmission n nReturn nStore nGet nC) ∧
(∀ i < n. maxmsg 1 (nGet i) ∧ maxmsg 1 (nStore i))))"

3.3 Architecture Specification

The architecture of the FlexRay communication protocol is specified as the the Focus specification FlexRayArch
that is an assumption/guarantee one. The assumption part of the specification FlexRayArch is the same as
of the specification FlexRay . The guarantee part is represented by the specification FlexRayArchitecture (see
below) that is a composite one and consists of the component Cable and n components FlexRay Controller
(for n nodes). The specification FlexRayArch is a refinement of the specification FlexRay – this will be shown
in Section 3.4.

FlexRayArch (const c1, ..., cn ∈ Config) timed

in return1, ..., returnn : Message

out store1, ..., storen : Message; get1, ..., getn : Slot

asm ∀ i ∈ [1..n] : msg1(returni)

DisjointSchedules(c1, ..., cn)

IdenticCycleLength(c1, ..., cn)

gar FlexRayArchitecture (const c1, ..., cn ∈ Config)

(return1, ..., returnn , store1, ..., storen , get1, ..., getn)

The component FlexRay-Controller is a composite one and consists of the components Scheduler (has a
timing control function: decides if the node is allowed to send in the current slot) and BusInterface (repre-
sents the receive and the send of messages). The component Cable describes the transfer properties: in every
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time unit only one of the streams has any messages to transfer, if some node sends a message, this message
will be received by all nodes, etc. The predicate FlexRayArchitecture represents here the semantics of the
corresponding Focus specification. Please note, that nSend and recv are the local channels in the composite
component.

FlexRayArchitecture (const c1, ..., cn ∈ Config) glass-box

Cable

FlexRay-Controller(c1)

st
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e 1
: M
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constdefs
FlexRayArchitecture ::

"nat ⇒ ’a nMessage ⇒ nConfig ⇒ ’a nMessage ⇒ nSlot ⇒ bool"

"FlexRayArchitecture n nReturn nC nStore nGet

≡
∃ nSend recv.

CorrectSheaf n ∧ (Cable n nSend recv) ∧
(∀ i < n. FlexRay_Controller (nReturn i) recv (nC i)

(nStore i) (nGet i) (nSend i))"

3.4 Proof of the Refinement in Isabelle/HOL

The lemma main fr refinement says that the specification FlexRayArch is refinement of the specification
FlexRay : the predicate FlexRayArch that represents the semantics of the architecture specification FlexRayArch
implies the FlexRay that represents the semantics of the requirements specification FlexRay :

lemma main_fr_refinement:V
n nReturn nC nStore nGet.

FlexRayArch n nReturn nC nStore nGet =⇒ FlexRay n nReturn nC nStore nGet

To prove this lemma we used the definitions of the predicates, used in the specification, Isabelle/HOL
reasoning methods clarify, clarsimp and auto that perform rewriting and classical reasoning automatically,
rules of natural deduction etc. To prove the resulting subgoals in more structural way, we have proven a
number of auxiliary lemmas [23]. The proof of this lemma takes only ca. 300 lines, but rather in a specification
of such an observable size we have found out a number of inconsistencies (see the next subsection).

3.5 Results of the Case Study

In this case study we have shown how we can deal with sheaves of channels and parameters, as well as with
specification replications. The Focus specifications of all components of the FlexRay system were translated
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schematically to Isabelle/HOL and the refinement relation between the requirement and the architecture
specification of the system was proved. The correctness of the input/output relations was also proved for all
components of the system.

Doing the verification in Isabelle/HOL of the first versions of the Focus specification of FlexRay we
found out a number of inconsistencies, which were corrected in the final version: lost assumptions, too weak
properties of the subcomponents, etc. For example, in the requirement specification FlexRay the assumption,
that in every time interval on each input channel returni can come at most one FlexRay frame, was loosed.
The resulting formal specification of FlexRay is a verified specification that guarantees fulfillment of the
requirements.

4 Related Work

The first attempt to represent a simplified version of the Focus syntax [4] (without representation of time,
modeling techniques for unbounded networks, etc.) in a verification system was done by B. Schätz and
K. Spies [20]. In this approach the HOLCF specialization of the theorem prover Isabelle was chosen. HOLCF
(see [19] and [15]) is the definitional extension of Church’s Higher-Order Logic with Scott’s Logic for Com-
putable Functions that has been implemented in Isabelle. HOLCF supports standard domain theory but
also coinductive arguments about lazy datatypes. The main disadvantage of using HOLCF in practice is
difficulty of logic understanding in comparison to HOL.

The first attempt of coupling of Focus with an automatic verification system was done by J. Schumann
and M. Breitling [21]. As the verification system was chosen SETHEO [14], an automatic theorem prover
for proving the unsatisfiability of formulas in First-Order Clause Logic. This case study of J. Schumann
and M. Breitling has shown that such a coupling is in principle possible, but there are also a number of
problems and open questions. In our approach we chose a prover for Higher-Order Logic, because the power
of First-Order Logic is not enough to represent in a direct way several specifications of distributed interactive
systems.

The central concept in Focus are streams, and there are different ways to formalize them. They have
different advantages and disadvantages. One of the ways to represent Focus streams is to use the coalgebraic
approach [10], but the representation of Focus streams in a coalgebraic domain [22] is more difficult to
understand in practice as an inductive one in Isabelle/HOL – for the case of restriction the specification
domain to only real-time systems.

The representation of Focus streams in Isabelle/HOLCF that was done by D. von Oheimb [26] does not
cover representation of Focus timed streams, which are the most important for the specification of real-
time systems. The further development of the Focus stream representation in Isabelle/HOLCF is presented
by the approach of B. Gajanovic and B. Rumpe [9], that covers HOLCF specification of many important
operators on streams, like concatenation, delete prefixes, take an element of the stream etc., as well as the
properties of these operators. But this representation of the Focus streams in Isabelle/HOLCF covers only
the general representation of streams, and abstracts from the representation of timing aspects as well as
from the question how to deal with proofs for such translated specifications. Thus, the representation of the
timing aspects can be done as an extension, but the resulting construction will be much more complicated
than is needed for system specification in the timed domain.

To represent Focus streams in Isabelle/HOL we need to take into account both properties of Focus
and Isabelle/HOL. In Isabelle/HOL we can represent streams in the two following ways. The first way is the
representation of streams as

α seq = N → α option

where the datatype

α option ≡ None | Some α

and None denotes a non-existing element (see [18], [17]). This approach is claimed in [7] to be inconvenient in
practice to prove equalities of arbitrary functions, because for every operation over such a stream the notion
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of stream normal form must be used explicitly to avoid the case in which None appears within a sequence
the specification, but it is not straightforward to construct the normal form.

The second way, the representation of streams as the disjoint sum of finite stream (lists) and infinite
streams (functions), has been chosen by C.-T. Chou and D. Peled [6] and by S. Agerholm [2]. The main
difficulties (see also [7]) in using this approach arise from type comparison in the definitions of stream
processing functions – all inputs are finite, all inputs are infinite or some of them are finite and some infinite
– several versions of function definitions are needed. But in the case we work only with timed frames we do
not have this disadvantage, because we deal with timed streams that are always infinite4. Moreover, such a
representation in this case leads to more clear specification structure. This representation is the most natural
one to Focus and was in our approach for the our representation of Focus in Isabelle/HOL.

5 Conclusion

A formal specification is more precise than a natural language one, but it can also contain mistakes or
disagree with requirements. Therefore, for safety critical systems it is not enough to have detached formal
specifications – in this case formal verification is needed. This is the only way to be sure that the specification
conforms to its requirements and is consistent. In this paper we have introduced the coupling of the formal
specification framework Focus in the generic theorem prover Isabelle/HOL. The result of the coupling of
the formal specification framework Focus in the generic theorem prover Isabelle/HOL is the framework
“Focus on Isabelle”. Given both specifications represented in Focus, we prove using the theorem prover
Isabelle/HOL that the system specification is a refinement of requirements specification of the system, i.e.
that this specification fulfills its requirements. Using the framework we also can make automatic correctness
proofs in Isabelle/HOL of the syntactic interfaces for specified system components.

The presented case study, verification of the FlexRay specification, showed the feasibility of the approach.
The properties of the protocol were formalized as the requirements specification, and its architecture was
formalized as the corresponding specification. The system specification was subsequently verified according
to the FlexRay requirements – the refinement relation between them is proved. Doing the verification in
Isabelle/HOL of the first versions of the Focus specification of FlexRay we found out a number of inconsis-
tencies like loosed assumptions, which were corrected in the final version of the specification. The resulting
specification is a verified one.
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