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Abstract. Separation Logic has proved to be a powerful technique for program verification. There are
tools based on ideas of separation logic and even some implementations in theorem provers. However,
these implementations all concentrate on the verification of programs written in one specific language. In
contrast, I propose to build a framework inside the HOL theorem prover that concentrates on separation
logic itself. This framework should be general enough to express different flavours of separation logic
and it should be easily instantiable for different programming languages.
In this paper, a formalisation of Abstract Separation Logic in HOL is presented as a first step towards
implementing the proposed framework. This presentation contains an initial case study – an imple-
mentation of a tool similar to Smallfoot – which gives some insights into the suitability of abstract
separation logic for this purpose.

1 Introduction

Separation logic is an extension of Hoare logic that allows local reasoning about mutable data structures,
especially structures using pointers. It’s been introduced by O’Hearn, Reynolds and Yang in 2001 [7,9] based
on earlier ideas by Burstall, Reynolds, Ishtiaq and O’Hearn. The main idea of separation logic is the usage
of a spatial conjunction p ∗ q that asserts that the formulas p and q hold on separate parts of the state. This
notion of separate parts allows local reasoning and an elegant solution to aliasing problems. Moreover, it
enables separation logic to be extended to concurrent programs in a natural way [3].

1.1 Introductory Example

Classically, separation logic uses states consisting of a stack and a heap. Consider such states and, as an
example, an update of the heap at the location stored in a stack-variable x with the value 2 ([x] := 2). In
order to reason about this assignment, separation logic needs the precondition, that x is allocated (x 7→ ).
Using this precondition, one can conclude that after executing the assignment x points to the value 2 (x 7→ 2).
This whole reasoning is captured by the validity of the following Hoare triple {x 7→ } [x] := 2 {x 7→ 2}. In
contrast to classical Hoare logic, the pre- and postcondition have to mention at least, that x is allocated.
{x 7→ } [x] := 2 {emp} for example does not hold. So, one cannot easily remove parts of the postcondition.
On the other hand, the conditions can be safely extended by an arbitrary context using the spatial conjunction
operator. This is due to the separation that this operator provides and locality properties of programming
languages. This property gives rise to the following inference rules for extending the conditions with a frame
and parallel composition, which capture the essence of local reasoning:

{P} prog {Q}
{P ∗R} prog {Q ∗R}

{P1} prog1{Q1} {P2} prog2{Q2}
{P1 ∗ P2} prog1||prog2 {Q1 ∗Q2}

1.2 Existing Implementations of Separation Logic

Due to local reasoning, separation logic scales much better than classical Hoare logic to the verification of
large programs. Moreover, even for simple, small pieces of programs separation logic proofs are often much
more succinct and easier to read. Separation logic has become more and more popular during the last few



years. There are several implementations: Smallfoot [2], SLAyer and SpaceInvader are probably some of the
best know examples. There are also formalisations inside theorem provers. There are several implementations
of separation logic in Isabelle/HOL [10,11] and one in Coq [6], which is used and extended by the Concurrent
C-Minor Project [1]. There is also related work by Andrew Ireland et al [5], but I learned about it too late
to discuss it here.

1.3 Motivation for the Proposed Framework

The implementations mentioned above all focus on one specific programming language (mostly some C-like
imperative language) and take design decisions with respect to this language. While in most cases a specific
language is all you are interested in and while it allows better automation and perhaps simplified and more
intuitive formalisations for this specific language, it makes reusing of these formalisations very difficult and
distracts from the core features of separation logic.

The differences and problems with reuse start with simple design decisions like whether the heap is
modelled as a function from integers to integers or whether it can contain arrays of integers. Is it perhaps
even more appropriate to explicitly model the finiteness of memory by having 32- or 64-bit words instead of
integers? Problems increase if you consider changes to the logic itself like equipping values on the stack with
explicit read/write permissions [8]. Even worse, one may not use the classical stack/heap model at all and
be interested in verifying assembler code that operates on a fixed set of registers and a chunk of memory
instead of a heap and a stack. In short, there are a lot of different flavours of separation logic, which share
a large common part, but may dramatically vary in detail.

Therefore, I suggest building a framework for separation logic inside the HOL theorem prover that con-
centrates on separation logic itself instead of a concrete programming languages.

1.4 Structure of this Paper

In the next section, I briefly state some ideas for such a separation logic framework in HOL. Then, a first
step towards implementing such a framework is presented: a formalisation of Abstract Separation Logic in
HOL. The paper will conclude with first experiences of instantiating abstract separation logic and plans for
future work.

2 Ideas for a Separation Logic Framework

I suggest building a framework for separation logic inside the HOL theorem prover. The main part of this
framework should be general, but it should provide support for instantiating it for different concrete languages
and applications. I hope that these instantiations can be significantly different while still keeping a large
common part. As case studies one could try to implement:

– a completely automated tool – similar to Smallfoot [2] – for a simple imperative language (this case study
is mainly done);

– a tool to interactively verify programs written in a more complicated imperative language;
– an interactive separation logic calculator that may be used to formalise long, complicated hand-proofs

found in separation logic papers;
– a tool to verify assembler programs.

I hope that splitting the formalisation into a general part and instantiations will add to clarity and help
to keep a lot of proofs simple. For example, one should be able to neglect the complicated structure of states
some separation logics use (e. g. [8]) and mainly work with abstractions. However, choosing these abstractions
has a huge impact and is far from obvious. On the one hand, the abstractions should be abstract enough to
model a large variety of separation logics and to keep the general part as simple as possible. On the other
hand, they need to be concrete enough to be able to convince people that the formalisation of a concrete
programming language in the framework is reasonable or even intuitive. I believe, that Abstract Separation
Logic [4] is a good starting point to build such a framework.
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3 Abstract Separation Logic

Abstract Separation Logic was introduced by Calcagno, O’Hearn and Yang [4]. While most separation logics
operate on states consisting of a stack and a heap, abstract separation logic can use arbitrary states. A
partial function • is used to combine these states. Two states s1 and s2 are separate, iff s1 • s2 is defined.
Using this notion, one can easily define the spatial conjunction operator ∗ as follows:

P ∗Q := {s | ∃p, q. (p • q = s) ∧ p ∈ P ∧ q ∈ Q}

Intuitively, this means, that a state s satisfies P ∗Q iff it can be split into two separate states p and q such
that p satisfies P and q satisfies Q. Other standard separation logic constructs can be defined in a natural
way as well. However, in order for these definitions to be useful, the combination function • has to satisfy
some properties: a neutral element u has to exists, such that the set of states Σ forms a separation algebra
with • and u, i. e. (Σ, •, u) is a cancellative, partial commutative monoid.

3.1 Programming Language

The programming language used by abstract separation logic is abstract as well. An action act is a function
from a state s to a set of states S or a special failure state >. If act(s) = >, then an error may occur during
the execution of the action starting in state s. This is used to model for example that an action might try
to dereference a null-pointer or read an unallocated location on the heap. If act(s) = S, then no error will
occur and after executing the state will be one of the states in S. If S is the empty set, the action does not
terminate. Thus, act(s) = S can be used to express nondeterminism and nontermination.

Based on this notion of actions, a Hoare triple {P} act {Q} holds, iff for all states p that satisfy the
precondition P the action does not fail, i. e. there is a set of states S with act(p) = S, and leads to a state
that satisfies the postcondition Q, i. e. S ⊆ Q. Notice, that this describes partial correctness, since a Hoare
triple is trivially satisfied, if act does not terminate, i. e. if S is empty.

As explained above, it is an essential feature of separation logic, that a specification can be safely extended
by an arbitrary frame R. This is the essence of local reasoning. Therefore, abstract separation logic only uses
actions that satisfy this property. These actions are called local. More explicitly, an action is called local, iff
it satisfies the following inference rule for all P , Q and R:

{P} act {Q}
{P ∗R} act {Q ∗R}

Using only local actions is not a big restriction, since most programming languages just use local actions
anyhow.

Abstract separation logic provides some operations to extend the set of local actions provided by the
user to a programming language. This extension guarantees that all programs written in it are local actions
themselves. There are e. g. a sequential composition operator (;), a nondeterministic choice operator (+)
and a Kleene star operator ( ∗). One important predefined local action is assume B for a predicate B. The
predicate B has to be intuitionistic and its intuitionistic negation is denoted by ¬iB. Intuitionistic predicates
are not discussed here for reasons of brevity. Given a state s the action assume B

– skips, iff B holds in all extensions of s by a frame;
– diverges, iff B does not hold in any extension of s by a frame;
– fails otherwise.

For example, in a usual setting assume x 6= 0 skips, iff x is defined in the state s and does not contain the value
0, diverges iff x is defined and contains the value 0 and fails, iff x is not defined. Since abstract separation logic
considers partial correctness, divergence has the effect of satisfying any specification. Therefore, conditional
execution and loops can be defined using nondeterminism, Kleene star and assume:

if B then prog1 else prog2 := (assume B; prog1) + (assume ¬iB; prog2)
while B do body := (assume B; body)∗; assume ¬iB
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Notice, that the semantics of a while-loop can be seen as nondeterministically choosing a natural number n
and unrolling the loop n times. If the wrong number for a particular input has been chosen, the execution is
aborted by one of the assumptions. If the loop would not terminate, no such number exists and every choice
is aborted by the assumptions. This captures the semantics of loops in a simple, abstract way, but it is not
intuitive.

Abstract separation logic defines constructs for expressing parallel programs as well. There is a parallel
composition operator || that executes two programs in parallel. Moreover, there are semaphore operations.
However, for reasons of brevity these operations are not presented here. Neither is the exact semantics
discussed. However, the part described here should give a glimpse of what constructs abstract separation
logic provides and how its abstract programming language can be instantiated to a concrete one. For more
details please refer to the original paper about abstract separation logic [4].

3.2 Inference Rules

Using the detailed semantics of abstract separation logic, one can prove high-level inference rules correct.
The goal is to have sufficiently expressive inference rules to verify specification in this high-level view instead
of using the detailed semantics all the time. Some important inference rules, that are valid in abstract
separation logic are:

{P} p {Q}
{P ∗R} p {Q ∗R}

{P} p1 {Q} {Q} p2 {R}
{P} p1; p2 {R}

{P} p {P}
{P} p∗ {P}

{P} p1 {Q} {P} p2 {Q}
{P} p1 + p2 {Q}

{P1} p1 {Q1} {P2} p2 {Q2}
{P1 ∗ P2} p1||p2 {Q1 ∗Q2}

{B ∧ P} p1 {Q} {¬iB ∧ P} p2 {Q}
{P} if B then p1 else p2 {Q}

{B ∧ P} p {P}
{P} while B do p {¬iB ∧ P}

3.3 HOL implementation

I formalised abstract separation logic as described in the paper by Calcagno, O’Hearn and Yang [4]. This
formalisation includes the specification logic, concurrent semantics, proofs for all inference rules and most
lemmata found in this paper. There are also some extensions. The HOL sources can be found in the HOL
repository1.

The formalisation consists of a mixture of deep and shallow embeddings. In general, I tried to keep it
as flexible as possible for instantiations and used shallow embeddings. However, the programs are defined
by a deep-embedding. This embedding depends on several free type variables used to instantiate elementary
actions, predicates etc. To instantiate the formalisation of abstract separation logic, one has to provide among
other things a concrete type for states, a partial function • and a neutral element u for combining states,
concrete types for elementary actions and predicates and functions assigning a semantic to these actions and
predicates. All these things needed for an instantiation are collected in an environment term. One has to
prove that this environment is valid, which includes for example that • forms a separation algebra or that all
used elementary actions are local ones. A lot of functions defined in the formalisation take this environment
as an argument and theorems use the validity of the environment as a precondition.

I also formalised some extensions. The largest extension are procedures. Their semantics are defined by
replacing a function call with the body of the function. The formalisation can handle mutually recursive
1 The HOL repository can be found at http://hol.sourceforge.net. The formalisation of abstract separation logic

and case studies are located in examples/separationLogic.
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definitions and there are some inference rules to eliminate recursion during the verification. The usual sepa-
ration logic predicates like magic wand or septraction are predefined. Additionally, there are predicates like
separation logic quantifiers or a definition scheme for recursive predicates. Moreover, there are also definitions
and inference rules for commonly used imperative constructs like loops or conditional execution. However,
there is still a lot to add and I expect the formalisation to grow with future instantiations.

4 First Instantiations and Resulting Experiences

After formalising abstract separation logic in HOL, I tried to instantiate it to the flavour of separation logic
presented in Variables as Resource in Hoare Logic by Parkinson, Bornat and Calcagno [8]. This separation
logic treats stack-variables as resources, i. e. it extends the separation idea from the heap to the stack. To
this end, each variable on the stack is equipped with a read/write permission.

Proving that the resulting operation to combine states consisting of these extended stacks and classical
heaps forms a separation algebra took some time but is straight-forward. However, there were some problems
with formalising the programming language. The main problem is locality: like most languages the language
used in Variables as Resource [8] has a concept of local variables. Consider for example the following pseudo-
code for traversing a list:

list_traverse(x) {

local t;

t := x;

if (t != NULL) then {

list_traverse(t.next_list_element);

do something with data in t;

} else {done}

}

The local variable t needs to address a new and different location on the stack in each recursive call of
list traverse. A common solution is to informally demand that a fresh variable z is chosen every time and
t is replaced by z. However, there are some problems formalising this notion of freshness in an intuitive way.

Abstract separation logic does not provide a notion of locality itself. However, it contains nondeterministic
choice and assumptions. These can be used to nondeterministically choose a variable that is not present in
the current state. Being not present in the current state is sufficient; however, it is not straight-forward to
see that it does not matter if a variable is chosen that will be used in the future by a different part of the
program. This semantics for local variables is abstract, fits easily into the framework, leads to simple proofs
for corresponding inference rules etc. Unfortunately, it is not easy to see that this semantics is really the one
intended. It’s not intuitive.

In my opinion it is preferable to use a semantics that explicitly hides the current value when the scope
of a local variable is entered and restores it afterwards. However, hiding and restoring are not local actions.
Moreover, these hiding and restoring operations would need to respect threads somehow, since using a
local variable t in one thread should not influence the usage of another variable t in a different thread. It
would require serious modifications to allow variables to have different values depending on the thread that
interprets them. Even if one is willing to apply such modifications, it is not obvious how such changes might
look like. Should one just add thread identifiers and leave the details completely to the instantiations? This
would keep the abstract level nice and clean, but cause a large part of the formalisations to be repeated over
and over again, since probably most instantiations need a concept similar to local variables. One could try
to split the current global state into one global state and local states for each thread. That is a common
view and would simplify instantiations. However, the abstract part of the formalisation would become much
more complicated and harder to understand.

Currently, variables denote explicit locations on the stack. So one has to manipulate either the program
by replacing the variable with a different one or one has to modify the stack. Both ways are causing problems
as explained above. However, one could add an extra layer of abstraction: namespaces. A namespace is a
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function mapping names to values. Variables could just be names that need a namespace to be interpreted as
locations on the stack. In different parts of the code or different threads the same name could point to different
locations. There would be just one global state instead of the complicated structure above. Admittedly, there
would be many namespaces, but their structure is very simple and operations to manipulate namespaces
could be very limited. Adding namespaces would not complicate the abstract level much, but provide the
needed functionality. Moreover, the concept is abstract enough to be used for other purposes as well. It could
for example solve very similar problems with locally defined recursive functions.

During the discussions about the semantics of local variables, it turned out that it might be beneficial to
make the model of parallel computation more suited for real world programming languages. To this end, one
could switch to C-like fork/join parallelism. However, this would involve huge modifications. A rather minor
change that turned out to be probably useful is to change synchronisation to conditional critical regions.

5 Current Work

Apart from these problems with locality, I did not experience major trouble with the first instantiation.
However, I did not formalise the formalism described in Variables as Resource [8] exactly. The formalism
described there allows locally defined mutually recursive functions. This causes problems in the current
setting that could be overcome using namespaces as described above. To keep things simple at the beginning,
I started formalising a mixture of the logic described in this paper with the one used by Smallfoot [2] as a
case study.

Smallfoot is a completely automated tool that allows to verify specifications of programs written in a sim-
ple imperative language. This language know mutually recursive functions, but no local function definitions.
Compared with other tools and implementations the separation logic used is weak. Thus, it’s a good starting
example. I use the Smallfoot syntax, but a semantics that is much closer to the one used by Variables as
Resource [8] than the one used by Smallfoot. In particular, the stack variables are treated as resource, i. e.
they are equipped with permissions. The goal of this case study is to develop a tool, that parses Smallfoot
input files and is able to verify the specifications completely automatic inside the HOL theorem prover. This
goal has nearly been achieved.

The tool is already able to verify some input files completely automatic. However, some features of
Smallfoot are still missing. The biggest missing feature are conditional critical regions. Support for semaphores
is available at the abstract level, but there is no support for any kind of synchronisation in the Smallfoot
instantiation yet. Moreover, there is no support for existantically quantified specifications. As existential
quantification is used internally however, it is simple to add this feature. It would be straight-forward to add
some more predicates used by Smallfoot like double linked as well. I guess that it would take a few more
weeks to implement all missing features of Smallfoot.

6 Conclusion and Future Work

I already took some initial steps towards implementing a framework for separation logic inside the HOL
theorem prover:

– I formalised abstract separation logic as described in the original paper [4].
– This formalisation contains extensions of abstract separation logic by

• procedure calls,
• standard separation logic operators,
• common imperative programming constructs.

– I formalised a big part of the logic described in Variables as Resource [8].
– As a case study, I implemented a completely automated tool, that uses a language very similar to the

one used by Smallfoot:
• I instantiated the framework to the needed specification and programming languages.

121



• There are proofs of specialised inference rules.
• A parser for reading Smallfoot specifications has been implemented.
• Specialised tactics have been implemented to verify these parsed specifications.

While this completed work can just be considered as initial steps towards the proposed framework, it
already took a significant amount of effort. There are about 30000 lines of proofs and about 6000 lines of
ML for the automation.

Currently, I try to complete the Smallfoot case study. Once it is completed I plan to modify the abstract
part, i. e. the formalisation of abstract separation logic according to what I learned:

– As motivated above, I plan to add namespaces.
– Replacing the parallel composition provided by abstract separation logic with C-like fork/join parallelism

is another planned task.

In general the abstract part should become more powerful, better suited for real programming languages
while still keeping as abstract as possible. More ideas for modifications may arise during the current case
study, but even now, a large part of the current formalisation is due to be modified.

After finishing these modifications I plan to try some more case studies like the ones described in the
introduction and iterate the process of adapting the underlying abstract semantics.
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