
Implementing Secure Broadcast Ambients in Isabelle using
Nominal Logic

Ayesha Yasmeen and Elsa L. Gunter

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
yasmeen@uiuc.edu,egunter@cs.uiuc.edu

Abstract. In this work we present our modeling of a calculus being developed by us namely Secure
Broadcast Ambients, using the nominal package for Isabelle. Our calculus is an extension of the ambient
calculus where the nature of communication is broadcast within domains modeled by ambients. We
allow reconfigurable configurations of communication domains, access restrictions to domains and the
capability of modeling cryptographic communication protocols in broadcast scenarios.

Key words: nominal logic, process calculi, ambient calculi, broadcast, bisimulations

1 Introduction

In a world of increasing dependence on electronic communications between reconfigurable and mobile devices,
there is a clear need for accurate formal systems to model these devices and their communications to facilitate
guaranteeing such properties as functionality, security and privacy, and data integrity. Ambients [6], including
boxed ambients [4,3], are formalisms that have been developed to model such mobile devices and their
communication. Ambients have an associated topology that confine their movement and their communication
options. This topology has traditionally been restricted to tree structures, and communication and movement
have been restricted to adjacent ambients. The tree structure implies that an ambient can only be “in” one
other ambient at a given time. This poses problems for modeling aspects of networks, such as routers.
A router is most naturally modeled as being “in” multiple domains at once. Similarly, a laptop with an
ethernet connection, a bluetooth connection and a dialup-modem connection, can be thought of as being
“in” three different domains at once. The restriction of the topology to tree structures prevents modeling these
devices that way. In this work, we loosen this constraint to allow the topology to be that of a dynamically
reconfigurable directed acyclic graph, thus allowing one ambient to be in more than one other at a given
time, or possibly none at all.

In theoretical models of systems, and ambients in particular, communication is often modeled using
point-to-point channels. Depending on the particular calculus, many processes may have access to a given
channel, but each communication will have a unique recipient. Within such frameworks, modeling broadcast
and multicast communications must be done using multiple unicasts. Alternatives to this have been devised
using broadcast communications. These include broadcast communication limited to a specified domain.
However, in frameworks with broadcast within a domain, the domains are relatively static with only at
most code moving among them. Because the code alone is mobile, it carries no identity with it, which limits
the ability to concisely and accurately model the organization of the domains, and model the restriction of
access to the domains by other domains. In our work, we have broadcast communication within ambients.
Messages announced to the ambient are heard by the ambient and all ambients directly within it. Ambients
may restrict access to themselves, and hence to the privilege of the communication within them, based on
the identity of potential entrants, without requiring that their names be hidden.

Having broadcast communication, our model has the potential to naturally model communication proto-
cols in the presence of eavesdroppers. The standard way to establish private communication using a broadcast
medium is to use encryption. To facilitate reasoning about such protocols, we have enriched our language with
cryptographic primitives, much in the manner of the spi-calculus [1]. To further facilitate reasoning about
such protocols, which often involve information shared among certain parties, we have inductively defined

the knowledge of an ambient, in the style of [8], and give tests sufficient to prove that secrets held between
interacting parties do not become a part of the knowledge of non-participating ambients. This notion of
knowledge reflects the ability of an ambient to possibly synthesize new information from all information
already obtained, in keeping with the Dolev-Yao model [5].

To see an example of the desirability of multiple communication domains, and the ability to span multiple
domains, let us consider the scenario of a local area network comprising of a router connecting some home
desktop computers and laptops to the outside world. This router is capable of directly communicating to the
outside internet network and the home computers. Hence, virtually it is present in multiple communication
domains simultaneously. If it is additionally a wireless router, then MAC filtering can be modeled by access
restriction based on ambient identity. The ability to dynamically reconfigure the communication topology
can be used to model the laptop entering the network, and later leaving it as it shuts off, or moves to another
communication domain.

Continuing the example, let us consider the Ethernet local area network architecture in the home. Eth-
ernet is built around a principle of localized broadcasting. Hence potentially, every computer in a subnet of
the Ethernet can see the packets going to every other computer on that subnet. This situation has led to the
advent of sniffer software, which can intercept all data on an Ethernet subnet. As a result, active attackers
can use sniffing techniques to capture sensitive information and use it maliciously. As an example of how to
use Secure Broadcast Ambients, we can model a scenario involving ethernet sniffer software running on
a computer,Sniffer , in the Ethernet home local area network where someone wants to use another computer,
Laptop, to log in to a website, giving their username and password. Unfortunately, if this information is not
communicated in encrypted form, then Sniffer has every opportunity to capture it. Using the encryption
primitives of Secure Broadcast Ambients, we may model protocols that allow the username and password
to be communicated without being revealed to Sniffer .

We are developing a calculus Secure Broadcast Ambients, which allows broadcast communication
inside regions. These regions are capable of restricting access to itself and their reconfigurable topology is
allowed to form a directed acyclic graph. Mobile agents are capable of moving among the regions. The syntax
of this calculus has multiple different sorts of variables, different sorts of binding constructs, many syntactic
categories where several syntactic categories are mutually recursive to each other. All these features poses
challenges to our goal of formalizing this calculus’s syntax and semantics in a logic like HOL. We used the
nominal package of Isabelle [11] to aid us in achieving our goal. In this work we describe our experience in
modeling Secure Broadcast Ambients using the nominal package of Isabelle. We intend to provide more
guideline in addition to those provided in [11]. We hope that our experience will help other researchers working
on modeling calculi which presents challenges similar to ours. We present the syntax of Secure Broadcast
Ambients in Section 2. We then describe our implementation in Section 3. We present the formal semantics
of Secure Broadcast Ambients in a condensed form while describing our implementation in that section.
Finally we conclude in Section 4.

2 Syntax of Secure Broadcast Ambients

In order to define the syntax of Secure Broadcast Ambients we use the following categories of iden-
tifiers: ambient names: n, m ∈ Amb, capability variables: i ∈ CapVar, message variable: x ∈ MessVar, key
variables: k ∈ Keys. The syntax of Secure Broadcast Ambients is presented in Table 1. Messages,
Processes and Systems, are the main syntactic categories. Messages include message identifiers, ambient
names, capabilities, key variables and data. We also allow encrypted and compound messages. Capabilities,
ranged over by C, can be either the capabilities for entering and exiting an ambient, capability variables
or a “path”, which is a sequence of capabilities describing a mobility path. An ambient can indicate the
intention to move into another ambient by in m . However, this movement capability can only be success-
ful if a corresponding co-capability is there to permit this move. The corresponding co-capability can be
either in m allowing specifically m to enter, or in indicating permission for any ambient. The only further
restriction placed on entrance is that an ambient is not allowed to enter a descendant of itself. This inter-
pretation of ambient movement leads to a directed acyclic graph structure for the hierarchy of ambients.

124

Ambient List:
L ::= empty nil process

| m ; L composition

Capabilities:
C ::= in m enter

| out m exit
| C; C′ path
| i capability var

Ambient Pattern:
µ ::= any ambient

| m ambient name

Format:
F ::= m : P ambient name

| i : P capability var
| 0 : P ; suc(x) : Q natural numbers
| {x}k : P decryption
| (x, y) : P pairs

Actions:
π ::= C capability

| in µ allow enter
| (x)m input
| νk new key
| 〈M〉m output
| create amb(m, P) ambient creation

Messages:
M, N ::= x message ident

| m ambient name
| C capability
| 0 natural number
| suc(M) natural number
| (M , N) pairing
| k key
| {M}k encrypted message

Processes:
P, Q ::= nil nil process

| P | Q composition
| !P replication
| π.P prefixing
| cond M is N in P data comparison
| case M of F case analysis

Systems:
S ::= nilsystem empty system

| m[P] ambient
| (x)m(S) broadcast receive
| νk.(S) key restrict
| νm :: L.(S) ambient restrict
| S1|| S2 parallel

Table 1. Syntax of Broadcast Ambients

In Secure Broadcast Ambients, an ambient can be in multiple ambients at the same time. An ambient
may even fail to be in any ambient, for example, a laptop that has been turned off. An ambient n exits from
the ambient m by the out m action without requiring any permission from any other ambient, and without
effecting the relationship of n to any other ambient.

Another important aspect of Secure Broadcast Ambients is that we have removed the channels used
for inter-ambient communication. In our calculus the name of a parent ambient acts as the broadcast channel
for both itself and its children. This way, any ambient can listen to any conversation that is going on between
any of its parents and their children. Henceforth channels are synonymous with ambients.

A process can be an empty process, nil. It can be a parallel composition of two processes. A process can
be replicated. A process can be prefixed with some action. The actions can be to move into an ambient or
to exit from an ambient, to allow entrance, to send or receive a message or to restrict keys. A process can
create an ambient and at the same time define the process inside that ambient. A process can also perform
matching, or case analysis on a message much in the manner of [1]. The case analysis patterns are given by
the formats. The most interesting pattern is that of decryption. In this work we only consider symmetric
encryption and so the decryption key is the same as the encryption key for every encrypted message. A
system can be an empty system, an ambient, a system waiting to receive a message, or multiple systems in
parallel. Systems can create a new key or a new ambient with a given parent list.

Ambient and key restriction, message input, ambient creation and case analysis are the binding constructs.
In light of these binding constructs the free variables of messages, processes and systems are defined in the
usual way.

We now show the encoding of the home router using our syntax.

HomeRouter[!((x)HomeLan.〈x〉ISP .nil) | !((x)ISP .〈x〉HomeLan.nil)]

125

Its job is to capture all outgoing packets in the home network and forward them to the ISP and vice versa.
Now, each computer will have to determine which of the messages (representing TCP/IP packets) arriving
at HomeLan are meant for them.

3 Implementation in Isabelle

Our goal is to encode Secure Broadcast Ambients in Isabelle and to use this implementation later
on to model and reason about cryptographic communication protocols in scenarios where the method of
communication is broadcast. We first analyzed the calculus to determine what the most important aspects
of this calculus are that should be considered before modeling in Isabelle. Examining the calculus one can
observe that there are four different types of variables: message variables, capability variables, ambient
names and keys. Moreover we have ambient name restrictions and key restrictions. We also have bound
occurrences of all different types of variables. Also the processes are mutually recursive with some other
categories. Hence we need a mechanism which will allow us to reason about α-equivalence classes of the
main syntactic categories like processes and ambient systems. We decided to use the nominal package for
handling α-equivalence classes of terms.

3.1 The first step: Atom declarations

As per the norm of using nominal package we first define the different types of data with corresponding
binders that can be bound in our datatypes. They are called atoms because their internal structure is
immaterial compared to their being distinguishable. From the syntax of Secure Broadcast Ambients we
have observed earlier that it uses four different types of such bound entities: message and capability variables,
ambients and keys. We use the atom var to denote a message variable, amb to denote ambients, cvar to
denote capability variables and key to denote encryption key variables.

atom decl var cvar amb key

We next show how we encoded the syntax of the calculus using nominal package.

3.2 Capabilities and Messages

We do not have any binding in the definition of messages or capabilities. Hence their declaration is quite
simple. We first define the capabilities as follows:

nominal datatype capability = IN amb
| OUT amb
| capas capability capability
| CapaVar cvar

Then we define the messages.

nominal datatype ambmsg = Var var
| AmbM amb
| Key key
| Capable capability

. . .
| TPair ambmsg ambmsg
| Enc ambmsg key

126

3.3 Processes and Systems

Processes make up the first syntactic category that has bindings. In order to associate the bindings in the
actions with the corresponding bound variables in the processes we found it necessary to inline the actions in
the processes. There are several noteworthy aspects of the processes. Processes have message variable bindings
in their message receiving action. Processes have key restrictions and ambient restrictions. Processes have
ambient binding for the new ambient creating construct. The ambient binding case is even a little bit more
involved in the sense that the newly created ambient’s name has to be bound both in the process that creates
it and also in the code that gets put inside it. Hence it needs to be bound in two different elements at the
same time. However, as nominal datatypes do not allow a variable to be bound to a nested datatype as
described in [11], we could not do that in a straight forward manner. We had to create a datatype for a pair
of processes which is mutually recursive with processes. A newly created ambient’s name is now restricted to
a process-pair datatype element. We made the case analyzing formats a separate datatype which is mutually
recursive with the processes. The processes are defined in Isabelle as follows:

nominal datatype Proc = Pnil
| par "Proc" "Proc"
| bang "Proc"
| capa "capability" "Proc"
| entrycocapable "muamb" "Proc"
| recv "<<var>>Proc" "amb"
| send "ambmsg" "amb" "Proc"
| createamb "<<amb>> Proc pair"
| cond "ambmsg" "ambmsg" "Proc"
| ambcase "ambmsg" "Format"
| keypres "<<key>> Proc"

and Proc pair = Proc pair "Proc" "Proc"
and Format = FA "<<amb>> Proc"

| FC "<<cvar>> Proc"
| FN "<<var>> Proc" "Proc"
| FMP "<<var>> <<var>> Proc"
| FK "key" "<<var>> Proc"

Finally the ambient systems were defined as follows:
nominal datatype AmbSystem =
. . .
| WholeAmb amb Proc
| Listener amb "<<var>> AmbSystem"
| ambres "<<amb>> AmbSystem" amblist
| keyres "<<key>> AmbSystem"

3.4 Substitution Functions

After defining a datatype, nominal package automatically proves lots of necessary lemmas. For a datatype
of name D the four most prominent ones are D.perm, D.supp, D.fresh and D.inject [11]. However, sub-
stitution of terms for atoms appearing in a new datatype is not automatically defined. Hence the step after
declaring a new datatype is to define how each atom appearing in a datatype can be substituted. We defined
substitution for the different types of atoms in the various datatypes that we have. Let us consider the
substitution functions we defined for messages. All four types of atoms appear in messages. Hence we defined
substitution for each of them. We first defined substituting a variable with a message inside a message.
consts subst ambmsgvar :: "ambmsg ⇒ var ⇒ ambmsg ⇒ ambmsg"
(" M[::=]" [100,100,100] 100)

127

We then defined substituting a capability variable with a capability in a message.
consts subst ambmsgC :: "ambmsg ⇒ cvar ⇒ capability ⇒ ambmsg" (" MC[::=]" [100,100,100]
100)

We defined ambient and key atom substitutions similarly.

3.5 Proving lemmas for the user defined functions

– In the nominal logic framework, a very important concept is that of equivariance [9]. However, whereas
the nominal package automatically proves equivariance lemmas for the datatypes it generates, the onus of
proving the necessary lemmas for user defined functions lies on the user. After defining every new function
we need to prove that the function is equivariant. As mentioned in [10] a function f is equivariant if for
atom permutation π, we have that: π • (fx1 . . . xn) = f(π •x1) . . . (π •xn) where xi are the inputs of the
function f .
As a result we next prove the equivariance lemmas for the variable substitution function. However one
important aspect that should be remembered is that since we have four different types of atoms, we need
to prove that variable substitution is equivariant for permutations of each type of atom. Hence we end
up proving four equivariance theorems for each variable substitution function.
As an example, for the function M[::=], which substitutes a variable with a message in a message, we
have four equivariance lemmas looking like:
lemma subsvar var eqvt[eqvt, simp]:
. . .
shows π • (m M [x ::= t]) = ((π •m) M [(π • x) ::= (π • t)])
where π is message variable, capability variable, ambient or key permutations respectively. Every such
equivariance theorem should be given the equivariant attribute eqvt.

– We also defined support for the variable substitution function. Basically it says that the free message
variables of a message m after substituting a variable x with a message t is a subset of the free variables
of m and t sans x.
supp(m M[x::=t]) ⊆ (supp(m)-{x}) ∪ supp(t):: (var set)
Here we need to explicitly mention that the support is being defined for var atoms. Here support lemma
is only needed for the type of atom that is being replaced in a datatype.

– We also proved freshness lemmas for the substitution functions.

In a nutshell the pattern that we followed were:

– for each new datatype do the following:
• define substitution for every type of atom appearing in the datatype
• define equivariance for every type of atom for each substitution function.
• define support for the substitution function for the type of atom that is being replaced
• define freshness for the substitution function

This procedure has to be followed for every datatype and for every atom if the datatype is to be used
later in some other function. For example while defining substitution in processes we needed to reason
about substitution in capabilities, messages and other nominal datatypes appearing in the processes. Hence
substitution for these datatypes have to have been properly defined and their equivariance should already
have been proved.

3.6 Substitution in Processes

Substitution of terms for atoms in processes were challenging for many reasons. A process has all different
types of atoms appearing in it and also it is mutually recursive with two other nominal datatypes. It also
contains various bindings. Hence defining substitution and proving the required lemmas about them have a
slightly different flavor.

128

Message variable substitution in processes is defined as follows:
consts subst proc :: "Proc ⇒ var ⇒ ambmsg ⇒ Proc" (" P[::=]" [100,100,100] 100)
consts subst form :: "Format ⇒ var ⇒ ambmsg ⇒ Format"
(" F[::=]" [100,100,100] 100)
consts subst Proc pair :: "Proc pair ⇒ var ⇒ ambmsg ⇒ Proc pair"
(" PP[::=]" [100,100,100] 100)

nominal primrec
(* " P[::=]" is defined here *)
"Pnil P[x ::= t] = Pnil"

. . .
" x1 # (m, x, t)=⇒ (recv x1 P m) P[x ::= t] = (recv x1
(P P[x ::= t]) m)"
" (send m1 m2 P) P[x ::= t] = (send (m1 M[x ::= t]) m2
(P P[x ::= t]))"
"m1 # (x, t) =⇒ (createamb m1 PP) P[x ::= t] = (createamb m1
(PP PP[x ::= t]))"
. . .
" (ambcase m f1) P[x ::= t] = (ambcase (m M[x ::= t])
(f1 F[x ::= t]))"
"[| k # (x,t)|]=⇒ (keypres k P) P[x::=t] = (keypres k
(P P[x::=t]))"

and (* " PP[::=]" is defined here:*)
"(Proc pair P1 P2) PP[x ::=t] = (Proc pair (P1 P[x::= t])
(P2 P[x::= t]))"

and (* " F[::=]" is defined here *)
"m # (x, t)=⇒ subst form (FA m P) x t = (FA m (P P[x ::= t]))"
"c # (x ,t)=⇒ (FC c P1) F[x ::= t] = (FC c (P1 P[x ::= t]))"
"x1 # (P1, x, t)=⇒ (FN x1 P2 P1) F[x ::= t] =
(FN x1 (P2 P[x ::= t]) (P1 P[x ::= t]))"
"[|x1 # (x2, x, t); (x2 # (x1,x,t)|]=⇒
(FMP x1 x2 P) F[x::= t]= (FMP x1 x2 (P P[x ::= t]))"
" x1 # (k, x, t) =⇒(FK k x1 P) F[x::= t] =
(FK k x1 (P P[x::=t]))"

The reason for displaying such a big chunk of code was to illustrate various points.

– Defining substitution for a mutually recursive nominal datatype requires substitution functions for all
the mutually recursive elements to be defined together. The reason being that the recursion combinator
expects an equation for every term constructor.

– Special care needs to be taken for the constructs with bound atoms. The binders must be fresh in the
variable that is being substituted, the term with which it is being substituted and any other bound atoms
in that construct. If the freshness constraints are not provided properly then definition of the substitution
function will result in subgoals which are either false or vacuous or hard to prove. For example, the rule
for substitution in the new ambient creation construct is: "m1 # (x, t) =⇒ (createamb m1 PP)
P[x ::= t] = . . .". Here the bound ambient atom m1 has to be fresh for both x and t. Also if
there are multiple bound atoms in a term they have to be distinct from each other. For example in
the rule "[|x1 # (x2, x, t); (x2 # (x1,x,t)|]=⇒ (FMP x1 x2 P) F[x::= t]= (FMP x1 x2 (P
P[x ::= t]))" where we match up a pair of messages, both the atoms x1 and x2 are bound in P.
Hence the condition for x1 is x1 # (x2, x, t) and similarly for x2.

– Nominal package needs a lot of properties of each recursive function operating on nominal datatypes
to be proved before it can be used. The properties mainly deal with the finiteness of the support of

129

the function and its parameters and freshness constraints. However, the list of subgoals thrown at the
user can be non-trivial. For functions like variable substitution in messages we find that the subgoals
are trivial. They merely ask us to prove True. Repeated application of the rule TrueI takes care of
all of them. It would have been simpler if this was done automatically by the nominal package. The
substitution for messages is easier as it does not have binders or mutual recursion. But the substitution
for processes is not easy and the nominal package gives us a total of 255 subgoals. We describe the tactics
used by us to dispose of them next.

– A lot of the subgoals returned by the substitution in processes can be gotten rid of by simplifying with
equivariance lemmas and other lemmas like one type of atom being fresh for other types of atoms and
so on. Then the the subgoals which needed to prove some finiteness of supports were taken care of by
the tactic finite guess. Then the rest of the goals were about proving freshness conditions which were
easily taken care of by the tactic fresh guess. However we must assert that for these tactics to succeed
properly, you have to have proven equivariance, support lemmas and freshness lemmas for each and every
function used in the definition of the substitution function. For example, consider substituting in the
case of sending a message over an ambient given by
"(send m1 m2 P) P[x ::= t] = (send (m1 M[x ::= t]) m2 (P P[x ::= t]))".
Here we substitute the variable x with the message t inside the message m1 that is being sent over
the ambient m2. Hence we use the appropriate substitution function M[::=]. If all the necessary
lemmas for that function are not proved earlier then the substitution for processes gives us subgoals that
can be harder to prove.

– After defining a function we need to prove equivariance, support and freshness results for that function.
For the functions dealing with simpler nominal datatypes like messages which do not have any bound
variables, defining these lemmas are very easy. However, for processes it was a little bit more complex. For
example, for equivariance of processes we need to define what it means for all of the mutually recursive
elements together in the following format:
"π• (P P[x ::= t]) = (π• P) P[(π• x) ::= (π• t)]"
and "π• (pp PP[x ::= t]) = (π• pp) PP[(π• x) ::= (π• t)]"
and "π• (f F[x ::= t]) = (π• f) F[(π• x) ::= (π• t)]"
We have four such lemmas where π is var prm, cvar prm, amb prm and key prm respectively.
An example freshness lemma is given here:
"[| x # P |] =⇒ (P P[x ::= t] = P)" and
"[| x # PP |] =⇒ (PP PP[x ::= t] = PP)" and
"[| x # F |] =⇒ (F F[x ::= t] = F)"
where x is of type var.

– While proving the equivariance, support and freshness results for functions substituting atoms in pro-
cesses, we needed to induct on the processes. We needed to use an inductive hypothesis that will induct
on all the related mutually recursive datatypes together. In our case, we have Proc, Proc pair and
Format which are mutually recursive. The inductive hypothesis was named:
Proc Proc pair Format.inducts.
Notice that you have to use inducts not induct. Hence the rule is that for a mutually recursive datatype
P where P1, P2, . . . , Pn are mutually recursive, the inductive hypothesis looks like: P1 P2 . . . Pn.inducts

We had to follow the above mentioned tasks for all different types of atoms appearing in a datatype. As a
result, we ended up defining four different substitution functions for the processes. They were very similar
in appearance. However, we always had to take care so that required freshness constraints are properly
provided, so that there is no inadvertent free variable capture and that we do not attempt to substitute a
bound variable.

3.7 Formal Semantics

After we have defined our datatypes with binders where necessary, defined substitution functions for all of
them for all atoms as necessary and proven necessary lemmas for these functions, we find ourselves with the
appropriate background for using the machinery to encode the formal semantics of the calculus.

130

(StrRepPar) !P ≡ P | !P (StrPathPref) (C1; C2).P ≡ C1.C2.P
(StrNilProc) m[nil] ≡ nilsystem (StrSysPar) m[P1 | P2] ≡ m[P1]||m[P2]
(StrCond) cond M is M in P ≡ P
(StrAmbMsg) case m of n : P ≡ P [m/n]
. . .
(StrProcSys) P ≡ Q ⇒ m[P] ≡ m[Q]
(StrMakeAmb) n[create amb(m, P).Q] ≡ νm :: empty.

(n[Q]||m[P]), if n 6= m

(StrBrdcstListen) νm :: L.νp :: L′.m[(x)n.P] ≡ νm :: L.νp :: L′.
((x)n(m[P])), if m = n or m /∈ p and n ∈ L

(StrResNil) νu.nilsystem ≡ nilsystem (StrPKey) νk1.νk2.P ≡ νk2.νk1.P
. . .
(StrNeutral) (x)n.(S1||S2) ≡ S1|| ((x)n.S2) if x /∈ fv(S1)
(StrNoListen) (x)n(nilsystem) ≡ nilsystem
(StrCombListen) (x)n.S1|| (y)n.S2 ≡ (z)n.(S1[z/x]||S2[z/y]),

z fresh in S1, S2

Table 2. Structural Equivalence

Structural Equivalence: Structural equivalence is defined for each of processes and systems. It is the
smallest congruence containing the rules in Table 2, closed under alpha equivalence (where ν, message receipt,
ambient creation, and case analysis are the binding constructs), and the associativity and commutativity of
parallel composition of each of processes and systems, with nil and nilsystem as the respective identities. In
the table we use u to denote m :: L or k.

The last three rules in Table 2 are the rules that enable broadcast communication. The rule (StrBrdcstListen)
allows an ambient to lift the receive action on a particular broadcast channel of a process within it up to the
level of the ambient system. The rule (StrCombListen) can then be used to combine the listening sys-
tems. It is the principal rule that is used to model broadcast systems. This rule combines multiple ambients
listening on the same channel so that later on only one reaction is needed to send a message simultaneously
to all the ambients listening on this ambient. In addition to being able to send a message to multiple parties
simultaneously, in a broadcast scenario, the broadcaster can send out a message even if no one is listening on
the broadcast channel being used. The rule (StrNoListen) enables us to model this scenario. Structural
equivalence of two ambient systems are provided at the system level and the process level. First we encode
the structural equivalence relation for processes. It is defined as follows:

inductive StructEquivProc :: "Proc * Proc ⇒ bool" where
nilproc[intro!]:"StructEquivProc((par Pnil P), P)"|
. . .
ambcompcase[intro!]: "m2 # m1 =⇒ StructEquivProc (
(ambcase (AmbM m1) (FA m2 P)), (P PA[m2 ::= m1]))" |
. . .
The inductive definition also has some rules similar to substitution function definition. For the cases where
binders are handled, appropriate freshness constraints have to be inserted [11]. Inductively defined relations
also need to be equivariant. Nominal package provides an easier way of determining whether an inductively
defined relation is equivariant or not. They provide a simple tactic for performing this task. The name of
the tactic is "equivariance". In order to prove that a relation R is equivariant, after inductively defining
a relation we simply need to type equivariance R. In our case, the command we used was equivariance
StructEquivProc.

Similar to proving equivariance of functions, we need to have that all other user defined function used
in the inductive definition be equivariant themselves. For example in the ambcompcase case above, if the
equivariance proving lemma for the ambient substitution function PA[::=] is removed, then the nominal
package will give an error message saying that it failed to prove that

131

. . .

Exit:

m ∈ Ln

∆ # n :: Ln # Π . n[out m .P] −→
∆ # n :: Ln \ {m} # Π . n[P]

FormationEquiv:

∆1 . S1 ≡ ∆′
1 . S′

1 ∆′
1 . S′

1 → ∆′
2 . S′

2

∆′
2 . S′

2 ≡ ∆2 . S2

∆1 . S1 → ∆2 . S2

. . .

KeyRestrict:

∆ . S1 → ∆′ . S2, k /∈ fv(S1), k /∈ fv(S2)

∆ . νk.S1 → ∆′ . νk.S2

AmbRestrict:

∆ # n :: L . S1 → ∆′ # n :: L′ . S2

∆ . νn :: L.S1 → ∆′ . νn :: L′.S2

Table 3. Unlabeled Transition System

StructEquivProc is equivariant. We encode structural equivalence of systems using the relation StructEquivSys(omitted
here).

Unlabeled Transition System: We impose topological structure on the ambients using “configurations”.
The configurations keep track of the topological layout of the ambients in a system. Roughly, for every am-
bient in a system, it lists the ambients it is in. A configuration is a list of pairs where each pair has the name
of an ambient and the list of ambients it is in. The pair of a system, S and its topological structure that is
its configuration, ∆, is called a formation denoted by ∆ . S and implemented as “ConfigSys” in Isabelle.
datatype Config = EmptyConfig
| Conf amb amblist Config
datatype ConfigSys = CS Config AmbSystem
We provide part of the unlabeled transition system in Table 3. We encoded the unlabeled transition system
as follows:
inductive UTS :: "ConfigSys * ConfigSys ⇒ bool" where
. . .
xsn exit[intro!]:"(InL (findlist C n) m)=⇒UTS((CS C (WholeAmb n
(capa (OUT m) P))),(CS (delfromconf C n m) (WholeAmb n P)))"|
xsn formequiv[intro!]:"[| UTS((CS C1 S1),(CS C1a S1a)) ;
UTS ((CS C1a S1a),(CS C2a S2a)) ; StructEquivCS((CS C2a S2a),(CS C2 S2))|]=⇒UTS((CS C1 S1),(CS
C2 S2))"|
. . .
In this definition the relation StructEquivCS stands for the relation defining structural equivalence for for-
mations. We omit the definition of structural equivalence for formations in this work. The rule xsn exit
stands for the Exit transition rule in Table 3. If an ambient n wants to exit another ambient m, then we first
check that in the configuration C (or ∆ in the Exit rule) asserts that the ambient n is actually inside ambient
m. After ambient n exits ambient m, the configuration C is updated by deleting ambient m from ambient n’s
parent list.

Observational Equivalences Observational(barbed) equivalences focus only on the observable actions and
do not consider the messages being exchanged in the transitions. We donote a formation ∆ . S exhibiting a
barb ξ by ∆ . S ↓ ξ. We present some of the barbs in Table 4. The barbs exhibited by a formation is defined
inductively in Isabelle as follows:
inductive showsbarb :: "ConfigSys * barb ⇒ bool" where
barbsend[intro!]:"(InL (ALC n (findlist c n)) m)=⇒showsbarb ((CS c (WholeAmb n (send msg1

132

Barb Send:

m ∈ ({n} ∪∆(n))

∆ . n[〈M〉m.P] ↓ send m

Barb In:

m ∈ dom(∆) ∧m /∈ Ln

∆ # n :: Ln # Π . n[in m .P] ↓ in(n, m)
. . .

NewKeyBarb:

∆ . S ↓ ξ

∆ . νk.S ↓ ξ

FormationStructBarb:

∆1 . S1 ≡ ∆2 . S2 ∆2 . S2 ↓ ξ

∆1 . S1 ↓ ξ

SysParBarb:

∆ . S1 ↓ ξ

∆ . (S1||S2) ↓ ξ

Table 4. Barbs

m P))),(Send m))"|
barbin[intro!]:" (InL (findlist c n) m) & (InConfig (findpreconfig
c m EmptyConfig) m)=⇒showsbarb ((CS c (WholeAmb n (capa (IN m) P
))),(INB n m))" |
. . .|
barbformstruct[intro!]:"StructEquivCS(C1,C2) & showsbarb(C2,b)=⇒
showsbarb(C1,b)"
Barbed equivalence is defined next. Roughly speaking two formations are barbed bisimilar if one can exhibit
the barbs the other one can exhibit and if one can take a transition step, the other one can mimic it and
after that transition they both result in systems which are also bisilimar.
consts BSConfig :: " (ConfigSys ⇒ ConfigSys ⇒ bool)⇒bool"
defs
BSConfig def: "BSConfig R ==
(∀ C1 C2 S1 S2. (R (CS C1 S1)(CS C2 S2)) −→
(∀ b. showsbarb ((CS C1 S1), b) −→
showsbarb((CS C2 S2),b)) & (∀ C1a S1a. UTS ((CS C1 S1),(CS C1a S1a)) −→ (∃ C2a S2a. UTS
((CS C2 S2),(CS C2a S2a)) & (R (CS C1a S1a) (CS C2a S2a))))) "
Two ambient systems are barbed congruent if they are barbed equivalent in the presence of all possible
contexts executing in parallel with them where contexts are represented by arbitrary systems.
constdefs BC :: "AmbSystem ⇒ AmbSystem ⇒ bool"
"BC S1 S2 == (∀ (t :: AmbSystem) . BE (Sysp S1 t) (Sysp S2 t))"
In order to determine what secrets a spy has gleaned in a system, we want to reason about the knowledge
of an ambient in an ambient system. The knowledge of an ambient in a system is a set of messages. It is
calculated by syntactically traversing a system and determining what information is available to a particular
ambient in that system. Knowledge may be finite or it may be infinite. While laying out the foundation
for providing the security lemma, we realized that there are some lemmas about freshness in sets that are
missing in the nominal package. Generally speaking, if we have multiple atoms say a, b, c, . . ., then it should
be the case that a# (X:: b set), a# (X:: c set) and so on. However, there is no such generic lemma in
the nominal package which we felt were due to the reason that this requires reasoning about a set which
may well be infinite, and in general providing the machinery automatically for functions and infinite sets are
not easy to perform automatically. Still we feel that lemmas like these should be included in the nominal
package. Knowledge of an ambient m in a given ambient system is defined (in part) as follows:
function knowledge :: "AmbSystem ⇒ amb ⇒ (ambmsg set) ⇒
(ambmsg set)" where
"knowledge NilSystem m I = {} "
| "knowledge (WholeAmb n P) m I = (if (m=n) then ((procinfo P I)∪
(AmbM m-I)) else)"
. . .
Here procinfo is a function which calculates the information contained in a process. We are now working on

133

proving a secrecy theorem which tries to figure out under which conditions elements from a set of secrets will
not end up in the knowledge of some spy ambients. We have defined the function that calculates knowledge
of ambients in a system.

4 Conclusion and Related Work

We modeled a calculus namely Secure Broadcast Ambients which are capable of modeling cryptographic
communication protocols of mobile agents where the nature of communication is broadcast within a domain.
Our calculus allows a directed acyclic graph topology of the location of our agents, hence our topology is
more flexible than the usual tree structured one. Our domains or systems are also capable of restricting
access to themselves. Our focus was on delineating the steps we had to take and hurdles that we had to
overcome to implement the calculus using nominal package. We encoded structural equivalence, unlabeled
transition system, behavioral equivalence and congruence. We introduce the idea of knowledge of an ambient
so that we can reason about how much information untrusted ambients have acquired in a given ambient
system. Our future goal is to prove a secrecy theorem which will roughly give the conditions under which
processes that do not reveal secrets to untrusted agents can be indistinguishable. Many work has been done
on implementing various calculi in Isabelle using the nominal package. Bengston et al. has formalized the π-
calulus using the nominal package [2]. Kahsai et al. has formalized the spi-calculus using the nominal datatype
[7]. The examples directory of the nominal package presents various theories. Theories like Class.thy which
implements term calculus was very beneficial to us as it deals with multiple atoms. We were also helped a
lot by the nominal mailing list regarding issues of mutually recursive nominal datatypes.

References

1. Mart́ın Abadi and Andrew D. Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus. Inf. Comput.,
148(1):1–70, 1999.

2. Jesper Bengtson and Joachim Parrow. Formalising the pi-calculus using nominal logic. In FoSSaCS, volume 4423
of Lecture Notes in Computer Science, pages 63–77. Springer, 2007.

3. Michele Bugliesi, Giuseppe Castagna, and Silvia Crafa. Reasoning about security in mobile ambients. In CON-
CUR, volume 2154 of Lecture Notes in Computer Science, pages 102–120. Springer, 2001.

4. Luca Cardelli and Andrew D. Gordon. Mobile Ambients. Theoretical Computer Science, 240(1):177–213, 2000.
Special Issue on Coordination, Daniel Le Métayer Editor.

5. Danny Dolev and Andrew Yao. On the security of public key protocols. IEEE Transactions on Information
Theory, 29(2):198–207, 1983.

6. Andrew Gordon and Luca Cardelli. Equational properties of mobile ambients. Mathematical Structures in
Computer Science, 13(3):371–408, 2003.

7. Temesghen Kahsai and Marino Miculan. Implementing spi calculus using nominal techniques. In CiE, volume
5028 of Lecture Notes in Computer Science, pages 294–305. Springer, 2008.

8. Lawrence C. Paulson. The inductive approach to verifying cryptographic protocols. Journal of Computer Security,
6:85–128, 1998.

9. Andrew M. Pitts. Nominal logic, a first order theory of names and binding. Inf. Comput., 186(2):165–193, 2003.
10. Andrew M. Pitts. Alpha-structural Recursion and Induction. Journal of the ACM, 53:459–506, 2006.
11. Christian Urban, Julien Narboux, and Stefan Berghofer. The Nominal Datatype Package.

http://isabelle.in.tum.de/nominal/. 2007.

134

http://isabelle.in.tum.de/nominalmanual/nominal_datatype_manual.pdf

	Implementing Secure Broadcast Ambients in Isabelle using Nominal Logic
	Ayesha Yasmeen cl@@auth, Elsa L. Gunter

