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Abstract. New developments in databases build on XML-technologies. Concepts of the relations model
are transferred to XML. This is not unproblematic, transfer of integrity constraints causes a problem.
Some XML-specifications are unsatisfiable.
A deductive checker is presented. An extensive formalization developed with Isabelle integrates circular
XML-specifications with an inductive method. These XML-specifications are unsatisfiable. The checker
generates a representation with F-Logic that is checked with Florid. The correctness is proven.

1 Checking the Satisfiability

New developments in databases build on XML [BMP+06] technologies. Concepts of the relational [AHV95]
model are transferred to XML. This is not unproblematic, transfer of integrity constraints causes a problem.
Some XML-specifications are unsatisfiable.

A deductive checker for XML-specifications is presented. The complexity of the satisfiability is proven
in [FL02]. Implication of relational integrity that is undecidable [CV85] is represented with XML-specifications.
A transformation for model checking XML-specifications is presented in [His07]. The transformation gen-
erates constraints. A model checker proves the satisfiability of the constraints. An extensive formalization
developed with Isabelle [Pau94b] proves the correctness. Circular XML-specifications are integrated with
an inductive method [Pau94a]. These XML-specifications are unsatisfiable. A deductive checker is presented
based on this development. The checker generates a representation with F-Logic [KLW95] that is checked
with Florid [HLS07]. The correctness of the checker is proven.

XML-specifications are introduced in the next section with a database of teachers. Section 3 presents a
formalization of XML-specifications illustrated with the example. Then section 4 formalizes circular XML-
specifications. Section 5 presents theorems for proving that circular XML-specifications are unsatisfiable in
section 6. Then section 7 presents the deductive checker and section 8 concludes the contribution.

2 A Database of Teachers

A database of teachers is represented with an XML-specification. Elements (teachers, research, subject)
and attributes (name, instructor) are defined with the structural schema in figure 1. Content models form
a structure for XML-trees. The root labeled teachers stores content model teacher+. XML-trees of the
structural schema have a teachers root with teacher children. Figure 2 shows an instance, the next section
presents details. Attribute instructor represents a teacher. Integrity represents dependencies of attributes.
Keys and inclusion constraints formalize integrity. Key teacher .name → teacher represents teacher with
name. Inclusion constraint subject .instructor ⊆ teacher .name represents the dependency of instructor of
subject on names.

teacher .name → teacher
subject .instructor → subject
subject .instructor ⊆ teacher .name

The XML-tree presented in figure 2 satisfies teacher .name → teacher . The teacher nodes store Dr. Brett
and Prof. Crey . The instructors are contained, subject .instructor ⊆ teacher .name is satisfied. several sub-
jects store Dr. Brett , the key subject .instructor → subject isn’t satisfied. The example is unsatisfiable. The
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Fig. 2. An example XML-tree stores the teachers Dr. Brett and Prof. Crey .
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structural schema contains a branch. The teacher nodes, formalized with ext(teacher), have more subject
descendants.

2|ext(teacher)| ≤ |ext(subject)|
A document has at least a teacher .

|ext(teacher)| < |ext(subject)|

A contradiction is proven with subject .instructor → subject and subject .instructor ⊆ teacher .name. The next
section presents the formalization of XML-specifications that forms the fundament for the checker presented
in section 7.

3 Formalization of the Database

The section presents a formalization of XML-specifications illustrated with the database of teachers. The
structural schema and integrity are formalized. Attributes A (name, instructor) and elements E (teachers,
subject) with root r are defined with a structural schema [BMP+06]. The example in figure 3 has the root

<!DOCTYPE teachers [

<!ELEMENT teachers (teacher+)>
<!ELEMENT teacher (teach, research)>
<!ELEMENT teach (subject, subject)>
<!ELEMENT research (#PCDATA)>
<!ELEMENT subject (#PCDATA)>
<!ATTLIST teacher name CDATA #REQUIRED>
<!ATTLIST subject instructor CDATA #REQUIRED> ]>

Fig. 3. The structural schema of figure 1 is defined.

teachers. The attributes of an element are stored with function R, teacher stores attribute name. Function
P stores the content models. Element teachers stores teacher+. Regular expressions [HMU06] are formalized
with an inductive method [BW]. Concatenation, choice, star, plus and question mark form content models
with labels τ ∈ E, text S and empty content ε.

α ::= ε | S | τ | (α, α) | (α|α) | α? | α+ | α?

Wellformed structural schemas are formalized. The sets A and E are disjoint and don’t include S. The
functions P and R are defined for E. Labels in (E ∪ {S}) \ {r} form content models that connect r with
the elements. XML-trees are formalized with the nodes V . The example XML-tree in figure 4 includes the
nodes v1, v2, ..., v9. Function lab stores labels in A ∪ E ∪ {S}, teacher is stored for v2 and name for v4.
Children are stored with ele. Parents are unique. Nodes [v2, v3] are the children of v1 that represents root ,
the only node with the label r. Attribute nodes are stored with att . The example defines name for teacher .
For v2 and this attribute att stores v4. Function val stores text of nodes with a label in A ∪ {S}, v4 stores
Dr. Brett . Text nodes don’t have children. Label name proves v4 doesn’t have children.

ext(τ) = { v | v ∈ V ∧ lab v = τ ∧ τ ∈ E ∪ {S}}

Nodes labeled τ ∈ E ∪ {S} are formalized with ext(τ). For example, ext(teacher) stores {v2, v3}. Paths are
formalized with an inductive method [Pau94a].

v1 ∈ ext(τ)

path(v1, v1)

path(v1, v3) v2 ∈ ele v3

path(v1, v2)
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Fig. 4. A detailled view of the XML-tree in figure 2.

Paths are reflexive and path(v1, v3) can be extended with children of v3. The example satisfies path(v1, v1),
path(v1, v2) and path(v1, v5). XML-trees don’t have cycles. Paths connect root with the element nodes. The
section formalizes the validation of XML-trees. Children are labeled with the content models.

parse B (grammar(lab v)) ∧ getWord(B) = (map lab (ele v))

An element node v has a parse tree B for the formal grammar [HMU06], formalized with grammar(lab v).
The labels of B computed with getWord(B) are equal to the labels of the children. The nodes v5, v6, the
children of v2, have the following labels.

map lab (ele v2) = [teach, research]

The grammar for teacher accepts the labels. Details of the formalization are presented in [His07]. The section
formalizes integrity. Attribute l of a τ node v is stored with v.l = val(att(v, l)). The example stores Prof. Crey
with v9.name. Attributes L =< l1, ..., ln > are stored with v[L] =< v.l1, ..., v.ln >. The L tuples of τ nodes
are formalized with ext(τ [L]) and ext(τ.l) for one attribute. With ext(teacher .name), the example stores
{Dr. Brett ,Prof. Crey}.

ext(τ [L]) = {v[L] | v ∈ V ∧ lab v = τ }
The section formalizes integrity. Key τ [L] → τ identifies τ nodes with attributes L. The formalization
considers a function f(v) = v[L].

τ [L]→ τ ⇔ inj on f ext(τ)

For τ ∈ E with attributes L, the key is satisfied provided f is injective for the τ nodes. The example satisfies
teacher .name → teacher . Inclusion constraints represent dependencies of attributes.

τ1[L1] ⊆ τ2[L2] ⇔ ext(τ1[L1]) ⊆ ext(τ2[L2])

An XML-tree satisfies inclusion constraint τ1[L1] ⊆ τ2[L2] whenever L1 tuples of τ1 nodes depend on L2 tuples
of τ2. The formalization has been implemented with Isabelle [NP07]. The formalization is the fundament for
the contribution. The next section formalizes circular XML-specifications.

4 Circular XML-Specifications

The section presents the formalization of circular XML-specifications. They are formalized with an inductive
method [Pau94a] that proves the correctness of cryptographic protocols in [Pau98]. The section formalizes
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ways. A branch has two ways to a descendant. XML-specifications are circular when there is a branch without
cycle and the descendant of the branch depends on the ancestor. The next section proves that circular XML-
specifications are unsatisfiable. The branch proves a constraint and the dependency proves the opposite.
Section 7 presents a deductive checker for XML-specifications based on circular XML-specifications. The
formalization considers normalized content models [His07].

∀τ ∈ E. (P τ = ε) ∨ (∃τ1, τ2 ∈ E ∪ {S}. P τ = τ1 ∨ P τ = (τ1, τ2) ∨ (P τ = (τ1|τ2) ∧ τ1 6= τ2))

They have less or equal two labels and don’t contain plus, question mark and star. The section formalizes
ways formed with content models.

τ1 ∈ E

way(τ1, τ1)

P τ1 = τ3 way(τ3, τ2)

way(τ1, τ2)

Ways are reflexive and content τ3 of τ1 with way(τ3, τ2) implies way(τ1, τ2).

P τ1 = (τ3, τ4) way(τ3, τ2)

way(τ1, τ2)

P τ1 = (τ4, τ3) way(τ3, τ2)

way(τ1, τ2)

Ways can be extended with concatenated content when τ3 proves way(τ3, τ2).

P τ1 = (τ3|τ4) way(τ3, τ2) way(τ4, τ2)

way(τ1, τ2)

Content models (τ3|τ4) extend ways where the elements τ3, τ4 have a way. The τ1 nodes have τ2 descendants
when there is a way from τ1 to τ2. Section 6 proves an extensive library of theorems.

branch(τ1, τ2)⇔ ∃τ3, τ4, τ5 ∈ E. way(τ1, τ3) ∧ P τ3 = (τ4, τ5) ∧ way(τ4, τ2) ∧ way(τ5, τ2)

A structural schema has a branch from τ1 to τ2 when there is a way from τ1 to an element τ3 such that
the labels of the concatenated content model have a way to the descendant. The element τ3 represents the
branch. An XML-tree of a structural schema with the contents branch(τ1, τ2) includes τ2 descendants for τ1

nodes. The example has a branch, teacher and teach have a way to subject . Element teach represents the
branch with (subject , subject). The example satisfies branch(teach, subject) and branch(teacher , subject).

The section formalizes cycles. Circular XML-specifications have a branch without cycle. Elements that
have a possible way are formalized.

τ2 ∈ P τ1

possibleWay(τ1, τ2)

possibleWay(τ1, τ3) τ2 ∈ P τ3

possibleWay(τ1, τ2)

Possible ways are proven with content models. A possible way is obtained with an element τ3 ∈ P τ1 and
a possible way from τ3 to τ2. XML-trees of a structural schema with possibleWay(τ1, τ2) possibly have a τ2

descendant for a τ1 node. The example has a possible way from teacher to subject . Possible ways formalize
cycles.

cycle(τ) ⇔ possibleWay(τ, τ)

Structural schemas that satisfy possibleWay(τ, τ) have a cycle with τ . The example doesn’t have a cycle.
The section formalizes integrity that bounds elements.

anchor(τ1, τ2)⇔ ∃L1 ⊆ (R τ1). ∃L2 ⊆ (R τ2). τ1[L1]→ τ1 ∧ τ1[L1] ⊆ τ2[L2]

A key τ1[L1]→ τ1 and an inclusion constraint form an anchor when τ1[L1] depends on τ2[L2]. The example
has an anchor from subject to teacher .

onceOccurs(τ1, τ2)⇔ P τ2 = τ1 ∨ ∃τ3. τ3 6= τ1 ∧ (P τ2 = (τ1, τ3) ∨ P τ2 = (τ3, τ1))
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Single and concatenated content models that contain a particular label once are formalized with onceOccurs.
The example satisfies onceOccurs(teacher , teach).

moreOccurs(τ1)⇔ ∃τ2, τ4 ∈ E. τ1 ∈ P τ2 ∧ τ1 ∈ P τ4 ∧ τ2 6= τ4

A structural schema satisfies moreOccurs(τ1) when τ1 occurs in the content models of some elements. The ex-
ample satisfies moreOccurs(S) because research and subject store text. The section presents the formalization
of bounds.

anchor(τ1, τ2)

bounds(τ1, τ2)

onceOccurs(τ1, τ2) ¬moreOccurs(τ1)

bounds(τ1, τ2)

Element τ2 bounds τ1 when integrity forms an anchor. The example bounds subject with teacher . Element
τ2 that stores τ1 once bounds τ1.

way(τ1, τ2) ¬cycle(τ1)

bounds(τ1, τ2)

bounds(τ1, τ3) bounds(τ3, τ2)

bounds(τ1, τ2)

A way without cycle satisfies bounds(τ1, τ2). The relation is transitive.

circular ⇔ way(r, τ1) ∧ branch(τ1, τ2) ∧ ¬cycle(τ1) ∧ bounds(τ2, τ1)

An XML-specification is circular, when the structural schema has a way from r to a branch that doesn’t
have a cycle at the ancestor of the branch and the descendant bounds the ancestor. The example is circular.
There is a way from r to teacher and a branch from teacher to subject . The ancestor teacher doesn’t have
a cycle. The descendant subject is bounded with teacher . The section has presented the formalization of
circular XML-specifications. The next section proves theorems for proving the correctness of the checker
presented in section 7.

5 Paths in XML-Trees

The previous section has formalized circular XML-specifications based on the formalization in section 3.
This section formalizes descendants and proves theorems of paths and ways. The next section proves that
circular XML-specifications are unsatisfiable. The theorems prove the correctness of the checker presented
in section 7.

Descendants are formalized with an inductive method [Pau94a] that formalizes circular XML-specifications
in section 4. Then the section presents theorems for proving that the descendants of a branch of an XML-tree
are disjoint in the next section. The τ2 descendants of τ1 nodes are formalized with descendant(τ1, τ2).

v1 ∈ ext(τ1)

v1 ∈ descendant(τ1, τ1)

v1 ∈ ext(τ2) v1 ∈ ele v2 v2 ∈ descendant(τ1, τ3)

v1 ∈ descendant(τ1, τ2)

The descendants are reflexive for τ1 nodes. Node v is a descendant of a τ1 node when the parent v3 ∈ ext(τ3)
is a descendant. The subject nodes of the example in figure 2 are descendants of teachers. They are children
of a teach node that is a child of a teacher node of descendant(teacher , teacher). Next, paths without label
τ are formalized with differentLabel .

v1 ∈ ext(τ1) τ1 6= τ

differentLabel(v1, v1, τ)

lab v2 6= τ v2 ∈ ele v3 differentLabel(v1, v3, τ)

differentLabel(v1, v2, τ)

Nodes v1 with a label τ1 not equal τ satisfy differentLabel(v1, v1, τ). Such paths are extended with nodes
having a label unequal τ . The section formalizes next nodes of a specified label.

same(v1, v2, τ)⇔ v1 = v2 ∧ v1 ∈ ext(τ)
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The τ nodes satisfy same.

nextDifferent(v1, v2, τ)⇔ ∃v3. v2 ∈ ext(τ) ∧ v2 ∈ ele v3 ∧ differentLabel(v1, v3, τ)

The section formalizes paths to τ nodes that don’t contain τ .

next(v1, v2, τ)⇔ same(v1, v2, τ) ∨ nextDifferent(v1, v2, τ)

Nodes that are next have a path. The section formalizes descendants of the branch.

v ∈ descendant1 (τ1, τ2, τ3)⇔ ∃v1, v2, v3, v4. v1 ∈ ext(τ1) ∧ next(v1, v2, τ2) ∧ ele v2 = [v3, v4]∧
next(v3, v, τ3)

A node v ∈ descendant1 (τ1, τ2, τ3) takes the first way at the next τ2 descendant of a τ1 node. Node v
is the next τ3 descendant of the first child of the τ2 descendant. Maths and chemistry are stored with
descendant1 (teacher , teach, subject).

v ∈ descendant2 (τ1, τ2, τ3)⇔ ∃v1, v2, v3, v4. v1 ∈ ext(τ1) ∧ next(v1, v2, τ2) ∧ ele v2 = [v3, v4]∧
next(v4, v, τ3)

Nodes in descendant2 (τ1, τ2, τ3) take the second way to τ3. The section presents theorems of paths and ways.
Then it is proven that circular XML-specifications are unsatisfiable.

v2 ∈ ele v1 v3 ∈ ele v1 v2 6= v3
T1

¬path(v2, v3)

Theorem T1 proves that children aren’t connected. The proof assumes the opposite, an induction with
path(v2, v3) proves the following.

P1(v2, v3) ⇔ v2 ∈ ele v1 ∧ v3 ∈ ele v1 ∧ v2 6= v3 → false

The base case proves a contradiction with v2 6= v3. The induction step considers a node v4 with the child v3

and path(v2, v4), P1(v2, v3) is proven. Parents are unique, v1 is equal to v4. XML-trees don’t have cycles. A
contradiction is proven with v2 ∈ ele v1 and path(v2, v1).

path(v1, v3) path(v2, v3)
T2

path(v1, v2) ∨ path(v2, v1)

Nodes with a path to the same node are connected (T2). The contrapositive is proven. An induction with
path(v1, v3) proves that v2 doesn’t have a path to v3.

P2(v1, v3) ⇔ ¬path(v1, v2) ∧ ¬path(v2, v1) → ¬path(v2, v3)

The hypothesis with one node is a tautology. The induction step considers a node v4 with path(v1, v4) that
satisfies P2(v1, v4). Node v4 has the child v3 and P2(v1, v3) is proven. When v2 is equal to v3, it is a child
of v4 and the path from v1 to v4 gives a contradiction with ¬path(v1, v2). Otherwise, path(v2, v3) proves a
path from v2 to v4 with child v3. Then P2(v1, v4) proves a contradiction.

path(v1, v2) lab v1 = τ1 lab v2 = τ2 v1 6= v2
T3

possibleWay(τ1, τ2)

Paths prove a possible way (T3). An induction with path(v1, v2) proves this.

P3(v1, v2) ⇔ ∀τ1, τ2. lab v1 = τ1 ∧ lab v2 = τ2 ∧ v1 6= v2 → possibleWay(τ1, τ2)
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The base case proves a contradiction. The induction step satisfies P3(v1, v3) and considers a child v2 of v3.
The section proves that τ1 has a possible way to the label of v2. When v1 equals v3 the content model of τ1

includes τ2, a possible way is proven. Otherwise, the induction hypothesis proves possibleWay(τ1, (lab v3)).
The content model of the label of v3 includes τ2.

next(v1, v2, τ) next(v1, v3, τ) path(v2, v3)
T4

v2 = v3

Theorem T4 proves that nodes are equal when they are connected next descendants of the same node.
Nodes that are equal can satisfy same. Otherwise, v2 and v3 have a path without τ from v1. Then v1 has a
differentLabel path to the parent of v3. The path contains the τ node v2.

v1 ∈ ext(τ1) way(τ1, τ2)
T5

∃v2 ∈ ext(τ2). path(v1, v2)

With T5, a path to a τ2 node is proven for a τ1 node when there is a way from τ1 to τ2. An induction with
way(τ1, τ2) uses hypothesis P4(τ1, τ2).

P4(τ1, τ2) ⇔ ∀v1 ∈ ext(τ1). ∃v2 ∈ ext(τ2). path(v1, v2)

The base case is proven with one node. The induction step considers the content models of τ1. Concatenated
content models prove a τ3 child that extends a path to v2 proven with hypothesis P4(τ3, τ2). Otherwise P τ1 =
(τ3|τ4), a child in ext(τ3) ∪ ext(τ4) is proven. Then P4(τ3, τ2) and P4(τ4, τ2) prove a path. Theorems have
been presented for proving that circular XML-specifications are unsatisfiable in the next section. Section 7
presents a deductive checker.

6 Unsatisfiable Circular XML-Specifications

The section proves that circular XML-specifications are unsatisfiable with the theorems of the previous
section. A branch proves more nodes of the descendant. The branch is bounded, a contradiction is proven.

branch(τ1, τ2) ext(τ1) 6= ∅ ¬cycle(τ1)

|ext(τ1)| < |ext(τ2)|

An XML-tree with τ1 nodes contains more descendants of a branch when the structural schema doesn’t have
a cycle with τ1. The section proves the first and second descendants of the XML-tree are disjoint. Then a
cycle with τ1 is proven.

The proof considers τ3 that represents the branch. It is proven that the intersection of descendant1 (τ1, τ3, τ2)
and descendant2 (τ1, τ3, τ2) is empty. A node v of the intersection is presumed. Function f1 (f2) chooses the
ancestor of the first (second) descendant of a branch of the XML-tree. The function f1(v) = v1 is defined with
nodes v2, v3 and v4 that satisfy next(v1, v2, τ3), ele v2 = [v3, v4] and next(v3, v, τ2). In this way, f2(v) = v5

is defined with nodes v6, v7 and v8 that satisfy next(v5, v6, τ3), ele v6 = [v7, v8] and next(v8, v, τ2). When
v1 6= v5, T3 proves possibleWay(τ1, τ1) with the path of v1 and v5 proven with T2. This is a contradiction
with cycle(τ1). Thus, v1 and v5 are equal. The proof considers node v2 (v6) that represents the first (second)
branch. They have a path to v. Theorem T2 proves a path connects them. The nodes are next τ3 nodes of
v1, T4 proves they are equal. Moreover, the children are equal. They aren’t connected (T1) and have the
descendant v, T2 proves a contradiction. The first and second descendants are disjoint.

An XML-tree has more τ2 descendants than descendants of the first branch.

|descendant(τ1, τ2)| ≥ |descendant1 (τ1, τ3, τ2) ∪ descendant2 (τ1, τ3, τ2)|

The τ2 descendants contain the descendants of a branch.

|descendant1 (τ1, τ3, τ2)| + |descendant2 (τ1, τ3, τ2)| > |descendant1 (τ1, τ3, τ2)|
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They are disjoint, the sum is considered. The XML-tree has τ1 nodes, T5 proves descendants of the branch.
The proof presumes less or equal τ2 descendants than τ1 nodes. The previous inequation proves more

τ1 nodes than τ2 descendants of the first branch. A function f3 chooses a first descendant of a branch. The
function is defined with f3(v1) = v2 and nodes v3, v4 and v5 such that next(v1, v3, τ3), ele v3 = [v4, v5] and
next(v4, v2, τ2) are satisfied. The range equals the first descendants, T5 proves f3 is defined for τ1 nodes.
The domain is greater, there are nodes v1, v2 ∈ ext(τ1) with the descendant v3 = f3(v1) = f3(v2). The
nodes have a path to v3, T2 proves v1 and v2 are connected. Then T3 proves possibleWay(τ1, τ1). This is
a contradiction with ¬cycle(τ1). The XML-tree satisfies |ext(τ1)| < |descendant(τ1, τ2)|. The descendants
are contained in ext(τ2), the theorem is proven. Theorem T5 proves τ1 nodes with way(r, τ1). Circular
XML-specifications satisfy |ext(τ1)| < |ext(τ2)|. The next theorem proves the opposite with bounds(τ2, τ1).
Circular XML-specifications are unsatisfiable.

bounds(τ1, τ2)

|ext(τ1)| ≤ |ext(τ2)|

An induction with bounds(τ1, τ2) proves less or equal τ1 than τ2 nodes. Anchors prove the inequation with
integrity. A constraint of the transformation for model checking XML-specifications presented in [His07]
proves an equation for elements that occur once. An injective function chooses a descendant for ways without
cycle. Finally, the induction hypothesis proves the theorem. The proof defines the induction hypothesis
|ext(τ1)| ≤ |ext(τ2)|. Integrity implies inequations proven in [His07]. An anchor is defined with a key τ1[L1]→
τ1 and an inclusion constraint τ1[L1] ⊆ τ2[L2].

|ext(τ1)| = |ext(τ1[L1])| ≤ |ext(τ2[L2])| ≤ |ext(τ2)|

The key proves the number of τ1 nodes and L1 tuples is equal. The inclusion constraint proves that they are
less or equal than the L2 tuples of τ2. Then the proof considers elements that occur once. The transformation
proves a structured representation of nodes.

|ext(τ1)| =
∑

τ1 ∈ P τ2

i ∈ {1, 2}

|children(τ2, τ1, i)|

The constraint represents the τ1 nodes with the first and second children.

|ext(τ1)| = |children(τ2, τ1, i)| ≤ |ext(τ2)|

Then onceOccurs(τ1, τ2) and ¬moreOccurs(τ1) prove that τ1 has the parent τ2. An XML-tree has less or
equal children than τ2 nodes. The proof considers ways without cycle.

way(τ1, τ2) ¬cycle(τ1)

|ext(τ1)| ≤ |ext(τ2)|

An injective function proves the theorem choosing the next τ2 node of a τ1 node. The way proves with T5 that
a path exists. The function f4 is proven injective. Otherwise there are nodes v1 and v2 with v3 = f4(v1) =
f4(v2). With the paths to v3 T2 proves v1 and v2 are connected. Moreover, with T3 a possible way from τ1

to itself is proven. The contradiction with ¬cycle(τ1) proves the inequation.
Finally, the induction proves |ext(τ1)| ≤ |ext(τ2)| with labels τ1, τ2 and τ3 that satisfy bounds(τ1, τ3) and

bounds(τ3, τ2). The induction hypothesis proves |ext(τ1)| ≤ |ext(τ3)| and |ext(τ3)| ≤ |ext(τ2)|. The next
section presents a checker based on circular XML-specifications.

7 Deductive Checker

The previous section has proven that circular XML-specifications are unsatisfiable. This section presents a
checker based on circular XML-specifications. The checker generates a representation with F-Logic [KLW95].
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Objects represent elements and attributes, a class hierarchy represents the structural schema. The section
presents a deductive checker based on circular XML-specifications. Section 6 proves the correctness of the
checker that has been implemented with the DEAXS [His07] project. The checker generates F-Logic facts
that are checked with Florid [HLS07].

The section presents the formalization of XML-specifications with F-Logic. Objects of class Element rep-
resent elements, the subclasses represent the normalized structural schemas [His07]. The checker is presented
with the example defined in figure 3 and root teacher . The section formalizes the structural schema. Class

Element Attribute

Empty Text Single Concat Choice name instructor

teacherteachresearch subject

Fig. 5. A class hierarchy represents the example in figure 3.

Element has the subclasses Empty , Single, Text , Concat and Choice that represent the content models. A
signature defines the class hierarchy and provides the method declaration.

Element [attributes⇒⇒Attribute].
Empty :: Element .
Single :: Element [contents⇒Element ].
Text :: Element [contents⇒Empty ].
Concat :: Element [contents@(integer)⇒Element ].
Choice :: Element [contents@(integer)⇒Element ].

For example, teacher stores content model (teach, research). Object teacher is an instance of Concat . At-
tributes are stored with method attributes. Element teacher stores name, an instance of Attribute. The
hierarchy is shown in Figure 5. Fact τ : Empty represents ε. Contents P τ = τ1 is represented with
τ : Single[contents→τ1], fact τ : Concat [contents@(1)→τ1; contents@(2)→τ2] represents (τ1, τ2).
The structural schema of the example is represented.

name : Attribute.
instructor : Attribute.
teacher : Concat [contents@(1)→teach; contents@(2)→research; attributes→→name].
teach : Concat [contents@(1)→subject ; contents@(2)→subject ; attributes→→{}].
research : Text [contents→S; attributes→→{}].
subject : Text [contents→S; attributes→→instructor ].
S[attributes→→{}].
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Rules define relation way for formalizing circular XML-specifications in section 4.

way(X1, X1) ← X1 : Element .
way(X1, X2) ← X1 : Single[contents→X3] ∧ way(X3, X2).
way(X1, X2) ← X1 : Concat [contents@( )→X3] ∧ way(X3, X2).
way(X1, X2) ← X1 : Choice[contents@(1)→X3; contents@(2)→X4] ∧ way(X3, X2) ∧ way(X4, X2).

The example satisfies way(subject , subject), way(teach, subject) and the way from teacher to subject . Next,
a rule proves a branch.

branch(X1, X2) ← way(X1, X3) ∧ X3 : Concat [contents@(1)→X4; contents@(2)→X5]∧
way(X4, X2) ∧ way(X5, X2).

Relation branch(X1, X2) is defined with a way from X1 to X3 that represents the branch with ways to the
descendant. Elements teacher and teach have a branch to subject . The example satisfies branch(teach, subject)
and a branch from teacher to subject . The section formalizes cycles.

X1[occurs→→X2] ← X2 : Single[contents→X1].
X1[occurs→→X2] ← X2 : Element [contents@( )→X1].

Attribute occurs (Element [occurs⇒⇒Element ]) is defined with content models. Element subject satisfies
subject [occurs→→teach]. Possible ways are formalized.

possibleWay(X1, X2) ← X2[occurs→→X1].
possibleWay(X1, X2) ← X2[occurs→→X3] ∧ possibleWay(X1, X3).

The example satisfies possibleWay(teacher , X) for X ∈ {research, subject , teach}.

cycle(X1) ← possibleWay(X1, X1).

A cycle with X1 is proven when X1 has a possible way to itself. The example doesn’t have cycles. The section
formalizes elements that occur with more content models.

moreOccurs(X1) ← X1[occurs→→X2] ∧ X1[occurs→→X3] ∧ X2 6= X3.

A label X1 that occurs in two content models satisfies moreOccurs(X1).

onceOccurs(X1, X2) ← X2 : Single[contents→X1].
onceOccurs(X1, X2) ← X2 : Concat [contents@(1)→X1; contents@(2)→X3] ∧ X1 6= X3.
onceOccurs(X1, X2) ← X2 : Concat [contents@(1)→X3; contents@(2)→X1] ∧ X1 6= X3.

Single content models τ1 and concatenations with τ3 (τ3 6= τ1) that are stored for τ2 prove onceOccurs(τ1, τ2).
The example satisfies onceOccurs(research, teacher). Next, bounds are defined.

bounds(X1, X2) ← anchor(X1, X2).
bounds(X1, X2) ← bounds(X1, X3) ∧ bounds(X3, X2).
bounds(X1, X2) ← onceOccurs(X1, X2) ∧ ¬moreOccurs(X1).
bounds(X1, X2) ← way(X1, X2) ∧ ¬cycle(X1).

An anchor bounds elements with integrity. XML-specifications with τ1[L1]→ τ1 and τ1[L1] ⊆ τ2[L2] satisfy
anchor(τ1, τ2). The example has an anchor. With the integrity constraints subject .instructor → subject and
subject .instructor ⊆ teacher .name the example proves anchor(subject , teacher). Element X2 that bounds
X3 that bounds X1 satisfies bounds(X1, X2). Elements that occur once satisfy bounds. Ways from X1 to X2

without cycle satisfy bounds(X1, X2). The example bounds subject with teacher . Florid [HLS07] proves that
the example is circular.

way(teacher , teacher).
branch(teacher , subject).
¬cycle(teacher).
bounds(subject , teacher).
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The rules prove a branch. The root element teacher has a way to teach with a branch to subject . The example
doesn’t have a cycle with teacher that is bounded with subject .

?−way(r, X1) ∧ branch(X1, X2) ∧ ¬cycle(X1) ∧ bounds(X2, X1).

The example is proven circular with teacher for X1, subject for X2 and the root teacher . The section has
presented a checker for XML-specifications. Section 6 has proven the correctness of the checker. The checker
has been implemented with the DEAXS [His07] project.

8 Conclusion

The previous section has presented a deductive checker. The contribution concludes with an overview.
An extensive formalization is developed with Isabelle [Pau94b]. Details are presented in [His07]. Circular

XML-specifications are formalized with an inductive method [Pau94a]. Section 6 proves that circular XML-
specifications are unsatisfiable. Section 7 presents a checker based on circular XML-specifications. XML-
specifications are represented with F-Logic [KLW95]. The correctness of the checker is proven. The checker is
implemented with the DEAXS [His07] project. The checker normalizes structural schemas , generates graphs
and the representation of XML-specifications with F-Logic [KLW95] that is checked with Florid [HLS07].
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