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Abstract. This paper presents the first fully-mechanized formalization of powerdomains, implemented
in the HOLCF logic of the Isabelle theorem prover. The powerdomain library provides an abstract
view of powerdomains to the user, hiding the complicated implementation details. The library also
provides proof automation, in the form of sets of rewrite rules for solving equalities and inequalities on
powerdomains.

1 Introduction

Powerdomains are a domain-theoretic analog of powersets, which were designed for reasoning about the
semantics of nondeterministic programs.[12] The use of powerdomains for reasoning about nondeterminism
(and domain-theoretic denotational semantics in general) has declined in recent years, which I believe is
primarily due to their perceived complexity. Compared to other more syntactic approaches to semantics,
domain theory and powerdomains require a lot of mathematical sophistication to understand. This is a
significant barrier for anyone who might want to use denotational semantics to reason about computation.
It is my hope that the existence of good formalized libraries will remove that barrier to the use of domain
theory for denotational semantics.

In this paper I attempt to demonstrate that powerdomains are a natural way for functional programmers
to reason about nondeterministic programs. Using Haskell-style monadic code as a starting point, Section 2
motivates the definition of a powerdomain. Section 3 examines the three main varieties of powerdomains, and
attempts to convey some intuitions about their structures and what each is good for. For readers wishing to
use the powerdomain library, Section 4 documents all of the powerdomain operations provided by the library,
as well as some of the lemmas and proof automation that is available. Section 5 describes the implementation
of the powerdomain library; understanding this section is not necessary in order to use the library, and may
be skipped on first reading.

This paper assumes some familiarity with the Haskell language. In particular, I expect the reader to know
about monads, and the monad laws. I also assume that the reader is familiar with some of the basics of domain
theory, which is traditionally used for reasoning denotationally about Haskell programs.[4] In particular, the
reader should know about bottoms (⊥), complete partial orders (v), limits of chains, continuous functions,
and admissible predicates.

2 Nondeterminism monads

From a functional programmer’s perspective, a powerdomain can be thought of as simply a special kind of
monad for nondeterminism. In addition to the standard monad operations return and bind, a powerdomain
also provides a binary operation for making a nondeterministic choice. In Haskell syntax, we can specify a
subclass of monads that have such a binary choice operator:[10]

class (Monad m) => MultiMonad m where
(+|+) :: m a -> m a -> m a

Haskell programmers often use the list monad to model nondeterministic computations; functions indicate
multiple possible return values by enumerating them in a list. In this case, the list append operator (++)
fills the role of nondeterministic choice.



instance MultiMonad [] where
xs +|+ ys = xs ++ ys

The list monad has the great advantage of being executable: If you code up a nondeterministic algorithm
in the list monad, you can just run it and see the results. However, for reasoning about nondeterministic
algorithms, the list monad falls short in two important ways.

First, the list monad is not abstract enough: There are many different lists that represent the same set of
possible return values. For example, consider a nondeterministic integer computation f with three possible
outcomes: a return value of 3, a return value of 5, or divergence (i.e. a return value of ⊥). The lists [3, 5,⊥]
and [5, 5, 3,⊥, 3] both represent the value of f equally well; both represent the set {3, 5,⊥}. If divergence
were not a possibility, then we could canonicalize the lists by sorting and removing duplicates—but obviously
this does not work in general.

The second problem is that the list monad does not behave well in the presence of infinite or partial
output. The problem originates with the definition of append: If xs is an infinite list, then xs ++ys does not
depend on ys at all. If ys includes some possible outcomes that do not already occur in xs, then they get
thrown away. Similarly, if xs is a partial list, like 1 : 2 : ⊥, then xs ++ys also ignores its second argument.

This problem is demonstrated by the following recursive nondeterministic computation. Any integer
greater than or equal to 2 should be a possible result. However, when interpreted in the list monad, only
even integers are included. The problem is that since the denotation of f is an infinite list, the “return 1” is
never reached.

f :: (MultiMonad m) => m Int
f = do x <- return 0 +|+ f +|+ return 1

return (x+2)

Another possible nondeterminism monad for Haskell is the binary tree, whose definition is shown below.
The binary tree monad solves the second problem that lists had: Unlike the list append operator, the Node
constructor never ignores either of its arguments, even if the other is partial or infinite. However, the problem
of multiple representations remains; in fact this problem is even worse than before. Since the choice operator
for trees is a data constructor, it doesn’t satisfy any non-trivial equalities, while list append is at least
associative.

data Tree a = Leaf a | Node (Tree a) (Tree a)

instance Monad Tree where
return x = Leaf x
Leaf x >>= f = f x
Node l r >>= f = Node (l >>= f) (r >>= f)

instance MultiMonad Tree where
l +|+ r = Node l r

For doing formal reasoning about nondeterministic computations, an ideal nondeterminism monad should
satisfy all the axioms listed in Fig. 1. We will call a monad that satisfies all seven laws a powerdomain. Laws
1–3 are just the standard Haskell monad laws. Law 4 says that bind distributes over the choice operator, and
laws 5–7 state that choice is associative, commutative and idempotent. The list monad satisfies laws 1–5, but
not 6 or 7; the binary tree monad satisfies only 1–4. There is no obvious way to define a true powerdomain
directly in Haskell, but in the next section we will see how to define powerdomains mathematically.

Note that in addition to the seven powerdomain laws, there is another implicit requirement for power-
domains: All of the operations must be monotone and continuous, i.e. they must respect the cpo structure
of the types on which they operate. In Haskell, every definable function is automatically continuous by con-
struction, while in Isabelle, the logic permits the definition of functions which are not necessarily continuous.
Continuity is a concept defined in Isabelle/HOLCF, and it is necessary to prove that each function defined
in the library is continuous.
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1. return x >>= f = f x

2. xs >>= return = xs

3. (xs >>= f) >>= g = xs >>= (\x -> f x >>= g)

4. (xs +|+ ys) >>= f = (xs >>= f) +|+ (ys >>= f)

5. (xs +|+ ys) +|+ zs = xs +|+ (ys +|+ zs)

6. xs +|+ ys = ys +|+ xs

7. xs +|+ xs = xs

Fig. 1. The powerdomain laws

3 Powerdomains

There are multiple ways to define a powerdomain with operations that satisfy all of the desired laws. The
three most common are known as the upper, lower, and convex powerdomains. These are also respectively
known as the Smyth, Hoare, and Plotkin powerdomains. Historically, each variety is also associated with a
musical symbol: sharp (]) for upper, flat ([) for lower, and natural (\) for the convex powerdomain.

Before we dive into the details of the various powerdomains, first let us introduce some more notation.
We will borrow the variable naming convention often used for lists in Haskell: For values of powerdomain
types we use names like xs, ys, or zs, while for the underlying elements we use names like x, y, or z.

Also, we will consistently use set-style notation when talking about powerdomains. The singleton set syn-
tax {−} denotes the monadic return operator, “unit”; and the set union symbol (∪) denotes the nondetermin-
istic choice operator, “plus”. Also, we will use set enumerations like {x, y, z} as shorthand for {x}∪{y}∪{z}.
When necessary, we will indicate a specific powerdomain by using the appropriate musical symbol as a
superscript.

3.1 Convex powerdomain

For a given element domain α, the convex powerdomain P\(α) is the free continuous domain-algebra over
the constructors {−}\ and (∪\), modulo the associativity, commutativity, and idempotence of (∪\). (This
construction is explained in [1, §6.1]) The convex powerdomain is “universal” in a category-theoretical sense,
in that there is a unique mapping (preserving unit and plus) from the convex powerdomain into any other
powerdomain.

Freeness means two things here. First, it says that the convex powerdomain consists only of values that
can be built up from applications of unit and plus (i.e. the convex powerdomain has “no junk”). Secondly,
freeness also means that no nontrivial equalities between terms should hold, except those required by the
laws (i.e. the convex powerdomain has “no confusion”).

In the context of complete partial orders, the “no junk” property has a slightly different meaning than it
does for ordinary inductive datatypes. As a cpo, the convex powerdomain includes values built from a finite
number of constructor applications, plus additional values that result as limits of chains. Thus the convex
powerdomain has an induction rule like the following:

adm(P ) ∀x. P ({x}\) ∀xs ys. P (xs) −→ P (ys) −→ P (xs ∪\ ys)
∀xs. P (xs)

(1)

Admissibility of P means that for any chain of elements xi such that P (xi) holds for all i, P must also hold for
the limit

⊔
i xi. This side condition reflects the fact that some values are only expressible as limits of chains—

most induction rules in HOLCF have a similar admissibility side condition. (HOLCF can automatically prove
admissibility for most inductive predicates used in practice.)

We still need to check that we can satisfy all of the powerdomain laws from Fig. 1. Laws 5–7 hold by
construction. We can use laws 1 and 4 as defining equations for the bind operator. Finally, it is straightforward
to prove laws 2 and 3 by induction.
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Definition 1. We say that x is a member of xs if {x} ∪ xs = xs.

If xs represents a nondeterministic computation, and x is one of the possible results, then x must be a
member of xs. However, the set of members is not necessarily equal to the set of possible results. Not every
conceivable set of results can be precisely represented in the convex powerdomain, as the following theorem
implies.

Theorem 1. Let xs be a value in a convex powerdomain. Then the set of members of xs is convex-closed.

Proof. Let x and z be members of xs, and let y be any value between x and z, such that x v y and y v z.
We will show that y is a member of xs.

1. From y v z, we have {y}\ ∪\ xs v {z}\ ∪\ xs, by monotonicity.
Then since z is a member of xs, we have {z}\ ∪\ xs = xs.
Therefore {y}\ ∪\ xs v xs.

2. From x v y, we have {x}\ ∪\ xs v {y}\ ∪\ xs, by monotonicity.
Then since x is a member of xs, we have {x}\ ∪\ xs = xs.
Therefore xs v {y}\ ∪\ xs.

By antisymmetry we have {y}\ ∪\ xs = xs, thus y is a member of xs. ut

Theorem 1 says that the set of members of xs includes at least the convex closure of the set of possible
return values. In practice, this means that sometimes nondeterministic computations with different sets of
possible outcomes nevertheless have the same denotation in the convex powerdomain.

Consider the domain of lifted booleans, which contains three values: True, False, and ⊥. On top of this,
we can construct the domain of pairs of booleans, which is ordered component-wise. Now imagine we have a
nondeterministic computation f which has exactly two possible return values: either (True,False) or (⊥,⊥).
Next, define a computation g which additionally has a third possible return value of (True,⊥). Here is how
we might specify f and g in Haskell:

f, g :: (MultiMonad m) => m (Bool, Bool)
f = return (True, False) +|+ return (undefined, undefined)
g = return (True, undefined) +|+ f

If we model these computations using the convex powerdomain monad, then the denotation of f is {(True,
False), (⊥, ⊥)}\, and the denotation of g is {(True, ⊥), (True, False), (⊥, ⊥)}\. But according to Theorem
1, these values are actually equal—the convex powerdomain does not distinguish between the computations
f and g. In general, two computations will be identified if their respective sets of possible results have the
same convex closure.

This convex closure thing may seem a little weird; why bother with all this, when we could just represent
multiple result values using ordinary sets? The weirdness is a small price to pay for a significant bonus:
Since powerdomains are cpos, and all the operations are continuous, that means that we can freely use
powerdomains with general recursion—something you cannot do with ordinary powersets.

3.2 Upper powerdomain

The upper powerdomain P](α) can be defined in the same manner as the convex powerdomain, except we
require (∪]) to satisfy one extra law:

xs ∪] ys v xs (2)

(Note that due to commutativity, the statement xs ∪] ys v ys is equivalent.) This law makes the upper
powerdomain into a semilattice, where xs ∪] ys is the meet, or greatest lower bound, of xs and ys.

Theorem 2. Let xs be a value in an upper powerdomain. Then the set of members of xs is upward-closed.
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Proof. Let x be a member of xs, and let y be any value such that x v y. We will show that y is a member
of xs.

1. From the symmetric form of Eq. 2, we have {y}] ∪] xs v xs.
2. From x v y, we have {x}] ∪] xs v {y}] ∪] xs, by monotonicity.

Then since x is a member of xs, we have {x}] ∪] xs = xs.
Therefore xs v {y}] ∪] xs.

By antisymmetry we have {y}] ∪] xs = xs, thus y is a member of xs. ut

A consequence of this theorem is that if ⊥ is a member of xs, then everything is a member of xs. In other
words, if a nondeterministic computation has any possibility of returning ⊥, then according to the upper
powerdomain semantics, nothing else matters—it might as well always return ⊥. For this reason, the upper
powerdomain is good for reasoning about total correctness: if ⊥ is not a member of xs, then you can be sure
that xs denotes a computation that has no possibility of nontermination.

3.3 Lower powerdomain

The lower powerdomain P[(α) can also be defined similarly, by adding a different extra law:

xs v xs ∪[ ys (3)

This law makes the upper powerdomain into a semilattice, where xs ∪[ ys is the join, or least upper bound,
of xs and ys.

Theorem 3. Let xs be a value in a lower powerdomain. Then the set of members of xs is downward-closed.

Proof. Similar to the proof of Theorem 2. ut

An immediate consequence of this theorem is that in the lower powerdomain, ⊥ is a member of everything.
Equivalently, {⊥}[ is an identity for the (∪[) operation. In terms of nondeterministic computations, this
means that the lower powerdomain semantics ignores any nonterminating execution paths. In contrast to
the upper powerdomain, the lower powerdomain is better for reasoning about partial correctness, where you
want to verify that if a computation terminates, then its result will satisfy some property.

3.4 Visualizing powerdomains

To help convey an intuition for the structure of the various kinds of powerdomains, this section includes dia-
grams of the powerdomain orderings over a few different element types. Fig. 2 shows all three powerdomains
over a small flat domain, like the lifted booleans. Fig. 3 extends this to a slightly larger flat domain. Fig. 4
extends this in a different way by adding a top value.

Looking at Figs. 2 and 3, some generalizations can be made about powerdomains over flat cpos. The
ordering on the lower powerdomain of any flat cpo is isomorphic to the subset ordering on the corresponding
powerset. Also note that the lower powerdomain always has a greatest element, which corresponds to the set
including all possible return values. In contrast, the upper powerdomain is almost like the lower powerdomain
flipped upside-down, except that the bottom element stays at the bottom; the other singleton sets are maximal
in this ordering.

For the lifted two-element type, note that the convex powerdomain has the structure of the lower pow-
erdomain embedded inside it, but with a new value (excluding ⊥) added above each old value. The convex
powerdomain of the lifted three-element type is not shown (due to its size) but it is related to the lower
powerdomain in the same way.

The four-element lattice is interesting because due to its symmetry, it clearly illustrates the duality
between the upper and lower powerdomains. The lower powerdomain is structured exactly like the upper
powerdomain, but with the order reversed.
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Fig. 2. Lifted two-element type, with upper, lower, and convex powerdomains

⊥

x y z

{⊥}]

{x, y, z}]

{x, y}] {y, z}]{x, z}]

{x}] {y}] {z}]

{⊥}[

{x}[ {y}[ {z}[

{x, y}[ {y, z}[{x, z}[

{x, y, z}[

Fig. 3. Lifted three-element type, with upper and lower powerdomains
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Fig. 4. Four-element lattice, with upper, lower, and convex powerdomains
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4 HOLCF powerdomain library

This section describes the user-visible aspects of the HOLCF powerdomain library. The implementation
defines three new type constructors, one for each of the three powerdomain varieties. Each type has unit
and plus constructors, and a monadic bind operator. Each type also has map and join operators, defined in
terms of unit and bind in the same manner as Haskell’s liftM and join. The full list of types and constants
is shown in Fig. 5.

The functions convex_to_lower and convex_to_upper are the mappings guaranteed to exist by the
universal property of the convex powerdomain; they preserve unit and plus. Note that instead of the full
function space (=>), all functions use the HOLCF continuous function space type (->), indicating that they
are continuous functions.

typedef ’a upper_pd

upper_unit :: ’a -> ’a upper_pd

upper_plus :: ’a upper_pd -> ’a upper_pd -> ’a upper_pd

upper_bind :: ’a upper_pd -> (’a -> ’b upper_pd) -> ’b upper_pd

upper_map :: (’a -> ’b) -> ’a upper_pd -> ’b upper_pd

upper_join :: ’a upper_pd upper_pd -> ’a upper_pd

typedef ’a lower_pd

lower_unit :: ’a -> ’a lower_pd

lower_plus :: ’a lower_pd -> ’a lower_pd -> ’a lower_pd

lower_bind :: ’a lower_pd -> (’a -> ’b lower_pd) -> ’b lower_pd

lower_map :: (’a -> ’b) -> ’a lower_pd -> ’b lower_pd

lower_join :: ’a lower_pd lower_pd -> ’a lower_pd

typedef ’a convex_pd

convex_unit :: ’a -> ’a convex_pd

convex_plus :: ’a convex_pd -> ’a convex_pd -> ’a convex_pd

convex_bind :: ’a convex_pd -> (’a -> ’b convex_pd) -> ’b convex_pd

convex_map :: (’a -> ’b) -> ’a convex_pd -> ’b convex_pd

convex_join :: ’a convex_pd convex_pd -> ’a convex_pd

convex_to_upper :: ’a convex_pd -> ’a upper_pd

convex_to_lower :: ’a convex_pd -> ’a lower_pd

Fig. 5. Powerdomain types and constants defined in HOLCF

For convenience, the library also provides set-style syntax for unit and plus, similar to the notation used
in this paper.

Along with the definitions of types and constants, the library provides a significant body of lemmas.
Each powerdomain type has an induction rule in terms of unit and plus. Rules about injectivity, strictness,
compactness, and ordering are provided for the constructors. Also, the functor and monad laws are provided
as lemmas.

4.1 Bifinite type class

HOLCF uses Isabelle’s axiomatic type class mechanism [16] to represent different kinds of domains. The
main axiomatic type classes in HOLCF are cpo (chain-complete partial orders) and pcpo (pointed cpos).
Unfortunately, the powerdomain constructions do not work over arbitrary cpos; they need some additional
structure. In order to formalize powerdomains in HOLCF, it was necessary to add a new axiomatic class
bifinite, which is a subclass of pcpo. I will have more to say about class bifinite in Section 5.
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As far as a user of the library is concerned, it does not matter how class bifinite is defined; the
important thing is that it should be preserved by all of type constructors that the user works with. In the
current version of Isabelle, instances are provided for all type constructors defined in the HOLCF library:
continuous function space, Cartesian product, strict product, strict sum, lifted cpos, and all three varieties
of powerdomains. Flat domains built from countable HOL types are instances of bifinite as well.

A known problem is that the current implementation of the domain package does not generate instances
of class bifinite for new types. In the current version of HOLCF, if a user wants to use a domain package–
defined type with powerdomains, it will be necessary to manually prove that the type is an instance of class
bifinite. Updating the domain package to work with the bifinite class is planned as future work.

4.2 Automation

To facilitate reasoning with powerdomains, the library provides various sets of rewrite rules that are designed
to work well together.

ACI normalization. Isabelle’s simplifier is set up to handle permutative rewrite rules. For any associative-
commutative operator, there is a set of three permutative rewrite rules that can convert any expression built
from the operator into a normal form (grouped to the right, with terms sorted according to some term-
ordering).[2] Two of the AC rewrites are simply the associativity and commutativity rules. The third is the
left-commutativity rule. For ACI rewriting, we need a total of five rules: the three AC rewrites, plus the
idempotency rule, and also (analogous to left-commutativity) left-idempotency.

(xs ∪ ys) ∪ zs = xs ∪ (ys ∪ zs)
ys ∪ xs = xs ∪ ys

ys ∪ (xs ∪ zs) = xs ∪ (ys ∪ zs) (4)
xs ∪ xs = xs

xs ∪ (xs ∪ ys) = xs ∪ ys

Permutative rewriting using the ACI rules results in a normal form where expressions are nested to
the right, and the terms are in sorted order, with no exact duplicates. In HOLCF, this normalization
can be accomplished for the convex powerdomains by invoking (simp add: convex_plus_aci). Similarly,
upper_plus_aci and lower_plus_aci may be used with upper and lower powerdomains, respectively.

Solving inequalities. A common subgoal in a proof might be to show that one powerdomain expression
approximates another. For each variety of powerdomain, there is a set of rewrites that can be used to
automatically reduce an inequality on powerdomains down to inequalities on the underlying type.

{x}] v {y}] ⇐⇒ x v y

xs v (ys ∪] zs) ⇐⇒ (xs v ys) ∧ (xs v zs) (5)
(xs ∪] ys) v {z}] ⇐⇒ (xs v {z}]) ∨ (ys v {z}])

{x}[ v {y}[ ⇐⇒ x v y

(xs ∪[ ys) v zs ⇐⇒ (xs v zs) ∧ (ys v zs) (6)
{x}[ v (ys ∪[ zs) ⇐⇒ ({x}[ v ys) ∨ ({x}[ v zs)

{x}\ v {y}\ ⇐⇒ x v y

{x}\ v (ys ∪\ zs) ⇐⇒ ({x}\ v ys) ∧ ({x}\ v zs) (7)
(xs ∪\ ys) v {z}\ ⇐⇒ (xs v {z}\) ∧ (ys v {z}\)

52



For the upper and lower powerdomains, each has a set of three rewrite rules that covers all cases of
comparisons. For example, invoking (simp add: upper_pd_less_simps) will rewrite {x, y}] v {y, z}] to
x v z ∨ y v z, using the rules in Eq. (5). Similarly, (simp add: lower_pd_less_simps) uses the rules in
Eq. (6) to simplify inequalities on lower powerdomains.

For the convex powerdomain, the three rules in Eq. (7) are incomplete: They do not cover the case
of (xs ∪\ ys) v (zs ∪\ ws). To handle this case, we will take advantage of the coercions from the convex
powerdomain to the upper and lower powerdomains, along with the following ordering property:

xs v ys ⇐⇒ to upper(xs) v to upper(ys) ∧ to lower(xs) v to lower(ys) (8)

The rule set convex_pd_less_simps includes all rules from Eqs. (5)–(7), and a suitably instantiated Eq. (8)
to cover the missing case.

Using inequalities to solve non-trivial equalities. The ACI rewriting can take care of many equalities
between powerdomain expressions, but the inequality rules can actually solve more. For example, using the
assumptions x v y and y v z, we will prove that {x, y, z}\ = {x, z}\. By antisymmetry, we can rewrite this
to the conjunction ({x, y, z}\ v {x, z}\) ∧ ({x, z}\ v {x, y, z}\). Next, we can use the method (simp add:
convex_pd_less_simps), and this subgoal reduces to (y v x∨y v z)∧ (x v y∨z v y). Finally, this is easily
discharged using the assumptions x v y and y v z.

5 Implementation

The development of powerdomains in HOLCF follows the ideal completion construction presented by Gunter
and Scott in [5, §5.2]. Some alternative constructions are also given by Abramsky and Jung in [1, §6.2]; the
ideal completion method was chosen because it required the formalization of a minimal amount of supporting
theories, and it offered good opportunities for proof reuse.

5.1 Class of bifinite domains

The powerdomain construction used in HOLCF makes use of an alternative representation of domains,
where we just consider the set of compact (i.e. finite) values, rather than the whole domain.[1, §2.2.6] For
this representation to work, we restrict our attention to algebraic cpos, where every value can be expressed
as the limit of its compact approximants. This means that in an algebraic cpo the set of compact elements,
together with the domain ordering on them, fully represents the entire domain. We say that the set of
compact elements forms a basis for the domain, and the entire domain is a completion of the basis.

Most of HOLCF has been designed using the type class pcpo of pointed complete partial orders. However,
pcpo types are not algebraic in general, and the ideal completion construction only works with algebraic cpos.
Therefore it was necessary to add a new type class to HOLCF.

The class bifinite is defined as follows. It fixes a sequence of functions approxn, and assumes four class
axioms:

1. The approxn form a chain
2. The least upper bound (

⊔
n approxn) is the identity function

3. Each approxn is idempotent
4. Each approxn has finite range

The HOLCF bifinite class actually corresponds to the “ω-bifinite” domains, which have a countable basis;
the usual definition of “bifinite” [1, §4.2] has no such restriction, and would be equivalent to allowing any
directed set of approx functions, rather than a countable chain. Bifinite domains were originally defined by
Plotkin as limits of expanding sequences of finite posets, who used the name “SFP domain”.[12]

Of all the various classes of domains to choose from, the definition of bifinite was chosen for the
following reasons:

53



– All bifinite types are algebraic: Every bifinite type has a countable basis of compact elements, given
by the union of the ranges of the approx functions.

– In bifinite types, every directed set contains a chain with the same limit. This means that in class
bifinite, the notions of directed-continuity and chain-continuity coincide. This is important for fitting
the ideal completion construction (which uses directed sets) into HOLCF (which defines everything with
chains).

– The bifinite class is closed under all type constructors used in HOLCF, including the convex power-
domain.

5.2 Ideal completion

Given a basis 〈B,�〉, we can reconstruct the full algebraic cpo. The standard process for doing this is called
ideal completion, and it is done by considering the set of ideals over the basis:

Definition 2. A set S is an ideal with respect to partial preorder relation (�) if it has the following prop-
erties:

– S is nonempty: ∃x. x ∈ S
– S is downward-closed: ∀x y. x � y −→ y ∈ S −→ x ∈ S
– S is directed (i.e. has an upper bound for any pair of elements):
∀x y. x ∈ S −→ y ∈ S −→ (∃z. z ∈ S ∧ x � z ∧ y � z)

A principal ideal is an ideal of the form {y. y � x} for some x, denoted ↓x.

The set of all ideals over 〈B,�〉 is denoted Idl(B); when ordered by subset inclusion, Idl(B) forms an algebraic
cpo. The compact elements of Idl(B) are exactly those represented by principal ideals.

Note that the relation (�) does not need to be antisymmetric. For x and y that are equivalent (that is,
both x � y and y � x) the principal ideals ↓ x and ↓ y are equal. This means that the ideal completion
construction automatically takes care of quotienting by the equivalence induced by (�).

The ideal completion construction is formalized in HOLCF using Isabelle’s locale mechanism.[8] The
library defines a locale preorder that fixes a type corresponding to the basis B, and a preorder relation
on that type; within this locale, a predicate ideal is defined. Within the preorder locale, the main lemma
proved is that the union of a chain of ideals is itself an ideal—which shows that the ideal completion is a
cpo.

All three of the powerdomains in the library are defined by ideal completion. For an basis, the library
defines a type ’a pd_basis, which consists of nonempty, finite sets of compact elements of type ’a. Following
[5, §5.2], each of the three powerdomains is defined as an ideal completion over the same basis, but each uses
a different preorder relation:

a �[ b ⇐⇒ ∀x ∈ a. ∃y ∈ b. x v y

a �] b ⇐⇒ ∀y ∈ b. ∃x ∈ a. x v y (9)
a �\ b ⇐⇒ a �[ b ∧ a �] b

5.3 Continuous extensions of functions

A continuous function on an algebraic cpo is completely determined by its action on compact elements. This
suggests a method for defining continuous functions over ideal completions: First, define a function from the
basis B to a cpo C such that f is monotone, i.e. x � y implies f(x) v f(y). Then there exists a unique
function f̂ : Idl(B) → C that agrees with f on principal ideals, i.e. for all x, f̂(↓x) = f(x). We say that f̂ is
the continuous extension of f .

On top of the preorder locale, HOLCF defines another locale ideal_completion which fixes a second
type corresponding to Idl(B). It also fixes a function principal of type B → Idl(B). Within this locale, a
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function basis_fun is defined, which takes a monotone function f as an argument, and returns the continuous
extension f̂ .

The continuous extension is defined by mapping the function f over the input ideal, and then taking the
least upper bound of the resulting directed set: f̂(S) =

⊔
x∈S f(x). Ordinarily, the result type C would need

to be a directed-complete partial order to ensure that this least upper bound exists; however, the HOLCF
library uses a different method which allows C to be any chain-complete partial order.

HOLCF defines a third locale basis_take, which fixes a chain of take functions over the basis elements—
it is like a version of the bifinite class for bases. The basis_take locale ensures that the ideal completion
Idl(B) is a bifinite domain. It is also used with the definition of basis_fun to construct a chain with the
same limit as the directed set

⊔
x∈S f(x), which allows C to be an arbitrary chain-cpo.

The basis_fun combinator is used to define the powerdomain constructors unit and plus in terms of the
singleton and union operations on the pd_basis type. The bind operators are also defined using basis_fun,
in terms of a finite-set fold operation on pd_basis. Finally, to prove the bifinite class instance, the approx
functions are also defined with basis_fun, in terms of the take functions on pd_basis.

5.4 Transferring properties to the completed domain

Once the powerdomain types are defined using ideal completion, with operations defined by continuous
extension, the final step is to prove the relevant lemmas. For example, consider the lower powerdomain law
xs v xs ∪[ ys. In the case where xs and ys are both compact (i.e. represented by principal ideals) the proof
follows easily from the definitions. Since xs v xs ∪[ ys is an admissible predicate on both xs and ys, this is
in fact sufficient to show that it holds for all xs and ys.

Other properties are more tricky to transfer. For example, consider the rule {x}\ v {y}\ =⇒ x v y. As
before, this property is easy to prove for compact x and y. However, we cannot immediately infer that it
holds for all x and y, since (because of the implication) this is not an admissible predicate.

The proof of {x}\ v {y}\ =⇒ x v y requires a few extra steps, making use of the approx functions
from the bifinite class: To prove x v y, it will be sufficient to show that for all n, approxnx v approxny.
Now, from {x}\ v {y}\ we have approxn{x}\ v approxn{y}\, by monotonicity; then from the definition of
approx on the convex powerdomain, this simplifies to {approxnx}\ v {approxny}\. Finally, since approxnx
and approxny are compact, we can easily show that approxnx v approxny. All of the rules listed in Eqs.
(5)–(8) use a similar proof.

6 Related work

There are several theorem prover formalizations of domain theory in existence. The current development is
built on top of HOLCF, originally implemented by Regensburger, and later extended by many others.[13,9]
HOLCF does not formalize very many different classes of domains; most concepts are defined in terms
of pointed chain-complete partial orders and chain-continuity, which is the minimum amount of structure
required to define a fixed-point combinator. It is intended to be used as a library for users to define datatypes
and recursive functions and algorithms on them.

In the mid-1990s a group from the University of Ulm formalized parts of domain theory in PVS.[3]
Its design goals appear to be similar to HOLCF—it includes just enough of domain theory to formalize
fixed-points and fixed-point induction.

A formalization of domain theory with rather different goals is“Elements of Domain Theory”, implemented
in Coq in the 1990s by Kahn. It is based on the definitions and lemmas from [7]. This development defines
several classes of domains, including directed-complete partial orders, omega-algebraic cpos, and bounded-
complete domains. However, it does not define any type constructors. In contrast to HOLCF, it does not
appear to be application-oriented; it seems the main intent was to formalize the textbook-style definitions
and lemmas from the paper.

Other formalizations use a different logic to ensure that all functions are continuous by construction, such
as the LCF system by Paulson.[11] Another interesting approach is taken by Reus with his development of
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synthetic domain theory in LEGO.[14] Instead of defining classes of domains in terms of a domain ordering,
it starts by introducing a subobject classifier, which is characterized by a collection of axioms. The soundness
of the construction is justified by a separate model.

Relevant uses of powerdomains include modeling interleaved and parallel computation. Papaspyrou uses
the convex powerdomain, together with the state and resumption monad transformers, to model impure
languages with unspecified evaluation order.[10] Along similar lines, Thiemann used a type of state monad
built on top of powerdomains to reason about concurrent computations.[15] The monad transformers used
in these works, specifically the resumption monad transformer, have been studied in HOLCF by Huffman,
et al.[6]

7 Conclusion and future work

The powerdomain library described here is included as part of Isabelle2008 theorem prover. It can already
be used to prove properties of simple nondeterministic algorithms, with automation for certain kinds of
subgoals. Future work will focus on better integration with the HOLCF domain package: Bifinite class
instances must be generated for all new datatypes. Also, the domain package needs to be extended to allow
recursive type definitions involving powerdomains—this will enable the use of powerdomains for modeling
parallel computation and concurrency.
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