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Abstract. LISP interpreters provide a clean abstraction over machine details such as bounded arith-
metic and array-like memory. We describe our approach and partial results in verifying LISP interpreters
implemented in ARM, PowerPC and x86 machine code.

1 Introduction

The aim of this project is to create verified machine-code implementations of interpreters for a language
similar to LISP 1.5 [4]. The target is to deliver verified LISP interpreters in ARM, PowerPC and x86
machine code. Benefits:

1. LISP interpreters provide a clean abstraction of mathematically unclean machine specific details (bound-
edness of arithmetic, array-like memory etc.). Hence future program proofs can assume a clean abstrac-
tion.

2. Subsets of LISP might turn out to be good targets for compilers from proof tools such as HOL4, Isabelle
and Coq.

3. Verified LISP interpreters can serve as a proved-to-be-correct environments for evaluating ACL2 s-
expressions.

The fact that the proof goes down to detailed models of commercial machine languages distinguishes our
project from the VLISP project [1] which stopped at the algorithm level. All proofs are carried out within
HOL4 [7].

2 Approach

Our three-stage approach for creating verified machine-code implementations of LISP interpreters:

a. write efficient machine-code implementations of primitive operations over s-expressions held in a garbage
collected heap (cons, car, cdr, eq, + etc.).

b. verify primitive heap operations with aid of automatic decompilation into recursive HOL functions (a
form of automatic reverse engineering).

c. automatically plug together verified elementary operations to create verified LISP interpreters (a form
of proof-producing compilation).

The key research challenge lies in steps b and c. The solutions we are investigating are centered around a
new approach for proving (fully-automatically) that the functional behavior of machine code is described by
a recursive function. An illustration of this proof technique is given in the next section. Subsequent sections
describe its applications to automatic proof-producing decompilation and compilation. Our approach to
decompilation is detailed in Myreen et al. [6]. The compilation work is a result of collaboration with Li,
Slind and Owens [2].



2.1 Proving that a recursive function is executed by machine code

We illustrate our proof technique with an example. The illustrated technique can be applied one loop at
a time. Subsequent proofs can use previously proved specification, hence nested loops, procedure calls and
even some non-properly nested loops can be handled.

Consider the following ARM code, which repeatedly subtracts 10 from register 1 until its (unsigned)
value is less than 10,

L: cmp r1,#10 compare r1 with 10
subcs r1,r1,#10 subtract 10 from r1, if cmp gave 10 ≤ r1
bcs L jump to top, if cmp gave 10 ≤ r1

The following function describes the behavior of the above ARM code.

f(x) = if 10 ≤ x then f(x−10) else x (1)

The correspondence between f and the ARM code (call it code) can be stated as follows. Let pc p assert
that the program counter has value p and similarly let r1 x state that register 1 has value x.

{ r1 x ∗ pc p } code { r1 f(x) ∗ pc (p+3) } (2)

Informally this machine-code specification [5, 6] states: given a state where register 1 has value x and the
program counter is p, code will reach a state where register 1 has value f(x) and the program counter is p+3.

Such a theorem can be proved automatically in two steps: first compose specifications for the individual
instructions; and then instantiate a special loop rule. The result of composing the specifications of the
individual instructions produces two specifications:

10 ≤ x ⇒ { r1 x ∗ pc p } code { r1 (x−10) ∗ pc p } (3)
x < 10 ⇒ { r1 x ∗ pc p } code { r1 x ∗ pc (p+3) } (4)

The desired specification (2) is a consequence of the following loop rule instantiated with res = λx. r1 x ∗
pc p and res’ = λx. r1 x ∗ pc (p+3):

∀res res’ c. (∀x. G(x) ⇒ {res x} c {res F (x)}) ∧
(∀x. ¬G(x) ⇒ {res x} c {res’ D(x)}) ⇒
(∀x. pre(x) ⇒ {res x} c {res’ tailrec(x)})

Here tailrec is the generic form of any tail-recursion and pre ensures termination:

tailrec(x) = if G(x) then tailrec(F (x)) else D(x)
pre(x) = if G(x) then pre(F (x)) else true

tailrec was defined using a trick by Moore and Manolios [3] and pre is defined as pre(x) = ∃n. ¬G(step(n, F, x))
with step defined recursively as:

step(0, F, x) = x

step(n+1, F, x) = step(n, F, F (x))

The proof of the loop rule above is described in Myreen et al. [6].

2.2 Automatic reverse engineering – decompiling into HOL

Machine code is a sequence of machine words, e.g. the ARM program used in the section above is the
following in hexadecimal encoding:

E351000A 2241100A 2AFFFFFC

When decompiling into HOL, we start with a sequence of machine words representing the code. The goal is
to construct a HOL function that describes the effect of the code, and to prove automatically that the HOL
function corresponds to the machine code. Decompilation can be fully automated as follows:
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1. Automatically derive basic specifications for each individual instruction.
2. Analise the specifications and from them generate a tail-recursive function describing the code, e.g. the

following f is generated for the code above:

f(r1) = if 10 ≤ r1 then f(r1−10) else r1

3. Run the proof procedure described above to prove that f is executed by the original machine code.

2.3 Automatic proof-producing compilation

Given a function f that operates over machine words, e.g.

f(x) = if x < 10 then x else f(x−10)

we can construct (and automatically prove it equivalent to) a function g where variable names, let-expressions
and if-statements correspond to machine code.

g(r1) = if r1 < 10 then r1 else
let r1 = r1−10 in

g(r1)

Such functions are easy to turn into assembly code, which can then be turned into machine code by off-the-
shelf assemblers. The assembler-generated machine code is proved correct by the automation described in
Section 2.1.

3 Resulting specification

The proof automation described above is based on automatically composing specifications to construct cor-
rectness theorems. By default, the initial specifications are automatically derived specification for individual
machine instructions. However, the user can instead supply the compiler/decompiler with alternative speci-
fication in order to build on previously proved specifications.

We make use of this feature for implementation of LISP interpreters. First an abstract data-type was
defined for s-expressions: Dot x y is a pair, Num i is an unbounded integer i, and Str s is a character string
s. Some basic operations:

car (Dot x y) = x

cdr (Dot x y) = y

ltype (Num w) = Num 0
ltype (Str s) = Num 1

ltype (Dot x y) = Num 2

size (Num w) = 0
size (Str s) = 0

size (Dot x y) = 1 + size x + size y

A new resource specification heap was defined which relates variables task, exp, x, y, s, env of the new type
to concrete memory representations using a coupling invariant machine repr. Here a is the address of the
heap and l is its capacity.

heap (a, l) (task, exp, x, y, s, env) =
∃r3 r4 r5 r6 r7 r8 f.

r3 r3 ∗ r4 r4 ∗ r5 r5 ∗ r6 r6 ∗ r7 r7 ∗ r8 r8 ∗ r9 r9 ∗ memory f ∗
machine repr (task, exp, x, y, s, env, l) (r3, r4, r5, r6, r7, r8, a, f)
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Machine-code implementations for basic LISP operations were verified using decompilation followed by
some manual proofs, e.g. ARM code for car of exp:

ltype exp = Num 2 ⇒
{ heap (a, l) (task, exp, x, y, s, env) ∗ pc p }

p : E5933000
{ heap (a, l) (task, (car exp), x, y, s, env) ∗ pc (p+1) }

A memory allocator with a built-in Cheney-collector was used to implement creation of a new pair Dot x y.
The precondition of this operation requires the heap to have enough space to accommodate a new cons-cell.

(size task + size exp + size x + size y + size s + size env) < l ⇒
{ heap (a, l) (task, exp, x, y, s, env) ∗ pc p }

p : ... the allocator code ...

{ heap (a, l) (task, (Dot x y), x, y, s, env) ∗ pc (p+87) }
When the above specifications were supplied to the compiler it knows what machine code to generate for
two new commands: one for calculating car of exp

let exp = car exp in

and one for producing a new Dot-pair:
let exp = Dot x y in

Once the compilers language has been extended with sufficiently many such primitive operations, a LISP
interpreter can be compiled using the compilation technique from above, since our compilation approach
essentially only plugs together previously proved specifications. The top-level specification function defining
a simple LISP interpreter lisp eval is sketched in Figure 1 (on the following page). The correctness theorem
will be of the form:

lisp eval pre(task, exp, x, y, s, env) ⇒
{ heap (a, l) (task, exp, x, y, s, env) ∗ pc p }

p : ... code ...

{ heap (a, l) (lisp eval(task, exp, x, y, s, env)) ∗ pc (p+code length) }
Here lisp eval pre is an automatically generated predicate which has collected the various side-conditions
that need to be true for proper execution of the machine-code implementations, i.e. lisp eval pre is a function
which returns true only if the input makes lisp eval terminate and the capacity of the heap is not exceeded
during execution for this input.
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TASK_EVAL = NUM 0

TASK_CONT = NUM 1

LISP_EVAL0 (task,exp,x,y,s,env) =

if x = STR "’" then

let task = TASK_CONT in

(task,exp,x,y,s,env)

else

...

LISP_EVAL1 (task,exp,x,y,s,env) = ...

LISP_EVAL2 (task,exp,x,y,s,env) = ...

LISP_LOOKUP (exp,x,y,env) = ...

LISP_POP (task,x,y,s) = ...

LISP_EVAL (task,exp,x,y,s,env) =

if task = TASK_EVAL then

let task = TASK_CONT in

let x = LTYPE exp in

if x = NUM 0 then (* exp is NUM *)

LISP_EVAL (task,exp,x,y,s,env)

else if x = NUM 1 then (* exp is STR *)

let (exp,x,y,env) = LISP_LOOKUP (exp,x,y,env) in

LISP_EVAL (task,exp,x,y,s,env)

else (* if x = NUM 2 then, *) (* exp is DOT *)

let (x,exp) = (CAR exp, CDR exp) in

let (exp,y) = (CAR exp, CDR exp) in

let (task,exp,x,y,s,env) = LISP_EVAL0 (task,exp,x,y,s,env) in

LISP_EVAL (task,exp,x,y,s,env)

else (* if task = TASK_CONT then *)

let (task,x,y,s) = LISP_POP (task,x,y,s) in

if x = STR "nil" then (* evaluation complete, exit *)

(task,exp,x,y,s,env)

else

if task = STR "nil" then (* one arg has been evaluated *)

let (task,exp,x,y,s,env) = LISP_EVAL1 (task,exp,x,y,s,env) in

LISP_EVAL (task,exp,x,y,s,env)

else (* two args have been evaluated *)

let (task,exp,x,y,s,env) = LISP_EVAL2 (task,exp,x,y,s,env) in

LISP_EVAL (task,exp,x,y,s,env)

Fig. 1. Parts of the definition of lisp eval in HOL4.
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