A Coq tutorial for confirmed Proof system users

Yves Bertot

August 2008
Get it at http://coq.inria.fr
pre-compiled binaries for Linux, Windows, Mac OS,
commands: coqtop or coqide (user interface),
Also user interface based on Proof General,
Historical overview and developers: refer to the introduction of the reference manual.
Libraries and Uses

- Numbers (nat, Z, rationals, real), Strings, Lists, Finite Sets and maps,
- User contributions
 - Constructive mathematics (R. U., Nijmegen),
 - Electronic banking protocols (Trusted Logic, Gemalto),
 - Programming languages semantics and tools (Compcert, Möbius, Princeton, U. Penn, U. C. Berkeley),
 - Large prime number certification, elliptic curves,
 - Geometry: elements, algorithms,
- A book with many examples and exercises: the Coq’Art (Springer, 2004),
 http://www.labri.fr/Perso/~casteran/CoqArt
A programming language

- Typed lambda calculus with inductive and co-inductive data-types,
- Pattern-matching,
- Dependent types,
- No side-effect, no exception: pure functional programming,
- Recursion safeguard: structural recursion,
- Special notations for numbers and lists.
A few inductive types

- Inductive nat : Set := 0 | S (n:nat).
- Inductive bool : Set : true | false.
- Obtained when typing Require Import ZArith:
 Inductive positive : Set :=
 xI (p:positive) | xO (p:positive) | xH.
- Inductive Z : Set :=
 Z0 | Zpos (p:positive) | Zneg (p:positive).
- Obtained when typing Require Import List:
 Inductive list (A:Type) : Type :=
 nil | cons (a:A)(l:list A).
Recursive definitions and pattern-matching

- The \texttt{Fixpoint} command,
 \begin{verbatim}
 Fixpoint app (A:Type) (l1 l2:list A) : list A :=
 match l1 with
 nil => l2
 | cons a l1' => cons a (app l1' l2)
 end.
 \end{verbatim}
- reminiscent of Ocaml’s pattern-matching (using => to separate sides of rules),
- Recursive calls only on variables out of pattern-matching,
 - for one argument that can be guessed by Coq,
- Structural recursion,
- More forms of recursion, to be studied later.
Example recursive function

- The following function computes whether the input is even
- Patterns need not be simple,
- They need to be linear (or will be read as such),

```coq
Fixpoint e_b (x:nat) : bool :=
  match x with
  | S (S x) => e_b x
  | O => true
  | _ => false
end.
```
Dependent types

- A distinguishing feature.
- Functions may return results in different types,
- The result type is chosen from the input (with a function, too),

\[
\text{Definition } T (b: \text{bool}) : \text{Type} := \text{if } b \text{ then nat else bool.}
\]

\[
\text{Definition } f (b: \text{bool}) : T b :=
\text{if } b \text{ return } T b \text{ then 0 else true.}
\]

- New notation for types: \(f : \forall b: \text{bool}, \ T b \)
Dependency in inductive types

- Several extensions:
 - Add dependency only in constructors: dependent records,
 - Define families of types,
 - Mix the two aspects.
Inductive bt : Type := Cbt b (v:T b).

The following returns the second component of a `bt` pair, or its even value when this second component is a number.

Definition g(c:bt) : bool :=
 let (b, v) := c in
 (if b return T b -> bool
 then fun v:nat => e_b v
 else fun v:bool => v) v.
Inductive families

- An inductive definition may not construct one type but a family of types,
- Examples: \(\text{list} : \text{Type} \rightarrow \text{Type},\)
 \(\text{vector} : \text{Type} \rightarrow \text{nat} \rightarrow \text{Type}\)

\[
\text{Inductive list (A:Type) : Type :=}
\quad \text{nil} \mid \text{cons} (a:A) (l:list A).
\]

\[
\text{Inductive vector (A:Type) : nat -> Type :=}
\quad \text{Vnil} : \text{vector A 0}
\mid \text{Vcons} : \forall n, A \rightarrow \text{Vector A n} \rightarrow \text{Vector A (S n)}.
\]

- Beware: even simple functions on type \text{vector} are a challenge to write.
- Better representation of vectors described later.
Explicit polymorphism and implicit parameters

- In usual functional programming languages, polymorphism is implicit,
- type variables are universally quantified by default,
- Here polymorphism is explicit:
 \(\text{cons} : \forall A : \text{Type}, A \rightarrow \text{list } A \rightarrow \text{list } A \)
- The first argument of \(\text{cons} \) is declared \text{implicit}.
- Should not be written by the user, but guessed at type-verification time,
- The same for \(\text{nil} \), but type information guessed from the context,
- Implicit argument mechanism is overridden by writing \(@\text{cons} \), \(@\text{nil} \),
- Notations: \(a::tl \) is \(\text{cons } a \; tl \), also \(@\text{cons} _ a \; tl \).
Logic and proofs

- Programming and constructing proofs are the same activity in Coq,
- The programming language is used directly to represent logical statements,
- Some types are reserved for logical reasoning,
- Because of explicit typing, terms contain redundant information,
- A tactic language is provided to avoid constructing terms by hand.
The Curry-Howard isomorphism

- Read arrows as implications,
- Read dependent types as universal quantifications,
- Read types as logical formula,
- Read “t has type T” as “t is a proof of T”,
- Read some inductive types families as logical connectives,
- Functions are total, type $A \rightarrow B$ can be read as “if you have a proof of A, you can construct a proof of B”,
- Reserve a collection of types (a sort) for logical propositions Prop.
Logical connectives

Inductive and (A B:Prop) : Prop :=
 conj : A -> B -> and A B.

Definition proj1 (A B:Prop) (c: and A B) : A :=
 match c with conj p1 _ => p1 end.

- Notation : A \land B for and A B,
- The same for \lor (disjunction), False, \neg (negation),
Inductive representation of order

Inductive le (n:nat) : nat -> Prop :=
 le_n : le n n
| le_S : forall m, le n m -> le n (S m).

Fixpoint le_ind (n:nat)(P:nat->Prop)
 (Hn : P n)(HS : forall m, le n m -> P m -> P (S m))
 (p : nat)(np : le n p) : P p :=
 match np in le _ x return P x with
 le_n => Hn
 | le_S m nm => HS m nm (le_ind n P Hn HS m nm)
 end.
Inductive representation of order

\[
\text{Inductive } \text{le} \ (n: \text{nat}) : \text{nat} \rightarrow \text{Prop} :=
\]
\[
\text{le}_n : \text{le} \ n \ n
\]
\[
| \text{le}_S : \forall m, \text{le} \ n \ m \rightarrow \text{le} \ n \ (S \ m).
\]

\[
\text{Fixpoint } \text{le}_\text{ind} \ (n: \text{nat})(P: \text{nat} \rightarrow \text{Prop})
\]
\[
(H_n : P \ n)(H_S : \forall m, \text{le} \ n \ m \rightarrow P \ m \rightarrow P \ (S \ m))
\]
\[
(m: \text{nat})(h: \text{le} \ n \ m) : P \ n :=
\]
\[
\text{match } h \ \text{in } \text{le} _ _ \ x \ \text{return } P \ x \ \text{with}
\]
\[
\text{le}_n \Rightarrow H_n : P \ n
\]
\[
| \text{le}_S \ m \ nm \Rightarrow H_S \ m \ nm \ (\text{le}_\text{ind} \ n \ H_n \ H_s \ m) : P \ (S \ m)
\]
end.
Inductive representation of equality

Inductive eq (A:Type)(x:A) : A -> Prop :=
 refl_equal : eq A x x.

Notation "x = y" := eq _ x y.

Definition eq_ind :
 forall (A:Type)(P:A->Prop)(x:A), P x ->
 forall y, x = y -> P y :=
 fun A P x px y q =>
 match q in @eq _ _ y return P y with
 refl_equal => px : P x
 end : P y.
Slides from here to section on co-recursion were not presented at the conference.
Introduction Programming Logic Prog.2 Corec. refl.

Classical and constructive logic

- Interpretation of arrows and universal quantification does not give provability for all formulas provable with truth tables,
- Example: Peirce’s law \(((A \rightarrow B) \rightarrow A) \rightarrow A\),
- Inductive connectives in their current form do not extend the logic,
- This logic is constructive,
- Advantage: constructive proofs contain algorithms,
- No logical inconsistency in using classical logic (by admitting excluded middle, \(\forall P, P \lor \neg P\), as in other systems),
Classical logic

- Separation of Prop and Type allows for this,
- The barrier is “weak elimination”: no case analysis on Prop inductive types to obtain Type values,
- \texttt{exists x, P x} means \textit{there is an x satisfying } P
 \{x \mid P x\} means \textit{a pair of an x and a certificate that it satisfies} P,
- In a constructive setting, the latter is existential quantification,
- Even in presence of excluded middle (for Prop types), values of the form \{x \mid P x\} can always be computed,
- Some other classical axioms may remove this property (axiom of definite description, axiom of choice).
Proofs: the Coq toplevel

- Basic categories of commands:
 - Definitions: Definition, Fixpoint, Inductive,
 - Queries: Search, Check, Locate,
 - Goal handling: Theorem, Goal, Lemma, Qed
 - Tactics (possibly preceded by a goal number), elim, intro, apply,

- Advanced features:
 - Notations and scopes,
 - General recursion,
 - Module system,
 - “Program” presentation of terms,
 - Canonical structures and type classes.
An example of proof

Lemma ex1 : forall a b:Prop, a \b -> b \a.
1 subgoal

parse 1 subgoal

forall a b : Prop, a \b -> b \a

ex1 < intros a b c.
1 subgoal

a : Prop
b : Prop
c : a \b

b \a
An example of proof (continued)

\[\ldots \]
\[c : a \land b \]
\[\ldots \]
\[\text{case } c. \]
\[\ldots \]
\[\ldots \]
\[\text{intros } ha \ ha. \]
\[\ldots \]
\[\text{ha : a} \]
\[\text{hb : b} \]
\[\ldots \]
...
exact hb.
...
ha : a
...

assumption.
Proof completed.
Qed.
intros a b c.
case c.
...
ex1 is defined
About tactics

- The tactic `apply` performs backward chaining with a theorem’s goal,
- The tactic `elim` looks systematically for a theorem shaped like an induction principle,
- The tactic `intro` can destructure inductive types,
- The tactics `change`, `simpl` replace the goal with a convertible one,
- The tactic `rewrite` uses equalities (hides a case analysis,
- Automatic tactics are provided for decidable fragments: `intuition`, `firstorder`, `ring`, `field`, `omega`.

Yves Bertot

A Coq tutorial for confirmed Proof system users
Programs as proofs

- Use tactics to develop algorithms,
- apply calls a function,
- case describes case analysis (with dependencies),
- elim describes a recursive computation,
- More complex tactics should be avoided.
Mixing algorithmic and logical content

- Inductive types can contain both data and proofs,
- Function can take as argument both data and proofs,
- Allow for partial functions,
- More expressive types,
- Examples follow.
Constructive disjunction

Inductive sumbool (A B:Prop) : Set :=
 left (h:A) | right (h:B).

Notation \{ A \} + \{ B \} := sumbool A B.

- Functions returning a `sumbool` type are like boolean functions,
- `sumbool` types can be used in proofs like disjunctions,
- Pattern matching on `sumbool` values increases the context.
Learning from experience

- Comparing pattern-matching constructs:

 \[
 \begin{align*}
 \text{match } \text{vb} \text{ with } \text{true} & \Rightarrow e_1 \mid \text{false} \Rightarrow e_2 \text{ end} \\
 \text{match } \text{vsb} \text{ with } \text{left } h \Rightarrow e'_1 \mid \text{right } h' \Rightarrow e'_2 \text{ end}
 \end{align*}
 \]

- \(e_1\) and \(e_2\) live in the same context,
- \(e'_1\) and \(e'_2\) are distinguished by the knowledge \(h\) and \(h'\),
- Extra knowledge used to
 - add knowledge to results,
 - justify calls to partial functions,
 - or discard unreachable cases.
certified values

- Sigma types: a generalization of constructive disjunction,
- Combine an index and a element of a family at this index,
- Usable like an existential statement,
- Like the earlier \texttt{bt}, but with a proof as second component.

\[
\text{Inductive sig } (A: \text{Type})(P:A \rightarrow \text{Prop}) : \text{Type} := \\
\text{exist } (x:A)(H:P \ x).
\]

\[
\text{Notation } "{ x : A \mid P \ x }" := \text{sig } A \ (\text{fun } x \Rightarrow P \ x).
\]
Better representation of vectors

- make sure that the length information can be forgotten easily,

Definition vector (A:Type)(n:nat) :=
{l:list A | length l = n}.
Example: insertion sort

Infix "\leq" := le.
Variable le_dec : forall x y, {x \leq y}+{y \leq x}.

Inductive sorted : list A -> Prop :=
 s0 : sorted nil
| s1 : forall x, sorted (x::nil)
| s2 : forall x y l, x \leq y -> sorted (y::l) ->
 sorted (x::y::nil).

Hint Resolve s0 s1 s2.
The sort function

Check insert.

: \(\text{A} \rightarrow \forall \text{l: list } \text{A}, \text{sorted } \text{l} \rightarrow \{ \text{l' } | \text{ sorted } \text{l}' \}. \)

Fixpoint sort (l:list A) : \{l’ | sorted l’\} :=

match l with
 nil => exist _ nil s0
| a::tl => let (l’, p) := sort tl in insert a l’ p
end.
The insert function

Definition insert : A -> list A -> {l’ | sorted l’}.
intros x l sl; assert
(S : {l’ | sorted l’ /
 forall b, sorted (b::l) -> b <= x -> sorted (b::l’)}).
induction l.
 sl : sorted nil
=========
{l’ | sorted l’ /
 ...}
exists (x::nil); auto.
insert (continued)

\[
\text{sl : sorted (a :: l)} \\
\text{IHl : sorted l \rightarrow \{l' : list A | sorted l' /\ ... \}} \\
\text{===} \\
\text{\{}l' : list A | sorted l' /\ ... \}\n\]

\text{case (le_dec x a); intros cmp.}

\text{exists (x:a:l).}

\text{cmp : x \leq a}

\text{=================================}

\text{sorted (x :: a :: l) /\}
\text{(forall b : A, sorted (b :: a :: l) \rightarrow b \leq x \rightarrow}
\text{sorted (b :: x :: a :: l))}

\text{auto.}
insert (continued)

\[
\begin{align*}
sl & : \text{sorted } (a :: l) \\
\text{IHl} & : \text{sorted } l \rightarrow \{l' \mid \text{sorted } l' \land \forall b, \ldots\} \\
cmp & : a \leq x \\
\end{align*}
\]

\[
\{l' \mid \text{sorted } l' \land \ldots\}
\]

assert \((\text{sl1 : sorted } l)\) by \((\text{inversion sl; auto})\).

destruct \((\text{IHl sl})\) as \([l' _ _ _ _ _ sl']\).

\[
\begin{align*}
sl' & : \forall b, \text{sorted } (b :: l) \rightarrow b \leq x \rightarrow \\
& \text{sorted } (b :: l'). \\
\end{align*}
\]
exists (a::l’).
split; try (intros b s’; inversion s’); firstorder.

(* unloading the recursion. *)
S : {l’ : list A |
 sorted l’ \ (forall b, sorted (b::l) -> ...)

=================================

{l’ : list A | sorted l’}
destruct S as [l’ [sl’ _]]; exists l’; exact sl’.
Proof completed.
Defined.
Require Import Arith Omega.

Definition le_dec : forall x y : nat, {x <= y}+{y <= x}.
...
Defined.

Eval vm_compute in
 let (l, _) := sort _ _ le_dec (1::7::3::2::nil).
 = 1 :: 2 :: 3 :: 7 :: nil
 : list nat
Extraction insert.

(** val insert : ('a1 -> 'a1 -> sumbool) -> 'a1 -> 'a1 list -> 'a1 list **)

let rec insert le_dec x = function
| Nil -> Cons (x, Nil)
| Cons (a, l0) ->
 (match le_dec x a with
 | Left -> Cons (x, (Cons (a, l0)))
 | Right -> Cons (a, (insert le_dec x l0)))
General recursion

- The foundation: *well-founded induction*,
- Directly describable as structural recursion over accessibility, viewed as an inductive proposition,
- Allow recursive calls only on predecessors for a well-founded relation,
- Discipline enforced by typing,
- Promotes types as strong specifications.

\[
\text{Fix: } \text{forall } (A : \text{Type}) \ (R : A \rightarrow A \rightarrow \text{Prop}), \\
\text{well}_\text{founded} \ R \rightarrow \\
\text{forall } P : A \rightarrow \text{Type}, \\
(\text{forall } x : A, \ (\text{forall } y : A, R \ y \ x \rightarrow P \ y) \rightarrow P \ x) \rightarrow \\
\text{forall } x : A, P \ x
\]
The Function command

- Add support for various forms of terminating recursion,
- Uniform syntax for structural, well-founded, or measure-based termination criteria,
- Induction principle (somehow: induction on the computation tree),
- Avoids dependent types in definitions (write ML-like code),
- Less complete than the basic well-founded induction.
Example with Function

Function sum (x:Z) \{measure Zabs_nat\} : Z :=
 if Z_le_dec x 0 then 0 else x + sum (x-1).

1 subgoal

forall (x : Z) (anonymous : \sim x <= 0),
Z_le_dec x 0 = right (x <= 0) anonymous ->
(Zabs_nat (x - 1) < Zabs_nat x)\%nat

intros x xneg _; apply Zabs_nat_lt; omega.
Defined.
Lemma sum_p : forall x, 0 <= x -> 2*sum x = x*(x+1).
2 subgoals

...
_x : x <= 0
=================================
 0 <= x -> 2 * 0 = x * (x + 1)
intros; assert (x = 0) by omega; subst x; auto.
...

_x : ~ x <= 0
IHx : 0 <= x - 1 ->
 2 * sum (x - 1) = (x - 1) * (x - 1 + 1)
=================================
 0 <= x -> 2 * (x + sum (x - 1)) = x * (x + 1)
...

>_x : ~ x <= 0
IHz : 0 <= x - 1 ->
 2 * sum (x - 1) = (x - 1) * (x - 1 + 1)

================================
 0 <= x -> 2 * (x + sum (x - 1)) = x * (x + 1)

intros;
replace (2*(x+sum(x-1))) with (2*x + 2*sum(x-1)) by ring;
rewrite IHz;[ring | omega].
Proof completed.
Qed.
Next four slides were presented at the conference.
Co-induction

- A different form of recursion,
- Data is not necessarily finite,
- Recursion is allowed only if data is being produced,
- Computation is lazy.

\[
\text{CoInductive Stream (A:Type) : Type := Scons (a:A)(s:Stream A).}
\]

Implicit Arguments Scons [A].
Infix "::" := Scons (at level 60, right associativity).

\[
\text{CoFixpoint zeros : Stream nat := 0::zeros.}
\]

\[
\text{CoFixpoint nums (n:nat) : Stream nat := n:::nums (n+1).}
\]
Lazy computation

Fixpoint explore (A:Type)(s:Stream A)(n:nat): A :=
 match s, n with
 a::_, 0 => a
 | _::t, S p => explore _ t p
end.
Implicit Arguments explore [A].

Definition nats := nums 0.
Time Eval vm_compute in explore nats 10000.
 = 10000 : nat
Finished transaction in 10. secs (...)
Time Eval vm_compute in explore nats 10000.
 = 10000 : nat
Finished transaction in 0. secs (...)

Yves Bertot
A Coq tutorial for confirmed Proof system users
Erastothene’s Sieve in 50 lines

(* Definitions of Stream, nums, take divides : 22 lines *)

Fixpoint bfilter (p:nat->bool)(n:nat)(s:Stream nat)
 {struct n} : nat*Stream nat :=
 match n with
 0 => let (a, tl) := s in (a, tl)
 | S k =>
 let (a, tl) := s in
 if p a then (a,tl) else bfilter p k tl
 end.

CoFixpoint filter (p:nat->bool)(k:nat)(s:Stream nat)
 : Stream nat :=
 let (a,tl) := bfilter p k s in a::filter p a tl.
Eratosthenes’s sieve, continued

CoFixpoint sieve (s:Stream nat) : Stream nat :=
 let (a,tl) := s in
 a::sieve (filter (not_divides a) a tl).

Definition primes := sieve (nums 2).

Eval vm_compute in take 20 primes.
 = 2 :: 3 :: 5 :: 7 :: 11 :: 13 :: 17 :: 19 :: 23 :: 29 :: 31 :: 37 :: 41 :: 43 :: 47 :: 53 :: 59 :: 61 :: 67 :: 71 :: nil
Slides beyond this one were not presented at the conference.
Co-Inductive predicates

- Predicates with “infinite proofs”,
- Same well-formedness criterion as co-recursive data,
 - Proofs actually not more infinite than proofs by induction,
Example of co-inductive predicates

CoInductive prime_spec : Stream nat -> Prop :=
 cp1 : forall a tl, prime a -> prime_spec tl ->
 prime_spec (a::tl).

CoInductive all_prime_spec (p:nat) : Stream nat -> Prop :=
 cp2 : forall a tl, p < a -> prime a ->
 (forall x, p < x < a -> ~prime a) ->
 all_prime_spec a tl ->
 all_prime_spec p (a::tl).

CoInductive bisimilar (A:Type) :
 Stream A -> Stream A -> Prop :=
 cb : forall a tl1 tl2, bisimilar tl1 tl2 ->
 bisimilar (a::tl1) (a::tl2).
Reflexion

- Define a function that computes inside the theorem prover,
- Establish a theorem the results of the function,
- Use the theorem to prove results,
- Approach used inside Coq for ring equalities,
- Our example: associativity.
Re-organizing binary trees

Require Import Arith.
Set Implicit Arguments.

Section fl.

Hypothesis assoc : forall x y z, op x (op y z) = op (op x y) z.

Inductive bin : Type := L (v:A) | N (x y : bin).

Function fl1 (x y : bin) struct x : bin :=
 match x with
 | L v => N (L v) y
 | N t1 t2 => fl1 t1 (fl1 t2 y)
 end.
Function \texttt{fl} (x : bin) struct x : bin :=
 match x with L v => L v | N t1 t2 => fl t1 (fl t2) end.

Function \texttt{it} (t:bin) struct t : A :=
 match t with
 L v => v | N t1 t2 => op (it t1) (it t2)
end.
Re-organizing binary trees (proofs)

Lemma fl1_s : forall t1 t2,
 it (fl1 t1 t2) = op (it t1) (it t2).
intros t1 t2; functional induction (fl1 t1 t2).

==============
 it (N (L v) y) = op (it (L v)) (it y)
auto.
IHb : it (fl1 t2 y) = op (it t2) (it y)
IHb0 : it (fl1 t1 (fl1 t2 y)) =
 op (it t1) (it (fl1 t2 y))
==============
 it (fl1 t1 (fl1 t2 y)) = op (it (N t1 t2)) (it y)
simpl; rewrite IHb0, IHb.
auto.
Qed.
Re-organizing binary trees (proofs)

Lemma fl_s : \(\forall t, \text{it} (\text{fl} \ t) = \text{it} \ t. \)
intros t; functional induction (fl t); auto.
rewrite fl1_s, IHb; simpl; auto.
Qed.

Lemma fl2 : \(\forall t1 \ t2, \text{it} (\text{fl} \ t1) = \text{it} (\text{fl} \ t2) \rightarrow \)
 \(\text{it} \ t1 = \text{it} \ t2. \)
intros t1 t2; repeat rewrite fl_s; auto.
Qed.

End fl.
Transforming problem into data

```
Ltac mkt f v :=
  match v with
  | (f ?X1 ?X2) =>
    let r1 := mkt f X1 with r2 := mkt f X2 in
    constr:(N r1 r2)
  | ?X => constr:(L X)
  end.

Ltac abstract_plus := intros;
  match goal with
  |- ?X1 = ?X2 =>
    let r1 := mkt plus X1 with r2 := mkt plus X2 in
    change (it plus r1 = it plus r2)
  end.
```
Example on a goal

Lemma ex1 : forall x y, 1 + x + 3 + y = (1 + x) + (3 + y).
abstract_plus.

=============
 it plus (N (N (N (L 1) (L x)) (L 3)) (L y)) =
 it plus (N (N (L 1) (L x)) (N (L 3) (L y)))

apply fl2 with (1 := plus_assoc).

=============
 it plus (fl (N (N (N (L 1) (L x)) (L 3)) (L y))) =
 it plus (fl (N (N (L 1) (L x)) (N (L 3) (L y))))

simpl fl.

=============
 it plus (N (L 1) (N (L x) (N (L 3) (L y)))) =
 it plus (N (L 1) (N (L x) (N (L 3) (L y))))

reflexivity.
Qed.
Topics not covered

- Subtyping: simulated with the help of coercions,
- Polymorphism: simulated with implicit arguments,
- Modularity,
- Defined equality: the Setoid approach,
- Type classes and canonical structures,
- small-scale reflection.