A Logic-based Framework for Attribute based Access
Control-

Lingyu Wang, Duminda Wijesekera} and Sushil Jajodia
Center for Secure Information Systems,
George Mason University, Fairfax VA 22030.
e-mail: {lwang3|dwijesekjjajodiaj@gmu.edu

ABSTRACT

Attribute based access control (ABAC) grants accesses to
services based on the attributes possessed by the requester.
Thus, ABAC differs from the traditional discretionary ac-
cess control model by replacing the subject by a set of at-
tributes and the object by a set of services in the access
control matrix. The former is appropriate in an identity-
less system like the Internet where subjects are identified by
their characteristics, such as those substantiated by certifi-
cates. These can be modeled as attribute sets. The latter
is appropriate because most Internet users are not privy to
method names residing on remote servers. These can be
modeled as sets of service options. We present a frame-
work that models this aspect of access control using logic
programming with set constraints of a computable set the-
ory [DPPRO0]. Our framework specifies policies as stratified
constraint flounder-free logic programs that admit primitive
recursion. The design of the policy specification framework
ensures that they are consistent and complete. Our ABAC
policies can be transformed to ensure faster runtimes.

Categories and Subject Descriptors

D.4.6 [Security and Protection|: Access controls

General Terms
Security

Keywords

attribute based access control, constrained logic program-
ming with sets

*This work was partially supported by the National Science
Foundation under grant CCR-~0113515.
TThanks to William H. Winsborough for valuable comments

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

FMSE'04, October 29, 2004, Washington, DC, USA.

Copyright 2004 ACM 1-58113-971-3/04/0010...$5.00.

45

1. INTRODUCTION

Open environments such as the Internet where service re-
questers are not identified by unique names depend upon
their attributes (usually substantiated by certificates) to
gain accesses to resources. In order to accommodate this
need, many important attribute based access control sys-
tems have been designed in the recent past [LMWO02b, BS00,
BS02, YWS00, YWS01, YWS03]. Also role based [SCFY96,
BS04] and flexible [JSSS01, BCFP03] access control systems
can be used to specify some aspects of attribute based access
policies by exploiting the indirection and the collectability of
permissions provided by roles. One of the important aspect
of attribute based access control policies is their ability to
specify accesses to a collection of services based upon a col-
lection of attributes processed by the requester. Thus the
nature of such collections and their properties determines
the expressibility of specifiable policies. Some systems such
as [LMWO02b] model these collections as sets (but with lim-
ited structural properties) and others as finite vectors of at-
tributes [BS00, BS02]. Yet others use roles as their primary
vehicle of collecting attributes and services. To the best of
our knowledge, there is no single model that uses sets as
data structures with their algebraic operations (i.e. U,N,\)
to specify attribute based policies. This paper does so by
using a version of computable set theory as a constraint sys-
tem in logic programming.

The version of set theory we use is CLP(SET), the heredi-
tarily finite and computable set theory developed by Dovier
et al. [DPPR00, DPR00, DPR9S8]. Hereditarily finiteness
refers to the fact that sets are constructed out of a finite
universe by applying operators such as U, N etc. Because
our policies refer to attributes and services, we use a two
sorted first order language with set variables. The chosen
constraint system ensures that set terms satisfy an equality
theory with algebraic identities such as the distributivity
of unions over intersections etc. As will be seen shortly,
because policies are written as stratified constraint logic
programs with recursion, they terminate as logic programs.
Also the specification language follows the blueprint of the
flexible access framework (FAF) [JSSS01], where conflict res-
olution and default policies are specifiable - thereby ensuring
the consistency and completeness of policies.

Fixed point semantics of constraint logic programs assigns
one of three truth values true, false and undetermined to ev-
ery predicate instance. This is unacceptable for an access
controller because every access request requires a unique yes
or no answer. But we show that the policies we allow are
always assigned either true or false. Additionally, constraint

logic programs that we use as policies have a NP complete
run time, that invite concerns about their utility by access
controllers. As a remedy, we show that our policies can
be rewritten to yield faster runtimes by applying an appro-
priate set of unfolding transformations that have the same
semantics and runtime advantages as materialized views.

The rest of the paper is organized as follows. Section 2
describes related work. Sections 3 and 4 provides the syn-
tax and semantics of our language. Section 5 describes ma-
terialization and policy transformation for execution time
efficiency. Section 6 concludes the paper.

2. RELATED WORK

The RT framework of Li et al. [LMWO02a] is a distributed,
identity-less access control specification framework where
each role specifies the roles that it contains and/or attributes
that are required for membership. They use the predicate
isMemeber (x,X) to model that x is a member of the role
X. Although the RT syntax does not explicitly support set
operations such as U,N, C,\, they have a notion of inter-
section roles to specify those attributes that are contained
in other roles defined using attribute sets. In contrast, hav-
ing set operations allows our policies to express set unions
and intersections in a more intuitive syntax satisfying struc-
tural identities expected of sets. Secondly, RT uses only
Horn clauses, thereby preventing the use of set difference
operator, consequently preventing from constructing differ-
ence roles, whereas we admit limited forms of negations in
rule bodies and allow the set difference operator. Further-
more RT is based on a monotonicity assumption where any
superset of a set of attributes automatically satisfy the re-
quirements specified by the set, which we do not require.
Nevertheless, RT addresses trust propagation and distribut-
ing access specifications that we do not have.

The work of Bonatti et al. [BS00, BS02] is another identity-
less access control system where credentials and services are
modeled as vectors of attributes. They support credential
and services hierarchies. Although the framework uses vec-
tors, their policies do not seemed to exploit attribute or-
dering. Thus, to the best of our understanding, vectors in
[BS00, BS02] behave like collections, that we model as sets.
In addition, policies of [BS00, BS02] are arranged in a three
level hierarchy. Using recursion, our framework can have a
hierarchy with many levels.

Yu et al. [YWS00, YWS01, YWS03] developed a service
negotiation framework for requesters and providers to grad-
ually expose their attributes. Fully instantiated attribute
sets are traded in [YWS03], extending [YWS01] to support
credentials with internal structure, although the problem is
not completely cast and resolved in logic.

Although we use the design blueprints of FAF [JSSS01], it
does not have set variables. Thus, this work can be consid-
ered as an enhancement of FAF to the domain of attribute
based policies.

3. SYNTAX

As stated, we use two sorts of sets to model attributes
and services in CLP(SE7T) [DPPR00, DPR00, DPR98]. The
constraint logic programming language we use to formalize
attribute based access control consists of terms constructed
the usual way from variables and functions. We also have
two kinds of predicates - those used to specify the compu-

tation domain and those used to specify its sub domain of
constraints. In addition to satisfying the usual boolean alge-
braic laws such as associativity, commutativity etc, one as-
pect of the hereditarily finiteness of CLP(SET) is that, these
sets satisfy the axiom of foundation in Zermelo-Fraenkel
(ZF) set theory [Kun80], which we exploit to ensure the
termination of all queries.

3.1 TheNature of Sets

Following Dovier et al. [DPPRO0], our language consists
of four sorts, two for attributes and two for services. They
are given as Ker,, Set,, Kers and Sets. Ker, and Kers
are the basic sorts for attributes and services. Set, and
Sets are for hereditarily finite sets constructed over Ker,
and Ker, respectively. Each sort has its own constants and
function symbols. We assume that Ker, and Kers has two
constant symbols 1, and L. These are useful in modelling
partial functions as our application domain requires them.
When clear from the context we drop the subscript and use
L for brevity. We assume that Set, and Set, has constants
0, and Qs respectively to denote the null sets of their re-
spective sorts. For brevity we drop the subscripts and use
() for both. To create sets of attributes and services we
have two binary function symbols {— | —}, and {— | —}s.
Their sorts are ({Kerq,Sete} W {Kerqe}) — {Set,} and
({Kers, Sets }w{Kers}) — {Sets} respectively. For brevity
when the subscript is clear from the context, we drop it and
use {— | =} for {— | —}a and {— | —}s. Intuitively, {a|X}
represents the set {a} U X. For brevity we also use {a} to
represent {a|0}.

EXAMPLE 1. Suppose a digital library provides services
for checking membership status, browsing and printing. Brows-
ing is specialized to the table of contents (ToC), abstracts
and file contents. Printing specializes to printing on letter
size and A4 paper. Thus the service hierarchy has digital
library service (dlS) as ils root with three children br,
(for browse) ckStat and print. Furthermore, the print
service has two children letter and A4, and the browsing
service consists of brToC, brdbs and brCont as children.
Accordingly, in this example, the service hierarchy is repre-
sented as the set of path names as {{dlS},{dls,br},{dlS,ckStat},
{dls,print}, {dls,br,brToC}, {dls,br,brAbs},{dls,br,
brCount}}. If there is likely to be any confusion about hav-
ing the same name repeated in the hierarchy, then we can
avoid that by using representation such as {parent, {child: },
{childz}, ..., {child,}}

Firstly, these sets of sets ... sets of elements are the hered-
itarily finite. Furthermore non-set elements are chosen from
a countable alphabet, although any single set constructed will
have only finitely many of them. Thus, semantically our
language of sets in CLP(SET) constructs hereditarily finite
sets over an uninterpreted Herbrand base.

Secondly, attributes of the requester (usually conveyed by
submitting credentials or certificates) can also be represented
as nested sets. We have two disjoint attribute hierarchies,
one for membership status and the other for payments. The
membership hierarchy is modeled by {patron, { patron,memb-
er},{patron,senior}, {patron, fellow}}. The payment hierar-
chy is modelled by { payment, {payment,dollar},{ payment,eu-

ro}}

Thirdly, Set, or Sets, can be used to create sets using
0, such as {0,{0}}. As will be seen shortly, we use such

nested sets to limit the recursive backtracking through rule
chains. We also use nested sets to code integers. For exam-
ple {{... {0}...}} where the empty set O is embedded in n
braces is used to represent the integer n. |

Following Dovier et al. [DPPRO00], we take {=,#,¢€,¢
,Us, s, ||, f} as our constraint predicates for each set sort -
namely Set, and Sets. In addition, C, N3, \ and their nega-
tions can be defined using the former, making all of them
available as constraint predicates. Here Us is the ternary
predicate X U3 Y = Z, An analogous explanation applies for
Ns. Similarly X || Y holds iff X NY = (. Our constraints
are conjunctions and disjunctions of constraint predicates.
In addition, we consider the following collection of (reserved)
predicate symbols that relate terms of Set, and Sets.

e cando(X,Y,+,Z) is a 4-ary predicate where X and Y’
are attribute and service set terms. The third attribute
is either + or — (We can use) and {0} to encode +
and - as sets). The fourth variable Z is a set term used
to encode the recursive depth. The intuitive reading
of cando(X,Y,+,Z) is that a holder of the attribute
set X is authorized/prohibited in using to services Y’
depending on the sign + or -. The nesting of the) says
the recursive depth. That is cando({adult,liveInVA},
{PG13,X},+,{0}) says that any holder of attributes
{adult,liveInVA} is entitled to the services {PG13,
X}, and this is stated as a fact derivable with one level
of backtracking.

e dercando(X,Y,+,Z) is a 4-ary predicate with the same
set of parameters as cando. The only differnce between
candoand dercandois that the latter can be used in
recursive rules.

e do(X,Y,+,Z) is a 4-ary predicate with the same set of
parameters as cando. do(X,Y,+,Z) expresses a final
authorization to permit/prohibit a holder of the at-
tribute set X is in using to services Y depending on
the sign + or -.

DEFINITION 1 (ABAC RULES AND POLICIES). ABAC
policies are constructed using reserved predicates and possi-
bly other application specific predicates as follows.

1. Rules using cando heads must be of the form

cando(X,Y, £, {0})< B where the body B must not have

any other reserved predicates. These are used to state
basic facts about granting/denying access to services.

2. Rules using dercando heads must conform to the fol-
lowing restrictions.

(a) dercando can appear in their bodies only posi-
tively.

(b) The bodies of a rule with a dercando head can

have cando and non-reserved predicates.

(c) Any rule with a dercando head must be of the

form given below where dercando(—,Y —, &,

Z1), ..., dercando(—,Y —, &, Z,) are the only oc-

currences of dercando in the body and L, are ei-

ther cando or any application specific (non-recur-

siwe) predicate. Here the - in predicate instances

such as dercando(—,Y —,+,Z1) means that the

term could be anything of the appropriate sort.

47

dercando(—, —, —, Z)
dercando(—,Y —, %+, Z1),...
dercando(—,Y —, %, Z,),
Z1€4,... Iy €L
Live Loy Z1 €2, In €2

—

(1)

3. Rules with a do(X,Y,+,Z), as their head must also
conform to the second restriction for dercando but can
have only dercando, cando or application specific (non-
recursive) predicates in their body.

4. The only rule with a do(—,—, —, —) head is of the form
do(X,Y, —,{Z})«—do(X,Y,+, Z), where the third at-
tribute is a negative sign.

Any finite collection of rules conforming to constraints (1)
through (3) and one rule (4) is said to be an ABAC policy.
We usually use P as a symbol for an ABAC policy.

EXAMPLE 2. A policy for the digital library hierarchies
in example 1 is that members can check their membership
status by submitting the membership ID or alternatively us-
ing their name and mother’s maiden name. Any member
can also browse the table of contents (toc). Senior members
and fellows are allowed to browse the abstracts and contents.
Printing is free for fellows, but others pay for printing priv-
ileges. Members paying in dollars print on letter quality
paper and those paying in euros print on A4 paper.

cando({y}, X, +,{0})

«—

(2)

memID(y), memStatus({y}, X).
cando({y, 2, {y}}, X, +,{0}) « (3)
isAName(y),isAName(z),
memMother(y, z), memStatus({y, z}, X)
dercando(X,Y,Z,{U}) <« (4)
cando(X,Y, Z,U)
(5)
dercando(U, {{dlS,br,brTOC} | X}, +,{Z}) « (6)

dercando(U, X, +,Z), X # 0

We have an application specific binary predicate
memStatus(—, —), with two set arguments, where
memStatus(X,Y) holds iff Y is the profile of the entity
identified by the attribute set X. For example, a user identi-
fied by the member ID where X = {1D1234} has the profile
Y = {senior —member, began —01—01—1960, paidTo—05—
05 — 2005, Address — Modena — Italy}. We use three other
application specific predicates memID(—), isAName(—),
and memMother(—, —). memID(x) is true if x is a mem-
ber, and isAName(x) holds iff x is a name. Appropriate
instances of
memMother(x,y) must exists at the access controller.

Rule (3) says that X is the membership status that can be
obtained for the attribute {y} (i.e. member ID). Rule (4)
says that X is the obtainable membership status for the at-
tributes {name, mothersname} pair. (Notice that {y,z{y}}
is used to model the ordered pair (y,z) as a set in ZF set

ds

r ckStat print patron payment
brToC brAbs brCont letter A4 member senior fellow dollar euro
Figure 1: An example of Attribute Hierarchies
dercando(U, {{dlS, br,brTOC},{dLS, br,br Abs},{dlS,br,brCont} | X},+,{Z}) < senior € X (7)

dercando(U, X, +, Z)

dercando(U, {{dLS, br,brTOC}, {dlS, br,br Abs}, {dlS, br,brCont} | X}, +,{Z}) «— fellow e X (8)

dercando(U, X, +, Z)

dercando({pay, {pay, dollar} | U}, {print, {print,letter} | X},+,Z) + dercando(U, X,+,Z’), (9)

fellow ¢ X, X £0,7" € Z

dercando({pay, {pay, euro} | U}, {print, {print, Ad} | X},+,Z) <+ dercando(U, X, +,2"), (10)

fellow ¢ X, X £0,7" € Z

dercando(U, {print | X},+,7Z) <« dercando(U, X,+,Z’), (11)

fellowe X, 2" € Z

do(U,X,+,Z) +« dercando(U, X,+,2"),2' € Z (12)
do(U, X, —,Z) « —do(U,X,+, 2'),2 €2 (13)

theory.) Notice that the membership status obtainable us-
ing rules (3)and (4) may not be the same, as we are in an
identity-less system. As seen, specified policies do not have
to divulge the same user profiles. Rule (5) facilitates using
information available in the cando predicates to be used in
recursive queries. Rule (7) permits any member (identified
by having a nonempty profile) to browse the table of contents
of the digital library. Similarly, rules (7) and (8) state that
senior members and fellows can browse abstracts and the
contents of the digital library. Rule (9) and (10) states that
in addition to other privileges, non-fellows can either pay
in dollars and obtain prints on letter paper or pay in euros
and obtain copies on A4 paper. Rule (11) says that fellows
can print, without paying. Conversely, the policy does not
state what paper must be used by them. If we wanted to
allow both kinds of paper, either inclusively or exclusively
then the rule (11) could be modified to rule (14) or rules
(15) and (16). Finally rules (12) and (13) applies the policy
of prohibiting any accesses that are not explicitly permitted
by the previous rules. Notice that the given policy explicitly
stratifies all instances of rules, where the strata are given
by the rank of the last variable of the head predicates. All
cando predicates belong to the first strata as the rank of its
first predicate {Q} is 1. All instances of dercando predicates
where the service term has browsing options have strata 3,
as the dercando head in rule (5) has strata 2, and therefore
any dercando instance from rules (7) through (8) has strata
3. Similarly, any dercando predicate where the service term
has a printing term has strata 4, as these come from rules
(9) through (11). Finally, according to rules (12) and (13),
all instances of do with a (+) third variable instance has
rank 5, and those with a (-) third variable instance has rank

6. But again, rules 7 through 11 can be recursive, giving
many other ranks for these predicates instances.

4. SEMANTICS

This section describes models of ABAC policies. As stated
in Definition 1, an ABAC policy consists of a finite collec-
tion of rules with cando, dercando and do(-,-,+,-) heads
and one rule with a do(-,-,(-),-) head. Of these rules, only
dercando rules are recursive. But as a constraint logic pro-
gram, it has a three valued Kripke-Kleene model [Kun87,
Fit85] where every predicate instance evaluates to one of
three truth values true, false or undefined. We will shortly
show that every query (a request) will evaluate to either
true or false, and therefore has only two truth values - en-
suring that every access request is either granted or denied.
Because we allow nested negative predicates, we need to in-
terpret negation. We can either use negation as failure or
constructive negation [Cha88, Cha89] as proposed by Fages
[FG96, Fag97]. This is because the third alternative namely
using constructive negation as proposed by Stuckey [Stu91,
Stu95] requires that the constraint domain be admissibly
closed. But Dovier shows that set constraints as we use
them in ABAC policies are not admissibly closed, and pro-
poses an alternative formulation to handle nested negations
[DPRO1]. Conversely, at the cost of requiring some unifor-
mity in computing negated subgoals of a computation tree,
Fages’s formulation does not require the constraint domain
to be admissibly closed [FG96, Fag97]. Formalities follow.
We first repeat some standard definitions in [Fit02] to clar-
ify notations. This enables us to describe a materilization
structure for three-valued models in section 5.2.

dercando(U, {print, {print, letter}, {print, Ad} | X}, +, Z)

dercando(U, {print, {print, letter} | X}, +, Z)

dercando(U, {print, {print, Ad} | X}, +,Z)

DEFINITION 2 (P*,Tp AND ®p T OPERATORS). Let P be

a logic program, and let P* be all ground instances of clauses
in P. We take A— as A and any ground atom A not in
the head of any rule as A«false. We now define two
and three valued truth lattices to be 2 = ({1, F}, <s) and
3= ({T,F, L}, <3) respectively, where T', F and L are taken
to mean true, false and unknown truth values. Partial or-
derings <2 and <s satisfy as F <o T and L <3T,1 <3 F
respectively. A mapping V' from ground atoms of P to 2 and
3 is said to be respectively a two-valued or a three-valued val-
uation of P. Given a valuation V', the two and three valued
immediate consequence operators Tp(V') and ®p (V') are de-
fined as follows.

Tp(V): Tp(V) =W is defined as:

e W(H) =T if there is a ground clause

H«Bi,...,B, in P* such that V(B;) = T for
i < n.
e W(H) = F otherwise.
Op(V): ©p(V) =W is defined as:
e W(H) =T if there is a ground clause
H<Bu,...,B, in P* such that V(B;) = T for
i < n.

e W(H) = F if for every ground clause
H«—By,...,By in P* where V(B;) = F holds for
some 1 < n.

e W(H) = L otherwise.

In evaluating ®, negation is interpreted as =1 = F,—~F =
T and -1 = 1. Now we define bottom-up semantic opera-
tors for both Tp and ®p, where U stand for either of them
in the following.

o U0 1 (P) = Viaise, where Viqise assigns F (false) to
all instantiated atoms.

o UL 1 (P) = U(T™ | (P)) for every successor ordinal
a.

e U 1 (P) = \/5<a(\I/ﬁ 1 (P)) for every limit ordinal
a.

For Horn clauses (i.e. those without negative non-constraint
predicates in the body) T'(P) has a least fixed point T,,(P),
which is considered the model of P [Fit02]. Nevertheless, as
shown in [Fit02], for three-valued semantics, the least fixed
point may not be obtained at ordinal w. But following stan-
dard practice we take @, (P) as the meaning (i.e. semantics)
of an ABAC policy P as formalized in definition 3.

49

« dercando(U, X, +, Z’), (14)
fellowe X, 7' € Z

« dercando(U, X, +, Z), (15)
fellowe X, 7' € Z

« dercando(U, X, +, Z), (16)

fellowe X, 7' € Z

DEFINITION 3 (BOTTOM-UP SEMANTICS). Let P be an
ABAC policy and ® be the three-valued immediate conse-
quence operator stated in definition 2. Then we say that
Vico, ®(P) is the model of P.

Definition 3 says that we obtain a model of P by evalu-
ating the ® operator w many times. As promised, we now
show that \/,., ®‘(P) only takes two truth values. In order
to do so, we consider a version of the standard operational
semantics for constraint logic programs. Thereafter by defin-
ing a rank for a formula so that the rank decreases as one
proceeds from the root towards the leaves of a top down
computation tree, we show that every computation termi-
nates. The property we use here is the well-foundedness of
the membership predicate € built into the fourth variable of
cando, dercando and do predicates. In order to do so, we
now repeat (a version of) operational semantics proposed
for constraint logic programs [JL87, Ko0z98].

DEFINITION 4 (OPERATIONAL SEMANTICS). A state is a
pair (A, C) of multisets of predicates A and constraints C'.
Let P be an ABAC policy and (A,C) (A’,C") be states. We
say that:

o (AU{p(3},C) =1 (AUB,CUC"U{F§=1}) isa
one-step deriation provided p(t)—B,C” is a renamed
apart instance of a rule in P.

o We say that (A, C) fails if A # 0 and there is no pred-
icate p € A where p(f><—B, C” is a rule in P.

e We say that (A, C) is successful if (A,C) —. (0,C")
for some constraint set C' satisfiable by an assignment
o of variables to values, where — is the reflexive tran-
sitive closure of —1.

o A query (A, C) is said to flounder if it neither fails nor
18 successful.

The third clause of definition 4 usually reads as (A, C) is
said to be successful if (A,C) —. (0,C") for some consis-
tent constraint set C’. But Dovier et al. shows that in the
computable set theory we use, a set of constraints C’ is con-
sistent iff it is satisfiable by some assignment of variables to
values [DPPR00, DPR00, DPR98]. Coincidentally, the op-
erational semantics given by definition 4 and the fixed point
semantics given by definition 3 coincide [JL87, Koz98]. We
now proceed to show that ABAC policies do not flounder.

DEFINITION 5 (RANKS). We say that the rank of literals
with a ground fourth attribute is the maximum nesting of
braces in it, formally defined as:

maz{l + rank(u), rank(v)}

rank(s) = if s is {u| v}

if s is not of the form {u | v}

We say that the rank of a reserved predicate where its
fourth attribute is ground is the rank of its fourth attribute,
and the rank of a ABAC rule with a ground fourth attribute
is the rank of its head predicate.

Suppose A is a finite multiset of ABAC literals where the
fourth attributes are ground, and {aa,...,an} lists elements
of A in the decreasing order of their ranks. That is, they
satisfy the condition that i > j — R(a;) > R(aj;), where
R(aj) is the rank of aj. Suppose m is the largest rank in A.
That is, m =maz{R(a) : a € A}, and let C(A,7) =| {R(a;) :
R(aj) =i} | for every i < m. That is, C(A,1) is the number
of predicates with rank i. Then define R(A), the rank of the
multiset A as the vector (C(A,m),...,C(A,0)). We order
multi set ranks (that is (C(A,m),...,C(A,0))) lexicographi-
cally.

Definition 5 specify the ranks for ground instances of re-
served predicates, their multisets and ABAC rules. Using
our operational semantics, we show that any application of
an ABAC rule reduces the rank of the rule state, and there-
fore must terminate finitely.

LEMMA 1 (PROPERTIES OF RANKS). Suppose h«<—B is
an ABAC rule with a ground fourth attribute. Then R(h) >
R(b) for any reserved predicate b in the body B. Further-
more, suppose that (AU{p(5)},C) —1 (AUB,CUC” U{§ =
t}) is a one-step derivation where p(t)—B,C” is a rule in P
and p(8)«—B,C” is a named apart instance of p(8)—B,C".
Then R(AU{p(3)}) > R((AU B). Here p(5) and p(t) must
have ground fourth attributes.

Proof: See the appendix. We now use lemma 1 to show
that ABAC queries terminate.

THEOREM 1 (FINITE TERMINATION OF ABAC QUERIES).
Every ABAC query (A, C) either fails or succeeds, where A
is a reserved predicate with a ground fourth attribute.

Proof: See the appendix.

As a corollary, we now obtain that any ABAC query al-
ways gives a yes or no answer, implying that all three valued
models have only two truth values true and false, as stated
in the follwing corollary.

COROLLARY 1. Ewery three valued model of a ABAC pol-
icy assigns either T" or F for reserved predicates where the
fourth attribute is instantiated. In that case, bottom-up se-
mantics and the well-founded constructions assigns the same
truth values to the same predicate instances and have the
same answer sets.

Proof: See [BS04]. []

Corollary 1 shows that in ABAC every request is either
honored or rejected. But the ABAC model is not a fixed
point of the ® operator , as it is well known that the closure
ordinal of the ® operator is not w [FBJ90, Fag97]. ([FBJI0]
gives a simple counter example)

5. OPTIMIZING ABAC POLICIES

One of the major criticisms levied against using (con-
strained) logic programs is their runtime inefficiency due
to the backtracking through program clauses. Although
general complexity bounds arising out of constraint solvers
cannot be totally avoided, we choose two techniques (among

many available techniques such as stack copying, constraint
optimization etc) to reduce this inefficiency. The first is to
transform any ABAC policy into one with lesser backtrack-
ing but the same semantics - generally referred to as program
transformations. The second is to materialize commonly ac-
cessed predicates instances. We discuss them in order, and
show that they provide the same level of efficiency.

5.1 Applying Program Transformation Tech-
niquesto ABAC Policies

As stated, the objective is to transform an ABAC pol-
icy into one that is semantically equivalent policy, but with
lesser runtime overheads. General techniques of this kind
grew out of program transformation work for functional lan-
guages by Burstall and Darlington [BD77], and were later
applied to logic programming by Tamaki and Sato [TS84].
They are comprehensively surveyed by Petrossi et al. [PP98].
Etalle et al. [EG96], Maher [Mah93] and some reverences
quoted therein have extended these results to constraint
logic programming. In this section we develop a policy
rewriting algorithm based on the work of Etalle et al. [EG96]
for a restricted class of policies that use only Horn clauses.
The reason for this limitation is imposed upon the theorems
proved in [EG96] that we use as the basis of our algorithm.
Our ongoing work address extending them to constructive
negation ala Fagas. First we state results used from [EG96]
in our algorithm. Toward that end, definition 6 specify the
program transformations we propose to apply to ABAC poli-
cies.

DEFINITION 6 (CLP TRANSFORMS). Suppose cl is the
rule A—C,H,K in the ABAC policy P where H and K
are respectively a non-constraint predicate and a sequence of
them. Then:

Unfolding: Let cl be the rule A—C, H, K and cl; be H;«—
Ci, B; for alli < n. Let {cl; | 1 < n} be all rules in
P where C A C; A (H = H;) is satisfiable. Let cl; be
the clause A—C N C; A (H = H;), B;. Then unfolding
H in P consists of replacing cl by the collection {cl; :
1 <i<n} toobtain P'. Thatis, P" = P\{cltU{cl;:
1<i<n}

Clause Splitting: Let cl; be the rule H;«—C;, B; where
{H;<C;,B; | 1 <i<n} are all clauses in P such that
every c A C; A (H = H;) is satisfiable. Let cl be the
rule A—C' N C; A (H = H;),H,K for alli <n. If for
any i,j € [1,n], CAC; AC;A(H; = Hj) 1s inconsistent,
then replace cl with the collection {cl; : 1 < i < n} to
obtain P'. That is, P' =P\ {cl}U{cl;: 1 <i<n}
Accordingly, splitting is an unfolding in which bodies
of the unfolding clauses are not replaced.

Clause Removal: Let cl be the cluse H+—C, B in P where
C' is unsatisfiable. Then remove cl from P to obtain
P'. That is, P' =P\ {cl}.

Constraint Replacement: Suppose C’ is a constraint where
every successful derivation of B —. D satisfies (C' A
D) < (C" A D). Then replace H—C, B by H—C", B.

Theorem 2 from [EG96] says that program transforma-
tions in definition 6 do not alter the semantics of ABAC
policies.

THEOREM 2. Suppose P’ is obtained from P by apply-
ing any finite sequence of program transformations stated
in definition 6. Then P and P’ have the same answer set
semantics.

Proof: See [EGI6].

Algorithm 1 policy transformation algorithm
INPUT : An ABAC Policy P
OUTPUT : An ABAC Policy P’ with the same semantics
as P

Loop for predetermined number of times for rules without
dercando(-,-,(-),-) heads
if rule H—C\, B € P then
%% Comment: remove rules with unsatisfiable con-
straints.
Apply constraint solver to C'
if C is inconsistent then remove {H—C, B} from P
% % Comment: reduce constraints
else let C’ be the reduced constraint of C. Replace
H~C,B by H—C'B.
else if for rule A—C, H, K where {H;<—C;,B; |1 <i <
n} are the only clauses in P and ¢ A C; A (H = H;) is
satisfiable for all 7 < n then
if for any 4, j € [1,n], C;AC;A(H; = Hj) is inconsistent
then
%% Comment: apply splitting
replace A—C,H,K by the rule set {A—C A C; A
else %%Comment: apply unfolding
replace A—C, H, K by the set of rules {A—C; A C A
(H=H;),Bi |1 <i<n}
end if

We now use transformations specified in definition 6 to
create rules at policy analysis time (i.e. compile time) that
reduce the backtracking overhead incurred at policy appli-
cation time (i.e. runtime). Notice that in algorithm 1, we
only consider rules without do(-,-,(-),-) heads and repeat-
edly apply program transformations that provably preserve
correct answer set semantics. Thus the algorithm is correct
by a simple application of theorem 2. Now we show how
this algorithm can reduce the runtime cost for policies for
example 2. Notice rules other than the last rule with a do(-
~(-),-) head in example 2, are Horn clauses and therefore
algorithm 1 apply to them.

EXAMPLE 3. The following rules are obtained by applying
algorithm 1 to rules given in example 2.

Applying unfolding to rules (3) and (5) derive rule (17).
Similarly, unfolding rules (4) and (5) results in rule (18).
Similarly, unfolding rules (17) and (7) results in rule (19).
Unfolding rule (19) and (12) results in rule (20). Directly
ezecuting rule (20) does not require a backtracking algorithm
to be executed at runtime, although it require evaluating the
same basic predicates.

Notice that applying the stated sequence of unfolding trans-
formations leave rules (17) through (20) as the new ABAC
policy. Similarly, by unfolding other rules, we end up with a
policy where all defined predicate other than do(-,-,-,(-),-),
have basic predicates in their body. Such a representation

51

can be considered a canonical representation for ABAC poli-
cies. The final step of unfolding them against valid instances
of base predicates to this canonical form will reduce all rules
to valid instances of predicates. This is shown in section 5.3.

5.2 Materializing ABAC Poalicies

As a secondary optimization of runtime costs, we propose
to materialize ABAC policies. Because ABAC policies are
locally stratified , our (soon to be described) materialization
structure is recursively built using the stratification order.
We use an approach similar to that used in [JSSS01] to build
a materialization structure, but appropriately altering it to
suit ABAC policies. Towards this end, we first (re)-define
the materialization structure differently (from [JSSS01]) and
accordingly its corresponding notion of correctness with re-
spect to ABAC policies.

DEFINITION 7 (MATERIALIZATION STRUCTURE). A ma-
terialization structure MS(P) for an ABAC policy P is a set
of pairs (A, I), where A is a ground atom and I is a set of
(indices of) rules of the form H«—C,B. MS(P) is said to
correctly model P iff the following conditions hold.

1. &, 1 (P)(H(C)) = T 4ff there is at least one pair
(H(&),I) € MS(P) for some index set I satisfying cl €
I for each rule cl of the form H—C, B where C' is the
constraint part and B is the non-constraint part of the
rule body.

2. Suppose ®,, 1 (P)(B(G,¢)) =T for a rule cl as stated
in (1) where € are all the instantiations for variables
of H and ¢ are all the extra constants required to fully
instantiate other variables of B. (Notice that the body
can have more variables than the head of a rule) If
C(@,d) is valid then there is an index I such thatcl € I
and (H(C),I) € Ms.

According to definition 7 a materialization structure cor-
rectly models a policy P iff every instance of an atom A that
is true in the Kripke-Kleene closure contains a pair (A,)
where I is a set of (index of) rules that directly support
the truth of A. Given a materialization structure MS(P)
of a policy P the model &, T (P) of P is then the pro-
jection over the first element of the pairs that are evalu-
ated to be true by ®,, 1 (P). The materialization structure
and the Kripke-Kleene model at stratum ¢ are denoted by
MS;(P) and ®; T (P) respectively. Algorithm 2 uses the
step-wise construction of the Kripke-Kleene model to pro-
duce the materialization structure of an ABAC policy. In
order to present the algorithm, we need the following tech-
nical definition about adding entries into a materialization
structures.

DEFINITION 8 (). Let MS(P) be a materialization struc-
ture, A a ground instance of a non-constraint literal and S
a set of rules.

MS(P)\ {(A, D} U{(A, {ct} UI)}
if (A,1)e MS(P) for some rule
indexsetl.

MS(P) U {(A, {c1})}

otherwise

MS(P) @ (A, cl) =

Now we use definiton 8 in algorithm 2.

dercando(X,Y, Z, {{0}})
dercando({y, 2, {y}}, X, +, {0})

dercando(U, {{dlS,br,brTOC} | X}, +, {{{0}}})
do(U, {{dlS,br,brTOC} | X}, +,{{{{0}}}})

Algorithm 2 materialization algorithm
INPUT: An ABAC policy P
OUTPUT: A materialization structure MS(P) for P
Base step: (materializing strata 0)
MSo = {(H(&),{c1}) : where H (&) is a valid instance of
the base predicate in the rule c1 with index c1}.
Inductive Step: (materializing strata n+1)
MS,t1 = MS, ® {(H(&),cl) where c1 = H«+C, B is a rule
cl with ®,11 7 (P)(H(&) = T satisfying (b(¢,¢),1) €
MS, for some index set I for each b € B and C(é,¢) is
valid}. Here ¢ is the vector of extra constants that may
be required to fully instantiate the body of cl.

Theorem 3 show that the materialization structure MS(P)
created using algorithm 2 for an ABAC policy P is correct
according to definition 7.

THEOREM 3 (CORRECTNESS OF ALGORITHM 2). Let P
be an ABAC policy, and MS;(P) be its materialization struc-
ture created by algorithm 2 at stage i. Then, ;- MS;(P)
correctly models 1 T (P). -

Proof: See the appendix.
Now we show the materialization structure for library pol-
icy given in example 2.

EXAMPLE 4 (MATERIALIZING POLICIES IN EXAMPLE 2).
As stated, the materialization structure created for the policy
in example 2 is empty, because there are no base facts. Now
suppose we enrich the policy with the three additional base
facts isAName (alice), isAName(bodb), isMother(alice,
bob), memStatus({alice, bob{alice}},{login}). The
first two recognize names and the last predicate says that
credential set {alice,
bob,{alice}} entitles the holder to the privileges set { login}
in the digital library service. Consequently due to rule (4),
cando ({alice,bob,{ alice} },{login}) is materialized by
algorithm 2, using (say) the rule number 4 as the indez.
Following this indexing convention, we can use rule (5), to
get that cando ({alice,bob,{alice}}, {login},+,{0}) is materi-
alized with the rule set (4). Repeating this process, we get
the following as a part of the materialization structure.

5.21 Comparing Materialization Structures for two
an three Valued Models

Materialization structures have been developed for logic
programming based access control policies in the past, for
example in [JSSS01]. However, such work materialized re-
lations defined by logic programs - and not constraint logic
programs. Consequently, corresponding materialization struc-
tures differ in two ways. The first is that three valued se-
mantics were not considered in most logic programming sys-

— memlID(y), memStatus({y}, X) (17)

— isAName(y),isAName(z), (18)
memMother(y, z), memStatus({y, z}, X)

— memld(y), memStatus({y}, X),y € X (19)

— memld(y), memStatus({y}, X),y € X (20)

tems, as there were no floundering queries. Therefore com-
plications arising out of the undefined (L) truth value was
not considered in the past. Consequently, definitions and
theorems were stated and proved using classical satisfaction
relations of fix-point theory. [JSSS01] is a case in point. Sec-
ondly, in our semantics, the w closure of the three-valued
consequence operator ® does not constitute a fixed-point.
This accounts for the remarkable difference in the details of
proofs of corresponding facts. Consequently, our material-
ization structure construction does not compute fix-points
for recursively defined predicates. But that leaves us with
the disadvantage of a materialization algorithm that may
take w steps to complete. The next section shows that pro-
gram transformation provides a manageable workaround for
this problem.

5.3 Semantics, Program Transformationsand
Materializations

Algorithms 1 and 2 have the property that if ®,, 1 (H(¢)) =
T, then H(C) becomes a rule in the transformed program,
and (H(€),I) € MS(P) for some rule index set I. That is,
the three-valued immediate consequence operator, program
transformation and the materialization produces exactly the
same valid instances of reserved predicates. The basis for
this observation is the fact that algorithms 1 and 2 are based
on the step-wise construction of the three-valued Kripke-
Kleene model of a Horn ABAC policy. Next we formally
state and prove this fact.

THEOREM 4. For any Horn ABAC policy P, instantiated
predicate A(€) and integer n, ®, T (P)(A(E)) = T iff the n'™
program transformation has A(C) as a rule iff (A(C),I) € MS,
for some rule index set 1.

Proof: See the appendix.

As stated, our ongoing research addresses extending the-
orem 4 to non-Horn clauses. Now we compute the three
equivalent computations for the policy in example 4.

EXAMPLE 5. The table given in example 4 show each pred-
icate that is being materialized at each stage. Now we show
the stages of computation for the bottom-up Kripke-Kleene
mode, the policy transformations and the materialization.

Stage 0: isAName(alice),isAName (bob),
memMother(alice,bob), memStatus({alice,bobd},
{login}) are valid instance. Thus, they become in-
stances of valid rules, thereby ®o(P) assigning truth
value T to them. Because they are valid instances,
algorithm 2 materializes them at stage 0. Coinciden-
tally, algorithm 1 already has these predicate instance
as valid rules.

Stage 1: Rule (4) can be instantiated to give cando
({alice, bob{alice}}, {login}, +,{0}) «

| Stage (=n) | Materialized instances (members of MS,,) |

0 (isName(alice),{0.1}),(isName(bob),{0.2}),(isMother(alice,bob){0.3}),
memStatus({alice,bob{alice}},{login},{0.4}))

cando({alice,bob,{alice} },{login},+,{0}),{4})

dercando({alice,bob,{alice}},{login,{dlS,br,br TOC}},+,{{{0}}}).{7})

ol N =

(
(
(dercando({alice,bob,{alice}},{login},+,{{0}}),{5})
(
(

do({alice,bob,{alice} },{login,{d1S,br,brTOC}},+ {{{{0}}}}),{12})

isAName(alice), isAName(bob), memM other(alice,

bob), memStatus({alice, bob{alice}}, {login}). Notice
that the antecedents of this rule instance are all true
under ®o(P). Therefore, the head of the rule cando({al-

ice,bob{alice}},{login}, +,{0}) evaluates to be true un-
der the three valued (Kleene) truth table. Thus, ®o(P)
(cando({alice, bob{alice}}, {login}, +,{0})) =T.

As stated in example 4, algorithm 2 materializes cando
({alice, bob, {alice}}, {login}, +,{0}) is materialized
due to the reason that ®,(P) evaluates it to be true.
Coincidentally, applying unfolding to cando({alice, bob
{alice}}, {login}, +,{0})—isAName(alice), isANam
e(bob), memM other(alice, bob), memStatus({alice,
bob{alice}}, {login}) with respect to isAName(alice),
isAName(bob), memMother(alice, bob) and
memStatus({alice, bob{alice}}, {login}) results in
cando({alice, bob{alice}},{login},+,{0}) being evalu-
ated to be true.

As shown in example 5, the three-valued bottom-up model

construction, materialization and unfolding all give the same

Piero Bonatti and Pierangela Samarati. Regulating
service access and information release on the web. In
Proceedings of the Tth ACM conference on Computer
and communications security, pages 134-143. ACM
Press, 2000.

Piero Bonatti and Pierangela Samarati. A uniform
framework for regulating service access and information
release on the web. Journal of Computer Security,
10(3):241-272, 2002.

Steve Barker and Peter J. Stuckey. Flexible access
control policy specification with constraint logic
programming. ACM Transactions on Information and
System Security, 2004. to appear.

David Chan. Constructive negation based on the
completed databases. In R. A. Kowalski and K. A.
Bowen, editors, Proc. International Conference on Logic
Programming (ICLP), pages 111-125. The MIT Press,
1988.

David Chan. An extension of constructive negation and
its application in coroutining. In E. Lusk and

R. Overbeek, editors, Proc. North-American Conference
on Logic Programming, pages 477-489. The MIT Press,

facts. Thus, if we know the rank of the predicate instance we
would like to evaluate say n, all we need to do is to unfold the
policy n times. If the instance of interest (usually a reserved
predicate such as do) is not there, then it must be false, as
theorem 4 guarantees so. We can also make this procedure
more efficient by only unfolding relevant rules. Our ongoing
work in this aspect also addresses the issues of rule insertion,
deleting and permission revocation [WJPPHO03].

1989.

Agostino Dovier, Carla Piazza, Enrico Pontelli, and
Gianfranco Rossi. Sets and constraint logic
programming. ACM Transactions of Programming
Languages and Systems, 22(5):861-931, 2000.

Agostino Dovier, Alberto Policriti, and Gianfranco
Rossi. A uniform axiomatic view of lists, multisets, and

6. CONCLUSIONS

Requesting remote services in an identity-less open sys-

tem requires that sets of attributes be presented in order to
gain accesses to resources.
a stratified logic programming based framework to specify
ABAC policies where collections of attribute and service op-
tions are modeled as sets in a computable hereditarily finite
set theory.
complete.
transform ABAC polices so that rewritten policies have the
same runtimes as executing materialized rules. Our ongo-
ing work explore other computable set theories and efficient
implementations.

7. REFERENCES

In order to do so, we propose

Our policies are flounder free, consistent and
In order to enhance runtime performance, we

E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A
logical framework for reasoning about access control
models. ACM Transactions on Information and System
Security, 6(1):71-127, February 2003.

R. M. Burstall and J. Darlington. A transformation

system for developing recursive programs. Journal of the
ACM, 24(1):44-67, January 1977.

53

sets, and the relevant unification algorithms.
Fundamenta Informaticae, 36(2/3):201-235, 1998.
Agostino Dovier, Carla Piazza, and Gianfranco Rossi. A
uniform approach to constraint-solving for lists,
multisets, compact lists, and sets. Technical Report
Quaderno 235, Department of Mathematics, University
of Parma, Italy, 2000.

Agostino Dovier, Enrico Pontelli, and Gianfranco Rossi.
Constructive negation and constraint logic programming
with sets. New Generation Comput, 19(3):209-256, May
2001.

Sandro Etalle and Maurizio Gabbrielli. Transformations
of clp modules. Theoretical Computer Science,
166:101-146, 1996.

Francois Fages. Constructive negation by pruning.
Journal of Logic Programming, 32(2):85-118, 1997.
Melvin C. Fitting and Marion Ben-Jacob. Stratified,
weak stratified, and three-valued semantics. Fundamenta
Informaticae, Special issue on LOGIC
PROGRAMMING, 13(1):19-33, March 1990.

Francois Fages and Roberta Gori. A hierarchy of
semantics for normal constraint logic programs. In

Algebraic and Logic Programming, pages 77-91, 1996.
Melvin C. Fitting. A kripke-kleene semantics for logic
programs. Journal of Logic Programming, 2(4):295-312,
1985.

Melvin C. Fitting. Fixedpoint semantics for logic
programming. Theoretical Computer Science, 278:25-31,
2002.

Joxann Jaffar and Jean-Louise Lassez. Constraint logic
programming. Proceedings of Principles of of
Programming Languages, pages 111-119, 1987.

Sushil Jajodia, Pierangela Samarati, Maria Louisa.
Sapino, and V. S. Subrahmanian. Flexible support for
multiple access control policies. ACM Transactions on
Database Systems, 26(2):214-260, June 2001.

Dexter C. Kozen. Set constraints and logic
programming. Information and Computation, 142:2—-25,
1998. Article No 1C972694.

Kenneth J. Kunen. Set theory: an introduction to
independence proofs. Elsevier North-Holland, 1980.
Kenneth J. Kunen. Negation in logic programming.
Journal of Logic Programming, 4(4):298-308, December
1987.

N. Li, J.C. Mitchell, and W.H. Winsborough. Design of
a role-based trust management framework. In Proc.
IEEE Symposium on Security and Privacy, Oakland,
pages 114-130, 2002.

Ninghui Li, John C. Mitchell, and William H.
Winsborough. Design of a role-based trust management
framework. In Proc. IEEE Symposium on Security and
Privacy, Oakland, May 2002.

Michael J. Maher. A transformation system for deductive
database modules with perfect model semantics.
Theoretical Computer Science, 110:377-403, 1993.
Alberto Petterossi and Maurizio Proietti.
Transformation of Logic Programs, volume 5, chapter
Handbook of Logic in Artificial Intelligence and Logic
Programming, pages 697-787. Oxford University Press,
1998.

R. Sandhu, E. Coyne, H. Feinstein, and C. Youman.
Role-based access control models. IEEE Computer,
29(2):38-47, Febraury 1996.

Peter J. Stuckey. Constructive negation for constraint
logic programming. In Logic in Computer Science, pages
328-339, 1991.

Peter J. Stuckey. Negation and constraint logic
programming. Information and Computation,
118(1):12-33, 1995.

H. Tamaki and T. Sato. Unfold/fold transformation of
logic programs. In Proceedings of the Second
International Logic Programming Conference, pages
127-138, 1984.

Duminda Wijesekera, Sushil Jajodia, Francesco
Parisi-Presicce, and Asa Hagstrom. Removing
permissions in the flexible authorization framework.
ACM Transactions of Database Systems, 28(3):209-229,
September 2003.

T. Yu, M. Winslett, and K.E. Seamons. Prunes: an
efficient and complete strategy for automated trust
negotiation over the internet. In Proceedings of the 7th
ACM conference on Computer and communications
security, pages 210-219. ACM Press, 2000.

T. Yu, M. Winslett, and K.E. Seamons. Interoperable
strategies in automated trust negotiation. In Proceedings
of the 8th ACM conference on Computer and
Communications Security, pages 146-155. ACM Press,
2001.

T. Yu, M. Winslett, and K.E. Seamons. Supporting
structured credentials and sensitive policies through
interoperable strategies for automated trust negotiation.
ACM Transactions on Information and System Security
(TISSEC), 6(1):1-42, 2003.

APPENDIX
A. PROOFS

Proof of Lemma 1: To prove the first claim, according
to definition 1 the reserved predicates are cando, dercando
and do. We consider each of them now.

cando: cando(—, —,—,{0})<B where B consists of non-re
served predicates or is empty. This is the only allowed
form of cando in a rule head. Thus,
R(cando(—, —, —, {0#})) = 1 and R(b) = 0 for any pred-
icate b in B.

dercando: According to the third rule in definition 1, if
dercando(—, —, —, Z) is in the body and
dercando(—, —, —, Z') is in the body, then Z = {Z'|U}
for some set U. Hence by definition 5,
R(dercando(—,—, —, %)) >
1+ R(dercando(—, —, —, Z")).

do: The same argument applies for rules with a
dercando(—, —, 4, Z) head. The only rule with a
dercando(—, —,+(—), Z) head is do(X,Y, —, {Z})—
—do(X,Y,+,Z). Thus, R(do(X,Y,—,{Z})) =1+ R
(do(X,Y, 4+, 2)).

Now we use the first claim to justify the second. Suppose
that (AU{p(3)},C) —1 (AUB,CUC”U{3 = t}) is a one-step
derivation using the ABAC rule p(f><—B, C” is a rule in P
and p(8)«—B, C” is a fresh instance of p(8)«—B, C”. To prove
that R(AU {p(5)}) > R(A U B), suppose R(AU {p(5)}) =
(km,y ... ko), R(P) =t <m,and R(B) = (tu,...,to) where
u < t. Then R(AUB) = (km,...,kt+1,kt — 1, ke, .. ki +
tiy..., ko). In the lexicographical ordering, (km,...,ko) >
(k‘m, “eey kt+1, ke — 17 kt7 ey ki +ti,.. .,]"n‘())7 1mp1y1ng R(AU
{p(®)}) > R(AUB).

|

Proof of Theorem 1: Suppose (A,C) —1 (Ao, Co) —1
(A1,C1),... is an infinite sequence of one-step reductions.
Then by lemma 1, R(A,C) > R(Ao, Co) > ... is an infinite
descending sequence, contradicting the well-foundedness of
the rank function. This is a contradiction, as the lexico-
graphical ordering on integers is well-founded. |
Proof of Theorem 3: The proof follows from the fact that
at each step 7 of the construction in algorithm 2 ensure that
MS;(P) correctly materializes ®; 7 (P). Consequently, our
proof works by induction on 7 - the strata of the instantia-
tion of the fourth varibale of reserved predicates.

Strata 0: By the definition of ®,, T (P), ®o T (P)(H(C)) =
T iff H(C) € P. By algorithm 2, (H(¢),{i}) € MSo(P) where
{i} is the index of H(¢) chosen according to some rule index-
ing schema. Thus @, T (P)(H(¢)) = T iff H(c) € MSo(P),
satisfying the first condition for ®,, 1 (P) to correctly model

P. The second condition is vacuously satisfied as, by defi-
nition 1 the only rules in which base predicates appear as
heads are the ones with empty bodies.

Strata n+1: Suppose the inductive hypothesis holds for all
instances of atoms of lower ranks and H (¢) is an instance of a
reserved predicate of rank n+1. Then there must be at least
one rule in which the body has at least one reserved pred-
icate with rank n. Choose any such rule cl, say H—C, B.
There are two cases to consider.

Case 1: ®, | (P)(B(E¢)) = T. For the first condition,
suppose C(, ¢) is satisfiable. Furthermore, ®,, 1 (P)(b(, ¢
)) = T'. Thus by the inductive hypothesis b(é,¢') € MS,,(P).
Then by algorithm 2 (H(¢),I) € MS,,(P) for a set I of rule
indices. Thus the first condition for MS(P) correctly materi-
alizing P is met by satisfying both sides of the by-implication
stated in definition 7.

For the second condition, consider any rule c1 where H ()
has rank n + 1 and ®,, 1 (P)(B(& ¢)) = T. Then it could
be shown by induction that ®, 1 (P)(B(é¢)) = T. Now
by repeating the previous part of the argument, if C(c, d)
is satisfiable, then (H (),) € MS(P) where cl € I, for some
rule set index I that contain cl.

Case 2: &, | (P)(B(€)) # T. This could be so due to one
of two factors: (1) ®, T (P)(b(G ¢)) # T for some atom
b e B. (2) C(¢) does not hold. If (1) is the case, then by
the inductive hypothesis, (b, 1) & MS,(P) for any index set
I. In either case, the inductive step of algorithm 2 does not
add H (¢, {cl}) into MS,41(P). Therefore the first condition
of correctness criteria in definition 7 holds.

The second condition is satisfied because, as stated the
inductive step of algorithm 2 does not add any steps when
D, 1 (P)(B(&) #T. 0
Proof of Theorem 4: We prove by induction on the rank
of the predicate instance A(¢).

The Base Case R(A(€)) = 0 : In this case, the predicate
is a base predicate. Thus either A(Z) or A(¢) appears in P,
or A only appear in bodies of rules with reserved word heads.
If the first case occurs, @, (P)(A(c/)) = T for all constant
vectors ¢. If the second case occours then &, (P)(A(E)) =T
for only those combinations. As algorithms (1) and (2) show
these are the only conditions under which an instantiated
zero ranked reserved predicate becomes a rule and materi-
alized respectively.

The Inductive Case R(A(¢) = n+1 : Suppose the claim
is true for all instantiated predicates with ranks m < n, and
R(A) = n+ 1. Under stated assumptions, A(¥) appears as
a head in some rule c1 = H+«C, B, because otherwise it
cannot have a positive rank, as R(A(¢)) =n+1> 0.

Now suppose A(ZF) appears as a head in some rule cl =
H<—C, B with the usual convention that C' and B are the

constraint and non-constraint predicates. Suppose ®,,1(A(¢

)) =T. Then C(¢) must be valid and ®,, 1 (P)(B(¢)) =T.
Thus by algorithm 2, (A(¢),I) € MS,4+1 for some rule in-
dex set [satisfying c1 € I. Furthermore, by the inductive
hypothesis, B(¢, d) are rules in the nt" transformed policy.
Therefore, by applying unfolding with c1 we get that A(C)
is a rule at the n + 1*" transformed policy. The implication
from the materialization to the truth in ®,41 T (P) follows

55

trivially, as A(¢) gets materialized in the stage immediately
after b(c, ¢) gets materialized for all non-constraint predi-
cates b in the body B. Now suppose A(¢) becomes a rule
at the n + 1'" stage of algorithm 1. Then, A(Z) must be
a result of applying unfolding to some rule, A«C, B say
cl. Then, it must be that the ranks of each non-constraint
predicate b of B must be less than or equal to n. Because if
all their ranks were less than n, then A(C) gets unfolded at
most stage n. Then there must be a non-constraint predicate
(say) b with R(b(é,¢)) = n Then by the inductive hypothe-
sis ©, 1 (P)(B(G,¢)) = T, implying ®,41 1 (P)(A(@) =T.

|

