
DIP 3/e Laboratory Projects Page 1 of 18

Laboratory Projects
for

Digital Image Processing 3/e
by

Gonzalez and Woods

© 2008

Prentice Hall

Upper Saddle River, NJ 07458 USA

www.imageprocessingplace.com

The following sample laboratory projects are keyed to the material in the text.
Several projects are designated as having "multiple uses" because their results are
used in some of the other projects that follow them. They should be given
assignment priority. The label [MULTIPLE USES] indicates that some or all the results
of a project are used in subsequent projects.

A note on programming: The principal objectives of the following projects are (1)
to teach the student how to manipulate images, and (2) to help in developing a sense
of how image processing solutions are prototyped in software. To this end, the
programming environment needed to implement these projects can consist of a truly
general-purpose environment (e.g. a C++ approach) to an environment in which the
projects can be implemented as a combination of existing functions with the
capability to write code that can expand the capabilities of those functions. Perhaps
the best exponent of that approach is MATLAB's Image Processing Toolbox (IPT). We
prefer an approach that uses such a combination of capabilities because it is more
representative of what the student is likely to find in practice. The software section
of the book web site contains resources and links to resources that can be helpful in
developing a programming environment for the projects.

DIP 3/e Laboratory Projects Page 2 of 18

Project No. Title Comments

Proj00-00

Suggested format for submitting project reports.

Proj02-01 Image Printing Program Based on Halftoning.

Proj02-02 Reducing the Number of Intensity Levels in an Image.

Proj02-03 Zooming and Shrinking Images by Pixel Replication.

Proj02-04 Zooming and Shrinking Images by Bilinear Interpolation. Multiple uses.

Proj02-05 Arithmetic Operations. Multiple uses.

Proj03-01 Image Enhancement Using Intensity Transformations.

Proj03-02 Histogram Equalization. Multiple uses.

Proj03-03 Spatial Filtering. Multiple uses.

Proj03-04 Enhancement Using the Laplacian.

Proj03-05 Unsharp Masking.

Proj04-01 Two-Dimensional Fast Fourier Transform. Multiple uses.

Proj04-02 Fourier Spectrum and Average Value.

Proj04-03 Lowpass Filtering.

Proj04-04 Highpass Filtering Using a Lowpass Image.

Proj04-05 Highpass filtering Combined with Thresholding.

Proj05-01 Noise Generators. Multiple uses.

Proj05-02 Noise Reduction Using a Median Filter.

Proj05-03 Periodic Noise Reduction Using a Notch Filter.

Proj05-04 Parametric Wiener Filter.

Proj06-01 Web-Safe Colors.

Proj06-02 Pseudo-Color Image Processing.

Proj06-03 Color Image Enhancement by Histogram Processing.

Proj06-04 Color Image Segmentation.

Proj07-01 One-Dimensional Discrete Wavelet Transforms. Multiple uses.

Proj07-02 Two-dimensional Discrete Wavelet Transforms. Multiple uses.

Proj07-03 Wavelet Transform Modifications.

Proj07-04 Image De-Noising.

Proj08-01 Objective Fidelity Criteria. Multiple uses.

Proj08-02 Image Entropy.

Proj08-03 Transform Coding.

Weiping
Highlight

Weiping
Highlight

Weiping
Highlight

DIP 3/e Laboratory Projects Page 3 of 18

Proj08-04 Wavelet Coding.

Proj09-01 Morphological and Other Set Operations. Multiple uses.

Proj09-02 Boundary Extraction. Multiple uses.

Proj09-03 Connected Components. Multiple uses.

Proj09-04 Morphological Solution to Problem 9.36.

Proj10-01
Edge Detection Combined with Smoothing and
Thresholding.

Proj10-02 Global Thresholding. Multiple uses.

Proj10-03 Optimum Thresholding.

Proj10-04 Region Growing.

Proj11-01 Boundary Following. Multiple uses.

Proj11-02 Skeletons.

Proj11-03 Fourier Descriptors. Multiple uses.

Proj11-04 Texture.

Proj11-05 Principal Components.

Proj12-01 Generating Pattern Classes. Multiple uses.

Proj12-02 Minimum Distance Classifier.

Proj12-03 Bayes Classifier.

Proj12-04 Perceptron Classifier.

PROJECT 00-00
Suggested Format for Submitting Project Reports

Because laboratory projects are in addition to course work, it is suggested that project reports be

kept short, and be organized in a uniform manner to simplify grading. The following format

achieves these objectives.

Page 1. Cover Page. Typed or printed neatly.

• Project title

• Project number

• Course number

• Student's name

• Date due

• Date handed in

• Abstract (not to exceed 1/2 page)

Page 2. Technical discussion. One to two pages (max). This section should include the techniques

used and the principal equations (if any) implemented.

DIP 3/e Laboratory Projects Page 4 of 18

Page 3 (or 4). Discussion of results. One to two pages (max). A discussion of results should

include major findings in terms of the project objectives, and make clear reference to any images

generated.

Results. Includes all the images generated in the project. Number images individually so they

can be referenced in the preceding discussions.

Appendix. Program listings. Includes listings of all programs written by the student. Standard

routines and other material obtained from other sources should be acknowledged by name, but

their listings should not be included.

Layout. The entire report must be in standard sheet size format (8.5 x 11 inches in the U.S.) All

sheets should be stapled in three locations to form a binding booklet-like support on the left

margin. Alternatively, sheets can be assembled using a commercial plastic binding product with a

clear plastic cover.

A note on program implementation: As noted earlier, the objective of the computer programs

used in the following projects is to teach the student how to manipulate images. There are

numerous packages that perform some of the functions required to implement the projects.

However, the use of "canned" routines as the only method to implement an entire project is

discouraged. For example, if the students are using MATLAB and the Image Processing Toolbox, a

balanced approach is to use MATLAB's programming environment to write M functions to

implement the projects, using some of MATLAB's own functions in the process. A good example is

the implementation of the 2-D Fourier Fast Transform. The student should use the MATLAB

function that computes the 2-D FFT directly, but write functions for operations such as centering

the transform, multiplying it by a filter function, and obtaining the spectrum.

PROJECT 02-01
Image Printing Program Based on Halftoning

The following figure shows ten shades of gray approximated by dot patterns. Each gray level is

represented by a 3 x 3 pattern of black and white dots. A 3 x 3 area full of black dots is the

approximation to gray-level black, or 0. Similarly, a 3 x 3 area of white dots represents gray

level 9, or white. The other dot patterns are approximations to gray levels in between these

two extremes. A gray-level printing scheme based on dots patterns such as these is called

"halftoning." Note that each pixel in an input image will correspond to 3 x 3 pixels on the

printed image, so spatial resolution will be reduced to 33% of the original in both the vertical

and horizontal direction. Size scaling as required in (a) may further reduce resolution,

depending on the size of the input image.

(a) Write a halftoning computer program for printing gray-scale images based on the dot

patterns just discussed. Your program must be able to scale the size of an input image so

that it does not exceed the area available in a sheet of size 8.5 x 11 inches (21.6 x 27.9

cm). Your program must also scale the gray levels of the input image to span the full

DIP 3/e Laboratory Projects Page 5 of 18

halftoning range.

(b) Write a program to generate a test pattern image consisting of a gray scale wedge of size

256 x 256, whose first column is all 0's, the next column is all 1's, and so on, with the last

column being 255's. Print this image using your gray-scale printing program.

(c) Print book Figs. 2.22(a) through (c) using your gray-scale printing program. Do your

results agree with the conclusions arrived at in the text in pgs. 64-65 and Fig. 2.23? Explain.

You can download the required figures from the book web site.

PROJECT 02-02

Reducing the Number of Intensity Levels in an Image

(a) Write a computer program capable of reducing the number of intensity levels in a image

from 256 to 2, in integer powers of 2. The desired number of intensity levels needs to be a

variable input to your program.

(b) Download Fig. 2.21(a) from the book web site and duplicate the results shown in Fig.

2.21 of the book.

PROJECT 02-03

Zooming and Shrinking Images by Pixel Replication

(a) Write a computer program capable of zooming and shrinking an image by pixel

replication. Assume that the desired zoom/shrink factors are integers.

(b) Download Fig. 2.20(a) from the book web site and use your program to shrink the image

by a factor of 10.

(c) Use your program to zoom the image in (b) back to the resolution of the original. Explain

the reasons for their differences.

PROJECT 02-04 [Multiple Uses]

Weiping
Highlight

Weiping
Highlight

DIP 3/e Laboratory Projects Page 6 of 18

Zooming and Shrinking Images by Bilinear Interpolation

(a) Write a computer program capable of zooming and shrinking an image by bilinear

interpolation. The input to your program is the desired resolution (in dpi) of the resulting

image.

(b) Download Fig. 2.20(a) from the book web site and use your program to shrink this from

1250 dpi t0 100 dpi.

(c) Use your program to zoom the image in (b) back to 1250 dpi. Explain the reasons for

their differences.

PROJECT 02-05 [Multiple Uses]

Arithmetic Operations

Write a computer program capable of performing the four arithmetic operations between two

images. This project is generic, in the sense that it will be used in other projects to follow.

(See comments on pages 112 and 116 regarding scaling). In addition to multiplying two

images, your multiplication function must be able to handle multiplication of an image by a

constant.

PROJECT 03-01

Image Enhancement Using Intensity Transformations

The focus of this project is to experiment with intensity transformations to enhance an image.

Download Fig. 3.8(a) from the book web site and enhance it using

(a) The log transformation of Eq. (3.2-2).

(b) A power-law transformation of the form shown in Eq. (3.2-3).

In (a) the only free parameter is c, but in (b) there are two parameters, c and r for which

values have to be selected. As in most enhancement tasks, experimentation is a must. The

objective of this project is to obtain the best visual enhancement possible with the methods in

(a) and (b). Once (according to your judgment) you have the best visual result for each

transformation, explain the reasons for the major differences between them.

PROJECT 03-02 [Multiple Uses]

Histogram Equalization

(a) Write a computer program for computing the histogram of an image.

(b) Implement the histogram equalization technique discussed in Section 3.3.1.

(c) Download Fig. 3.8(a) from the book web site and perform histogram equalization on it.

As a minimum, your report should include the original image, a plot of its histogram, a plot of

the histogram-equalization transformation function, the enhanced image, and a plot of its

Weiping
Highlight

Weiping
Highlight

DIP 3/e Laboratory Projects Page 7 of 18

histogram. Use this information to explain why the resulting image was enhanced as it was.

PROJECT 03-03 [Multiple Uses]

Spatial Filtering

Write program to perform spatial filtering of an image (see Section 3.4 regarding

implementation). You can fix the size of the spatial mask at 3 x 3, but the coefficients need to

be variables that can be input into your program. This project is generic, in the sense that it

will be used in other projects to follow.

PROJECT 03-04

Enhancement Using the Laplacian

(a) Use the programs developed in Project 03-03 to implement the Laplacian enhancement

technique described in connection with Eq. (3.6-7).

(b) Duplicate the results in Fig. 3.38. You can download the original image from the book

web site.

PROJECT 03-05

Unsharp Masking

(a) Use the program developed in Project 03-03 to implement high-boost filtering, as given

in Eq. (3.6-9). The averaging part of the process should be done using the mask in Fig.

3.32(a).

(b) Download Fig. 3.40(a) from the book web site and enhance it using the program you

developed in (a). Your objective is to approximate the result in Fig. 3.40(e).

PROJECT 04-01 [Multiple Uses]

Two-Dimensional Fast Fourier Transform

The purpose of this project is to develop a 2-D FFT program "package" that will be used in

several other projects that follow. Your implementation must have the capabilities to:

(a) Multiply the input image by (-1)x+y to center the transform for filtering.

(b) Multiply the resulting (complex) array by a real filter function (in the sense that the the

real coefficients multiply both the real and imaginary parts of the transforms). Recall that

multiplication of two images is done on pairs of corresponding elements.

(c) Compute the inverse Fourier transform.

(d) Multiply the result by (-1)x+y and take the real part.

(e) Compute the spectrum.

Basically, this project implements the steps in Section 4.7.3. If you are using MATLAB, then

DIP 3/e Laboratory Projects Page 8 of 18

your Fourier transform program will not be limited to images whose size are integer powers of

2. If you are implementing the program yourself, then the FFT routine you are using may be

limited to integer powers of 2. In this case, you may need to zoom or shrink an image to the

proper size by using the program you developed in Project 02-04. See the Software section of

the book web site to find a 1-D FFT routine. Then use the method discussed in Sections 4.11.1

and 4.11.2 for computing the 2-D FFT.

An approximation: To simplify this and the following projects (with the exception of Project

04-05), you may ignore image padding (Section 4.6.6). Although your results will not be

strictly correct, significant simplifications will be gained not only in image sizes, but also in the

need for cropping the final result. The principles will not be affected by this approximation.

PROJECT 04-02

Fourier Spectrum and Average Value

(a) Download Fig. 4.41(a) from the book web site and compute its (centered) Fourier

spectrum.

(b) Display the spectrum.

(c) Use your result in (a) to compute the average value of the image.

PROJECT 04-03

Lowpass Filtering

(a) Implement the Gaussian lowpass filter in Eq. (4.8-7). You must be able to specify the

size, M x N, of the resulting 2D function. In addition, you must be able to specify the

location of the center of the Gaussian function.

(b) Download Fig. 4.41(a) from the book web site and lowpass filter it to duplicate the results

in Fig. 4.48.

PROJECT 04-04

Highpass Filtering

(a) Implement the Gaussian highpass filter of Eq. (4.9-4). (Note that, if you did project 04-

03, you can use basically the same program to generate highpass filters.)

(b) Download Fig. 4.41(a) from the book web site and highpass filter it to duplicate the

results in Fig. 4.56.

PROJECT 04-05

Highpass Filtering Combined with Thresholding

Download Fig. 4.57(a) from the book web site and use your program from Project 04-04 to

DIP 3/e Laboratory Projects Page 9 of 18

approximate the results in Fig. 4.57 (note that you will be using a Gaussian, instead of a

Butterworth, filter.

PROJECT 05-01 [Multiple Uses]

Noise Generators

This is a generic project, in the sense that the programs developed here are used in several of

the projects that follow. See Fig. 5.2 for the shapes and parameters of the following noise

probability density functions.

(a) Find (or develop) a program to add Gaussian noise to an image. You must be able to

specify the noise mean and variance.

(b) Find (or develop) a program to add salt-and-pepper (impulse) noise to an image. You

must be able to specify the probabilities of each of the two noise components.

Note: Your program must be capable also of generating random numbers organized as a 1-D

array of specified size (including a single random number), as you will need it later in Chapter

12 to add noise to elements of a vector.

PROJECT 05-02

Noise Reduction Using a Median Filter

(a) Modify the program that you developed in Project 03-03 to perform 3 x 3 median

filtering.

(b) Download Fig. 5.7(a) from the book web site and add salt-and-pepper noise to it, with Pa

= Pb = 0.2.

(c) Apply median filtering to the image in (b). Explain any major differences between your

result and Fig. 5.10(b).

PROJECT 05-03

Periodic Noise Reduction Using a Notch Filter

(a) Write a program that implements sinusoidal noise of the form given in Problem 5.14. The

inputs to the program must be the amplitude, A, and the two frequency components u0 and

v0 shown in the problem equation.

(b) Download image 5.26(a) from the book web site and add sinusoidal noise to it, with u0 =

M/2 (the image is square) and v0 = 0. The value of A must be high enough for the noise to

be clearly visible in the image.

(c) Compute and display the spectrum of the image. If the FFT program you developed in

Project 4.01 can only handle images of size equal to an integer power of 2, reduce the size of

the image to 512 x 512 or 256 x 256 using the program from Project 02-04. Resize the

DIP 3/e Laboratory Projects Page 10 of 18

image before adding noise to it.

(d) Notch-filter the image using a notch filter of the form shown in Fig. 5.19(c).

PROJECT 05-04

Parametric Wiener Filter

(a) Implement a blurring filter as in Eq. (5.6-11).

(b) Blur image 5.26(a) in the +45-degree direction using T = 1, as in Fig. 5.26(b).

(c) Add Gaussian noise of 0 mean and variance of 10 pixels to the blurred image.

(d) Restore the image using the parametric Wiener filter given in Eq. (5.8-3).

PROJECT 06-01

Web-Safe Colors

In order to complete this project, it is necessary that you find a program capable of generating

the RGB component images for a given tif color image. For example, MATLAB's Image

Processing Toolbox can do this, but you can also do it with image editing programs like Adobe's

Photo-Shop or Corel's PhotoPaint. It is acceptable for the purposes of this project to convert an

image to RGB (and back) manually.

(a) Write a computer program that converts an arbitrary RGB color image to a web-safe RGB

image (see Fig. 6.10 for a definition of web-safe colors).

(b) Download the image in Fig. 6.8 from the book web site and convert it to a web-safe RGB

color image. Figure 6.8 is given in tif format, so convert your result back to tif (see

comments at the beginning of this project). Explain the differences between your result and

Fig. 6.8.

PROJECT 06-02

Pseudo-Color Image Processing

(a) Implement Fig. 6.23, with the characteristic that you can specify two ranges of gray-level

values for the input image and your program will output an RGB image whose pixels have a

specified color corresponding to one range of gray levels in the input image, and the

remaining pixels in the RGB image have the same shade of gray as they had in the input

image. You can limit the input colors to all the colors in Fig. 6.4(a).

(b) Download the image in Fig. 1.10(4) from the book web site and process it with your

program so that the river appears yellow and the rest of the pixels are the same shades of

gray as in the input image. It is acceptable to have isolated specs in the image that also

appear yellow, but these should be kept as few as possible by proper choice of the two gray-

level bands that you input into your program.

DIP 3/e Laboratory Projects Page 11 of 18

PROJECT 06-03

Color Image Enhancement by Histogram Processing

(a) Download the dark-stream color picture in Fig. 6.35 from the book web site. Convert the

image to RGB (see comments at the beginning of Project 06-01). Histogram-equalize the R,

G, and B images separately using the histogram-equalization program from Project 03-02

and convert the image back to tif format.

(b) Form an average histogram from the three histograms in (a) and use it as the basis to

obtain a single histogram equalization intensity transformation function. Apply this function

to the R, G, and B components individually, and convert the results to jpg. Compare and

explain the differences in the tif images in (a) and (b).

PROJECT 06-04

Color Image Segmentation

Download Fig. 6.28(b) from the book web site and duplicate Example 6.15, but segment instead

the darkest regions in the image.

PROJECT 07-01 [Multiple Uses]

One-Dimensional Discrete Wavelet Transforms

The purpose of this project is to build a rudimentary wavelet transform package using Haar

wavelets that can be used in projects that follow. You will use an "averaging and differencing"

approach that is unique to Haar basis functions. As an introduction to the method, consider the

function in Example 7.8. The necessary "averaging and differencing" operations are:

Step 1: Compute two-point sums and differences across the function vector and divide the

results by the square root of 2. Since f(x) = {1, 4, -3, 0}, we get

{1 + 4, -3 + 0, 1 - 4, -3 - 0} / 1.414

{5, -3, -3, -3} / 1.414

Note that the sums are positioned consecutively at the beginning of the intermediate result and

followed by the corresponding differences.

Step 2: Repeat the process over the sums computed in the first step to get

{[5 + (-3)] / 1.414, [5 - (-3)] / 1.414, -3, -3} / 1.414

{2 / 1.414, 8 / 1.414, -3, -3} / 1.414

{1, 4, -2.121, -2.121}

DIP 3/e Laboratory Projects Page 12 of 18

The coefficients of the final vector match those in Example 7.8. The two-step computation

generates a two-scale DWT with respect to Haar wavelets. It can be generalized to higher scales

and functions with more than 4 points. Moreover, an inverse DWT can be computed by

reversing the process.

(a) Write a program to compute j-scale DWTs with respect to Haar wavelets. Let scale be an

input parameter and assume a 2M point discrete one-dimensional function. Use the

averaging and differencing approach described above.

(b) Write a program to compute the inverse DWT of a j-scale DWT based on Haar wavelets.

(c) Test your programs using the function in Example 7.8.

PROJECT 07-02 [Multiple Uses]

 Two-dimensional Discrete Wavelet Transforms

(a) Use the routines developed in Project 07-01 to write a program that computes j-scale

two-dimensional DWTs with Haar wavelets. Base your routine on the discussion of separable

wavelets and two-dimensional wavelet transforms in Section 7.5.

(b) Download the image in Fig. 7.1 from the book web site and use your program to generate

the three-scale DWT (or Haar transform) shown in Fig. 7.8(a). Label the various detail and

approximation coefficients that make up the transform and indicate their scales.

(c) Write a program to compute the inverse two-dimensional DWT with respect to Haar

wavelets and use it to reconstruct the original image from the wavelet decomposition in (b).

(d) Write a program to scale the detail coefficients of the DWT in (b) so that the underlying

structure is more visible. The approximation coefficients do not need to be scaled.

PROJECT 07-03

Wavelet Transform Modifications

Download the image from Fig. 4.41(a) from the book web site, reduce its size in half by row-

column deletion, and pad it with 0s to obtain a 512 x 512 array. Use the two-dimensional DWT

program developed in Project 07-02 to compute the transform of the padded image at a variety

of scales between 1 and 9.

(a) Zero the approximation coefficients of the generated transforms and record your

observations regarding subsequently reconstructed images. That is, compute the inverse

transforms of the decompositions after the approximation coefficients have been zeroed and

record the impact on the transform modifications.

(b) Repeat the process in (a) but zero the horizontal detail coefficients instead.

(c) Repeat the process in (a) but zero the vertical detail coefficients instead.

(d) Repeat the process in (a) but zero both the horizontal and vertical detail coefficients.

DIP 3/e Laboratory Projects Page 13 of 18

PROJECT 07-04

Image De-Noising

Download the noisy image of Fig. 7.26(a) from the book web site and de-noise it using a Haar-

based DWT.

PROJECT 08-01 [Multiple Uses]

Objective Fidelity Criteria

(a) Write a program to compute the root-mean-square error [see Eq. (8.1-8)] and mean-

square signal-to-noise ratio [per Eq. (8.1-9)] of a compressed- decompressed image. This

project is generic in the sense that it will be used in other projects that follow.

(b) Download the image of Fig. 8.4(a) and write a program to generate the results in the (b)

and (c) parts of the figure. Use your fidelity criteria program to characterize any loss of visual

information and comment on your results.

PROJECT 08-02

Image Entropy

(a) Write a program to compute the first and second order entropy estimates of an image.

(b) Download the images of Figures 8.14(a) and (b) and use your program to estimate their

entropies. Interpret the results in view of the compression results given in Tables 8.8 and

8.9.

PROJECT 08-03

Transform Coding

(a) Write a program to compute the information loss associated with the following transform

coding schemes:

 Case 1 Case 2

Transform: Fourier Cosine

Subimage Size: 8 x 8 8 x 8

Bit Allocation: 8-largest coding 8-largest coding

Use the routines developed in Project 08-01 to quantify the loss of information. Download the

image in Fig. 8.23 and use the program to compare Cases 1 and 2.

(b) Gradually decrease the number of retained coefficients until the reconstruction error for

Case 2 becomes objectionable. That is, try 7-largest, 6-largest, … coding as the bit allocation

method.

DIP 3/e Laboratory Projects Page 14 of 18

PROJECT 08-04

Wavelet Coding

Download and compress the image of Fig. 8.23 using the Haar-based DWT program of Project

07-02. Use various scales while truncating the detail coefficients to achieve compression.

Quantify the reconstruction error using the program from Project 08-01 and compare both the

computed error and wavelet-based compression performance to the results from Proj08-03.

PROJECT 09-01 [Multiple Uses]

Morphological and Other Set Operations

(a) Write a computer program capable of performing binary dilation and erosion with an

arbitrary structuring element of size 3 x 3 that can be specified by the user.

(b) Write a computer program for performing set intersection, differencing, and

complementation (See Section 2.6.4).

PROJECT 09-02 [Multiple Uses]

Boundary Extraction

(a) Use your results from Project 09-01 to implement morphological boundary extraction as

in Eq. (9.5-1).

(b) Download Fig. 9.14(a) from the book web site and extract its boundary.

PROJECT 09-03 [Multiple Uses]

Connected Components

(a) Use your results from Project 09-01 to write a computer program capable of extracting

(and counting) the connected components from a binary image.

(b) Download Fig. 9.18(a) from the book web site and approximate the results in Example

9.7.

PROJECT 09-04

Morphological Solution to Problem 9.36

(a) Use previous results plus any new required techniques and write a computer program to

completely solve Problem 9.36.

(b) Download the image from the book web site and solve the problem.

PROJECT 10-01

DIP 3/e Laboratory Projects Page 15 of 18

Edge Detection Combined with Smoothing and Thresholding

(a) Extend the program from Project 03-03 to compute the Sobel gradient using the masks in

Fig. 10.14. Your program should implement Eq. (10.2-20), and have the option of outputting

a binary image by comparing each gradient point against a specified threshold, T.

(b) Download Fig. 2.35(c) from the book web site. By combining smoothing with a 3 x 3

mask from Project 03-03 and your program from (a), process Fig. 2.35(c) and produce a

binary image that isolates (segments) the large blood vessel in the center of the image. This

will require repeated trials of smoothing and choices of T. Looking at the histogram (Project

03-02) of the gradient image before it is thresholded will help you select a value for T.

PROJECT 10-02 [Multiple Uses]

Global Thresholding

(a) Write a global thresholding program in which the threshold is estimated automatically

using the procedure discussed in Section 10.3.2. The output of your program should be a

segmented (binary) image.

(b) Download Fig. 10.38(a) and apply your program to it. The result should be the same as

in Example 10.15.

PROJECT 10-03

Optimum Thresholding

(a) Implement Otsu's optimum thresholding algorithm (Section 10.3.3).

(b) Download Fig. 10.39(a) from the book web site and use your algorithm from Project 10-

02 and your implementation of Otsu's algorithm to produce the results in Figs. 10.39(c) and

(d).

PROJECT 10-04

Region Growing

(a) Implement a region-growing algorithm (see Section 10.4.1) for segmenting an image into

two regions. You are free to choose any parameters you wish.

(b) Download Fig. 10.39(a) from the book web site and attempt to segment the two light

rings surrounding the two largest "blobs" in the image.

(c) If you are not able to solve (b), extend your algorithm to region splitting and merging

(section 10.4.2) and try to solve it that way.

PROJECT 11-01 [Multiple Uses]

Boundary following

DIP 3/e Laboratory Projects Page 16 of 18

(a) Develop a program that implements the boundary following algorithm in Section 11.1.1.

Make sure that the points in the output boundary are organized in either a clockwise or

counterclockwise sequence.

(b) Download Fig. 9.14(a) from the book web site and apply your algorithm to it.

PROJECT 11-02

Skeletons

(a) Implement the skeletonizing procedure described in Section 11.1.7.

(b) Download Fig. 11.16 from the book web site and obtain its skeleton. Compare your result

with Fig. 11.16 in the book, and explain any differences between the two.

PROJECT 11-03 [Multiple Uses]

Fourier Descriptors

(a) Implement the Fourier descriptor scheme developed in Section 11.2.3.

(b) Apply your algorithm to the boundary from Project 11-01(b), reducing the number of

descriptors to the minimum required to keep the silhouette recognizable.

PROJECT 11-04

Texture

(a) Implement the statistical texture measures In Eqs. (11.3-4)-(11.3-9)

(b) Download Figs. 1.14(a), (d) and (e) from the book web site, and extract a 100 x 100

segment from the lower, right quadrant of each image.

(c) Compute the statistical measures of the subimages using the measures described in Table

11.2. Present your results in the same table format and discuss.

PROJECT 11-05

Principal Components

(a) Implement the principal components transform discussed in Section 11.4. The objective

is to be able to use Eqs. (11.4-11) and (11.4.-12). You will need routines to compute the

eigenvalues and eigenvectors of the covariance matrix.

(b) Download Figs. 11.38(a) through (f) and duplicate the sequence of operations described

in Example 11.15, including the images and tables.

PROJECT 12-01 [Multiple Uses]

Generating Pattern Classes

DIP 3/e Laboratory Projects Page 17 of 18

(a) Download Figs. 12.18(a1) and (a2) and obtain the boundaries of each using your

program from Project 11.01.

(b) As you did in Project 11-03(b), choose the smallest number of descriptors that

preserves the basic differences between the two figures. This will give you two sequences

of Fourier descriptors, one for each figure. Express each set of coefficients as a vector,

xA = (x1, x2, . . . ,xn)
T and xB = (x1, x2, . . . ,xn)

T, where n is the number of descriptors.

Note that the number of descriptors used must be the same for each figure.

(c) Create two pattern classes, class A and class B, by adding noise (Project 05-01) to

the components of each vector. Use Gaussian noise of zero mean and standard deviation

equal to the maximum component of each vector divided by 10. Generate 100 samples

each of class A and B. Call the aggregate of the two sets the training set. Generate an

additional 100 samples of each class and call the aggregate of these two sets the test set.

PROJECT 12-02

Minimum Distance Classifier

(a) Implement the minimum distance classifier (for two classes) discussed in Section

12.2.1.

(b) Compute the classifier parameters using the training set developed in Project 12-01.

(c) Establish the classifier recognition performance by determining the percent of patterns

from the test set that are classified correctly.

PROJECT 12-03

Bayes Classifier

(a) Implement the Bayes classifier (for two classes) discussed in Section 12.2.2. Assume

Gaussian pattern classes.

(b) Compute the classifier parameters using the training set developed in Project 12-01.

(c) Establish the classifier recognition performance by determining the percent of patterns

from the test set that are classified correctly.

PROJECT 12-04

Perceptron Classifier

(a) Implement the perceptron classifier (for two classes) discussed in Section 12.2.3.

(b) Compute the classifier parameters by training, using the training set developed in

Project 12-01. Since training convergence can be guaranteed only if the classes are

DIP 3/e Laboratory Projects Page 18 of 18

linearly separable, and this is not known a priori, establish a limit that stops the algorithm

after it executes 10n passes through the entire training set, where n is the dimensionality

of the pattern vectors.

(c) Establish the classifier recognition performance by determining the percent of patterns

from the test set that are classified correctly.

