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SUMMARY

In this paper, a disturbance-decoupled adaptive observer is designed for the joint state-parameter estimation
of a system with unknown disturbance inputs. The proposed Robust Adaptive Observer (RAO) integrates
an Unknown Input Observer (UIO) to the parameter estimation process, where the unknown parameters
are estimated as extended states of the system. An auxiliary input is added to the UIO in coping with
the estimation errors so that the exponential stability and convergence of the observer are guaranteed.
The proposed observer is applied to a hydraulically driven elevator for the faulty parameter estimation.
The simulation results show the accuracy of the observer and its robustness to both disturbances and
measurement noises. Copyright � 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The study of adaptive observers is traced back to the joint state-parameter estimation in adaptive
control systems [1, 2]. On one hand, the unmeasured states are evaluated for the purpose of
state feedback control; on the other hand, the unknown parameters are estimated online so that
the controller can be updated accordingly. When certain persistent excitation requirements are
satisfied, the estimated states and parameters converge to their real values simultaneously. With the
increasing reliability requirements on control systems, adaptive observers have also been applied
to the fault diagnosis and evaluation, where faults are modeled and evaluated as the deviation of
parameters from their nominal values [3–6]. In the framework of stochastic problem formulation,
a joint state-parameter estimation algorithm based on a modified Extended Kalman filter (EKF)—a
two-stage Kalman filter—has been developed for fault diagnosis [7] and fault tolerant control [8]
applications.

The approaches of adaptive observers normally fall into two categories. (1) The unknown
parameters are taken as extra states of the system; a state observer is then constructed to estimate
all extended states including the unknown parameters [9, 10]. (2) Parameters estimation techniques
are applied first using the input–output data; the states of the system are then estimated with the
updated information of parameters [11–15]. A general comparison of different adaptive observers
is shown in [16] with a unified approach.

One concern regarding adaptive observers is the robustness to disturbances such as measurement
noises, modeling inaccuracies, and unknown external inputs while providing the desired accurate
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estimation for both states and parameters. In [10, 15], the performance of adaptive observers is
discussed for the noise corrupted systems. It is stated in [10] that the expectation of the estimation
errors is bounded if the magnitude of noises is bounded. Furthermore, the expectation of estimation
errors converges to zero for systems with independent noises of zero means. Therefore, an adaptive
observer is, as shown in [17], Bounded-Input Bounded-Output (BIBO) stable to unknown external
signals, which means the estimation of both parameters and states are affected by disturbance inputs
such that persistent estimation errors exist as functions of the disturbance. Since the disturbance
is unknown and consequently the size of these errors is also unknown to the system, the accuracy
and the reliability of the estimation are impaired.

For a Multiple-Input Multiple-Output (MIMO) system, the robustness to structured disturbances
can be further enhanced for an adaptive observer by utilizing the measurement redundancy of
the system. With proper measurements, the influence of disturbances can be decoupled from the
estimation errors. One technique is to incorporate with an Unknown Input Observer (UIO). A
UIO [18, 19] is a disturbance-decoupled observer for the accurate state estimation for a system
with unknown disturbance inputs. In [20], an adaptive UIO has been designed to estimate the
faulty parameters of an aircraft actuator. The approach, however, needs full states (n independent)
measurements and hence reduces the necessity of states estimation.

This paper developed a robust adaptive observer (RAO) which integrates a UIO to the parameters
estimation process. A UIO is first constructed for disturbance decoupling; an auxiliary input is
added to the UIO so that the stability of the observer and the exponential convergence of all
estimations to their real values are guaranteed if the given requirements on the input signals are
satisfied. One advantage of the proposed observer is that the estimations of both unknown states
and unknown parameters are free of disturbance. The influence of disturbance is decoupled from
all estimations so that the persistent estimation errors caused by the disturbance are eliminated.
The other advantage is that, compared to [20], the observer requires less measurements for the
same type of unknown parameters estimation. To test its validity, the method is then applied to
evaluate sudden faulty parameter changes in a hydraulically driven elevator, which serves as a
control actuator of an airplane.

The paper is organized as follows. The problem studied in this paper is formulated in Section 2.
The proposed RAO is presented in Section 3 with the proof of stability and convergence. The
mathematical model of a hydraulically driven elevator is introduced in Section 4. Section 5 shows
the simulation results. The paper ends in Section 6 with conclusions.

2. PROBLEM STATEMENT

The problem addressed in this paper is the joint state-parameter estimation of a linear system with
structural disturbances. The dynamics of the system is described by the following equation:

ẋ = Ax+Bu+Ed+��

y = Cx
(1)

where A∈ Rn×n , B ∈ Rn×m , and C ∈ Rr×n are respectively the system, input, and output matrices;
E ∈ Rn×p is a known distribution matrix of disturbances; d ∈ R p is a vector of unknown distur-
bances; �∈ Rn×k is a matrix of known signals, which can be linear or nonlinear functions of the
output y and input u; �∈ Rk is a vector of unknown parameters.

The objective of this research is to build an RAO to evaluate all unknown states x and unknown
parameters � with the available inputs u, measurements y, and signal matrix �. The stability of
the observer and the convergence of all estimations to real values need to be guaranteed.

3. ROBUST ADAPTIVE OBSERVER

An RAO is proposed in this section for the system described by (1) with structured disturbance
inputs. All estimates of the observer, including both states and parameters, converge exponentially
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to their real values free of disturbance. The structure of the observer is presented first and then
followed by the proof of the stability and convergence.

In the proposed observer, a UIO is constructed to evaluate the states of the system using the
estimated values of unknown parameters. The estimation of parameters is then updated as the
extended states of the system. An auxiliary input is added to the UIO in coping with the transient
estimation errors of parameters. The RAO has the following form:

ż = Nz+TBu+Ky+T ��̂+� ˙̂�
˙̂� = ��TCT(y−Cx̂)

�̇ = N�+T �

x̂ = z+Hy

(2)

where x̂ and �̂ are the estimation of x and �; z is an intermediate states vector; the matrices H ,
T , K , N , and � in the observer are selected as:

N + N T <0

(HC− I )E =0

T = I −HC

A−HCA−K1C = N

NH = K2

K = K1 +K2

� =�T>0

(3)

Since the update of �̂ in (1) involves an evolving variable matrix of � and thus makes the
observer a Linear Time-Varying (LTV) system, two lemmas regarding to the stability of an LTV
system are introduced before the further discussion on the stability of the proposed observer.

Lemma 1
An LTV system

ẋ = A(t)x (4)

with A(t)= A(t)T�0 is uniformly exponentially stable if there exist positive constants To and � so
that for any to ∫ to+To

to
�(t)dt��>0 (5)

where � is the minimum singular value of A(t).

Proof
According to [21] (Theorem 8.2, p. 132), the norm of the state vector in the autonomous system
(4) satisfies the following inequality:

‖x(t)‖�‖xo‖e1/2
∫ t

to
�max(�)d�

, t�to (6)

where �max(t) is the maximum eigenvalue of A(t)+ A(t)T. For a symmetric matrix A(t)= A(t)T�0,
its singular values satisfy

�(t)=−�[A(t)]=− 1
2�[A(t)+ A(t)T] (7)
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Then it is obvious that

�max(t)=−2�(t) (8)

and consequently

‖x(t)‖�‖xo‖e−∫ t
to

�(�)d� (9)

Since �(t)�0 and for any to ∫ to+To

to
�(t)dt��>0 (10)

it can be seen that∫ t

to
�(�)d� =

∫ to+To

to
�(�)d�+

∫ to+2To

to+To

�(�)d�+·· ·+
∫ t

to+nTo

�(�)d�

� n��
(

t − to
To

−1

)
�>

(
t − to

To

)
�>0 (11)

where

n =floor

(
t − to

To

)
. (12)

Therefore, one has

‖x(t)‖�‖xo‖e
−
(

t−to
To

−1
)
��‖xo‖e�e− �

To
(t−to) (13)

which means that the system in (4) is uniformly exponentially stable (following the definition 6.5
in [21], p. 101). �

Remark 1
Lemma 1 claims that for an autonomous LTV system (4) with a semi-negative-definite system
matrix, the exponential stability condition is that the integrated magnitude of the system matrix is
lower bounded over some constant time period.

Lemma 2
If the system [

ẋ1

ẋ2

]
=
[

A1(t) 0

0 A2(t)

][
x1

x2

]
(14)

is uniformly exponentially stable, the following system[
ż1

ż2

]
=
[

A1(t) A12(t)

0 A2(t)

][
z1

z2

]
(15)

is also uniformly exponentially stable if ‖A12(t)‖��̄ is upper bounded, where ‖•‖ is the 2-norm
of a matrix.

Proof
The solution to the differential equation (15) has the form of[

z1

z2

]
=
[

�1(t, to) �12(t, to)

0 �2(t, to)

][
z10

z20

]
(16)
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where �1(t, to) and �2(t, to) are the state transition matrices associated with A1(t) and A2(t);
[z10 z20]T is the initial states at time to. From (16), it is obvious that the states of system (14) are[

x1

x2

]
=
[

�1(t, to) 0

0 �2(t, to)

][
x10

x20

]
(17)

Since (14) is uniformly exponentially stable, there exist positive constants �1, �1, �2, and �2 such
that for all t�to, the following inequalities hold:

‖�1(t, to)‖ � �1e−�1(t−to)

‖�2(t, to)‖ � �2e−�2(t−to)
(18)

Taking z2 as an external input to the dynamics of z1 yields

�12(t, to)=
∫ t

t0
�1(t,�)A12(�)�2(�, to)d� (19)

Hence one has

z1 =�1(t, to)z10 +
∫ t

t0
�1(t,�)A12(�)�2(�, to)z20 d� (20)

with

‖�12(t, to)‖�
∫ t

t0
‖�1(t,�)‖‖A12(�)‖‖�2(�, to)‖d� (21)

The above inequality becomes

‖�12(t, to)‖���1�2

∫ t

t0
e−�1(t−�)e−�2(�−to) d� (22)

and thus

‖�12(t, to)‖��̄�1�2

∫ t

t0
e−�(t−t0) d�=��1�2e−�(t−t0) (23)

where �=min(�1,�2).
With the property of matrix norm∥∥∥∥∥

[
�1(t, to) �12(t, to)

0 �2(t, to)

]∥∥∥∥∥�
∥∥∥∥∥
[‖�1(t, to)‖ ‖�12(t, to)‖

0 ‖�2(t, to)‖

]∥∥∥∥∥ (24)

which means ∥∥∥∥∥
[

�1(t, to) �12(t, to)

0 �2(t, to)

]∥∥∥∥∥�
∥∥∥∥∥
[

�1e−�1(t−to) �̄�1�2e−�(t−t0)

0 �2e−�2(t−to)

]∥∥∥∥∥ (25)

the following inequality is obtained:∥∥∥∥∥∥
⎡
⎣z1

z2

⎤
⎦
∥∥∥∥∥∥�

∥∥∥∥∥
[

�1e−�1(t−to) �̄�1�2e−�(t−t0)

0 �2e−�2(t−to)

]∥∥∥∥∥
∥∥∥∥∥
[

z10

z20

]∥∥∥∥∥ (26)

Since for any matrix M ∈ Rm×n one has

‖M‖�√
mn|Mij| (27)
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where |M̄ij| is the maximum absolute value of all elements in M , the following inequality holds:∥∥∥∥∥
[

z1

z2

]∥∥∥∥∥��e−�o(t−to)

∥∥∥∥∥
[

z10

z20

]∥∥∥∥∥ (28)

where �e−�o(t−to) is the maximum element in the matrix. It thus follows that the system in (16) is
uniformly exponentially stable. �

With the above two lemmas, the stability and convergence of the observer are summarized in
the following theorem.

Theorem 1
For system (1) with unknown disturbances, an RAO can be designed in the form of (2) with its
parameters H , T , K , N , and � selected as in (3). The adaptive observer is uniformly exponentially
stable and the estimated states and parameters converge to the real values in an exponential rate if
the following conditions are satisfied:

(1) Rank(CE)=Rank(E);
(2) (A−HCA,C) is an observable pair;
(3)

∫ to+To
to

�(−��TCTC�)dt is lower bounded;

(4) ‖��TCTC‖ is upper bounded;
(5) � is not a linear transformation of E , i.e. �=EQ does not have solution Q for all time.

Proof
Define x̃ = x − x̂ and �̃=�− �̂. One obtains

˙̃x =Ax+Bu+Ed+��−[Nz+TBu+KCx+T ��̂+� ˙̂�]−HC(Ax+Bu+Ed+��) (29)

After manipulations, Equation (29) can be written as

˙̃x = (A−HCA−KC)x +(I −HC−T )Bu+(I −HC)Ed+(I −HC)��−T ��̂−Nz−� ˙̂� (30)

With K = K1 +K2, the above equation becomes

˙̃x=(A−HCA−K1C)x+(I−HC−T )Bu+(I−HC)Ed+(I−HC)��−T ��̂−(Nz+K2Cx)−� ˙̂� (31)

With the parameters selected as in (3) and �̇=0, Equation (31) is written as

˙̃x =Nx+T ��̃−(N
�
x)−� ˙̂�= N x̃ +T ��̃+� ˙̃� (32)

One has

�̇= N�+T � (33)

and
•

(x̃ −��̃)= ˙̃x −�̇�̃−� ˙̃� (34)

Thus, the following equation is derived:

•
(x̃ −��̃)= N (x̃ −��̃) (35)

With the updating law of the estimated parameters

˙̂�=�−1�TCT(y−C
�
x) (36)

the dynamics of parameter estimation errors has the form of

˙̃�=−�−1�TCTCx̃ (37)
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or equivalently

˙̃�=−�−1�TCTC(x̃ −��̃)−�−1�TCTC��̃ (38)

The dynamics of the adaptive observer is then changed to⎡
⎢⎣

˙̃�
•

(x̃ −��̃)

⎤
⎥⎦=

[−�−1�T CT C� −�−1�T CT C

0 N

][
�̃

(x̃ −��̃)

]
(39)

Since N + N T<0 and condition 3 are satisfied, with Lemma 1, the following system⎡
⎢⎣

˙̃�
•

(x̃ −��̃)

⎤
⎥⎦=

[−�−1�TCTC� 0

0 N

]⎡⎣ �̃(
x̃ −��̃

)
⎤
⎦ (40)

is uniformly exponentially stable.
With condition 4 that ‖��TCTC‖ is upper bounded, system (39) is also uniformly exponen-

tially stable by following Lemma 2. This implies that �̃→0 and (x̃ −��̃)→0 in an exponential
rate. �

Remark 2
The five conditions in the theorem above are further explained as follows:

(1) Condition 1 is required as the measurement redundancy. Disturbances can be decoupled
from the observation only when there are enough independent measurements. Hence the
equation (HC− I )E =0 is solvable.

(2) Condition 2 is required so that the poles of the observer, i.e. the eigenvalues of N , can be
assigned freely with the feedback gain of K1.

(3) Condition 3 is the persistent excitation requirement on the richness of signals matrix �,
which states that the filtered output � of � must have enough energy in all channels.

(4) Condition 4 is the requirement on the size of �. Since the output matrix C and the selected
parameter

∑
are all known, the upper boundedness of ‖��TCTC‖ implies the norm of �

is bounded.
(5) Condition 5 is required so that the disturbance inputs and the unknown parameters are

separable; otherwise, there will always exist a matrix Q such that �=EQ, which means the
parameter variations are covered by the disturbance inputs d = Q�.

Remark 3
Besides the state estimation of an UIO, the proposed observer has the capability of disturbance-
decoupled parameters estimation. Compared to the normal adaptive observer and EKF [22] which
can also handle noise and estimate states and parameters, the salient property of the proposed
observer is the disturbance-decoupled states and parameters estimation. The proposed observer
decouples the influence of disturbance from all estimations and thus improves estimation accu-
racy and the robustness of estimation when the system is subject to unknown disturbances and
measurement noises.

4. THE MODEL OF A HYDRAULICALLY DRIVEN ELEVATOR

To test its efficiency, the RAO proposed in Section 3 is applied to a hydraulically driven elevator
with application to fault detection and identification. In the simulation, different faults of the
elevator are modeled as abrupt parameters change and then estimated together with the states of
the system. The mathematical model of the elevator is presented in this section.
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4.1. The model of the elevator

In a flight control system, an elevator is a part of the control actuator that adjusts the pitch angle
of an airplane. A simple illustration of the elevator studied in this research is shown in Figure 1.

The elevator consists of a right and a left subsystem. Each subsystem has a panel, a hydraulic
cylinder, and an Electro-Hydraulic Servo Valve (EHSV). The panel of each subsystem, which is
fixed to a shaft, is driven by the EHSV-controlled hydraulic cylinder through a spring connection.
The two shafts are connected through a joint so that the two panels will move synchronously. The
joint is connected to the tail of the airplane through a hinge. The control command to the elevator
is the current to the EHCVs. The mathematical model of the elevator (adopted from the Simulink
model from THALES AVIONICS CANADA Inc.) is shown in the following equations:

ẋ1L = x2L

ẋ2L = 1

mL
[ApL PL −bL x2L −KsL(x1L −lL x5L )]

ẋ3L = x4L

ẋ4L = −	2
vLx3L −2
vL	vLx4L +kvLuL

ẋ5L = x6L

ẋ6L = KsL(x1L −lL x5L )− BsLx6L −KPs(x5L −x5R)−0.5Hm(x5L +x5R)

JsL

ẋ1R = x2R

ẋ2R = 1

m R
[ApR PR −bR x2R −KsR(x1R −lR x5R)]

ẋ3R = x4R

ẋ4R = −	2
vR x3R −2
vR	vRx4R +kvRu R

ẋ5R = x6R

ẋ6R = KsR(x1R −lR x5R)− BsRx6R +KPs(x5L −x5R)−0.5Hm(x5L +x5R)

JsR

(41)

The available measurements are

y = [x1L x2L x3L x5L x1R x2R x3R x5R]T (42)

where the physical meanings of the states and parameters (and the nominal values of the parameters)
are given in Table I.

The elevator has nonlinear components in the dynamics of hydraulic pressures. The pressure
difference P between the active and passive chambers has the form of (same for PL and PR):

Ṗ1 =
�

(
CV wx3

√
2(Ps − P1)

�
−C12 A12(P1 − P2)− A1 P2

)

V1 + A1x1

Ṗ2 =
�

(
−CV wx3

√
2(P2 − Pr )

�
+C12 A12(P1 − P2)+ A2 P2

)

V2 − A2x1

P = P1 − P2

(43)

where P1 and P2 are the pressures in the active and passive chambers, respectively. Physical
meanings and values of hydraulic parameters are shown in Table II.
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Figure 1. Structure of the elevator.

Table I. Nomenclatures.

Left system Right system Physical meanings Values

x1L x1R Cylinder piston position (in.) —
x2L x2R Piston velocity (in./s) —
x3L x3R EHSV spool position (in.) —
x4L x4R EHSV spool velocity (in./s) —
x5L x5R Panel angel (◦) —
x6L x6R Panel velocity (◦/s) —
uL u R Control current to EHSV —
PL PR Pressure difference between chambers (psi) —
mL m R Piston mass 7.88×10−3(lbs2/in.)
ApL ApR Cylinder chamber area 3.624(in.2)
bL bR Cylinder damping 9.27(lb/in./s)
KsL KsR Spring stiffness 2.5×105(lbf/in.)
lL lR Arm length to the shaft 2.924(in.)
dL dR Pressure dynamics —
	L 	R EHSV natural frequency 817(rad/s)

L 
R EHSV damping ratio 0.8
kvL kvR EHSV actuation gain 0.00337(in./s2/mA)
BsL BsR Shaft damping 82(lbf in.s/rad)
JsL JsR Equivalent inertia 7.5(lbf in.s2)
Kps Joint stiffness 5×105(lbf in./rad)
Hm Hinge stiffness 8.594×103(lbf in./rad)

In this research, the model with both the linear component (41) and the nonlinear component
(43) is applied to simulate the dynamics of the elevator in Matlab/Simulink environment. For the
proposed method in Section 3 to be applicable, the linear model in (41) is adopted in constructing
the RAO, where the pressure difference PL and PR are taken as disturbance inputs that are
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Table II. Hydraulic parameters.

Variables Physical meanings Values

� The oil bulk modulus 105(psi)

CV w

√
2
� The flow rate gains of the EHSVs 9.6571(in.2/psi1/2)

PS The oil supply pressure 3000 (psi)
Pr The oil reservoir pressure 50 (psi)
C12 A12 The leaking coefficients between chambers 3.208(in.3/s/psi)
A1 The piston area (active) 3.6264(in.2)
A2 The piston area (passive) 3.6264(in.2)
V1 Null volume of the active chamber 4.1(in.3)
V2 Null volume of the passive chamber 4.1(in.3)

totally unknown to the system. Thus, the dynamics of the elevator in the state space form can be
expressed as

ẋ = Ax+Bu+Ed

y = Cx
(44)

with

x = [x1L . . . x6L x1R . . . x6R]T

u = [uL u R]T

d = [PL PR]T

where matrices A, B, C , and E can be derived from (41) and (42) as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AL

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0
(KPs −0.5Hm)

JsR
0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0
(KPs −0.5Hm)

JsL
0

AR

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B =
[

BL 06×1

06×1 BR

]
, E =

[
EL 01×6

01×6 ER

]
, C =

[
CL 04×6

04×6 CR

]
,
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with

AL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0

−KsL

mL

−bL

mL
0 0

KsLlL

mL
0

0 0 0 1 0 0

0 0 −	2
vL −2
vL	vL 0 0

0 0 0 0 0 1

KsL

JsL
0 0 0

−(KsLlL +KPs +0.5Hm)

JsL

−BsL

JsL

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

AR =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0

−KsR

m R

−bR

m R
0 0

KsRlR

m R
0

0 0 0 1 0 0

0 0 −	2
vR −2
vR	vR 0 0

0 0 0 0 0 1

KsR

JsR
0 0 0

−(KsRlR +KPs +0.5Hm)

JsR

−BsR

JsR

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

BL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

kvL

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, BR =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

kvR

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, EL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

ApL

mL

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ER =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

ApR

m R

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

CL = CR =

∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

∣∣∣∣∣∣∣∣∣∣

4.2. Model of the elevator with faults

Faults in an elevator can result in the loss of pitch control, which consequently reduces the elevation
capability and thus deteriorates the performance, maneuverability, and safety of an airplane. Two
types of faults are considered in this paper including the unsynchronized movement of panels and
the gain loss of the elevator.

For the purpose of pitch control, the two panels of the elevator need to move synchronously.
Unsynchronized movement of panels will lead to unexpected roll and yaw of the airplane. For the
two identical subsystems (Figure 1) that have the same structure and follow the same command
(the current to the EHSVs), the fault of unsynchronized movement is due to unmatched change
in parameters. In this research, this fault was modeled as the changes in EHSV gain kv , from its
nominal value. The EHSV gain kv is defined as a ratio of valve opening to its current command.
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The other fault considered in this research is the gain loss of the elevator, which means that the
elevator moves slower than it is expected. One reason for such a fault is the stiffness change in
the whole system, which is modeled as the increase in the hinge stiffness Hm .

The faults of the elevator are therefore modeled as the changes in parameters kvL, kvR, and Hm .
The model of the elevator with faults � (the deviations of the aforementioned parameters from
their nominal values �o; �o is modeled as the fault-free dynamics) has the following form:

ẋ = Ax+Bu+Ed+��

y = Cx
(45)

where

�=
[

�1

�2

]
, �= [F1 F2]

[
1 02×1

02×2 2

]

with

�1 =
[

�kvL

�kvR

]
, �2 =�HM , 1 =

[
uL 0

0 u R

]
, 2 =

[
x5L

x5R

]
,

F1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

1 0

0 0

0 0

0 0

0 0

0 0

0 1

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, F2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

0 0

0 0

−0.5

JsL
−0.5

JsL

0 0

0 0

0 0

0 0

0 0

−0.5

JsR
−0.5

JsR

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

5. SIMULATION EVALUATION RESULTS

In the simulations, the actuator gain loss for each EHSV was modeled as the change in parameter
kv to 0.5 of its original value (0.00337in./s2/mA) for the left EHSV and to 0.4 for the right.
The stiffness change of the hinge was modeled as the change in parameter Hm to 10 times of
its original value (8.594×103 lbf in./rad). All faulty parameters changed simultaneously at 1 s. To
simulate the noise-corrupted system, white noises were added to the measurements. The size of
the noise added to each channel was 5 percent of that specific measurement.

The simulation results of parameter estimations are shown in Figures 2 and 3 as the deviation
ratio of each parameter from its nominal value. In each figure, the actual change in each parameter
is shown as the dash-dot curve; the estimated parameter change in the proposed RAO is shown as
the solid curve (RAO). As a comparison, the parameter estimation result of an adaptive observer
(in the form of [11]) with the same poles and updating rate as those of the RAO is also shown as
the dashed curve (Adpt. Obsv.).
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Figure 2. Estimation of kv: RAO versus normal adaptive observer.

Figure 3. Estimation of Hm : RAO versus normal adaptive observer.

The state estimation errors of the proposed observer are shown in Figure 4, where in each
sub-figure the solid curve is for the left subsystem and the dashed curve is for the right subsystem.
The state estimation results of the compared observer are not shown because these errors are not
in the same scale as those of the proposed observer.

The simulation results show that, for the proposed observer, the faulty parameters can be
evaluated quickly and accurately even when the hydraulic pressure is unknown to the observer.
For the compared adaptive observer, the lack of hydraulic pressure information leads to constant
estimation errors.

To further illustrate the disturbance-decoupling capability of the proposed observer, we compare
with an EKF [22], which also has the joint state and parameter estimation capability and the results
of parameters estimation are shown in Figures 5 and 6. From these figures, one can see that the
estimations of faulty parameters kv are accurate since the states x3 and x4 of the servo valves,
which are needed for the estimating of kv , are not influenced by the disturbance (pressures in the
cylinders). The estimated increase in Hm , however, converges to a false value of 16.2. This is
because the states needed for the estimation of Hm are under the influence of the disturbance. The
results show clearly the advantages of the proposed algorithm over the EKF in the convergence
rate, accuracy of parameters estimation, and robustness to the disturbances.
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Figure 4. States observation errors of the RAO.

6. CONCLUSIONS

In this paper, an RAO was proposed for the linear systems with unknown disturbance inputs. The
exponential stability of the observer and the exponential convergence of all estimations to the
real values have been proved. The proposed observer enhances the robustness of estimation in
the sense of disturbance rejection by integrating the estimation process with an unknown input
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Figure 5. Estimation of kv: EKF versus RAO.

Figure 6. Estimation of Hm : EKF versus RAO.

observer. The results on comparison with the EKF demonstrate the improved estimation accuracy
of the proposed observer for a system corrupted with unknown disturbances. Simulation on the
faulty parameters estimation of an industrial hydraulically driven airplane elevator validates the
effectiveness of the proposed observer.
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