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The decentralized model predictive control (DMPC) of multiple cooperative vehicles with the possibility of communication
loss/delay is investigated. The neighboring vehicles exchange their predicted trajectories at every sample time to maintain the
cooperation objectives. In the event of a communication loss (packet dropout), the most recent available information, which
is potentially delayed, is used. Then the communication loss problem changes to a cooperative problem when random large
communication delays are present. Such large communication delays can lead to poor cooperation performance and unsafe
behaviors such as collisions. A new DMPC approach is developed to improve the cooperation performance and achieve safety
in the presence of the large communication delays. The proposed DMPC architecture estimates the tail of neighbor’s trajectory
which is not available due to the large communication delays for improving the performance. The concept of the tube MPC is also
employed to provide the safety of the fleet against collisions, in the presence of large intervehicle communication delays. In this
approach, a tube shaped trajectory set is assumed around the trajectory of the neighboring vehicles whose trajectory is delayed/lost.
The radius of tube is a function of the communication delay and vehicle’s maneuverability (in the absence of model uncertainty).
The simulation of formation problem of multiple vehicles is employed to illustrate the effectiveness of the proposed approach.

1. Introduction

To address the intervehicle communication loss/delay in
a network of cooperative multiple vehicles, a previously
developed delay-dependent decentralized model predictive
control (DMPC) architecture in [1] is modified and extended
to subsystems with generic class of dynamics, subject to inter-
vehicle communication packet loss. The proposed decentral-
ized model predictive control (DMPC) features two main
contributions. The first contribution is the development of
a new DMPC approach that estimates the trajectory of the
neighboring vehicles for the tail of the prediction horizon
which would otherwise not be available due to the commu-
nication losses leading to random communication delays. In
this approach, the tail of the cost function is estimated by
adding extra decision variables in the cost function.

A relatively small amount of existing works have investi-
gated the implementation issues such as communication loss
associated with the exchange of trajectory information, but

so far a few works have proposed a systematic tail estimation
process to compensate for large delays. For example, in
[2–5], it is assumed that the neighboring vehicles remain
stationary at the last delayed states broadcasted by them.
Such assumptions may yield poor performance for large
communication delays, because the stationary state vector is
not necessarily an accurate estimate of a time-varying state
vector. Similar issues are investigated in [6], where for the
hardware implementation of a robust DMPC to wheeled
robots, both computation and communication delays are
considered. To account explicitly for the time delays a model
of the vehicle is used to estimate their state vector when
required. Then the uncertainty arising from this estimation
is taken into account by accommodating that into the
effective disturbance force used for constraint tightening.
Also, in [7], the stability, feasibility, and computation issues
of a distributed MPC are investigated. The main practical
attraction of the proposed architecture in [7] is that it allows
terminating the computations at the end of each sampling
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period even if convergence is not achieved; this feature
facilitates the real-time implementation of DMPC.

The second contribution of this paper is an extension of
the tube-based model predictive control (MPC) approach
[8, 9] for the case of the large communication delays in
order to guarantee the safety of the fleet against possible
collisions during formation control problems. The concept
of the tube MPC in the existing works [8, 9] is normally
used to calculate a robust bound on the states due to model
uncertainty, whereas in this paper the approach is used to
calculated bounds on the exchanged neighbor trajectories
when large intervehicle communication delays exist.

In [10], the wireless communication packet loss/delay is
considered; once the packet loss/delay occurs, the previous
available trajectory of the faulty vehicle—whose trajectory
is delayed—is extrapolated to predict the future reference
trajectory. Also, in [11], the communication failure in
formation flight of multiple vehicles leads to break in the
communicated messages that force the fleet to redefine the
communication graph.

This paper is organized as follows. Section 2 presents a
general formulation of the delay-free decentralized model
predictive controller and the corresponding algorithm. In
Section 3 a new delay-compensated DMPC (DC-DMPC) is
developed to address the communication delays arising from
communication losses. A safety guarantee method is also
developed based on the concept of tube MPC. In Section 4
the proposed algorithms are tested through simulation of a
leader-follower formation problem for a fleet of unmanned
vehicles.

2. Decentralized Model Predictive Control

Consider a team of cooperative vehicles with uncoupled
dynamics. Each vehicle is equipped with three main compo-
nents: (1) measurement sensors, (2) communication device,
and (3) computation resource. The measurement sensors
of each vehicle measure its own states assuming full state
measurement is available. The communication device is used
to gather the information from the neighboring vehicles and
communicate with human operators. Using the computation
resource, each vehicle solves a decentralized optimization
problem at each sampling time based on its current measured
states (from sensors) and the neighbor’s predicted state
trajectories (provided through communication). It is further
assumed that there is no sensor error, model uncertainty, or
communication noise. These assumptions allow focusing on
the main problem concerning intervehicle communication
loss/delay. The developed algorithms do not rely on such
assumptions; in fact, these assumptions are not restrictive for
extending the proposed algorithms to nonideal situations.
It is worth mentioning that even if a perfect model of
neighboring vehicle is available still there is a possibility
of mismatch between the predicted neighboring vehicle’s
trajectory and the actual ones, because the neighboring
vehicles may use a particular communication topology which
leads to different DRHC optimization problems and hence
different solutions. This problem can be overcome only by a
centralized approach which is beyond the approach of this

paper, because in a centralized approach only one communi-
cation topology which connects all the team members exists.
Then, it is intended to focus on such mismatches arising from
decentralized nature of the problem rather than mismatches
coming from model uncertainty, and so forth.

Moreover, the terms agent, vehicle, team, member, and
subsystem bear the same meaning. And so do the terms group,
team, fleet, and network.

2.1. Interaction Graph Topologies. Graph theory is a relevant
mathematical tool for modeling and analyzing the interac-
tions among the cooperative vehicles (see for instance, [12,
13]). Graph topology is described by two basic elements: nodes
and edges. Nodes represent the vehicles, and an edge between
two nodes denotes the interaction between those vehicles.
The interaction graph is denoted by G and represented as
follows:

G = {V,E}, (1)

where V is the set of nodes (vehicles) and E ⊆ V × V is the
set of edges (i, j), with i, j ∈ V. Hence, considering a set
of Nv vehicles cooperating to perform a common mission,
the ith vehicle in the team is assigned to the ith node of the
graph. If an edge (i, j) connecting the ith and jth node is
present in E, it means that the ith and jth vehicles have an
interaction. This relation is termed as neighborhood for ith
and jth vehicles, and it is said that

(i) ith and jth vehicles are neighboring vehicles;

(ii) ith vehicle is a follower of the jth vehicle;

(iii) jth vehicle is a leader of the ith vehicle.

Also, it is assumed that the interaction graph is directed, that
is, (i, j) ∈ E does not necessarily imply ( j, i) ∈ E, unless
it appears explicitly in E. Further, let Ni

l and Ni
f denote the

number of the leaders and followers of vehicle i, respectively.
In this paper, the information exchange structure coin-

cides the control structure; in fact, an edge (i, j) indicates that
(1) vehicle j sends information on its planned trajectory to i
and (2) the cost function of vehicle j is coupled to states of
vehicle i. Also, it is assumed that the interaction graphs have
a particular fixed structure and is set by the human operator
prior to the mission.

2.2. DMPC Notation and Terminology. With model predic-
tive control, a cost function is optimized over a finite time
window called the prediction horizon, N . The first of the
computed optimal inputs is applied to the plant. The reader
is referred to [14] for a comprehensive review of MPC
schemes.

In this paper, the DMPC architecture is formulated based
on the quasi-infinite-RHC formulation [15] where the key is
to tune the terminal cost so that the closed-loop MPC has the
property of an infinite horizon controller. In this approach
the states are driven to a neighborhood of the origin where
it is a positively invariant set under a feedback terminal
controller for linearized system.
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The discrete timing is then shown by k where k ∈ N.
As mentioned for the DMPC scheme presented in this
paper the neighboring vehicles exchange their predicted state
trajectories to provide cooperation. However, as we will
see later for the time periods when the updated leader’s
state trajectory is not available, it is estimated by the
followers. Hence, considering the trajectory of vehicles, those
calculated by themselves and those estimated by followers, an
appropriate notation is required to present all these possible
trajectories (actual, predicted, and estimated). The possible
state vectors are introduced as follows:

(i) xi(k): the actual state vector of the ith vehicle at time
step k;

(ii) xik(p): the state vector of the ith vehicle at time p,
predicted by the ith vehicle at time step k, where p =
0, 1, 2, . . . ,N ;

(iii) x
i, j
k (p): the state vector of the ith vehicle at time step
k, estimated by the jth vehicle at time step k where
p = 0, 1, 2, . . . ,N .

Further, the sequence of states over the prediction horizon is
called the state trajectory of vehicle i calculated by itself and
is represented by xik(·):

xik(·) =
{
xik
(
p
) | p = 0, 1, 2, . . . ,N

}
,

uik(·) =
{
uik
(
p
) | p = 0, 1, 2, . . . ,N − 1

}
.

(2)

Then let the following represent the concatenated state and
input trajectories of the leader(s) of the ith vehicle at time k:

x−ik (·) =
{

x
j
k(·) | j ∈ V,

(
i, j
) ∈ E

}
,

u−ik (·) =
{

u
j
k(·) | j ∈ V,

(
i, j
) ∈ E

}
.

(3)

If the trajectory is defined on an interval which is different
from [k, k+N] by other vehicles, then the beginning and end

times are indicated as x
i, j
k (b : e), that is,

x
i, j
k (b : e) =

{
x
i, j
k

(
p
) | p = b, b + 1, . . . , e, j ∈ V,

(
i, j
) ∈ E

}
,

(4)

where [b : e] is the interval on which the trajectory is defined.

2.3. Delay-Free DMPC Formulation. In this section, a brief
overview of a delay-free DMPC problem and its implemen-
tation are described. More details can be obtained from
[6, 12, 16]. For the DMPC scheme presented in this paper,
the predicted trajectories are exchanged instead of being
estimated, thereby reducing the online computational time.
Figure 1 shows the delay-free intervehicle communication
between two neighboring vehicles and the information
exchange at time step k.

In Figure 1, it is assumed that the current leader’s
predicted trajectories are always available instantly to their
followers. However, at least one step delay has to be consid-
ered as the current predicted trajectories are not available

Vehicle i
(follower)

Vehicle j

(leader)

x
j
k(·)

Figure 1: The delay-free intervehicle communication between two
neighbors.

instantly, even if an infinite communication bandwidth is
used. Then, the information set of the ith vehicle for the
case of communication delay-free DMPC is introduced as
follows:

Γi(k) =
{

xi(k), x−ik−1(·)
}

, (5)

where set Γi(k) contains the updated information available to
the ith vehicle at time step k and is referred to the information
set in this paper. This collects (1) the instant state vector of
the ith vehicle and (2) the concatenated state trajectory of
neighbors calculated at the previous time step, x−ik−1(·).

For the particular case of formation control, the delay-
free decentralized cost function for the ith vehicle in the team
at time k is defined as follows:

J i
(
Γi(k), uik(·)

)

=
N−1∑

p=0

(∥∥∥xik
(
p
)− xT ,i

∥∥∥2

Q
+
∥∥∥uik

(
p
)∥∥∥2

R

)
+
∥∥∥xik(N)− xT ,i

∥∥∥2

P

+
∑

j|(i, j)∈E

⎛
⎝
N−1∑

p=0

∥∥∥xik
(
p
)− x

j
k−1

(
p
)− ri, j

∥∥∥2

S

⎞
⎠,

(6)

where ‖x‖2
Q = x′Qx and P, Q, R, and S are positive definite

and symmetric matrices, xT ,i is the state vector of target
(waypoint) of vehicle i, and ri, j is the vector of desired relative
position between vehicles i and j.

2.3.1. Delay-Free DMPC Problem. Assume that the following
describes the discrete-time dynamics of the (homogeneous)
vehicle i:

xi
(
p + 1

) = f
(

xi
(
p
)
, ui
(
p
))

, xi(0) = xi(0). (7)

Then, the delay-free DMPC problem P i(k) is defined for any
vehicle i ∈ V at time step k as follows.

Problem 1. Delay-Free DMPC Problem P i(k). Calculate

J i
(
Γi(k)

)
= Min
{uik(·), xik(·)}

J i
(
Γi(k), uik(·)

)
(8)

subject to (for p = 0, 1, 2, . . . ,N − 1)

xik
(
p + 1

) = f
(

xik
(
p
)
, uik
(
p
))

; xik(0) = xi(k), (9a)

xik
(
p
) ∈ Xi, uik

(
p
) ∈ Ui, (9b)

xik(N) ∈ Xif , (9c)

where Xi, Ui, and Xif ⊆ Xi denote the set of admissible states,
inputs, and final states (terminal region), respectively, for the
ith vehicle.
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Given E and initial condition of vehicle i, do:
(1) k ← 0.
(2) Measure xi(k) and update the information set Γi(k) based on (4).
(3) Solve P i(k) and predict the control and state trajectories ui

k(·) and xik(·).
(4) Send the predicted state trajectory xik(·) to all followers j (where ( j, i) ∈ E).
(5) Apply the control action ui

k(0) to vehicle i.

(6) Receive the trajectory x
j
k(·) from leader(s) j (where (i, j) ∈ E).

(7) k ← k + 1. GOTO step 2.

Algorithm 1: Delay-free DMPC.

Vehicle i
(follower)

Vehicle j

(leader)x
j
k−d(·) x

j
k(·)

Delay d

Figure 2: Delayed intervehicle communication between two neigh-
boring vehicles.

2.3.2. Delay-Free DMPC Algorithm. Each vehicle i at each
sampling period solves the decentralized problem P i(k). The
output of the optimization problem P i(k) is the predicted
input and state trajectories of vehicle i. The generated state
trajectory is sent to followers for cooperation purposes,
and the first optimal input is applied to the individual
vehicle i. The following algorithm is presented for the online
implementation of the delay-free DMPC problem above. The
algorithm is formulated for the ith vehicle as in Algorithm 1.

Initialization. For k = 0 at steps 2 and 3, assume Ni
l = 0

(because no information from leader(s) is available).
Algorithm 1 is repeated until the assigned targets are

reached. The targets are assumed to be known and assigned
to each agent a priori.

3. Delay-Compensated DMPC (DC-DMPC)

This section develops a new delay-compensated DMPC (DC-
DMPC) approach. The safety issues are also discussed.

3.1. Delayed Cost Function and Information Set. Assume at
time step k the vehicle i receives the information from
neighbor j with time-delay d, where d ∈ N and d ≥ 1, see
Figure 2. Then, the term large communication delays denotes
the time delays which are larger than the sampling period,
that is, d > 1.

When a vehicle receives the delayed information from
neighbors the information set is updated as follows (compare
with (5)):

ΓiD(k) =
{

xi(k), x−ik−d(·)
}
. (10)

The information set ΓiD(k) represents updated information
available to the ith vehicle at time step k. It implies at time
step k that each vehicle i has access to its own delay-free

Follower i

Leader j Tail of leader’s trajectory

0 k − d k k − d +N k +N

Figure 3: Tail of the leader’s trajectory in the presence of large
communication delay d.

information and delayed information from neighbors. Then,
the decentralized delayed cost function for all i ∈ V at time
step k is defined as follows (compare with (6)):

J iD
(
ΓiD, uik(·)

)
=

N−1∑

p=0

( ∥∥∥xik
(
p
)− xT ,i

∥∥∥2

Q
+
∥∥∥uik

(
p
)∥∥∥2

R

)

+
∥∥∥xik(N)− xT ,i

∥∥∥2

P

+
∑

j|(i, j)∈E

⎛
⎝
N−d∑

p=0

∥∥∥xik
(
p
)− x

j
k−d
(
p
)− ri, j

∥∥∥2

S

⎞
⎠.

(11)

The communication delay affects the cooperation cost
for the periods when the leader’s trajectory is not available.
In fact, for the tail of the cost function during [N − d : N]
the leader’s trajectory is not available due to communication
delay to calculate the cost function. More precisely, assume
at time step k the vehicle i receives the information from
neighbor j with time-delay d, where d ∈ N and d ≥ 1.
Then, the trajectory of neighbor j for only the time interval
[k− d, k +N − d] is available to vehicle i, while according to
cost function of (6) vehicle i needs the trajectory of neighbor
j for the entire interval [k, k + N]. Hence for the portion
[k+N−d, k+N] the trajectory of j is not available due to the
delay (see Figure 3). When the time delay is small this lack of
information is not important, but for large communication
delays the tail of cost function during [k + N − d, k + N]
becomes large and as shown by simulations in Section 4 it
can lead to poor performance and unsafe behaviors (see also
[13, 17]). One remedy to this problem is proposed here by
estimating the tail of the cost function by including extra
decision variables in the cost function.
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3.2. Delay-Compensated Cost Function. The main idea with
the proposed cost function is that it replaces the missing
information due to communication loss, with the deci-
sion variables. Then, the decision variables are used to
approximate the missing information. More specifically,
communication losses prevent access to updated leader’s tra-
jectory, and then the available delayed neighbor’s trajectory
is utilized. However, the delayed leader’s trajectories do not
cover the entire time slot required by follower to calculate its
cost function; hence, a delay-compensated cost function is
proposed as follows (for the ith vehicle in the team at time
step k):

J iDC

(
ΓiD(k), uik(·), x−ik (N − d : N), u−ik (N − d : N)

)

= J iD
(
ΓiD(k), ui·|k

)

+ J iTail

(
x−ik (N − d : N), u−ik (N − d : N)

)
,

(12)

where J iD is calculated from (11) and

J iTail

(
x−ik (N − d : N), u−ik (N − d : N)

)

=
∑

j|(i, j)∈E

⎡
⎣

N∑

p=N−d+1

(∥∥∥xik
(
p
)− x

j,i
k

(
p
)− ri, j

∥∥∥2

S

+
∥∥∥x

j,i
k

(
p
)− xT , j

∥∥∥2

Q
+
∥∥∥u

j,i
k

(
p
)∥∥∥2

R

)

+
∥∥∥x

j,i
k (N)− xT , j

∥∥∥2

P

⎤
⎦.

(13)

The subscript “D” stands for “Delay”. The delay-compensa-
ted decentralized cost function J iDC includes two main parts.

(1) The delayed cost J iD which includes the cost of
local vehicle i and the cost of neighboring vehicles
calculated from the delayed information. Literally,
this part is calculated using the information available
from communication (and measurement sensors for
local vehicle).

(2) The tail cost J iTail (13) which calculates the cost
associated with the neighbors over the tail of the cost
function during [N − d + 1 : N] where information
is not available due to the communication loss/delay.
In fact, the added extra decision variables are used to
calculate this part.

Although it is assumed that there is model uncertainty
and communication noise, the lack of updated information
due to communication loss will impose an uncertainty on
the updated leader’s trajectory, because, in the event of
communication loss, the followers will utilize the leader’s
delayed trajectory, which may differ from the updated
unavailable trajectories. Such uncertainty which is derived
from the mismatch between updated and delayed trajectories
may lead to poor performance of the decentralized DMPC.

3.3. Safety Guarantee Using Tube DMPC. For the particular
case of formation control, consider a group of vehicles
that are required (1) to keep certain relative positions
(local objective) and (2) to visit a set of waypoints (global
objective). In general, incorporating the collision avoidance
constraint into the optimization problem of DMPC is not
trivial because of the nonconvexity nature of the distance
constraint. To address this problem, in [18] a hybrid rule-
based extension of the decentralized model predictive control
(DMPC) is proposed to avoid possible collisions. Also, in
[19] a mixed integer linear programming (MLIP) approach
is utilized to handle the nonconvex collision avoidance
constraint using a DMPC architecture.

The problem becomes even more serious when the large
communication delays exist because communication delay
leads to a lack of updated information on the trajectory of
neighboring vehicles and this can make the formation unsafe
and put the team in jeopardy. Hence, a discussion on the
collision avoidance is required.

In practice, normally the desired distance in formation
control is chosen large enough to ensure safety against
overshoots and uncertainties. In this paper another approach
which is applicable to both delay-free and delayed situations
is proposed. In this approach, instead of using an assumed
trajectory for neighboring vehicles, a tube-shaped trajectory
is assumed around the trajectory of leader, where the tube
radius is the radius of the reachable set of leaders. This
way, the leader is put in a protection zone where the
followers cannot enter. The radius of tube is a function of
maneuverability and communication delay; the smaller the
communication delays the thinner the tube. Note that at the
end the desired relative distance in the formation is chosen
to be larger than the tube radius. This is the main distinction
between this work and the cooperative or noncooperative
approaches aiming at online estimation of the reachable set.
In contrast, here the tube is calculated offline and is used for
the online purposes.

The idea of tube MPC was first used to calculate a robust
bound on the states for uncertain systems [8, 9].

To avoid conservative reachability sets (thick tubes) the
maneuverability of each vehicle is restricted, and then the
reachable set of each vehicle is calculated; in fact, the leader
imposes an input constraint to its optimization problem, that
is, at any time instant the computed input trajectories of
leader do not deviate too far from the previous one.

Note that, although restricting the maneuverability can
lead to less conservative results, it can be restrictive to
application where an agile vehicle is needed. Hence, for
applications where, for example, slow moving ground vehi-
cles are used such as automated highway systems [20] or
mobile robots [21, 22], this approach can be beneficial. In
such application since aggressive maneuvers are not required,
restricting the maneuverability is not prohibitive, and hence
the proposed approach is well suited.

3.3.1. Tube Formulation and Calculation. This section
presents a numerical method for offline calculation of the
tube for subsystems with generic dynamics. Any other com-
putational or analytical reachability set calculation method
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xi(·, u0)

H

α

k k +N Time

Figure 4: A tube around a nominal trajectory, of vehicle i.

may be used for this purpose. The main advantage of
the presented tube calculation algorithm is that it can be
computed offline and does not impose significant online
computation load. Besides, the available analytical bounds
are usually too conservative and are not in the desired format
for tube analysis (often a bound on the norm of states is
available).

Figure 4 shows the tube H around a nominal trajectory
xi(·, u0). The tubeH is formulated as follows (see also [23]):

Hi
k =

{(
p, x̂i

)
∈ [0 : N]

×Rn |
∣∣∣x̂i
(
p, u

)− xi
(
p, u0

)∣∣∣ < αik, u ∈ U
}

,

(14)

where | · | represents the component-wise absolute value
of vector and αik denotes the radius of tube H around the
trajectory of vehicle i at time step k.

The following theorem represents a method for calculat-
ing the tube for a generic class of systems. Roughly speaking,
tube is a generalization of reachability set; the reachability set
is normally calculated around an initial state; however, tube is
calculated around a trajectory of state vector. In other words,
the deviation from some nominal trajectory over a given time
is called tube.

Theorem 1. Assume that at time step k the d step delayed

trajectory of leader j(i.e., x
j
k−d(·)) is available to vehicle i. If

∣∣∣u
j
k

(
p
)− u

j
k−d
(
p + d

)∣∣∣ ≤ βj , p = 0, 1, 2, . . . .,N − d,

(15)

then the trajectory of vehicle j at time step k belongs to the tube

around x
j
k−d(·); the tube is formulated as:

H
j,i
k =

{(
p, x̂

j
k−d
)
∈ [0 : N − d]

×Rn |
∣∣∣x̂

j
k−d
(
p
)− x

j
k−d
(
p + d

)∣∣∣ < αj,ik
(
p
)}

,

(16)

where H
j,i
k represents the tube around the trajectory of vehicle

j, calculated by vehicle i at time step k. Also, α
j,i
k denotes the

tube radius and is the solution of the following maximization
problem.

Problem 2. Given βj , calculate for all p = 0, 1, 2, . . . ,N

α
j,i
k

(
p
)

= Max{
x̂
j
k−d(·), û

j
k−d(·),x

j
k−d(·), u

j
k−d(·)

}

⎡
⎣
∣∣∣∣∣∣

N−d∑

p=0

[
f
(

x̂
j
k−d
(
p
)
, û

j
k−d
(
p
))

− f
(

x
j
k−d
(
p
)
, u

j
k−d
(
p
))]
∣∣∣∣∣∣

⎤
⎦

subject to

x̂
j
k−d
(
p + 1

) = f
(

x̂
j
k−d
(
p
)
, û

j
k−d
(
p
))

,

x̂
j
k−d(tk−d) = x j(tk−d) ∈ X,

x
j
k−d
(
p + 1

) = f
(

x
j
k−d
(
p
)
, u

j
k−d
(
p
))

,

x
j
k−d(tk−d) = x j(tk−d) ∈ X,

x̂
j
k−d
(
p
) ∈ X; x

j
k−d
(
p
) ∈ X,

û
j
k−d
(
p
) ∈ U; u

j
k−d
(
p
) ∈ U,

∣∣∣û
j
k−d
(
p
)− u

j
k−d
(
p
)∣∣∣ ≤ βj .

(17)

Proof. At time step k vehicle j uses the input trajectory u
j
k(·)

which yields the state trajectory x
j
k(·), then the solution of

the differential equation (8) is calculated as:

x
j
k

(
p
) = x j(k) +

p−1∑

s=0

f
(

x
j
k(s), u

j
k(s)

)
p = 0, 1, . . . ,N. (18)

But if vehicle j uses the assumed input û
j
k(·), then the

trajectory will be as follows:

x̂
j
k

(
p
) = x j(k) +

p−1∑

s=0

f
(

x̂
j
k(s), û

j
k(s)

)
p = 0, 1, . . . ,N. (19)

Subtracting (18) from (19) yields

x̂
j
k

(
p
) − x

j
k

(
p
) =

p−1∑

s=0

[
f
(

x
j
k(s), u

j
k(s)

)
− f

(
x̂
j
k(s), û

j
k(s)

) ]

p = 0, 1, . . . ,N.
(20)

By finding α
j,i
k the tube H

j,i
k is determined. α

j,i
k is the up-

per bound on |x̂ j
k(p) − x

j
k(p)| and then is calculated by sol-

ving the following maximization problem.
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Problem 3. Given u
j
k(·), x

j
k(·) and βj calculate for all p =

0, 1, 2, . . . ,N
α
j,i
k

(
p
)

= Max{
x̂
j
k(·), û

j
k(·)

}

⎡
⎣
∣∣∣∣∣∣

p−1∑

s=0

[
f
(

x
j
k(s), u

j
k(s)

)
− f
(

x̂
j
k(s), û

j
k(s)

)]
∣∣∣∣∣∣

⎤
⎦

subject to

x̂
j
k

(
p + 1

) = f
(

x̂
j
k

(
p
)
, û

j
k

(
p
))

,

x̂
j
k(0) = x j(0) x̂

j
k

(
p
) ∈ X û

j
k

(
p
) ∈ U

∣∣∣û
j
k

(
p
)− u

j
k

(
p
)∣∣∣ ≤ βj .

(21)

In optimization Problem 3 a nominal trajectory x
j
k(·) is

given as input. In other words the optimal value depends
on any nominal trajectory. On the other hand, at any time
step DMPC generates a new trajectory which is served as
nominal trajectory in Problem 3. Hence, Problem 3 should
be modified to be independent of any nominal trajectory

and be applicable for a general trajectory x
j
k(·). Hence,

considering x
j
k(·) and u

j
k(·) as new decision variables in

the optimization Problem 3 and shifting the time from k
to k − d will lead to Problem 2. This way, the tube can be
computed offline and used for online applications, and no
online computation is required.

3.3.2. Tube Calculation Algorithm. The application of

Theorem 1 allows calculating the tube H
j,i
k around the

trajectory of each neighboring vehicle. Assume that the
control input at each sample time for vehicle j is bounded
as follows:∣∣∣u

j
k

(
p
)− u

j
k−1

(
p + 1

)∣∣∣ ≤ μ, p = 0, 1, . . . ,N − 2, (22)

where μ is a vector with appropriate dimension and is
called the maneuverability vector. It allows restricting the
maneuverability of each vehicle during the time segments
when the actual predicted trajectory of vehicle may not
be available to followers. The neighboring vehicles by
considering such restrictions can compute a bound on the
trajectories. Then, if at any time step k vehicle i receives
the information from leader j with d steps time delay, that

is, x
j
k−d(·), then the results of Theorem 1 are applicable by

finding βj(μ,d). To find βj(μ,d) the input constraint (22) can
be used sequentially as follows (the superscript j is dropped
temporarily):

− μ ≤ uk
(
p
)− uk−1

(
p + 1

) ≤ μ,

− μ ≤ uk−1
(
p + 1

)− uk−2
(
p + 2

) ≤ μ,
...

− μ ≤ uk−d+1
(
p + d − 1

)− uk−d
(
p + d

) ≤ μ,
...

−d · μ ≤ uk
(
p
)− uk−d

(
p + d

) ≤ d · μ,

p = 0, 1, 2, . . . ,N − d.

(23)

Hence,

βj = d · μ , p = 0, 1, 2, 3, . . . ,N − d. (24)

Therefore, we have

βj
(
p,μ,d

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, p = 0,

μ, p = 1,

2 μ, p = 2,

...
...

(d − 1)μ, p = d − 1,

d μ, p = d,d + 1, . . . ,N − d.

(25)

Then α
j,i
k , the radius of tube H

j,i
k , is calculated from

Problem 2 after calculating βj from (25). The output of

Problem 2 is the trajectory of vector α
j,i
k (·) and will be used

in the online DMPC algorithm.
The main benefit of using this procedure for tube

calculation is that calculation of α
j,i
k does not impose any

online computation load as it can be computed offline. The
only parameter which may be unknown prior to mission
is the time delay d. Hence, the tube can be computed for
different delays, and the results are given to the DMPC
controller as some tabulated data, to be used in online
applications. In this way no online computation is imposed.

3.3.3. Nonconvexity Avoidance. Using a tube instead of a
trajectory in the cost function (12) can lead to nonconvexity
for the optimization problem due to the nonconvex nature
of the tube. Thus, in order to avoid the nonconvexity, in the

cost function (12), x
j
k−d(p) is not modified (or replaced by

tube H
j,i
k ), instead the desired relative position ri, j(p) will be

modified as follows:

ri, j
(
p
)←− ri, j

(
p
)

+ sign
(

ri, j
(
p
)) · αj,i(p), (26)

where α
j,i
k is the tube radius at time step k and is calculated

from Problem 2. In fact, the margin α
j,i
k (p) ≥ 0 is added

to the desired distance to ensure the safety. Since ri, j(·) is

the relative position vector, α
j,i
k is multiplied by the diagonal

matrix sign(ri, j(·)) to ensure that adding α
j,i
k increases the

magnitude of ri, j(·); in fact ri, j(·) is preserved, and extra
margin is added.

3.4. Delay-Compensated DMPC Problem. The delay-comp-
ensated DMPC (DC-DMPC) problem P i

DC(k) is defined
below at time step k for any ith vehicle. The outputs of this
decentralized optimization problem are (1) the input and (2)
the state trajectory of the local vehicle over the prediction
horizon and (3) the trajectory of neighboring vehicles during
the tail of the cost function.
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Problem 4. DC-DMPC Problem P i
DC(k). Given ΓiD(tk) calcu-

late

J iDC

(
ΓiD(k)

)
= Min
{xik(·),uik(·),u−ik (N−d : N)}

J iDC

×
(
ΓiD(k), uik(·), x−ik (N − d : N),

u−ik (N − d : N)
)

(27)

subject to

(i) for p = 0, 1, 2, . . . ,N − 1: (9a)–(9c)

(ii) and for p = N − d, . . . ,N and (i, j) ∈ E:

x
j,i
k

(
p + 1

) = f
(

x
j,i
k

(
p
)
, u

j,i
k

(
p
))

;

x
j,i
k (N − d) = x

j
k−d(N)

(28a)

x
j,i
k

(
p
) ∈ X j , u

j,i
k

(
p
) ∈ U j (28b)

x
j,i
k (N) ∈ X

j
f , (28c)

(iii) and for p = 0, 1, 2, . . . ,N − 2:

∣∣∣uik
(
p
)− uik−1

(
p + 1

)∣∣∣ ≤ μ, (28d)

where constraints (9a)–(9c) are the same as in the delay-free
DMPC problem P i(tk) and correspond to the trajectory for
calculating the delayed cost function J iD. Constraints (28a)
and (28b) correspond to the tail cost function J iTail (13).
Constraint (28c) is the terminal constraint and is the same as
(9c) in P i(tk). Moreover, constraint (28d) is added for safety
guarantee purpose, where |·| represents the component-wise
absolute value of vector and μ is a vector with appropriate
dimension and called the maneuverability vector. Constraint
(28d) is called maneuverability constraints (such constraint
is also known as compatibility constraints in similar liter-
atures, [24, 25]). It allows restricting the maneuverability
of each vehicle and hence calculating the tube as explained
in Theorem 1. Roughly speaking, constraints (28a)–(28c)
are added for cooperation performance improvement, and
constraint (28d) is added for safety purpose.

Remark 2. Expressing equations (28d) in the norm form
instead of component-wise absolute value leads to more
conservative results in practice.

3.5. DC-DMPC Algorithm. Algorithm 2 is presented for the
online implementation of the proposed DC-DMPC problem
P i

DC(k). The algorithm is formulated for the ith vehicle;
in fact, all vehicles run this algorithm during the mission
simultaneously.
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Figure 5: Average of error versus communication delay for a
triangle formation of three vehicles.
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Figure 6: Percentage of average of error versus communication
delay for a triangle formation of three vehicles.

Initialization. For k = 0 to k = d − 1 at steps 2, 3, and
4 assume that Ni

l = 0. For k = 0 to k = d − 2 at step
7 assume Ni

l = 0 (because no information from leader(s) is
available).

This algorithm is a modified version of Algorithm 1 and
handles the large communication delays; it also provides
the safety guarantee by executing the step 3 using the tube
DMPC approach.

Remark 3. In step 2 of Algorithm 2, to measure the time
delays, it is assumed that all the vehicles are equipped
with synchronous clocks. Then at each sampling time, each
vehicle, in addition to its predicted trajectory, broadcasts the
time it is calculated the trajectory. Hence, the knowledge on
the amount of delay is not required a priori.

4. Simulation Results

In this section, the proposed approach is tested on the
formation problem of a fleet of unmanned vehicles with
the following 2DOF dynamics. This dynamics can capture
the motion of a mini-hovercraft equipped with two sets of
thrusters to control the side and forward motions; also, a
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Given μ, E and initial condition of vehicle i, do:
(1) k ← 0.
(2) Measure xi(k), calculate delay from leader and update the delayed information vector of (10).
(3) Calculate the tube of all leaders:

For ∀ j ∈ V where (i, j) ∈ E
(i) Calculate βj(· ,μ,d) from (25).

(ii) Calculate α
j,i
k (·) from the data provided by offline solution of Problem 2.

(iii) Update ri, j(·) ← ri, j(·) + sign(ri, j(·)) · α j,i
k (·) and update ri, j in the cost function (12).

END
(4) Solve P i

DC(k) and calculate the control action ui
k(·) and xik(·).

(5) Send the state trajectory xik(·) to the followers where ( j, i) ∈ E.
(6) Apply the control action ui

k(0) to individual vehicle i.

(7) Receive x
j
k−d(·) from leaders where (i, j) ∈ E.

(8) k ← k + 1. Goto step 2.

Algorithm 2: DC-DMPC.
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Figure 7: Minimum distance between vehicles in the presence of a
communication delays.

small damping term is added as the typical resistance of water
to hovercraft motion is small:

ẋ1 = x2,

ẋ2 = −0.1x2 + u1,

ẋ3 = x4,

ẋ4 = −0.1x4 + u2,

(29)

where x1 and x2 represent the components of position vector
in x − y coordinate and x3 and x4 are their corresponding
velocity components. The input vector is given by u =
[u1,u2]. This dynamics is discretized by sampling time h =
0.1 sec. The MPC problem is solved using optimization
toolbox of MATLAB. When Algorithm 1 is used a set of 2N
decision variables are used for each vehicle to model the
control inputs (because each vehicle has only two control
inputs). Once Algorithm 2 is used, two extra sets of decision

variables are used; 2N + 2d decision variables are used. It
means the computation grows with communication delay.

In the first simulation example, it is desired to examine
the effect of the tail cost added to the cost function. The
simulation was run for two cases.

(1) Using the cost function without the tail cost. In this
case the control input is set to u = 0 for the tail of
the cost function. The extra decision variables for tail
cost estimation are not included in the optimization
problem.

(2) Using the cost function with the tail cost. In this case
the tail of the cost function (12) is estimated using the
extra decision variables in the optimization problem
P i

DC(k).

The matrix penalties in the cost function are chosen as
follows: Q = I (where I is identity matrix), and R = 0.1 0I
then

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.8634 1.447 0.000 0.000

1.4471 2.800 0.000 0.000

0.0000 0.000 0.863 1.447

0.0000 0.000 1.447 2.800

⎤
⎥⎥⎥⎥⎥⎥⎦

(30)

and S = 20 I. The final penalty matrix P is calculated from
the Lyapunov equation [15]. The optimization horizon is
chosen to be N = 10. In all cases no disturbances, sensor
noise, or model uncertainty is considered in the simulations
in order to focus on the effect of the communication delay.

A triangular leader-follower formation of three vehicles is
first considered, where the moving vehicles are controlled to
form an isosceles triangle with edges of 10, 7.02, and 7.02 m.
The actual cooperation cost is chosen as the cooperation
performance index of any follower i ∈ V as follows:

Ii(k) =
∑

j|(i, j)∈E

∥∥∥xi(k)− x j(k)− ri, j(k)
∥∥∥2

S
∀ i ∈ V. (31)

This performance index represents the deviation (error)
from the desired formation shape; hence, a smaller Ii is
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Figure 8: Trajectory (a) and formation snapshot (b) of six vehicles in triangular formations when Algorithm 2 is used.
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Figure 9: Trajectory (a) and formation snapshot (b) of six vehicles in triangular formations when Algorithm 1 is used.

desired. Then, the total error of the group at time step k is
presented as follows:

I(k) =
∑

i∈V
Ii(k). (32)

4.1. Performance Improvement. The simulation was repeated
for cases with different communication delays, and the
results are gathered in Figures 5 and 6. Figure 5 shows
the average of the formation error (32) with each point
representing a single simulation. It can be seen from

Figure 5 that estimating the tail of the cost function leads to
smaller errors. Figure 6 shows the percentage of performance
improvement (error reduction) when the tail estimation
method is used comparing with the case where no tail estima-
tion is performed. It shows also that for large communication
delays the proposed approach can reduce the error by 350%.
It can also enhance the stability of the formation; for this
particular example, it is seen that if the communication delay
is increased to around d = 10 time steps, the formation
becomes unstable when using the cost function without the
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Figure 10: Distances between each pair of vehicles for Algorithm 2 (a) and Algorithm 1 (b).

tail cost. However, it is still stable with the proposed cost
function including the tail cost. This result is consistent
with that of [26, 27] where a final cost is added to the
cost function for formation stability, although they did not
consider communication delays. The overall trend of the
graphs in Figure 5 shows that the error goes up with delay.

Note that, since we assume no uncertainty in the model,
the main source of error arises from communication delay
and decentralized nature of the problem. The communica-
tion delay forces the decentralized controllers to use delayed
information instead of updated information, which adds
some degree of uncertainty into the problem, leading to error
and degraded cooperation performance. Also, the decen-
tralized nature of the problem restricts the decentralized
controllers to access all the information about neighboring
vehicles intention and control calculation procedure. For
example, vehicles do not take into account the interaction
graph topology of neighboring vehicles, in order to reduce
the computation load. The second source of error does not
exist in a centralized framework.

4.2. Safety Using Tube DMPC. It is observed that in some
simulations in presence of large communication delays
although adding the final cost can lead to better performance
and stable formation, the vehicles may get too close to
each other and collide. For example, the minimum distance
among the vehicles for a set of simulations is depicted
in Figure 7. The desired distance between each pair of
neighboring vehicles is 7.07 m. As seen even for the case
where tail cost estimation is used the vehicles may get too
close to each other.

Therefore, in the next simulation the proposed
Algorithm 2 which includes the tube DMPC is used.

This case involves the triangular formation control of six
vehicles. The communication graph topology is set as
follows:

V = {1, 2, 3, 4, 5, 6},
E = {(2, 1), (3, 1), (4, 2), (5, 4), (6, 3)}.

(33)

The results are shown in Figure 8 through Figure 10. In
this case, two sets of way points are considered to be visited
by the fleet. At the beginning the intervehicle communication
delay is d = 0 but after 3 sec (around point (22, 22))
communication loss begins which leads to d = 7 time step
intervehicle communication delay. As seen from Figure 8 the
vehicles start to keep a larger distance, and the formation
is expanded for safety upon communication loss. Figure 9
shows the same scenario when Algorithm 1 is used.

The distances between each pair of neighboring vehicles
are shown in Figure 10 for two cases: (1) Algorithm 1 and (2)
Algorithm 2. It is desired that vehicles keep a 7.07 m distance
from neighbors. As seen from Figure 10(b) in the case of
Algorithm 1, vehicles get too close to each other and may
collide. However, Algorithm 2 offers a loose (Figure 8) but
safe formation (Figure 10(a)) as the consequence of using
tube DMPC for safety.

For this case the minimum desired separation between
two neighboring vehicle is 7.07 m. The corresponding
required minimum relative distance, when Algorithm 2 is
used for a delay of d = 7 time-step, is about 10 m as measured
from Figure 10(a). Hence, for this case the added margin due
to using tube DRHC is calculated as 10−7.07 ≈ 3 m; then for
such relatively large delay, the added margin is about 42.8%,
which does not seem conservative. In the presence of model
uncertainty and communication noise this margin will grow.
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5. Conclusions

A new delay-compensated decentralized model predictive
controller (DC-DMPC) is proposed that can address com-
munication delays arising from any source including packet
losses. The proposed approach provides two key features.
The first feature is that the tail of the cost function is
estimated for performance improvement in the presence
of the large intervehicle communication delays. Simula-
tion results show that this method can lead to 350%
improvement in the cooperation performance. The added
online computation load depends on the communication
delay and should be taken into account for any particular
application. The second feature is the development of the
tube-based MPC to provide guaranteed formation safety
against possible collisions in the presence of large intervehicle
communication delays. Together, these results provide a new
approach to deal with the large intervehicle communication
delays in DMPC problems that ensures safe formations and
improved cooperation performance.

Acknowledgment

This paper was supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC) through
a Strategic Project Grant (STPGP 350889-07) leading by the
third author and a Discovery Project Grant by the second
author.

References

[1] H. A. Izadi, B. W. Gordon, and Y. M. Zhang, “Decentralized
receding horizon control for cooperative multiple vehicles
subject to communication delay,” Journal of Guidance, Control,
and Dynamics, vol. 32, no. 6, pp. 1959–1965, 2009.

[2] E. Franco, T. Parisini, and M. M. Polycarpou, “Cooperative
control of discrete-time agents with delayed information
exchange: a receding-horizon approach,” in Proceedings of the
43rd IEEE Conference on Decision and Control (CDC ’04),
vol. 4, pp. 4274–4279, Atlantis, Paradise Island, Bahamas,
December 2004.

[3] E. Franco, T. Parisini, and M. M. Polycarpou, “Stable receding-
horizon cooperative control of a class of distributed agents,” in
Proceedings of the American Control Conference (ACC ’05), vol.
7, pp. 4673–4678, IEEE Press, June 2005.

[4] E. Franco, T. Parisini, and M. M. Polycarpou, “Cooperative
control of distributed agents with nonlinear dynamics and
delayed information exchange: a stabilizing receding-horizon
approach,” in Proceedings of the 44th IEEE Conference on
Decision and Control, and the European Control (CDC-ECC
’05), pp. 2206–2211, IEEE Press, December 2005.

[5] E. Franco, L. Magni, T. Parisini, M. M. Polycarpou, and D. M.
Raimondo, “Cooperative constrained control of distributed
agents with nonlinear dynamics and delayed information
exchange: a stabilizing receding-horizon approach,” IEEE
Transactions on Automatic Control, vol. 53, no. 1, pp. 324–338,
2008.

[6] A. Richards and J. P. How, “Implementation of robust
decentralized model predictive control,” in AIAA Guidance,
Navigation, and Control Conference, pp. 4929–4941, AIAA,
August 2005.

[7] A. N. Venkat, J. B. Rawlings, and S. J. Wright, “Stability
and optimality of distributed model predictive control,” in
Proceedings of the 44th IEEE Conference on Decision and
Control, and the European Control (CDC-ECC ’05), pp. 6680–
6685, IEEE Press, December 2005.

[8] I. Alvarado, D. Limon, T. Alamo, and E. F. Camacho, “Output
feedback robust tube based MPC for tracking of piece-wise
constant references,” in Proceedings of the 46th IEEE Conference
on Decision and Control (CDC ’07), pp. 2175–2180, IEEE Press,
December 2007.

[9] P. Trodden and A. Richards, “Robust distributed model
predictive control using tubes,” in Proceedings of the American
Control Conference, pp. 2034–2039, Minneapolis, Minn, USA,
June 2006.

[10] X. Zhang, R. Xu, C. Kwan, L. Haynes, Y. Yang, and M. M.
Polycarpou, “Fault tolerant formation flight control of UAVs,”
International Journal of Vehicle Autonomous Systems, vol. 2, no.
3-4, pp. 217–235, 2004.

[11] M. Innocenti, L. Pollini, and F. Giulietti, “Management
of communication failures in formation flight,” Journal of
Aerospace Computing, Information and Communication, pp.
19–35, 2004.

[12] T. Keviczky, F. Borrelli, and G. J. Balas, “Decentralized receding
horizon control for large scale dynamically decoupled sys-
tems,” Automatica, vol. 42, no. 12, pp. 2105–2115, 2006.

[13] R. Olfati-Saber and R. M. Murray, “Consensus problems in
networks of agents with switching topology and time-delays,”
IEEE Transactions on Automatic Control, vol. 49, no. 9, pp.
1520–1533, 2004.

[14] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M.
Scokaert, “Constrained model predictive control: stability and
optimality,” Automatica, vol. 36, no. 6, pp. 789–814, 2000.
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