FP8-4: Estimation and Sensor Information Fusion

Aalborg University Esbjerg

Instructor

Youmin Zhang

Department of Computer Science and Engineering

Aalborg University Esbjerg

Niels Bohrs Vej 8

6700 Esbjerg, Denmark

Phone: (+45) 7912 7741          Fax:   (+45) 7912 7710

Email:  ymzhang@cs.aaue.dk   Homepage: http://www.cs.aue.auc.dk/~ymzhang/

Time and Location

Course Description

Course Materials

Communication

 

Tentative Schedules

Date/Location

Lecture Topics

Notes

Readings and References

Exercises

Thurs. 10/2

B201

Overview of Kalman filter

o  The continuous-time Kalman filter

 

 

o   

o   

o   

o   

o  The discrete-time Kalman filter

 

 

 

o   

o   

o   

o  The extended Kalman filter

 

Lecture 1

The discrete-time Kalman filter (DKF):

    BLK01: Sections 5.1-5.3, or

    GA01: Sections 4.1-4.2

Introduction to Kalman filter:

     Welch & Bishop (Paper; Slides)

; Maybeck (Ch1)

Lecture Notes from IRS-7: Yang (slides); Ole (slides)

1. Practise the Example in Sect. 5.3 (BLK01, pp. 218-232) using DynaEst

2. Computer Applications Problem 5-2 (BLK01, pp. 265)

Software: example_KF

Thurs. 17/2

B201

Variants (extensions) of Kalman filter

o  The continuous-time Kalman filter

 

o  The linearized and extended Kalman filter

 

 

 

o   

o   

o   

o  Multiple-Model (MM) based Kalman filters

o 

o 

o 

o 

o 

 

 

 

 

Lecture 2

The continuous-time Kalman filter (CKF):

    BLK01: Sections 9.1-9.2, or

    GA01: Sections 4.3

The linearized and extended Kalman filters (LKF & EKF):

    BLK01: Sections 10.1-10.3, or

    GA01: Sections 5.1-5.8

The Multiple-Model (MM) based Kalman filters

    BLK01: Sections 11.6, 11.8

    Li: Survey on MM-based filters (paper; book chapter)

    Bak: Lecture Notes (AAU): (weblink)

1. Problem 9-10 (BLK01, pp. 369).

2. Problem 10-4 (BLK01, pp. 416).

3. Practise IMM estimator in Sect. 11.6.8 (BLK01, pp. 460-465) using DynaEst

Software: example_EKF (file1, file2, file3)

Thurs. 24/2

B201

Nonlinear/Combined state & parameter estimation

o  The extended Kalman filter (EKF)

 

o   

o   

o   

o  The two-stage Kalman filter

o   

o   (TSKF)

 

 

o   

o   

o  The unscented Kalman filter (UKF) (optional)

o 

 

o 

o 

o 

o 

o 

 

 

Lecture 3

The Multiple-Model (MM) based Kalman filters (cont’d)

    BLK01: Sections 11.6, 11.8

    Li: Survey on MM-based filters (paper; book chapter)

    Bak: Lecture Notes (AAU): (weblink)

 

The extended Kalman filter (EKF) approach

   BLK01: Sections 11.9

The two-stage Kalman filter (TSKF) approach

     Papers: Friedland (1969); Keller (1997); Hsieh (1999); Wu et al (2000)

 

The unscented Kalman filter (UKF) (not covered in the lecture)

   Wan & Merwe: weblink

     AAU ESIF course homepage: weblink

1. Problem 11-4 (BLK01, pp. 486).

2. Write a MATLAB script to implement the TSKF.

3.  Can we use TSKF (instead of EKF) for estimating state and unknown parameter ξ (damping coefficient) in the second-order system example shown in the lecture? Why can and why cannot?

 

Software: example_EKF (file1, file2, file3)

Thurs. 03/3

B201

Introduction to sensor information fusion

o  What is sensor information fusion?

 

o  Fusion models and architectures

o 

 

Lecture 4

HM04: Chapter 1;

Bak: Lecture Notes (AAU): Chapters 1-3 (weblink)

 

Thurs. 17/3

B201

Sensor information fusion techniques

o  Fusion models and architectures

 

o  Techniques for sensor fusion

o 

 

Lecture 5

HM04: Chapter 11;  Chapter 2 (optional).

 

 

 

Useful Links

·        Estimation and Sensor Information Fusion” course at AAU: Part1, Part2

·        Publications in Information and Systems Lab., University of New Orleans (Prof. X. Rong Li)

§        Publications on Maneuvering Target Tracking Surveys

§        Publications on Multiple-Model Estimation with Variable Structure

§        Publications on Optimal Linear Estimation Fusion

§        Publications on Information Fusion

§        Publications on Fault Inference, Control Systems, Neural Networks

·        A comprehensive web resources on Kalman Filter by University of North Carolina at Chapel Hill

 

 



This homepage is created and maintained by Youmin Zhang.