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An approach to detection and diagnosis of multiple failures
in a dynamic system is proposed. It is based on the interacting
multiple-model (IMM) estimation algorithm, which is one of the
most cost-effective adaptive estimation techniques for systems
involving structural as well as parametric changes. The proposed
approach provides an integrated framework for fault detection,
diagnosis, and state estimation, It is able to detect and isolate
multiple faults substantially more quickly and more reliably
than many existing approaches. Its superiority is illustrated
in two aircraft examples for single and double faults of both
sensors and actuators, in the forms of ‘total,” “partial,” and
simultaneous failures. Both deterministic and random fault
scenarios are designed and used for testing and comparing
the performance fairly. Some new performance indices are
presented. The robustness of the proposed approach to the design
of model transition probabilities, fault modeling errors, and the

uncertainties of noise statistics are also evaluated.
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I, INTRODUCTION

Modern engineering systems are becoming
more and more sophisticated. The requirements
for their reliability, availability, and security also
grow significantly. An effective means to assure the
reliability and security is to fast and reliably detect
and isolate its sensor, actuator, or system component
failures so that remedies may be undertaken. Towards
this, many methods have been developed for fault
detection and diagnosis (FDD) of dynamic systems
over the last two decades [3, 7, 8, 11, 12, 30, 33].

In a modern flight control system, for example,
failures of its actuator or sensor may cause serious
problems and need to be detected and isolated as soon
and as accurately as possible. Systems subject to such
failures cannot be modeled well by a single set of
equations of state that varies continuously. A more
appropriate mathematical model for such a system
is the so-called stochastic hybrid system. It differs
from the conventional stochastic systems in that its
state may jump as well as vary continuously. Apart
from the applications to problems involving failures,
hybrid systems have found great success in such areas
as target tracking and control that involve possible
structural changes [14].

One of the most effective approaches for problems
that are formulated well in terms of such systems
is based on the use of multiple models (MMs). It
runs a bank of filters in parallel, each based on a
model matching to a particular mode (i.e., structure
or behavior pattern) of the system. The overall
state estimate is calculated by the probabilistically
weighted sum of the outputs of all filters. Since a
system subject to failures is a typical hybrid system,
not surprisingly, MM algorithms for FDD have
been developed (see, e.g., 9, 10, 13, 27, 28, 35]) for
different engineering application problems under
different names, such as multiple hypothesis test
detector [33], and multiple model adaptive estimation
(MMAE) algorithm [24, 27]. In addition, a so-called
dedicated observer scheme which uses a bank
of observers for the fault detection and isolation
(FDI) of deterministic systems was devised in [5]
and a generalized dedicated observer to enhance
the robustness of FDI was given in [7]. A neural
network bank based FDI approach was developed
in [39]. However, since this work deals with FDD
of stochastic hybrid systems, only filter-based FDD
approaches are considered. The above filter-based
approaches are based on the “noninteracting” MM
method originally proposed by Magill {23]: the
single-model-based filters are running in parallel
without mutual interaction (i.e., each filter operates
independently at all times). Such an approach is quite
effective in handling problems with an unknown
structure or parameter but without structural or
parametric changes. Clearly, the problem of FDD
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does not fit well into such a framework because, in
general, the system structure or parameter does change
as a component or subsystem fails. To compensate
this weakness and to make MM algorithms fit better
into the FDD, various ad hoc techniques have been
proposed, such as bounded conditional probabilities
[10, 25, 35], removal of § dominance effect, Kalman
filter retuning, scalar penalty increase, probability
smoothing, and increased residual propagation [24,

25, 27].

A notable recent advance in MM estimation is the
development of the interacting multiple-model IMM)
estimator [1, 4]. It overcomes the above-mentioned
weakness of the noninteracting MM approach by
explicitly modeling the abrupt changes of the system
by “switching” from one model to another in a
probabilistic manner. Since structural changes (e.g.,
failures) of the system are explicitly considered
and effectively handled, the IMM algorithm is
much more promising for FDD. The IMM differs
from the noninteracting MM algorithm in that the
single-model-based filters interact each other in
a highly cost-effective fashion and thus leads to
significantly improved performance. It also consists
of a bank of single-model-based filters running in
parallel at each cycle. The initial estimate at the
beginning of each cycle for each filter is a mixture of
all most recent estimates from the single-model-based
filters. It is this mixing that enables the IMM to
effectively take into account the history of the modes
(and, therefore, to yield a more fast and accurate
estimate for the changed system states) without the
exponentially growing requirements in computation
and storage as required by the optimal estimator.

On the other hand, the probability of each mode

is calculated, which indicates clearly the mode in
effect and the mode transition at each time. This

is directly useful for the detection and diagnosis

of system failures. In fact, due to its remarkable
cost-effectiveness (in terms of performance versus
complexity), the IMM estimator has found great
success in tracking targets that may undergo a
maneuver, which is a typical change in the behavior
pattern of the system [1, 2]. In view of these, there is
a strong hope that it will be an effective approach to
FDD and thus is investigated in this work. Its main
advantage over previous MM-based FDD approaches,
such as MMAE, is that both single and multiple
failures can be detected and identified more quickly
and reliably. The effectiveness and superiority of

the proposed method are demonstrated by the FDD
of sensor and actuator failures of two types of high
performance aircraft in this work.

After the conference version of this paper [38]
was presented, the authors were brought to attention
of the work reported in [6, 26] by their authors
done independently around the same time, which
also proposed the IMM algorithm for fault detection
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and identification. In [26], the IMM algorithm was
used for the detection and identification of sensor

and actuator failures in spacecraft autonomy. Due to
the nonlinearity of the problem, extended Kalman
filter was used in the IMM configuration. The IMM
algorithm was used to solve a benchmark problem for
detection of industrial actuator faults in [6].

The remaining of the paper is organized as
follows. A description of stochastic hybrid systems
and modeling of multiple failures are presented
in Section II. The FDD approach based on IMM
estimator is presented in Section III. Some new
performance indices and design schemes for random
and deterministic test scenarios are presented in
Section IV. The detection and diagnosis approach for
sensor and actuator failures of two types of aircraft
and the performance comparison with the MMAE
approaches are illustrated and discussed in Section
V. Finally, conclusions are given in Section VI

il.  HYBRID SYSTEMS AND MODELING OF MULTIPLE
FAILURES

A stochastic hybrid system can be described
as one with both continuous-valued base state and
discrete-valued structural/parametric uncertainty. A
typical example of such a system is one subject to
failures since fault modes are structurally different
from each other and from the normal mode. An
effective and natural estimation approach for such a
system is the one based on MMs.

In the MM method, a set of models is assumed
to represent the possible system behavior patterns
or structures (system modes); a bank of filters runs
in parallel at every time, each based on a particular
model, to obtain model-based estimates; the overall
state estimate is a certain combination of these
model-based estimates; the jumps in system mode
are modeled as switching/transition between the
assumed models. These are the unique features of
MM estimation.

A. Hybrid Dynamic Model for FDD

The MM approach to FDD assumes that the
actual system at any time can be modeled sufficiently
accurately by a stochastic hybrid system:

x(k + 1) = Fk,m(k + D)x(k) + Gk, m(k + D)u(k)
+ Tk, mk + D)k, m(k + 1)) (1)
z(k) = H(k,m(k))x(k) + n(k,m(k)) )

(a jump-linear system is used here for simplicity) with
the system mode sequence assumed to be a first-order

Markov chain with transition probabilities
P{m;(k + 1) | my(k)} = m;;(k) v omym;eS

3
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and

Zﬂ-ij(k)':l’ i=1,...,s “4)
j

where x € R™ is the base state vector; z € R™ is the
(mode-dependent) measurement vector; u € R™ is
control input vector; £(k) € R™ and n(k) € R™ are
mutually independent discrete-time process and
measurement noises with mean (k) and 7(k), and
covariances Q(k) and R(k); P{-} denotes probability;
m(k) is the discrete-valued modal state (i.e., index of
the normal or fault mode) at time k, which denotes
the mode in effect during the sampling period ending
at f; m; is the transition probability from mode m;
to mode m 5 the e;;/ent that m ; is in effect at time k is
denoted as m;(k) ={m(k) = m;}. S = {m,m,,...,m}
is the set of all possible system modes; the initial state
is assumed to have mean ,%0 and covariance F, and is
independent of ¢ and 7.

The nonlinear system (1)~(2) is known as a “jump
linear system:” It is linear given the system mode;
however, the system may jump from one such system
to another at a random time. It can be observed from
(2) that the base state observations are in general
noisy and mode dependent. Therefore, the mode
information is imbedded (i.e., not directly measured)
in the measurement sequence. In other words, the
system mode sequence is an indirectly observed (or
hidden) Markov chain. The transition probability
matrix 7 =[x; j] is a design parameter. Such systems
can be used to model situations where the system
behavior pattern undergoes sudden changes, such as
system failures and target maneuver [16].

In the MM method, assume that a set of N models
has been set up to approximate the hybrid system
(1)~(2) by the following N pairs of equations:

x(k +1) = Fy(0x(k) + G ,(u(k) + T,RE®)  (5)
2(k) = H,()x(k) + 1,(k) ©

where N < s and subscript j denotes quantities
pertaining to model m; € M. M is the set of all
designed system models to represent the possible
system modes in §. System matrices F;, Gj, T;, and
H; may be of different structures for different ;.
The FDD problem in terms of the above hybrid
system is that of determining the current modal state,
that is, determining whether the normal or a fault
mode is currently in effect (and the current estimate of
the base state) from a sequence of noisy observation.
How to design the set of models to represent
the possible system modes is a key issue in
the application of the MM approach, which is
problem-dependent. As pointed out in [14], this
design should be done such that the models
(approximately) represent or cover all possible system
modes at any time. This is the model set design. This
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design (i.e., the design of fault type, magnitude, and
duration) is critical for MM-based FDD. Design of a
good set of models requires a priori knowledge of the
possible faults of the system.

Faults can occur in sensors, actuators, and other
components of the system and may lead to failure
of the whole system. They can be modeled by the
abrupt changes of components of the system. Typical
faults of main concern in the aircraft are sensor or
actuator failures. A variety of FDD approaches have
been developed for various failures [33]. In this paper,
in addition to the “total” (or “hard”) actuator and/or
sensor failures, “partial” (or “soft”) faults are also
considered.

B. Hypothesized Failures

Total actuator failures may be modeled by
annihilating the appropriate column(s) of the control
input matrix G:

x(k + 1) = F(k)x(k) + [G(k) + M;Ju(k) + T (k)¢ (k).
O

That is, choose the matrix Mj with all zero elements
except that the jth column is taken to be the negative
of the jth column of G. As noted in [33], the fault
detection for this model is more difficult than others
as the effect of the failure is modulated by the input
values u(k).

Alternatively, the jth actuator failure may be
modeled by an additional process noise term e j(k):

x(k + 1) = F(k)x(k) + GUu(k) + T(k)§ (k) + £;(k).
®

For total sensor failures, a similar idea can be
followed. The failures can be modeled by annihilating
the appropriate row(s) of the measurement matrix H
described as

z(k) = [H(k) + L;1x(k) + n(k) )]
or by an additional sensor noise term e j(k)

2(k) = H(x(k) + (k) + ¢;(). (10)

Partial actuator (or sensor) failures are modeled
by multiplying the appropriate column (or row) of
G (or H) by a (scaling) factor of effectiveness. They
can also be modeled by increasing the process noise
covariance matrix Q or measurement noise covariance
matrix R. Here we consider more complex failure
situations, including total actuator and/or sensor
failures, partial actuator and/or sensor failures, and
simultaneous partial actuator and sensor failures.
These situations require that the FDD algorithm
be more responsive and robust. It is difficult for
single-model-based approach to handle such complex
failure scenarios.
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C.  Model Set Design

The fault model set design is highly dependent
on the particular application considered. The major
task in the application of MM estimation lies here.
In general, model set design should consider both
the quality and complexity of the models. Although
the importance of the model set design on the
performance has been hardly mentioned in the
literature, it is evident in practice since the primary
difficulty in applying MM estimation is to design
an appropriate set of models. Unfortunately, very
limited theoretical results are available on this topic
[14, 18]. As pointed out in [14, 17], caution must
be exercised in designing a model set. For example,
there should be enough separation between models
so that they are “identifiable” by the MM estimator.
This separation should exhibit itself well in the
measurement residuals, especially between the filters
based on the matched models and those on the
mismatched ones. Otherwise, the MM fault estimator
will not be very selective in terms of correct FDD
because it is the measurement residuals that have
dominant effects on the mode probability computation
which in turn affect the correctness of FDD and
the accuracy of overall state estimates. In order to
enhance the discrimination properties of MMAE,
an interresidual distance feedback scheme was
developed in [22]. On the other hand, if the
separation is too large, numerical problems may
occur due to ill conditions in the set of model
likelihood functions.

A detailed model set design example for the FDD
of actuator and/or sensor failures of two aircraft is
given in Section V. -

. IMM ESTIMATOR FOR FAULT DETECTION AND
DIAGNOSIS

It is well known [1] that to evaluate the minimum
mean-squared error (MMSE) estimator of a system
in a switching environment, the computational and
storage requirements increase exponentially with time,
which makes the optimal estimator NP-complete and
thus not implementable in real time. To circumvent
this problem, suboptimal estimators with certain
hypothesis management, such as pruning and
merging, have been used, leading to such algorithms
as generalized pseudo-Bayesian (GPB) algorithm,
Detection-Estimation algorithm, and IMM algorithm
[1, 4].

A. MM Estimation

In the application of MM estimation techniques,
the following tasks should be completed: model set
design, filter selection, estimate fusion, and filter
reinitialization [14]. Filter selection is to select each
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single-model-based recursive filter for each model,
such as a Kalman filter for a linear system or an
extended Kalman filter for a nonlinear system.
Estimate fusion combines the model-conditional
estimates to yield the overall estimate. Three
approaches are available: soft decision, hard decision,
and random decision. The reader is referred to [14]
for details. How to reinitialize each single-model
based filter from time to time is very important for
MM estimation. Effective MM estimators distinguish
among themselves primarily in this, and most research
has focused here.

The simplest way of reinitialization is trivial.
Each single-model-based filter uses its own previous
state estimate and filter covariance as the current
cycle. This leads to the so-called noninteracting MM
estimators, referred to as MMAE in [25], because
the filters are running in parallel without interactions
with each other. This is the first generation of the MM
estimators. Its performance may be unsatisfactory in
cases in which the system mode changes because it
implicitly assumes that the system mode does not
change. Although this approach is not particularly
suitable for problems involving structural (modal)
changes, it is effective for many problems with an
unknown structure/parameter and, therefore, it has
been extensively used for FDD as well as many other
problems [10, 13, 14, 24, 27, 35].

The second simplest way of reinitialization is to
use the previous overall estimate and covariance for
each filter j

3k | k) = Elx(k) | 2] = X(k | k)

1n
PPk | k) = P(k | k). (12)

This results in the first-order GPB (GPB1) estimator.
Since the previous overall estimate carries information
from all filters, this approach belongs to the class of
interacting MM estimators.

A significantly better way of reinitialization is to
use

30k | k) = E[x(k) | 2*,m(k + 1)]

= E{E[x(k) | m(k),2"1 | 2*,m;(k + 1)}

= Xk | P {m,k) | F,m;(k + 1)}

(13)
P(k | k) = cov[)(k | k)]
=Y P{mk) | 2, mtk + 1)}
xRk k) + Tk | DK [} (14)

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 34, NO. 4 OCTOBER 1998



z2(k+1)

X,(kk)__| (k) ?]Ba Fier A (ke 1lkr1) X, (k+1lkc+1)
P (kik) ol | Losed on Py(k+1lk+1)
S K) oK) T Finer | Ratk+ Tk 1) Lyt 1lke 1)
P, (kik) S P, (kik) IBased on m. ” P,(k+1|k+1)
k3]
s
2
£
*y(kik) 2, (kik) — A+ 11T Zylk+1lk+1)
Putkik) Based on m. Pylk+1lk+1)
LSTCUNN q"
./ 2 71 .
E_..__ _#;__[Model probabilities]_#; x(k+11k+1)
update combination P(k+1lk+1)
K,
H; 2 Uy | Faultdecision

Fig. 1.

where cov[-] stands for covariance and

Xk | ky = 30k | k) — %,k | ). (15)

This leads to the IMM estimator. Its single-model-
based filters clearly interact with each other.

B. IMM Estimator

In the IMM algorithm, each filter j at time & + 1
has its own input X0(k | k) and P"(k | k), which form a
good quasi-sufficient statistic of all old information
and the assumption that model m; matches the
system mode at k + 1. The IMM algorithm has
to run each of the N filters only once in each
cycle, the same as the GPB1 algorithm, and thus
has computational complexity comparable to that
of the GPB1 algorithm but performance close to
that of the GPB2 algorithm. As a result, the IMM
algorithm is generally considered to be one of the
most cost-effective schemes for systems in a switching
environment. It has been successfully applied to many
important estimation problems compounded with
structural and/or parametric changes (see [1, 2, 14]
and the long lists of references therein).

The IMM algorithm is a recursive estimator.

In each cycle it consists of four major steps:

1) model-conditional reinitialization (interacting or
mixing of the estimates), in which the input to the
filter matched to a certain mode is obtained by mixing
the estimates of all filters at the previous time under
the assumption that this particular mode is in effect
at the present time; 2) model-conditional filtering,
performed in parallel for each mode; 3) mode
probability update, based on the model-conditional
likelihood functions; and 4) estimate combination,
which yields the overall state estimate as the
probabilistically weighted sum of the updated state
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Block diagram of IMM-based FDD approach.

estimates of all filters. The probability of a mode
being in effect plays a key role for determining the
weights in the combination of state estimates and
covariances.

Let the set of possible aircraft sensor and actuator
failures and the normal mode be modeled by a set

M =[m,my,...,my] (16)

where m, stands for the normal mode and m,,...,my
denote the possible fault modes. Then for each
element in M, we can operate a Kalman filter. The
probability of each model matching to the system
mode provides the required information for FDD.
Fig. 1 shows the block diagram of the IMM algorithm
for FDD.

Taking into account the history of the modes
at k enables the IMM algorithm to yield a good
estimate. In the meantime, the exponential increase
in the complexity of the optimal algorithm is
avoided by mixing the previous estimates at the
beginning of each cycle. This is the reason for
the superiority of the IMM algorithm to Magill’s
MM and GPB1 algorithms. For non-Gaussian
noises, it was pointed out [34] that there is no
performance degradation for MM estimator when
the innovation v; is non-Gaussian for ECG/VCG
(electrocardiography/vectorcardiography) rhythm
diagnosis [10] and detection of incidents on highways
[35]. This means that the MM algorithm can be
expected to be reasonably robust to non-Gaussian
statistics. This observation should be applicable to the
IMM approach also.

C. Fault Detection and Diagnosis Scheme

The model probabilities provide an indication of
mode in effect at any time. It is natural to be used as
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TABLE I
One Cycle of IMM-Based FDD Scheme

1. Interaction/Mixing of the estimates (for j = 1,2,.

W)

predicted mode probability: p;(k + 1{k) & P{mj(k+1)|z*} = (k)
1

mixing probability: uy;(K) = P{ma(k)jm; (k + 1), 2} = mis (k) /s (k + 1]k
mixing estimate: £J(k|k) 2 Blz(k)|mj(k + 1), 2] = 5 &i(klk) iy (k)

mixing covariance: PP (klk) 2 cov[@d(klk)|m;(k + 1), 2]
= ; [Pi(k‘k) + [J(klk) ~ Zi(kIR)) (2D (klk) — ‘fi(klk)]'] Higj (k)

2. Model-conditional filtering (for j =1,2,...,N):
predicted state (from k to k +1):

23(k+ 1/k) £ Bla(k + Dfmy(k +1),2%] = Fy(R)Xk{k) + Gy (Ku(k) + T;(k)E; (k)

predicted covariance:

Py(k + 11Kk) & cov[a(k + UUR)m;(k + 1), 2] = F(R) PP (kIR F (k) + T3 (k) Q3 (k) T3 (k)

measurement residual:

v; B 20k + 1) = Ela(k + 1)}y (k + 1), 24]

=z(k+1) ~ Hy(k+ 1)a;(k + 1|k) - 7;(k + 1)

residual covariance:
filter gain:

updated state:
updated covariance:

85 & covly;lmy(k +1), 2% = Hy(k + 1) Py(k + 1k) H; (5 + 1) + Ry(k +1)
K; = Fj(k+ 1{k)H;(k + 1)'S;(k + 1)
&5k + 1|k +1) 2 Elak + Dlmy(k + 1), 241 = &;(k + 11k) + K25

Pi(k+ 1k +1) £ cov[g;(k + 1|k + 1)|my(k + 1), 2541 = Py(k + 1k) — K;(k + 1)S;(k + D K;(k+1)
3. Mode probability update and FDD logic (for j = 1,2, ..., N):

likelihood function:

mode probability:

fault decision:

uilk+1) = m?xl—‘i(k +1) {

L;(k + 1)=NTv;(k+1);0,8;(k + 1]
mexp [~dws(k + 17871+ Dy (6 +1)]

(k1K) Ly (k+1)

A
#y(k+1) = Pim;(k+1)]24] = ftu;(k+1lk)bc(k+1)

> pp = Hj : fault § occurred
< jip = Hi : no fault

4. Combination of estimates (no need unless integrated with state estimation):

overall estimate:

overall covariance:

2k + 1k +1) £ Ele(k + 1|25 = S8;(k + 1)k + Dy (k + 1)
M

Plk+ 1k +1) 2 B [[o(k+1) = 80k + 1k + D]k + 1) = £(k + Lk + 1]}251]
= Z[P_,,-(k-‘- e+ 1)+ [Ek+ 1k +1) - 2;(k + 1k + D&k + 1k + 1) - ;‘cj(k+ 1|k + 1)]’]pj(k+ 1)

an indication of a failure. By using the information
provided by the model probabilities, both fault
detection and diagnosis can be achieved. The fault
decision can be made by

(K + 1) = max iy (k + 1)
1

{ > pp = H; : fault j occurred

< pr = Hy : no fault
a7
A slightly better logic is

p;(k + 1) = max p,(k + 1),

ik + 1) > pr = H; : fault j occurred
max, .k +1) | < Wy = H; @ no fault
(18)
A complete cycle of the IMM-based FDD scheme
with Kalman filters as its mode-matched filters is
summarized in Table I.
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The IMM approach to FDD offers a number of
important advantages over other approaches, such
as the SPRT and generalized likelihood ratio (GLR)
approaches. It is also superior to the Magill’s MM
approach, its variants, and the GPB1 approaches.

1) Note that decision rule (17) provides not
only fault detection but also the information of the
type (sensor or actuator), location (which sensor or
actuator), size (total failure or partial fault with the
fault magnitude) and fault occurrence time, that is,
simultaneous detection and diagnosis. For partial
faults, the magnitude (size) can be determined by the
probabilistically weighted sum of the fault magnitudes
of the corresponding partial fault models. Another
advantage of the IMM approach is that FDD is
integrated with state estimation. The overall estimate
provides the best state estimation of the system subject
to failures. Furthermore, unlike other observer-based
or Kalman filter based approaches, there is no extra
computation for the fault decision because the model
probabilities are necessary in the IMM algorithm
anyway.
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2) For a reliable fault decision by using some
other single-model-based fault detection approaches,
such as the chi-square test and GLR techniques, the
residual window length and the decision threshold
must be chosen to have a trade-off for detection
performance and computational simplicity. In contrast,
in the IMM approach, the set of model probabilities
{p;(k + 1)}, unlike the set of likelihoods {L;(k + 1)},
summarizes all the previous and current information
about the system modes in effect and thus is more
reliable for a fault decision. A sliding-window for
fault decision is not necessary. For a more robust
decision, additional information from the likelihoods
and/or residuals may be used. Note, however,
that their values depend heavily on the current
measurements which carry unreliable information
about the system mode in effect.

3) For the proposed IMM approach, there is
no need to set arbitrary threshold levels to balance
false alarms against missed detections. However, it
is convenient to detect a possible failure by setting
a threshold yuy, as in (17) and (18). One can easily
determine the detection threshold . This simplicity
will prove to be attractive in practice.

4) It is well-known that for the noninteracting
MM estimators, if one of the model probabilities
becomes very large (close to unity), the others usually
do not increase quickly enough when a fault (mode
change) occurs. In addition, a too large separation (or
difference) between models may lead to numerical
underflow in the computation of the likelihood
function. Therefore, an artificial lower bound g,
is imposed on the model probabilities of these MM
estimators, with the constraint that the sum of all the
probabilities is 1. This has an obvious disadvantage
that different 1 ;, may have different impact on the
FDD performance, which is relevant to the size of
model set and the application considered. It means
that we have to tune carefully for each application.
In contrast, it is not necessary for the IMM algorithm
to have such a lower bound in its mode probability
because the assumption that a mode may jump to
another alleviates this problem.

5) The gains in the Kalman filters based on the
mismatched models decrease monotonically with
time. Thus even if a lower bound on the probabilities
is set, an abrupt fault may not be reflected in a
corresponding change in the filter estimates timely.
In order to overcome this difficulty, a resetting
(reinitialization) technique was adopted in [10] which
resets both the filter parameters and the probabilities
to their initial values when a fault has been detected,
and thus all the previous information is lost. Another
problem is that it takes time for the reinitialized
filter to lock onto the new mode which, in turn, may
lead to the detection delay or missed detection for
subsequent failures. However, these difficulties are
effectively and automatically overcome by the IMM
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algorithm due to the interaction/mixing of previous
estimates. The probabilities, estimates as well as

the associated covariance are reinitialized in a near
optimal way in the IMM approach where most of
previous information is included in the current initial
probabilities and estimates. This leads to a significant
improvement in performance.

6) It is worth pointing out that in the IMM
approach, the overall estimate is generated by the
probabilistically weighted sum of estimates from the
single-model-based filters. It is better and more robust
than any single-model-based estimate. This state
estimate does not depend upon the correctness of fault
detection and in fact, the accurate state estimation can
facilitate the correct FDD.

7) The detection threshold y;- is universal in
the sense that it does not depend much on the
particular problem at hand and a robust threshold
can be determined easily. In other words, the FDD
performance of the IMM approach varies little in most
cases with respect to the choice of this threshold.

In addition, the model probabilities in the IMM
approach provide a meaningful measure of how
likely each fault mode is without the need to compare
with the threshold p. This measure is known and
independent of the threshold used for the declaration
of a fault and the use of a threshold is not essential,
but mainly for convenience. On the other hand, the
residual-based fault detection logic relies heavily on
the threshold used, which is problem-relevant. Quite
different detection thresholds have to be used for FDD
problems of different systems and design of such a
threshold is not trivial. Moreover, without comparing
with the threshold, the value of the measurement
residual itself does not provide directly meaningful
detection and indication of the fault situations.

8) The IMM approach can be readily extended
to MM-based fault-tolerant control and provides
extremely useful information for system compensation
or fault-tolerant control subsequent to the detection
of a failure, similarly to what was done in [25, 29].
The main idea is that the overall control can be
generated by the probabilistically weighted sum of
single-model-based controls. This work is under
investigation and will be reported in the future.

Compared with the MMAE approach, the
disadvantages of the proposed IMM approach are
a higher computational complexity and the need
to design the mode transition probabilities. These
advantages and disadvantages are demonstrated via
simulation in Section V.

D. Design of the Markov Transition Probability Matrix

The design parameters for the IMM algorithm
include the transition probability matrix, the
covariances of the process noise and measurement
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noise. Note that the performance of FDD depends also
on the type and magnitude of control input excitation
used. However, the design of the transition probability
matrix is unique and important for the IMM-based
FDD approach.

A proper choice of the diagonal entries in the
transition probability matrix is to match roughly the
mean sojourn time of each mode [2],

T
= B
Tjj max{l] Tj}

where T is the expected sojourn time of the jth mode;
7;; is the probability of transition from jth mode to
itself and 7 is the sampling interval; /; is a designed
lower limit for the jth model transition probability.
For example, the “normal-to-normal” transition
probability, 7;,, can be obtained by n;; =1 -7/,
where 7; denotes the mean time between failures
(MTBF). Note that T is much smaller than MTBF in
practice.

The transition probability from the normal mode
to a fault mode is equal to 1 — ;. Which particular
fault mode it jumps to depends on the relative
likelihood of the occurrence of the fault mode. While
in reality mean sojourn time of total failures is the
down time of the system, which is usually large and
problem-dependent, to incorporate various fault modes
into one sequence for a convenient comparison of
different FDD approaches, the sojourn time of the
total failures is assumed to be the same as that of the
partial faults in this work.

“Fault-to-fault” transitions are normally disallowed
except in the case where there is sufficient prior
knowledge to believe that partial faults can occur one
after another.

19

E. Numerically Robust Implementation of IMM and
MMAE Estimation Algorithms

As explained in Section IIIB, it is not necessary
for the IMM algorithm to have a lower bound on its
model probabilities. However, numerical underflow
may occur if the model difference is too large. Simple
solutions are to replace the zero model transition
probabilities with an extremely small value, say,
1073%, or set a low bound for model probabilities.
However, these are ad hoc. A more general and
numerically robust implementation of the MMAE
and IMM algorithms was developed in [19], where
the need for a lower bound is eliminated. In order to
compare the effectiveness of the numerically robust
implementation with the commonly used MMAE
algorithm, an artificial lower bound (., = 0.001 in
our simulation, g, = 0.01 in [32, 35] and ., =
0.001 in [22, 27]) was imposed on the MMAE
algorithm (MMAE2). '
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Fig. 2. Description of FDD performance indices.

V. FDD PERFORMANCE EVALUATION AND DESIGN
OF TEST SCENARIOS

A. Performance Evaluation and Indices

In order to evaluate the FDD performance
of different MM estimators, in addition to the
conventional performance indices, such as the false
alarm (FA) and missed fault detection (MFD), the
following performance indices were designed and
used in this work: average percentages of correct
detection and identification (denoted by CDID),
incorrect fault identification (denoted by IFID), no
mode detection (denoted by NMD), and average
detection delay. A CDID is obtained if the model
that is closest to the system mode (normal or fault
mode) in effect at the given time has a probability
higher than the specific threshold p = 0.9. An IFID
is obtained if the model with a probability over up
is not the one closest to the fault mode in effect
at the given time. An FA is obtained if the model
with a probability over y is not the normal mode
while the normal mode is in effect at the given time.
An MFD is obtained if the normal model has the
highest probability which exceeds p, while the
system has a fault. It is indecisive (NMD) if no
model has a probability above y,. The detection
and correct identification delay is obtained from the
time the true mode changes to the time it is detected
and correctly identified. It is obviously desirable
to have a higher CDID and lower FA, IFID, MFD,
and NMD. Fig. 2 depicts the relationship among
different performance indices, where Oth identified
mode means no model has probability larger than
k7. The new indices were adopted and modified
from [18].

The performance indices given above should not
be applied to different model set designs; otherwise
they may be misleading: the more models, the worse
the performance. In order to overcome this limitation,
the computation of above CDID, FA, IFID, MFD,
and NMD are obtained based on the fault models
corresponding to each sensor (or actuator) instead of
each fault mode. In addition, average distance between
the system mode in effect at a given time &k and the
models used in an MM algorithm at that time was
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introduced in [18] and used in this work:

1 Nrun
Distance = N Z

kmax
X {kLZ{ Z s, —m, | P{s, =m, | s, GM,zk}}}

max -1 nm; EN

(20)

where N, represents the model set consisting of the
partial and total fault models pertaining to a given
sensor (or actuator); ||s, —m;,]| is the distance between
the true mode and model m; in model set A\/;; and
N, is the number of Monte Carlo runs. With these
performance indices, more reasonable and fair FDD

performance evaluation can be obtained.

B. Design of Test Scenarios

The FDD performance depends to some degree
on the test scenarios used. In order to evaluate the
performance of different FDD algorithms more
fairly and precisely, both deterministic and random
fault scenarios were designed. These designs,
especially the random scenario, are useful not only for
MM-based approaches. Different failure types, such as
total/partial sensor and/or actuator failures, single or
double actuator and/or sensor failures were simulated.

1) Random Scenario: For the random scenario,
it is assumed that the system mode sequence is
a semi-Markov process, that is, a process that
would be Markov were the sojourn time 7 for each
mode not random. Total and partial faults with a
random magnitude uniformly distributed over (0, 1]
were designed. It implies that the dynamic system
undergoes jumps from the normal mode to a fault
mode with a magnitude of either 1 (total fault) or the
value uniformly distributed over (0, 1] (partial fault)
after staying in the normal mode for a random period
of time 7. It is assumed that a fault mode can switch
only to the normal mode. Which sensor/actuator
undergoes the fault is also assumed random that
is evenly distributed among sensors/actuators.
The following designs of the sojourn time 7, fault
magnitude f, and the indication X of the mode are
proposed.

a) The sojourn time 7, for the fault f = f; has the
conditional probability density
pri| f) =N(T702)  1,>0 21
where N (Tl-;?i,o%,) stands for Gaussian (normal)
probability density function of 7; with mean 7;
and variance ¢2; and 7; and o2 are two constants,

i

depending on the fault magnitude f;.
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b) The magnitude f;,, of a fault over the random
period (¢;,t;,] has the conditional probability density

p(f;'ﬂ |f; = 0) = Poé(fiﬂ —fM)
1

+(1—P°)f 10f415€0, fan)]
M

22)
Pfi1 =01f#0)=1 (23)

where 6 is the delta function; 1[x;S] is the indicator
function, defined by

1. xeS
0 x¢S§°
¢) The indicator A, of a fault sensor (actuator)

over the random period (7, ;] has the conditional
probability mass function

10681 = { 24)

PO =) 1N =12 < <dim®) +1} = s

(25)

i.e., A;,, (conditioned on )\, = 1) is evenly distributed
over {2,...,dim(y) + 1}, and

P =1[N#1}=1 (26)

where dim(y) stands for the dimension of vector
y which corresponds to the number of sensors or
actuators and A = 1 denotes the normal mode.

The following parameters were used in the design
of our random scenario:

Ju—1f;

M
2 _ 1=
0% = 12T

@7

P’ =04,
fu=1
where 7, . = 3 and 7, = 1 stand for the expected

sojourn time for normal and fault mode, respectively.
PO represents the probability of a total failure.

This random scenario design was modified from
[21] for maneuvering target tracking. With such a
random scenario, it is difficult to design an algorithm
with subtle tricks that are effective only for certain
scenarios.

2) Deterministic Scenarios: Several deterministic
test scenarios were also designed. The design rule
follows the sequence from simpler to more complex
fault cases to represent possible actual failures in the
aircraft sensors and actuators. The details are given in
Section V.

Note that our deterministic scenarios have more
frequent mode changes than in most practical
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situations. With so frequent mode changes, many
different fault modes are incorporated into one
sequence so that it is more convenient for the
comparison of different FDD approaches. Such
scenarios also allow us to consider situations of
intermittent faults.

V. DETECTION AND DIAGNOSIS OF AIRCRAFT
SENSOR AND ACTUATOR FAILURES

A. Aircraft Model and Model Set Design

Two types of aircraft were used for the detection
and diagnosis of sensor and actuator failures. The
dynamics of an F/A-18 aircraft [31] in a given region
of the flight envelope, level flight at 10,000 ft with
a speed of Mach 0.6, and another high performance
aircraft [29] with a high subsonic cruise speed
(Mach = 0.8) at an altitude of 35,000 ft, can be
linearized and their motion can be described by the
continuous-time state variable equations

x(t) = Ax(t) + BU(t) + £,(r)
z(t) = Cx(t) + n(@).

For F/A-18 aircraft, the model has eight (four
longitudinal and four lateral) state variables with
the longitudinal and lateral motions completely
decoupled. It is represented by state vector x =
[uwq6vrpyl, where u,v,w represent velocities
in forward, lateral, and vertical directions of the
body axes, respectively; p,q,r represent roll, pitch,
and yaw angular rates, respectively; 0, ¢ are pitch
and roll angles, respectively. The aircraft utilizes
five pairs of control surfaces (some of which can
be used symmetrically and asymmetrically) to
achieve seven different control inputs, represented
by U =[6, 4o Oge Sust Oate 0, 6,)'. The seven control
input variables, three for longitudinal control and
four for lateral control, are symmetric stabilator

(or elevator denoted by §,), symmetric leading
edge flap (6,), symmetric trailing edge flap (6,).
asymmetric stabilator (6,), asymmetric trailing
edge flap (6,,), aileron (6,) and rudder (6,). A and

B, given in Appendix A, represent the system and
control matrices at the given normal flight condition,
respectively. A more detailed description of the
F/A-18 aircraft can be found in [31].

For the second aircraft, the model has eight (four
longitudinal and four lateral) state variables, with the
longitudinal and lateral motions completely decoupled,
represented by state vector x=[a qu b 8 pr ¢l,
where u represents forward velocity; p,q,r represent
roll, pitch, and yaw angular rates, respectively;

o, 3 denote angle of attack and angle of sideslip,
respectively; 6, @ are pitch and roll angles,
respectively. The control input vector is represented
by U = [6g, 6gr Ocr. 6cr bs1. Osr 04 Og1’. They are left

(28)
29)
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and right elevators (denoted by §g; and 6gg), left and
right canards (6 and 6.g), left and right spoilers
(8¢, and dgg), aileron (64), and rudder (6z). Only
two control inputs, left elevator 6g; and right elevator
O, are relevant to the longitudinal movement of the
aircraft under the normal flight condition. Only FDD
of sensor and actuator failures of the longitudinal
dynamics was considered in this testing example due
to the limitation in space. A more detailed description
of the aircraft can be found in [29]. The system and
control matrix A, B are given in Appendix B.
Discretization of (28)—(29) yields

x(k + 1) = Fx(k) + GU(k) + £(k) (30)

2(k) = Hx(k) + (k) 3D

where sampling period T =0.1 s, F = eT; G =
(JT e dT)B; H = C.

It was assumed for simplicity that all the state
components are directly measurable and thus A (or
() is an identity matrix.

Actuator (or control surface) failures were modeled
by multiplying the respective column of G matrix by a
factor between zero and one, where zero corresponds
to a total (or complete) actuator failure or missing
control surface and one to an unimpaired (normal)
actuator/control surface. Likewise for sensor failures,
where the role of G is replaced with H. It was
assumed that the damage does not affect the aircraft’s
F matrix, implying that the dynamics of the aircraft
are not changed. We could also assume that F' matrix
undergoes changes due to the failure of actuator or
component of the aircraft. This is related to the model
design for the MM approach and is not considered
here.

The fault modes in this work are more general and
complex than those considered before, including total
single sensor or actuator failures, partial single sensor
or actuator failures, total and partial single sensor
and/or actuator failures, and simultaneous sensor and
actuator failures. Generally speaking, it is difficult to
handle simultaneous faults, e.g., simultaneous actuator
and sensor faults, even though the failure scenarios
which included dual faults separated by 3.0, 0.5, and
0.1 s were considered in [27]. Here, the simultaneous
actuator and sensor faults are considered.

If failures with different fault magnitudes need to
be detected and diagnosed, variable-structure IMM
estimators, as proposed in [17, 20, 21], can also
be used to reduce the computational complexity of
the FDD algorithm, where different models may
assume different failure magnitudes. Another way to
reduce the computational requirement is to use the
hierarchical structure of the fault model set [27, 32].
Such techniques are not exploited here because the
purpose of this work is to develop a generic FDD
algorithm and compare it with existing MM-based
FDD algorithms.
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B. Robustness to the Design of Transition Probabilities,
Modeling Errors, and Noise Statistics

A major difference between the proposed approach
and other MM-based approaches is the assumption
of Markov process for the system failures. An issue
related to this assumption is how robust the proposed
approach is to the design of the model transition
probability matrix. Applications of the IMM algorithm
to the target tracking indicated that the performance of
the IMM algorithm is not sensitive to the choice of the
transition probabilities [14, 16]. This characteristic is
also valid for FDD. This robustness is evaluated and
compared with other MM-based FDD approaches via
simulations.

Other robustness issues with respect to modeling
errors or errors in noise statistics are also important to
the application of the proposed approach. The greater
the errors are, the more serious the degradation of the
FDD performance is. A good FDD approach should
be robust (insensitive) to such errors. In order to
evaluate the robustness, modeling errors of different
magnitudes and uncertainties in noise statistics were
simulated. Several deterministic and random test
scenarios were used to evaluate the robustness of
the proposed approach. Only results for Scenario 3
(deterministic) and Scenario 4 (random) are reported,
to save space.

C. FDD Results for F/A-18 Aircraft

It is assumed for simplicity in our simulation that
the sojourn time is 7, ., = 3 s and 7, = 1 s for
normal flight condition and a sensor and/or actuator
failure, respectively, although it is more reasonable to
assume different sojourn times for different sensor and
actuator failures. The following transition probability
matrix was used for scenario 1 below:

e L L 1 L
120 120 120 120 120

005 095 00 00 00
7=10.05 00 095 00 00
0.05 00 00 095 0.0
005 00 00 00 095

Similar transition probability matrices were used for
the other scenarios. The system and measurement
noise matrices used for all scenarios were

0 = (0.01)4, R =(0.2)%1.

In the case where there is no a priori information
about the system model in effect, it is natural to set
the initial model probabilities to be equal (but the
normal mode may have a higher initial probability).

1) FDD Results of Longitudinal Dynamics:
Scenario 1. Single total/partial sensor/actuator
failure:  First, consider the simplest situation in
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Fig. 3. Comparison of mode probabilities of single total sensor
failures. (a) IMM. (b) MMAE.

which only a single total (or partial) sensor or
actuator failure is possible. Then there are a total

of 5 possible models (4 failure plus one normal
models) for sensor failures and 4 possible models (3
failure plus one normal models) for actuator failures.
Similarly, there are 5 partial sensor failure models
and 4 partial actuator failure models. Due to the space
limitation, only the simulation result for the first case
is presented herein.

Fig. 3 shows the mode probabilities when there
is a total forward velocity () failure between k = 31
and k = 40, a vertical velocity (w) failure between
k =71 and 80, a total pitch rate (g) failure between
k=101 and k = 111, and a total pitch angle () failure
between k = 141 and 148. For the remaining time,
the normal flight condition holds. Note that sampling
period T = 0.1 s.

Table II presents the FDD performance indices
and the flops (in 10%) in one cycle using the IMM and
MMAE approaches, with a MATLAB implementation.
IMM represents a numerically robust IMM algorithm
implementation. MMAEI represents a numerically
robust MMAE algorithm implementation. MMAE?2
represents the MMAE algorithm with 1073 lower
bound for each mode probability. Case 1 represents
the situation in which the model set and the noise
statistics are known exactly. The FDD results for this
case were demonstrated in Fig. 3 and the subsequent
figures. Case 2 differs from Case 1 in that a 5%
modeling error exists. In Case 3, the noise matrices Q
and R used for the filter are 4 times the true ones so
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TABLE II
Comparison of FDD Results for Single Total Sensor Failures

CDID FA IFID MFD NMD Delay Flops
IMM 95.56 4.4 0 0 0 0 1.392
Case 1 | MMAEL | 35.56 46.11 12.78 5.55 0 0 1.158
MMAE2 | 92.67 7.33 0 0 0 0 1.159
IMM 88.89 611 111 3.89 0 0 1.392
Case 2 | MMAEL | 35.56 46.11 12.78 5.55 0 0 1.158
MMAE2 | 8833 722 333 111 0 0.1 1.159
IMM 95.56 4.44 0 0 0 0 1.392
Case 3 | MMAEL | 35.56 46.11 12.78 5.55 0 0 1.158
MMAE2 | 9258 735 0 0 007 0.1 1.159
TABLE III

FDD Results for Single Total and Partial Sensor and/or Actuator Failures

CDID FA IFID MFD NMD Delay Flops

IMM 82.00 9.00 9.00 0 0 0 3.684

Case 1 | MMAEL | 60.50 15.00 245 0 0 1.1 2.567
MMAE2 | 80.76 10.24 9.00 0 0 0 2.581

IMM 82.00 9.00 9.00 0 0 0 3.684

Case 2 | MMAE1 | 61.46 14.05 180 22.7 0 091 2.567
MMAE2 | 80.76 10.24 9.00 0 0 0 2.581

IMM 82.00 9.00 9.00 0 0 0 3.684

Case 3 | MMAE1 | 61.00 1450 2.00 225 0 1.1 2.567
MMAE2 | 80.75 10.22 9.00 0 003 0001 2.581

that the performance impact due to the uncertainties
in noise statistics can be evaluated. Cases with other
different modeling errors and uncertainties in noise
statistics were also simulated. The results are averages
over 100 Monte Carlo simulations. The performance
indices, CDID, FA, IFID, MFD, and NMD, are
presented in percentage (%).

Scenario 2. Total and partial sensor and/or
actuator failures: In order to reduce the computation
and the size of model set, only symmetric stabilator
(6,) fault was considered for actuator failures. A
total of 11 models (one normal mode, four total
sensor failure, four 40% partial sensor failure, one
total actuator failure, and one 40% partial actuator
failure models) were used. Fig. 4 shows the mode
probabilities when there is a total pitch rate (g)
failure between k = 31 and k = 40, a total pitch angle
(6) failure between k = 71 and 80, a 40% partial
symmetric stabilator failure between k = 101 and
k =111, a total symmetric stabilator failure between
k =141 and k = 149, and a 40% partial pitch angle
failure between k = 176 and k = 185. The FDD
performance indices and the flops are given in Table
III. The IMM algorithm yielded better results than the
MMAE algorithm. MMAE]1 obtained worst results
again. It is worth pointing out that better performance
may be obtained by the IMM algorithm with lower
bound on transition probability matrix or model
probabilities.
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Scenario 3. Total and partial sensor/actuator
failures, simultaneous partial sensor and actuator
failures: In this situation, more complicated failures,
including simultaneous sensor and actuator failures,
were considered. In order to reduce the computation
and the size of model set, only symmetric stabilator
fault was considered for actuator failures also. This
leads to a total of 15 models in the model set: one
normal, four total sensor failure, four 40% partial
sensor failure, one total actuator failure, one 40%
partial actuator failure, and four simultaneous sensor
and actuator failure models. Fig. 5 shows the mode
probabilities when there is a total pitch rate failure
between k = 31 and k = 40, a simultaneous 20%
partial pitch rate and symmetric stabilator failures
between k = 71 and 80, a 40% partial symmetric
stabilator failure between k = 101 and k = 111, a
40% partial pitch angle failure between k = 141
and k = 149; and a total symmetric stabilator failure
between k = 176 and k = 185. The FDD results are
given in Table IV. Better results were obtained by the
IMM algorithm than by the MMAE algorithm.

Scenario 4. Random scenarios with total and partial
actuator/sensor failures: 1In this scenario, actuator
or sensor failures with total and partial faults were
designed separately. In the random test scenario,
the magnitude of a partial fault was designed as
uniformly distributed over (0, 1). It is important to
design the model set that covers the fault situation
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TABLE IV
FDD Results for Single Total and Partial Sensor and/or Actuator Failures

CDID FA IFID MFD NMD Delay Flops
IMM 91.00 9.00 0 0 0 0 5.588
Case 1 | MMAEL | 66.00 9.50 0 24.5 0 0 3.518
MMAE2 | 88.80 10.27 0.5 0 043 0182 3.549
IMM 91.00 9.00 0 0 0 0 5.588
Case 2 | MMAEL | 66.00 9.50 0 24.5 0 0 3.518
MMAE2 | 88.98 10.26 0.5 0 0.26 0.149 3.549
IMM 91.00 9.00 0 0 0 0 5.588
Case 3 | MMAE1 | 6647 9.03 0 24.5 0 0 3.518
MMAE2 | 88.74 10.26 0.5 0 0.50 0.2 3.549
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Fig. 4. Mode probabilities of single total and partial sensor
and/or actuator failures. (a) IMM. (b) MMAE.

effectively. Two choices of the quantization of

the partial fault magnitude M! = {0,0.5,1} and

M? = {0,0.25,0.5,0.75,1} were considered. Other
quantization levels may of course be used. We may
design multiple models to correspond to these levels.
The quantization error reduces as more models are
used. However, the use of more models will increase
the computational requirement. The FDD performance
indices and the flops (x 10%) are given in Table V for
these two model designs. Design 1 used quantization
M! while Design 2 used M?2. For example, for

the case of a sensor fault, Design 1 used 9 models
(one normal, four 50% partial sensor failure, four
total sensor failures) and Design 2 used 17 models
(one normal, four 25% partial sensor failure, four
50% partial sensor failure, four 75% partial sensor
failure, four total sensor failures). For an actuator
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Fig. 5. Comparison of mode probabilities of simultaneous sensor
and actuator failures. (a) IMM. (b) MMAE.
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fault, similarly as before, only primary control surface
failure was considered. This leads to 3 models for
Design 1 and 5 models for Design 2.

2) Robustness Analysis: To evaluate the
robustness of the different MM-based FDD
approaches to the design of model transition
probabilities, modeling errors, and noise statistics,
the following were simulated: 1) different modeling
errors ranging from 0 to 40%, 2) different noise
statistics errors ranging from 1/20 to 20 times of the
true system noise matrix Q and measurement noise
matrix R, and 3) different transition probability design
errors ranging from 50% to 150% of the sojourn
time used in the IMM algorithm. In the first two
situations, only CDID versus errors in modeling and
noise statistics for Scenario 3 are plotted in Figs. 6
and 7 due to space limitation, where IMMI1 represents
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TABLE V
FDD Result Comparison for Random Fault Scenarios

Fault Design | Algorithm | CDID FA IFID MFD NMD Distance Flops
IMM 97.80 0 097 1.23 0 0.0337 0.7789
1 MMAEL | 7690 0 265 2045 0 0.0645 0.6925
actuator MMAE2 95.59 0 274 1.67 0 0.0647 0.6916
IMM 97.10 0 212 078 0 0.0209 1.392
2 MMAE1 78.62 0 17.76 3.62 0 0.1305 1.157
MMAE2 91.38 0 715 1465 0.005 0.0532 1.158
IMM 89.52 0 158 823 0675 0.0341  2.845
1 MMAEL | 8332 0 6.845 8905 0.925 0.1323  2.095
sensor MMAE2 | 8338 0 693 886 0.825 0.1323  2.103
IMM 90.81 0 325 5.23 0.705 0.0594  6.652
2 MMAEL | 78.82 0 1431 514 173 0.0901  3.996
MMAE2 79.07 0 14.40 5.08 1.45 0.1323  4.039
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Fig. 7. Comparison of robustness to noise uncertainties.

a numerically robust IMM algorithm implementation,
IMM2 represents the IMM algorithm with a 1073%
lower bound on model transition probabilities. In

the third situation, the CDID and average distance
versus the errors in the designed model transition
probabilities, based on the Design 1 of actuator

fault in Scenario 4, are demonstrated in Figs. 8

and 9, respectively. These results show that the
MM-based FDD approaches are robust to the

design of model transition probabilities, modeling
errors and the uncertainties in noise statistics. In
addition, it is worth pointing out that the random test
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Fig. 9. Average modal distance versus model transition
probability errors.

scenario has different sojourn time for different
(normal or fault) modes at each run of the Monte
Carlo simulation.

In Figs. 8 and 9, 7™ is the true mean sojourn
time used to generate random scenarios as in (27);
rdesign jg the sojourn time used to obtain the mode
transition probabilities, as given in (19), which is

design _ design __ true /..design _
fixed as dTanml =3, Tfaug ‘=1, and 7™¢/7 =
frue esign _ _true esign MM
7_normal normal ~ 7-faultl/ Tfa It Note that AE

algorithms do not use 798" but 7"™° varies in
different cases, and thus they can still be treated as
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TABLE VI
Comparison of FDD Results for Single Sensor and/or Actuator Failures

CDID FA IFID MFD NMD Delay Flops
IMM 99.00 1.00 0 0 0 0 56.00
Case 1 | MMAEL | 54.50 21.00 8.00 16.5 0 1.7 37.83
MMAE2 | 77.31 18.03 3.5 0 117 13 3701
IMM 99.00 1.00 0 0 0 0 56.00
Case 2 | MMAE1 | 55.00 20.5 800 16.5 0 1.6 37.83
MMAE2 | 76.61 17.88 4.32 0 1.19 144 3791
IMM 99.00 1.00 0 0 0 0 55.96
Case 3 | MMAEL | 54.50 21.00 8.00 16.5 0 1.7 37.78
MMAE2 | 76.62 18.00 3.5 0 1.88 1.3 37.87
if they had a 7' /79°%8% ratio. Due to the randomness, 10
average mode probabilities are meaningless. It is clear o8
that the FDD performance of the IMM algorithm is B
overall much better than that of the MMAE approach, & 0.6
especially in terms of average modal distance. It g
should be noticed that for Design 1 of an actuator g o4
fault there are only 3 models in the model set. 02
Even for this simple case, where there is enough
separation between models, the IMM algorithm still O T &+ s 10 12 14 18 18 20
obtains better FDD performance. For Design 2, the time (second)
performance of the MMAE deteriorates. When more (@)
models are used, similar performance indices were 10 _
obtained for Design 1 and Design 2. I H |
From the results of the above scenarios, it can be 8 o8 l‘ ' ‘
seen that the IMM approach obviously outperforms 8 o6 Il II
the MMAE approach, especially with a lower bound g ' I l [
on the model transition probabilities. The flops of o4 1| } { i
the IMM is slightly greater than that of the MMAE § '| [ |
approach. It is obvious that the numerical robust oz il : ! |
MMAE algorithm implementation, MMAEI, has 0.0 | ‘ L l
3 ] 2 4 (-] 8 10 12 14 16 18 20
much worse performance compared with the one time (second)
Nominal mode total & fallure mode —— - patial rfailure mode

(MMAE?2) with a lower bound. On the other hand,
better performance was obtained by the numerically
robust IMM algorithm implementation (IMM1)
without any artificial lower bound, although even
better results can be obtained by the one (IMM2) with
a lower bound.

Some other simulation results were obtained but
not presented here. These results are for cases with
different error strengths in which different model
transition probabilities, modeling errors or errors in
noise statistics were considered.

3) FDD Results of Longitudinal and Lateral
Dynamics: For the FDD of longitudinal and lateral
dynamics, only the total and partial sensor and/or
actuator failures in a deterministic scenario were
considered. For an actuator fajlure, only primary
control surface, symmetric stabilator, aileron (6,), and
rudder (§,), were considered to reduce the number
of models used. There are 23 models in the model
set: one normal, eight total sensor failure, eight 40%
partial sensor failure, three total actuator failure,
three 40% partial actuator failure models. Fig. 10 and
Table VI show the FDD results when there is a total
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partial p failure mode—— "'~ totai ¢ failure mode
(b)

Fig. 10. Comparison of mode probabilities of single sensor
and/or actuator failures. (a) IMM. (b) MMAE.

total &5, failure: - -

pitch angle failure between k = 31 and k = 40, a 40%
partial yaw rate failure between k£ = 71 and 80, a total
aileron failure between k = 101 and k = 111, a 40%
partial roll failure between k = 141 and k = 149, and
a total roll angle failure between k = 176 and k = 185.
Much better FDD performance was obtained by the
IMM approach than the MMAE approach.

D. FDD Results for Another Aircraft

The proposed IMM approach has also been applied
to the FDD of another aircraft given in [29]. The FDD
of longitudinal aircraft sensor and actuator failures
with deterministic and random test scenarios were
considered.

1) Deterministic Scenario: Similarly to scenario
3, the total and partial sensor and/or actuator failures,
simultaneous partial sensor and actuator failures
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TABLE VII
Performance Comparison of FDD for Simultaneous Sensor and Actuator Failures

CDID FA IFID MFD NMD Delay Flops
IMM 96.52 0.02 0075 0.165 322 0490 8.822
Case 1 | MMAE1L | 61.62 13.35 0 245 053 0 4.767
MMAE2 | 20.61 34.22 11.08 0.71 3338 4.387 4.836
IMM 96.59 0.015 0.115 0.08 3.19 0469 8.822
Case 2 | MMAE1 | 61.62 13.35 0 245 053 0 4.767
MMAE2 | 20.62 34.3¢ 11.22 0.64 3318 4492 4.836
IMM 90.84 0.006 0.02 441 4.725 0.855 8.828
Case 3 | MMAE1 | 61.60 13.29 0 245 061 0 4.767
MMAE2 | 16.27 3397 838 146 3992 3.630 4.836

TABLE VIII
Performance Comparison for Random Fault Scenario

Fault Design | Algorithm | CDID FA IFID MFD NMD Distance Flops
IMM 85.88 0 202 486 724 0.0372 1.353
1 MMAE1 | 7245 0 081 2616 0.575 0.0923 1.109
actuator MMAE2 | 77.55 0 706 1466 0.73 0.1275 1.110
IMM 78.38 0 37 320 14.66 0.0201 2.799
2 MMAEL | 71.16 0 9.605 18.14 1.095 0.1089 2.008
MMAE2 | 75.14 0 1450 8455 1.905 0.1048 2.016
IMM 74.21 0 1174 0.56 13.50 0.0276  2.763

0

0

0

0

0

1 MMAE1 62.62 1403 149 21.86 0.0222 2.012
" sensor MMAE2 75.92 15.52 159  6.97 0.0288 2.019
IMM 71.10 1149 038 17.03 0.0201 6.495
2 MMAE1 44.92 1441 0.81 39.86 0.0599 3.839
MMAE2 67.11 1743  1.03 14.42 0.0614 3.882

were simulated. There are 21 models in the model
set: one normal, four total sensor failure, four 40%

partial sensor failure, two total actuator failure, two 10 ‘ ; 5 ,
40% partial actuator failure, and eight simultaneous [ ] {
sensor and actuator failure models. Fig. 11 shows the 08 1 ' :

i

mode probabilities when there is a total pitch rate
failure between k = 31 and & = 40, a simultaneous
20% partial angle of attack and right elevator failures
between k = 71 and 80, a 40% partial left elevator
failure between k = 101 and k = 111, a 40% partial o2
pitch angle failure between k = 141 and k = 149, 00 A\ F
and a total left elevator failure between k = 176 and L S S e 18 20
k = 185. The FDD performance indices and the flops @
are given in Table VIL It is clear that the MMAE
approach have much worse results than the IMM 10 i ﬁ M
approach. Poor and sometimes misleading results osd |
were obtained by the MMAE algorithm. Note that the g I
numerically robust MMAE]1 has better performance £ oe il II
than MMAE2 (with low bound) for this example. I I]
2) Random Scenario: For this example, a similar ]
modeling scheme as the first aircraft example was 021 ||
considered. For an actuator fault, there are 5 models ||{| A i :
in Design 1 and 9 models in Design 2. For a sensor oo = ' 7 s« e s 10 16 18 20
fault, the same number of models as the first aircraft e Nominal mode cota g fetre ). o and 5y tallures mods
example was used. The results of Table VIII also T partial o failurer < partial 0 fallure ™71 total 5g, failure mode
support the superiority of the IMM approach to the (b)
MMAE approach. It is worth pointing out that the Fig. 11. Comparison of mode probabilities of simultaneous
purpose for the simulation of random test scenarios sensor and actuator failures. (a) IMM. (b) MMAE.

0.8

Mode probatility for FOD
o
IS

o

b o
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presented here is to compare the FDD performance of
different algorithms.

E. Discussions

In the MMAE approach, to enhance the
performance of detection and identification of flight
control system actuator and/or sensor faults, various
heuristic techniques were investigated, such as the
removal of § dominance effect, bounded conditional
probabilities, Kalman filter retuning, scalar penalty
increase, probability smoothing, and increased residual
propagation [24, 27]. These techniques do enhance
the performance of the FDD but only in an ad hoc
fashion; there is no solid foundation to believe that
they are generally applicable. Some other similar
heuristic modifications can be found in [10, 22]. It
is clear that the IMM approach can obtain much better
FDD performance without such heuristic adjustments,
even though better FDD performance may be obtained
by imposing an appropriate lower bound on model
transition or mode probabilities.

It can be concluded from the simulations that
the IMM approach outperforms significantly the
MMAE algorithms. The former has a higher CDID,
lower FA, IFID, MFD, NMD, and smaller detection
delay. The IMM approach is also robust to the
design of transition probabilities, the model modeling
errors, and the errors in noise statistics. The more
complex the fault scenario, the better improvement
in its performance. The GPB1 algorithm was also
evaluated via simulation of a number of test scenarios.
Comparable performance with the IMM algorithm
may be obtained for some, but not all scenarios. It
depends on the complexity of the model set and test
scenario used.

The main disadvantage of the IMM approach is its
slightly higher computational complexity. However, its
substantial improvement in the FDD performance pays
for this price. With the rapid development of parallel
computing techniques, it is even more attractive due to
its inherent parallel structure.

To compare the MM-based FDD approach with
single-model-based approach under the consideration
of the ratio of performance and computational
requirement, brief discussions are given as follows.

For the FDD of stochastic systems, Kalman
filter is an essential tool for residual generation.
Several statistical approaches can be used to evaluate
residuals, such as chi-square test, SPRT, and GLR.
Among these, the GLR [36] is the most popular and
powerful for FDD. Thus we focus on the comparison
of the GLR and the proposed IMM-based approach.
In the GLR, a single Kalman filter designed under
normal operation is used for residual generation.
However, to perform fault detection, isolation
and identification, a set of likelihoods has to be
carried out for different faults. The basic idea of
the GLR approach is that different abrupt changes
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have different effects on the filter residuals, i.e.,
different failure signatures, and the GLR calculates
the likelihood of each possible event by correlating the
residuals with the corresponding signatures. Besides,
similarly to other hypothesis tests, a decision threshold
for the GLR test has to be designed carefully and

its value may vary with fault scenarios and systems.
Another problem with single-model FDD approaches
is that once a fault occurs, the previous normal

state changes. This means that the designed Kalman
filter based on normal operation of the system does
not work correctly any more. As a result, such
single-model approach can only deal with single
faults. This can be seen from the examples in [10,
35]. To avoid such problem, an estimate update
procedure was introduced [36]. For conventional
(noninteracting) MM approach, to improve the FDD
performance, a reinitialization procedure has to be
carried out after a fault occurs due to probability
“lock up,” see, e.g. [35]. However, the IMM-based
approach does not need such heuristic adjustment.
For an MM approach with only a few models, its
computational complexity differs from that of the
GLR technique only slightly due to the additional
need in computing likelihood in the latter. Only
when many models are used in the MM approach,
the difference may become significant. Please note
that in this case the likelihood computation also
grows greatly with the number of hypothesized fault
modes. Meaningful results for ECG/VCG rhythm
diagnosis and detection of highway incidents were
presented in [10, 35], where performance of an MM
approach and a GLR technique was compared but
not for computational requirements. Satisfactory or
better results were obtained by the MM approach [35].
Significant improvement with the IMM approach can
be expected due to its superiority to the noninteracting
MM approaches. It should be noted also that single
faults were considered there. More general fault
situations, including total/partial, single or double
failures, and multiple faults have been simulated in
this work.

Compared with the observer-based approach or
other residual-based filters [33], another important
characteristic or superiority of the IMM-based FDD
approach is that it provides more reliable FDD
information and accurate estimate not only when the
system has failures, but also under normal conditions.
In addition, it is easy to determine that the fault
detection threshold and the FDD performance is not
sensitive to it. When p was set to a value other than
0.9, e.g. 0.5, similar FDD performance was obtained.
Furthermore, random test scenarios were presented
and used for the evaluation of the proposed FDD
approach.

The simulation of the FDD of sensor and actuator
failures of an F/A-18 aircraft and another aircraft
demonstrated that the IMM approach is a powerful
and easily implementable technique for the FDD
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of multiple failures. Although each single model is
linear in this work, an extension to nonlinear models
is straightforward as long as the Kalman filters are
replaced by some nonlinear filters, e.g. extended
Kalman filters or neural network estimators [12,

37, 39].

high performance aircraft for different deterministic
and random test scenarios demonstrated that the
proposed IMM approach have significantly better
performance than the MMAE-based approach in
terms of correctness, robustness and timeliness. Also,
the inherent parallel structure of the IMM algorithm

makes it attractive for real-time FDD. Future work
includes the FDD of nonlinear dynamic systems and

VI CONCLUSIONS reconfigurable control.

In this paper, based on the IMM estimation
algorithm, a new FDD approach for multiple failures
of a dynamic system has been proposed. The
proposed approach provides an integral framework
for fault detection, diagnosis, and state estimation.
Magill’s MMAE algorithm and a numerically robust

APPENDIX A

The coefficients of the matrices A and B for the
continuous-time state space model of F/A-18 aircraft
were adopted from [31]:

[-0.0133 0.07127 0.0 -32.17 0.0 0.0 0.0 0.07
—0.0728 —1.14 64192 -1.460 0.0 0.0 0.0 0.0
0.0 -0.0127 -0.947 0.0005 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
4= 0.0 0.0 0.0 00 -0245 -—-646.9 0.0285 32.189
0.0 0.0 0.0 00 0.00849 —-0246 0.112 0.0
0.0 0.0 0.0 0.0 -0.0256 073 -2.383 0.0
L 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
[ 0.0 0.0 0.0 00 0.0 0.0 0.0 0.07
—-129.5 1943 -149.0 0.0 0.0 0.0 0.0 0.0
-15.6 -1.609 1499 0.0 0.0 0.0 0.0 0.0
0.0 0.0 00 00 0.0 0.0 0.0 0.0
B= 0.0 0.0 00 00 -693 00 -2915 34.909
0.0 0.0 00 00 -039% -0.835 -0.896 -3.26
0.0 0.0 00 00 11.86 13.06 13.14 44
L 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ]

implementation developed in [19] have also been APPENDIX B

implemented and their performance was compared
with that of the proposed one. The simulation
results of sensors and actuators of two types of

The coefficients of the matrices A and B for the
continuous-time state space model were adopted from

[29]:

r—0.5091 1.0 —0.0001 0.0 0.0 0.0 0.0 0.07
—7.6691 —0.7111 —0.0026 0.0 0.0 0.0 0.0 0.0
27.1241 0.0 -0.0038 —31.175 0.0 0.0 0.0 0.0

ae 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 —0.0952 00 ~1.0 0.0367

0.0 0.0 0.0 0.0 —19.004 —12144 0.3849 0.0

0.0 0.0 0.0 00 55422 -0.0065 -0.2532 0.0

. 00 0.0 0.0 0.0 0.0 0.0 1.0 0.0 ]
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r —0.028 -0.028 -0.028 -0.028
—5.639 -5.639 6.8199  6.8199
0.0 0.0 0.0 0.0
B 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
12.038 —12.038 13.132 —-13.132
—0.2593  0.2593 -0.2829  0.2829
L 0.0 0.0 0.0 0.0
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