
930 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 4, JULY 1999

A Fast U-D Factorization-Based Learning Algorithm with Applications
to Nonlinear System Modeling and Identification

Youmin Zhang and X. Rong Li

Abstract—A fast learning algorithm for training multilayer
feedforward neural networks (FNN’s) by using a fading mem-
ory extended Kalman filter (FMEKF) is presented first, along
with a technique using a self-adjusting time-varying forgetting
factor. Then a U-D factorization-based FMEKF is proposed to
further improve the learning rate and accuracy of the FNN. In
comparison with the backpropagation (BP) and existing EKF-
based learning algorithms, the proposed U-D factorization-based
FMEKF algorithm provides much more accurate learning results,
using fewer hidden nodes. It has improved convergence rate and
numerical stability (robustness). In addition, it is less sensitive to
start-up parameters (e.g., initial weights and covariance matrix)
and the randomness in the observed data. It also has good
generalization ability and needs less training time to achieve a
specified learning accuracy. Simulation results in modeling and
identification of nonlinear dynamic systems are given to show the
effectiveness and efficiency of the proposed algorithm.

Index Terms—BP algorithm, extended Kalman filter, feedfor-
ward neural networks, forgetting factor, U-D factorization.

I. INTRODUCTION

T HE CLASSICAL method for training a multilayer feed-
forward neural network (FNN) is the steepest descent

backpropagation (BP) algorithm. The BP algorithm suffers
from a number of shortcomings, including a slow learning
rate. A number of learning algorithms have been proposed in
an attempt to speed up the learning rate. Among them, the
one based on the extended Kalman filter (EKF) technique has
received considerable attention recently. It has been recognized
that the EKF can provide a substantial speed-up in training
time at the expense of a higher computational cost at each
time step, compared with other simpler on-line gradient-based
algorithms. Singhal and Wu [10] was the first to suggest that
the training of a multilayer FNN could be interpreted as an
estimation problem for a nonlinear dynamic system that can be
solved by using the EKF algorithm. More recently, a number
of researchers have investigated EKF-based learning algo-
rithms and extended them to several network structures [3],
[4], [7]–[9], [12]. It was assumed in [8] that groups of weights
exist which are mutually uncorrelated. This assumption leads
to a block structure for the error covariance matrix. A de-

Manuscript received May 13, 1996; revised January 6, 1998 and Jan-
uary 19, 1999. This work was supported in part by ONR under Grant
N0014–97–1–0570, NSF under Grants ECS-9409358 and ECS-9734285,
LEQSF under Grant 1996-99-RD-A-32, NNSFC under Grant 69274015, and
ASFC under Grant 94E53186.

Y. Zhang is with the Department of Electrical and Computer Engineering,
The University of Western Ontario, London, Ontario N6A 5B9, Canada, on
leave from the Department of Automatic Control, Northwestern Polytechnical
University, Xian, Shaanxi 710072, China.

X. Rong Li is with the Department of Electrical Engineering, University of
New Orleans, New Orleans, LA 70148 USA.

Publisher Item Identifier S 1045-9227(99)05996-2.

Fig. 1. A feedforward neural network.

coupled EKF was then proposed to reduce the computational
complexity, while leaving the numerical instability problem
unsolved. Two other somewhat similar algorithms were given
in [4] and [9]. These algorithms improved the convergence
rate considerably and exhibited good performance. However,
their numerical stability is not guaranteed. This may degrade
convergence and increase training time.

In this paper, a technique based on a self-adjusting time-
varying forgetting factor, combined with an EKF, for training
FNN’s is presented. Next, a much faster and more robust
implementation of the learning algorithm is proposed using
the forgetting factor technique and a U-D factorization1 of the
EKF. This proposed algorithm is superior to the BP algorithms
because it has improved numerical stability, convergence,
accuracy, and computational complexity.

II. FADING MEMORY EXTENDED KALMAN

FILTER-BASED LEARNING ALGORITHM

FNN’s have been the subject of intensive research efforts in
recent years because of their interesting learning and general-
ization capability and applicability in a variety of classification,
approximation, modeling, identification, and control problems.
Fig. 1 shows a typical structure of a single hidden-layer FNN.

A. EKF Formulation of FNN Learning

The above FNN can be trained by adjusting its weights
using a stream of input–output observations

, where is the number of training data samples.
The objective is to obtain a set of weights
such that the neural network predicts future outputs accurately.
Although this training mechanism is generally referred to as

1This is a matrix factorization method, in which the covariance matrixP

is decomposed intoP = UDUT such thatU is unit upper triangular andD
is diagonal [1].

1045–9227/99$10.00 1999 IEEE

IEEE TRANSACTIONS ON NEURAL NEWTORKS, VOL. 10, NO. 4, JULY 1999 931

supervised learning, it can be also considered as a nonlinear
estimation problem where the weight values are unknown and
to be estimated for the given set of inputs and outputs. An
approach is to concatenate all the network parameters into a
state vector and define an operator to perform the
function of an FNN that maps the state (parameter) vector
and the input onto the output. The concatenated state vector

(is the total number of the weights and thresholds)
can be defined as

(1)

where ; .
Then, the training of an FNN can be posed as a state estimation
problem with the following dynamic and observation equations
for the neural network:

(2)

(3)

where is the state of the FNN at time, is the input
of the FNN; is the observed (or desired) output of the
FNN; is the measurement noise, which may also include
modeling errors of the FNN. It is assumed white and Gaussian
with zero mean and covariance matrix . Note that (2) is
the state transition of from to , with the transition
matrix equal to an identity matrix.

The state estimation is then the problem of determining
that minimizes the sum of squared prediction errors of all prior
observations embedded in the function

(4)

where is a time-varying forgetting factor. By a first-order
Taylor series expansion of about an estimated
state , the estimated output can be obtained by the
following linearized equation:

HOT (5)

where higher order terms HOT may be neglected or included
in the measurement noise. is the Jacobian matrix, that
is, the partial derivative of the nonlinear function
with respect to evaluated at the best possible state estimate
available

Then a fading-memory EKF (FMEKF) is given by

(6)

(7)

(8)

where is the error covariance matrix; is the filter
gain.

Two designs of time-varying forgetting factors are consid-
ered in this paper.

1) Assume in (7) and (8), and choose the noise
covariance matrix instead of , where

is a constant.
2) Set in (7) and assume a time-varying forgetting

factor as follows [5]:

(9)

where the variation rate and the initial forgetting
factor are design parameters. A set of typical values
is and .

It should be pointed out that the order of an EKF used as an
FNN training algorithm grows with the number of the network
weights. In each cycle, its computation is heavier than that of a
BP-type training algorithm. However, the matrix to be inverted
in (7) is , where in general . In the single-output
case, the matrix inversion reduces to a scalar division. Note
also that the factor occurs three times in the
computation of and . This has been utilized in the
implementation of the above FMEKF to reduce computational
requirement. Another effective way to reduce the computation
requirement and at the same time enhance the numerical
robustness is to use the so-called U-D factorization filter, to
be presented in the next section. Moreover, the above FMEKF
actually reduces to the weighted recursive least squares (RLS)
identification due to the fact that the state transition matrix of

is an identity matrix.

B. Self-Adjustment of Time-Varying Forgetting Factor

Forgetting factors are often used for tracking (slowly) vary-
ing dynamic systems in recursive identification and adaptive
control algorithms [5]. They can also be used to prevent the
Kalman filter from divergence due to model mismatch or
nonlinearity in the system dynamics. In some cases, however,
for example in adaptive control when the process is at steady
state, there is little change in the input and output. In such a
case, if the identification were allowed to continue, problems
such as covariance “wind-up” or “blow-up” could occur. This
is similar to the training of an FNN discussed in this paper.
When the training process reaches a specified accuracy, the
current input and output data should not have greater weights
than other data and, therefore, the forgetting factor should be
made adaptive and held as one at the steady state to allow a fine
adjustment of the weights. On the other hand, if the specified
accuracy is not reached in the subsequent training iterations,
the time-varying forgetting factor should be in effect to speed
up convergence. That is why a time-varying forgetting factor
has been used in some identification and adaptive control
algorithms and also in this paper. In this way, both a fast
convergence and a high learning accuracy can be achieved
simultaneously. Here, the use of a nonunity forgetting factor
is to speed up the learning rate at the initial stage, whereas in
the later stages it is set to unity to avoid possible fluctuations
of learning process and to ensure a smoothing convergence

932 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 4, JULY 1999

to the minimum value. The adaptive adjustment process was
implemented by a logic based on the detection of a “large”
training error, described next.

The root mean square errors (RMSE’s) between the esti-
mated and the actual output of the FNN is a natural measure
of the accuracy of the training algorithm, which is defined as

RMSE (10)

where denotes the number of time points in a training
sample. The RMSE was used as an index in the proposed
adaptive adjustment of the forgetting factor for each iteration
of the training process. When it is larger than some specified
learning accuracy (e.g.,), was set a value
smaller than but close to one, as computed by (9); otherwise,
it was set to one. That is

if RMSE
if RMSE .

(11)

The threshold should be chosen to have a balanced training
accuracy and smoothness of training process.

A similar rule was followed in the first design of the
forgetting factor.

III. U-D FACTORIZATION-BASED

FMEKF LEARNING ALGORITHM

The computation of the covariance matrix in the
FMEKF plays an important role. Due to truncation and round-
ing off errors in a computer, the algorithm may lead to the loss
of symmetry and positive definiteness of , or possibly
divergence. Several matrix factorization methods, such as
square-root, U-D factorization, and singular value decomposi-
tion (SVD), have been developed to improve the computation
of . Among them the U-D factorization method is one of
the most popular ones due to its computational efficiency. This
method guarantees the positive-definiteness and symmetry of

, and thus high estimation accuracy and robustness can
be attained [1], [5].

In order to develop the U-D factorization-based learning
algorithm, we first give results for the case of multiple inputs
single output (MISO), then extend it to the case of multiple
inputs multiple outputs (MIMO).

A. Multiple-Input Single-Output (MISO) Case

In order to carry out the U-D decomposition for , we
first substitute (7) into (8) to get

(12)

Suppose has been U-D decomposed as
at time , (12) then becomes

(13)

where

(14)

(15)

and , and are -vectors for an FNN with a single
output; and and are scalars.

Note that since the product of two unit upper triangular
matrices is still a unit upper triangular matrix, to obtain U-D
factors of it is sufficient to obtain U-D factors for the
bracketed matrix in (13). In fact, if and are
U-D factors of the matrix , then the U-D
factors of are

(16)

where a detailed derivation of and can be
found in [1] and [5].

Let and , be the elements of and
, respectively. Let and represent the th

element of and , respectively. Then, the above
FMEKF (6)–(8) can be implemented in U-D factorization form
as follows.

Step 1) Compute ,
, .

Step 2) For , compute

(17)

For , compute

(18)

Step 3) Compute gain

(19)

Step 4) Compute

(20)

B. Multiple-Input Multiple-Output (MIMO) Case

For MIMO systems, one approach is to transform the
problem into a sequence of scalar problems [1], [5]. Based
on this idea, a U-D factorization filter for multiple outputs
can be obtained by processing the-dimensional output with

sequential applications of the above single-output U-D
factorization based FMEKF. That is, the vector equation (3)
for the desired observation vector is equivalent to the
following scalar equations:

(21)

The resulting algorithm is similar to the one for the MISO
case, except that in Step 2, and are replaced by and

. The calculation of in Step 3) is now given by a
, and the final gain matrix is given by

dimensional matrix, .

IEEE TRANSACTIONS ON NEURAL NEWTORKS, VOL. 10, NO. 4, JULY 1999 933

TABLE I
RMSE VERSUS TRAINING ITERATIONS FOR DIFFERENT ALGORITHMS

Fig. 2. RMSE and output errors of four algorithms for example 1.

IV. A PPLICATIONS TO NONLINEAR

SYSTEMS MODELING AND IDENTIFICATION

In this section, simulation results for several nonlinear
plant identification problems are presented. A performance
comparison among the UD-FMEKF, FMEKF, EKF, and BP
algorithms is given and analyzed in terms of learning accuracy,
convergence rate, influence of initial weights and covariance,
influence of noise, and the generalization ability of the net-
works.

1) Example 1: Consider the problem of modeling and iden-
tification of a nonlinear static system

(22)

where when . 200 input
data points for were generated uniformly in the range
of . The UD-FMEKF, FMEKF, EKF, and BP algo-
rithms were employed to train an FNN, with an architecture
of 1–10–1 consisting of a total of 30 weights, to approximate
(22).

2) Identification Accuracy:Table I shows the RMS error
(RMSE) of the different algorithms versus the number of
iterations. Designs 1 and 2 correspond to the first and second
designs of the forgetting factor, respectively. Fig. 2 illustrates
the RMSE and output error curves of the four algorithms.
It is clear that the learning accuracy and convergence of the
proposed UD-FMEKF algorithm is much better than those of
the FMEKF, EKF, and BP algorithms, especially for Design
2 of the forgetting factor. The FMEKF algorithm also has
much better accuracy and convergence rate than the EKF and
BP algorithms. The important role of the proposed forgetting
factor technique can be seen clearly from these results. The

Fig. 3. Performance comparison of different hidden nodes.

learning rate and momentum constant for the BP algorithm
were selected as and because larger values
would probably lead to an oscillation or even divergence of
the BP algorithm and smaller values would result in a slower
convergence.

3) The Influence of the Number of Hidden Nodes:Fig. 3
illustrates the RMSE curves of the FNN’s with different
numbers of hidden nodes trained by the above algorithms. It is
clear that 1) similar learning accuracies and convergence rates
were obtained by the UD-FMEKF with just five nodes and by
the FMEKF with ten nodes; 2) the UD-FMEKF with only three
nodes had a much better learning accuracy and convergence
rate than the BP algorithm with ten nodes; and 3) the FMEKF
had a much better learning accuracy and convergence rate
than BP. This demonstrates the superiority of the UD-FMEKF
algorithm. It also indicates that to obtain a given modeling
accuracy, fewer hidden nodes and less computation time are
needed for the UD-FMEKF.

934 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 4, JULY 1999

(a) (b)

(c) (d)

Fig. 4. Comparison of different start-up parameters for UD-FMEKF and FMEKF: (a) comparison of different initial weights, (b) comparison of different
P0, (c) comparison of differentR(t), and (d) comparison of differentR(t).

4) The Influence of Initial Weights and Covariance Matrix:
Fig. 4 gives the RMSE curves of the UD-FMEKF and FMEKF
algorithms with different initial weights, error covariance
matrix and noise covariance . It is obvious that UD-
FMEKF was less sensitive to the changes in initial weights
and covariance matrices than FMEKF. There were severe
oscillations in Fig. 4(b) and (d) for FMEKF due to its poorer
numerical stability. Note that the initial forgetting factor has
to be chosen carefully to prevent the FMEKF from possible
numerical divergence. The oscillations can be smoothed out
more or less by reducing the required training accuracy so
that the forgetting factor takes effect more frequently. The BP
algorithm, however, is very sensitive to the initial choice of
weights owing to its gradient-descent nature.

5) The Effectiveness of the Self-Adjusting Time-Varying For-
getting Factor: In order to verify the effectiveness of the
self-adjusting time-varying forgetting factor, Fig. 5(a) and (b)
shows the RMSE curves for different choices of the initial
forgetting factors for UD-FMEKF and FMEKF, respectively.
It can be observed that different factors mainly impact the
convergence rate of the first ten time steps. However, the
EKF obviously had a slower convergence than the FMEKF.
Similar but better results were obtained by UD-EKF. Fig. 5(c)
shows the RMSE curves for different specifications of learning
accuracy using different thresholds for the adaptive adjustment
of forgetting factors. In these simulations, the initial forgetting
factor was . It can be observed that the
FMEKF was sensitive to the choice of the threshold, which
implies that the threshold has to be carefully adjusted to obtain

both fast convergence and high learning accuracy. As shown
in Fig. 5(c), the RMSE’s were quite different for different
specifications of threshold, i.e., 10 10 , and . A large
oscillation appeared when the threshold was set to a value
smaller than 10 . The learning accuracy would be poor if
the threshold were chosen as 10, although the curve would
be smoother. In contrast, the UD-FMEKF was not sensitive
to the choice of the threshold, and a much higher learning
accuracy and much faster and smoother convergence could
still be obtained even when the threshold was specified smaller
than 10 .

6) Generalization Ability: As is well known, a large FNN
with a single hidden layer is capable of approximating any
continuous nonlinear function to within an arbitrarily small
error margin over a compact region. This generalization prop-
erty of the proposed algorithm for single hidden-layer FNN’s
was verified in this example. The predicted outputs using
several sets of data samples that were not used for training
demonstrate that UD-FMEKF has a good generalization capa-
bility. The demonstrated curves are omitted here due to space
limitations.

7) Convergence and Computational Complexity:A com-
parison of the convergence rate and computational complexity
for the UD-FMEKF, FMEKF, EKF, and BP algorithms
required to reach the same learning accuracy is presented
in Table II. It includes the required iteration numbers and
computation time of the four algorithms for the accuracy
thresholds of 10 10 10 , and 10 , respectively.
The symbol “ ” means the corresponding algorithm had

IEEE TRANSACTIONS ON NEURAL NEWTORKS, VOL. 10, NO. 4, JULY 1999 935

(a) (b)

(c)

Fig. 5. Influence of accuracy thresholds and forgetting factors: (a) effect of forgetting factors on UD-FMEKF, (b) effect of forgetting factors on FMEKF,
and (c) effect of accuracy thresholds.

TABLE II
COMPARISON OF THEITERATION NUMBERS/COMPUTATION TIMES (SECOND) OF FOUR ALGORITHMS

not reached the specified accuracy within 200 000 iterations
for BP and 2000 iterations for FMEKF and UD-FMEKF,
respectively. Table III lists the computation times per iteration
for the three algorithms and the time-reduction ratio with
UD-FMEKF and FMEKF for the case with different numbers
of hidden nodes. It is obvious that a large time reduction was
achieved as the number of hidden nodes increased for the
UD-FMEKF.

It can be seen from Tables II and III that the UD-FMEKF
gave the best convergence. Although the computation times
per iterationfor the UD-FMEKF and FMEKF were larger than
for the BP, the computation time required by the UD-FMEKF
for convergence to a specified accuracy is much smaller than
for the FMEKF and BP. It further demonstrates the fact that
UD-FMEKF is a highly efficient and effective algorithm for
neural network learning in terms of computational cost and
with respect to convergence rate and learning accuracy.

TABLE III
COMPUTATION TIME PER ITERATION VERSUSNUMBER OF HIDDEN NODES

8) Example 2: This example demonstrates the proposed
algorithm’s ability to identify the parameters of a nonlinear
system [2]

(23)

936 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 4, JULY 1999

TABLE IV
IDENTIFICATION RESULTS OF THREE ALGORITHMS

Fig. 6. Estimates of�2 and �4 for Example 2 (noise-free case).

where the input to the system is an independent sequence
of uniform random variables with zero mean and variance

(Case 1) or (Case 2); is a Gaussian
white noise sequence with zero mean and variance
(Case 1) or (Case 2). The system parameters,

are equal to 0.5, 0.4, 0.1, and 0.6, respectively.
The architecture of the FNN can be defined by two inputs,
one hidden node and one output. Then we can define the input
vector, , and the parameter vector,

for the
training algorithm.

The results of modeling and identification using the UD-
FMEKF, FMEKF, and BP learning algorithms are given
in Table IV and Fig. 6. It is obvious that the identification
results provided by the proposed UD-FMEKF algorithm had
the highest accuracy and converged to the true parameters.
The FMEKF also had accurate final parameter estimates,
except that there were oscillations because of FMEKF’s poor
numerical properties and sensitivity to the forgetting factor.
The identification results of the BP algorithm were clearly not
satisfactory.

The effect of the self-adjusting forgetting factor on parame-
ter identification was also evaluated, but is not shown here due
to space limitations. It is clear that for the FMEKF algorithm,
an oscillation occurred when a learning accuracy of 10

or better is specified. The higher the accuracy specified, the
faster the convergence, but oscillations may appear. For the
UD-FMEKF algorithm, the satisfactory identification results
were acquired even when the threshold was specified as 10.
For the BP algorithm, the results for different learning rates
and momentum constants are obviously not satisfactory. It
can also be observed that when the input excitation is large
enough, accurate identification results for all algorithms are
obtained. When the input excitation is smaller, however, the
superiority of UD-FMEKF is more evident. In other words,
when the system does not have the persistency of excitation
or the persistent excitation condition is weak, the UD-FMEKF
will provide much better identification results than the other
two algorithms. We also simulated parameter identification in
colored noise, and similar conclusions can be drawn as in
the case with white noise. The best results were obtained by
the UD-FMEKF. Detailed results were omitted due to limited
space.

9) Example 3: Consider the following nonlinear MIMO
system given in [6]:

(24)

IEEE TRANSACTIONS ON NEURAL NEWTORKS, VOL. 10, NO. 4, JULY 1999 937

TABLE V
COMPARISON OF THREE ALGORITHMS FOR EXAMPLE 3

Fig. 7. RMSE comparison of different algorithms.

An FNN of a 4–20–2 structure was used to model and iden-
tify the above MIMO system. The RMSE curves of the three
algorithms for a vector input
over 100 learning iterations given 500 training data samples
are shown in Fig. 7. Table V shows the mean and standard
deviation (s.d.) of the learning and generalization output errors
of the algorithms. The results obtained for the BP were
computed using the fast adaptive learning rate BP algorithm,
given in the MATLAB Neural-Network Toolbox 2.0, which
is much faster than the standard BP. It is clear that the
proposed UD-FMEKF had the fastest convergence and the
best accuracy. FMEKF had faster convergence than BP. Due to
the increase in state dimensions and poor numerical stability,
FMEKF often exhibited severe oscillations and sometimes
even diverged. As such, a double precision version had to
be implemented to prevent the possible numerical divergence.
From Fig. 7, it can be seen that the double precision (DP)
version of FMEKF had some RMSE’s slightly larger than the
UD-FMEKF with single precision (SP). The learning results
of “standard” and “adaptive” learning rate BP algorithms
were also calculated for comparison with the UD-FMEKF
and FMEKF for the same zero initial condition. Very slow
convergence and poor generalization results were obtained
by the BP algorithms. If the initial weights were selected
randomly, slightly better results were obtained. This fact
also indicates that the BP algorithm is sensitive to initial
weights, whereas the UD-FMEKF and FMEKF are not. This
example further demonstrates the superiority of the UD-
FMEKF algorithm proposed in this paper.

V. CONCLUSIONS

Two fast learning algorithms for training FNN’s by using
a FMEKF and a U-D factorization-based FMEKF, combined
with a self-adjusting time-varying forgetting factor, have been
proposed in this paper. It has been demonstrated that the
proposed UD-FMEKF algorithm with the adaptive forgetting
factor greatly improves the convergence rate, numerical sta-
bility, and accuracy with fewer hidden nodes. In addition, this
new algorithm is less sensitive to the choice of initial weights
and covariance matrix, and the variation in the observed data.
It has also been demonstrated that the proposed algorithm
can be used successfully for modeling and identification of
highly nonlinear systems. The algorithm proposed here is not
restricted to networks of a specific topology. This algorithm
or a variation of it has been used effectively for system
modeling and identification through the use of radial basis
function networks [12] and functional-like neural nets [13].
This algorithm can also be used for training other variants
of FNN’s and recurrent networks and with other training
algorithms [11]. The proposed algorithm can also be readily
extended to the decoupled (or multiple) EKF formulation, with
each of the decoupled filters using the UD-FMEKF, to reduce
the computation requirement in the training of large-scale
systems.

ACKNOWLEDGMENT

The authors would like to thank Prof. K. S. Narendra for
his helpful discussion and suggestions. Thanks are also due
to the reviewers whose comments significantly improved the
presentation of the paper.

REFERENCES

[1] G. J. Bierman,Factorization Methods for Discrete Sequential Estima-
tion. New York: Academic, 1977.

[2] S. A. Billings, H. B. Jamaluddin, and S. Chen, “Properties of neural
networks with applications to modeling nonlinear dynamical systems,”
Int. J. Contr.,vol. 55, no. 1, pp. 193–224, 1992.

[3] G. Chen and H. Ogmen, “Modified extended Kalman filtering for
supervised learning,”Int. J. Syst. Sci.,vol. 24, no. 6, pp. 1207–1214,
1993.

[4] Y. Iiguni, H. Sakai, and H. Tokumaru, “A real-time learning algorithm
for a multilayered neural network based on the extended Kalman filter,”
IEEE Trans. Signal Processing,vol. 40, no. 4, pp. 959–966, 1992.

[5] L. Ljung and T. Soderstrom,Theory and Practice of Recursive Identifi-
cation. Cambridge, MA: MIT Press, 1983.

938 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 4, JULY 1999

[6] K. S. Narendra and K. Parthasarathy, “Identification and control of dy-
namical systems using neural networks,”IEEE Trans. Neural Networks,
vol. 1, pp. 4–27, 1990.

[7] D. Obradovic, “On-line training of recurrent neural networks with
continuous topology adaptation,”IEEE Trans. Neural Networks,vol.
7, pp. 222–228, 1996.

[8] G. Puskorius and L. A. Feldkamp, “Neurocontrol of nonlinear dynamical
systems with Kalman filter trained recurrent networks,”IEEE Trans.
Neural Networks,vol. 5, pp. 279–297, 1994.

[9] S. Shah, F. Palmieri, and M. Datum, “Optimal filtering algorithms for
fast learning in feedforward neural networks,”Neural Networks,vol. 5,
pp. 779–787, 1992.

[10] S. Singhal and L. Wu, “Training feedforward networks with the extended
Kalman algorithm,” inProc. Int. Conf. ASSP,1989, pp. 1187–1190.

[11] Y. M. Zhang and X. R. Li, “A fast U-D factorization-based recursive
prediction error learning algorithm for feedforward neural networks,”
in Proc. 35th IEEE Conf. Decision Contr.,Kobe, Japan, Dec. 1996, pp.
2036–2041.

[12] , “A hybrid training algorithm for RBF networks with application
to modeling and identification of nonlinear systems,” inProc. 35th IEEE
Conf. Decision Contr.,Kobe, Japan, Dec. 1996, pp. 937–942.

[13] , “Helicopter parameter identification using functional-link neural
net,” in Proc. 2nd Chinese World Congr. Intell. Contr. Intell. Automat.,
Xian, PR China, June 1997.

