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Abstract. In August 2012, the Stribog hash function was selected as
the new Russian hash standard (GOST R 34.11–2012). Stribog is an
AES-based primitive and is considered as an asymmetric reply to the new
SHA-3. In this paper we investigate the collision resistance of the Stribog
compression function and its internal cipher. Specifically, we present a
message differential path for the internal block cipher that allows us to
efficiently obtain a 5-round free-start collision and a 7.75 free-start near
collision for the internal cipher with complexities 28 and 240, respectively.
Finally, the compression function is analyzed and a 7.75 round semi free-
start collision, 8.75 and 9.75 round semi free-start near collisions are
presented along with an example for 4.75 round 50 out of 64 bytes near
colliding message pair.

Keywords: Cryptanalysis · Hash functions · Meet in the middle ·
Rebound attack · GOST R 34.11-2012 · Stribog

1 Introduction

Wang et al. attacks on MD5 [21] and SHA-1 [20] followed by the SHA-3 compe-
tition [3] have led to a flurry in the area of hash function cryptanalysis where
different design concepts and various attack strategies were introduced. Many of
the proposed attacks were not only targeting basic properties but they also stud-
ied any non-ideal behaviour of the hash function, compression function, internal
cipher, or the used domain extender.

Stribog was proposed in 2010 [10]. It has an output length of 512/256-bit
and its compression function employs a 12-round AES-like cipher with 8 × 8-
byte internal state preceded with one round of nonlinear whitening of the chain-
ing value. The compression function operates in Miyaguchi-Preneel mode and is
plugged in Merkle-Damg̊ard domain extender with a finalization step [6]. Stri-
bog officially replaces the previous standard GOST R 34.11-94 which has been
theoretically broken in [13,14] and recently analyzed in [11].

The rebound attack [15] is a differential attack proposed by Mendel et al. dur-
ing the SHA-3 competition to construct differential paths for AES-based hash
functions. Previous literature related to the rebound attack includes Mendel
et al. first proposal on the ISO standard Whirlpool and the SHA-3 finalist
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Grøstl [15,16]. In particular, Mendel et al. presented a 4.5-round collision, 5.5-
round semi free-start collision and 7.5-round near collision attacks on the
Whirlpool compression function. As for Grøstl-256, a 6-round semi free-start
collision is given. Subsequently, rebound attacks have been applied to other
AES-based hash functions such as LANE [9], JH [17], and Echo [5]. Various
tweaks have been applied to the basic rebound attack in order to construct
differential paths that cover more rounds such as merging multiple in-bounds
[8], super Sbox cryptanalysis [4], extended 5-round inbound [8], and linearized
match-in-the-middle and start-from-the-middle techniques [12]. Lastly, Sasaki et
al. [18] presented a free-start collision and near collision attacks on Whirlpool by
inserting difference in the intermediate keys to cancel the difference propagation
in the message and thus creating local collisions every 4 rounds.

In this work, we investigate the security of the Stribog hash function primi-
tives, assessing their resistance to rebound attacks. We efficiently produce free-
start collision and near collision for the internal cipher (E) reduced to 5 and 7.75
rounds by employing the concept of local collisions. Specifically, we present a
message differential path such that a local collision is enforced every 2 rounds.
Thus we bypass the complexity of the rebound matching in the message in-
bounds by using the same differentials as in the key path. Consequently, in con-
trast to [18], finding one key satisfying the key path is practically sufficient for
finding a message pair following the message path. Finally, we present a practical
4.75 round 50 (out of 64) bytes near colliding message pair for the compression
function and show that it is vulnerable to semi free-start 7.75 round collision, 8.75
and 9.75 round near collision attacks. Examples for the internal cipher attacks
and the 4.75 round compression function near-collision attack are provided to
validate our results.

The rest of the paper is organized as follows. In the next section, the specifi-
cation of the Stribog hash function along with the notation used throughout the
paper are provided. A brief overview of the rebound attack is given in Sect. 3.
Afterwards, in Sects. 4 and 5, we provide detailed description of our attacks,
differential patterns, and the complexities of the attacks. Finally, the paper is
concluded in Sect. 6.

2 Specification of Stribog

Stribog outputs a 512 or 256-bit hash value and can process up to 2512-bit mes-
sage. The compression function iterates over 12 rounds of an AES-like cipher
with an 8 × 8 byte internal state and a final round of key mixing. The com-
pression function operates in Miyaguchi-Preneel mode and is plugged in Merkle-
Damg̊ard domain extender with a finalization step. The input message M is
padded into a multiple of 512 bits by appending one followed by zeros. Given
M = mn‖..‖m1‖m0, the compression function gN is fed with three inputs: the
chaining value hi−1, a message block mi−1, and the number of bits hashed so
far Ni−1 = 512 × i. (see Fig. 1). Let hi be a 512-bit chaining variable. The first
state is loaded with the initial value IV and assigned to h0. The hash value of
M is computed as follows:
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Fig. 1. Stribog’s compression function gN

hi ← gN (hi−1,mi−1, Ni−1) for i = 1, 2, .., n + 1
hn+2 ← g0(hn+1, |M |, 0)

h(M) ← g0(hn+2,
∑

(m0, ..,mn), 0),

where h(M) is the hash value of M . As depicted in Fig. 1, the compression
function gN consists of:

– KN : a nonlinear whitening round of the chaining value. It takes a 512-bit
chaining variable hi−1 and the number of bits hashed so far Ni−1 and outputs
a 512-bit key K.

– E: an AES-based cipher that iterates over the message for 12 rounds in addi-
tion to a finalization key mixing round. The cipher E takes a 512-bit key K
and a 512-bit message block m as a plaintext. As shown in Fig. 2, it consists
of two similar parallel flows for the state update and the key scheduling.

Fig. 2. The internal block cipher (E)

Both KN and E operate on an 8 × 8 byte key state K. E updates an additional
8 × 8 byte message state M . In one round, a given state is updated by the
following sequence of transformations

– AddKey(X): XOR with either a round key, a constant, or the number of bits
hashed so far (N).

– SubBytes (S): A nonlinear byte bijective mapping.
– Transposition (P): Byte permutation.
– MixRows (L): Left multiplication by an MDS matrix in GF(2).
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Initially, state K is loaded with the chaining value hi−1 and updated by KN as
follows:

k0 = L ◦ P ◦ S ◦ X[Ni−1](K)

Now K contains the key k0 to be used by the cipher E. The message state M is
initially loaded with the message block m and E(k0,m) runs the key scheduling
function on state K to generate 12 round keys k1, k2, .., k12 as follows:

ki = L ◦ P ◦ S ◦ X[Ci−1](ki−1), for i = 1, 2, .., 12,

where Ci−1 is the ith round constant. The state M is updated as follows:

Mi = L ◦ P ◦ S ◦ X[ki−1](Mi−1), for i = 1, 2, ..., 12.

The final round output is given by E(k0,m) = M12 ⊕ k12. The output of gN
in the Miyaguchi-Preneel mode is E(KN (hi−1, Ni−1),mi−1) ⊕ mi−1 ⊕ hi−1 as
shown in Fig. 1. For further details, the reader is referred to [1].

2.1 Notation

Let M and K be (8×8)-byte states denoting the message and key state, respec-
tively. The following notation will be used throughout the paper:

– Mi: The message state at the beginning of round i.
– MU

i : The message state after the U transformation at round i, where U ∈
{X,S, P, L}.

– Mi[r, c]: A byte at row r and column c of state Mi.
– Mi[row r]: Eight bytes located at row r of Mi state.
– Mi[col c]: Eight bytes located at column c of Mi state.
– m

ri−→ n: A transition from an m active bytes state at round i to an n active
bytes state at round i + 1.

– m
ri←− n: A transition from an n active bytes state at round i + 1 to an m

active bytes state at round i.

Same notation applies to K.

3 The Rebound Attack

The rebound attack [15] is proposed by Mendel et al. for the cryptanalysis of
AES-based hash functions. It is a differential attack that follows the inside-
out or start from the middle approach which is used in the boomerang attack
[19]. The rebound attack is composed of three phases, one inbound and two
outbounds. The compression function, internal block cipher or permutation of
a hash function is divided into three parts. If C is a block cipher, then C is
expressed as C = Cfw ◦ Cin ◦ Cbw. The middle part is the inbound phase and
the forward and backward parts are the two outbound phases. In the inbound
phase, a low probability XOR differential path is used and all possible degrees
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of freedom are used to satisfy the inbound path. In the two outbound phases,
high probability truncated paths [7] are used. In other words, one starts from
the middle satisfying Cin, then hash forward and backward to satisfy Cfw and
Cbw probabilistically. For an 8 × 8 byte state, the basic rebound attack finds
two states satisfying an inbound phase over two rounds 8 ri−→ 64

ri+1−→ 8. The
main idea is to pick random differences at each of the two eight active bytes
sates, then propagate both backward and forward until the output and input of
the full active state Sbox, respectively. Using the Sbox differential distribution
table (DDT), find values that satisfy input and output differentials. This process
is further illustrated in Fig. 3. The last step of the attack is called the Sbox
matching phase and its complexity depends on the Sbox DDT. If the probability
of differentials that have solutions is p, then the matching probability is given
by p8. In the following, we analyze the Sbox used in Stribog and investigate how
it affects the complexity of the rebound attack. The Stribog Sbox DDT has the
following properties:

Fig. 3. The rebound attack.

– Out of the 65536 differentials, there are 27300 possible non trivial differentials,
i.e., nonzero (input, output) difference pairs that have solutions. Thus the
probability that a randomly chosen differential is possible ≈ 0.42 = 2−1.3.

– Each possible differential can have 2, 4, 6, or 8 solutions.
– A given input difference has a minimum of 98 and a maximum of 114 output

differences.
– A given output difference has a minimum of 90 and a maximum of 128 input

differences.
– For a given input (output) difference the average number of output (input)

difference is 107.

From the analysis of the Sbox DDT, one can estimate the complexity of the
inbound matching part of the rebound attack. Let us consider the basic inbound
path 8 r1−→ 64 r2−→ 8. One can find a pair of states satisfying this path as follows:

1. Compute the Sbox DDT.
2. Choose a random 8 differences for ML

2 active bytes.
3. Propagate the differences in ML

2 backwards until MS
2 (output difference).

4. For each row in MP
1

a. Choose a random difference for one active byte, propagate it forward to
MX

2 (input difference). Propagating one active byte in MP
1 through the L

transformation results in full active row in MX
2 .
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b. Using the Sbox DDT, determine if the corresponding row differences in
MX

2 and MS
2 have solutions. If one byte differential pair is not possible,

go to step 4.a.

One can repeat step (4.a) at most 28 times since we variate only one byte.
However, the success probability of step 4.b. (finding solutions for the whole
active row) is 2−1.3×8 ≈ 2−10 which cannot be easily satisfied by randomizing
one byte difference. One would often have to restart at step 2, i.e., pick another
output difference. The same situation takes place when we move to the next row
and pick a new output difference. In this case we have to start from row 0. As
a result, the complexity of finding solutions to the 8 rows is not purely added
[15]. Based on our experimental results, the complexity of this inbound path is
in the order of 218. However finding this match means finding at least 264 actual
state values for MX

2 , such that both MX
2 and MX

2 ⊕ (input difference) follow the
inbound path. Each value out of the 264 values is a new starting point to satisfy
the two outbound paths. In the following section, we present our attack on the
internal block cipher of the Stribog compression function.

4 Attacks on the Internal Block Cipher (E)

Verifying the ideal behaviour of the internal primitives of a hash function is
important to evaluate its resistance to distinguishing attacks [2]. In this section
we investigate the internal block cipher (E) and, by employing the idea of suc-
cessive local collisions, we present a message differential path that collides every
two rounds. This message differential path enables us to efficiently produce 5-
round semi free-start collision and 7.75-round 40 bytes (out of 64) semi free-start
near collision. The main idea of our approach is to first find a pair of keys that
follows a given differential path and then use it to search for a pair of messages
satisfying the message path. The approach of creating local collisions works per-
fectly if the key and the message flows are identical and the initial key is the
input chaining value. To this end, one can keep similar differential patterns and
the state message difference is cancelled after the X transformation. However,
in the compression function of Stribog the key used in the internal cipher is the
result of applying the KN transformation on the input chaining value. Similar
differential patterns can be obtained when considering the internal block cipher.
In our attack on the Stribog internal cipher, we present a message differential
path such that a local collision is enforced every two rounds. Specifically, we first
search for a pair of keys that satisfies the key differential path, then we use the
Sbox differentials in the key path for the message path. Consequently, we bypass
the complexity caused by the Sbox DDT matching in the message differential
path and only one key pair is required to search for a message pair. In [18],
Sasaki et al. presented a message differential path that creates local collisions
every four rounds for the Whirlpool compression function and reported that they
had to try 109 key pairs to search for a message pair that collides every 4 round.
Furthermore, they estimated an increase in the message search complexity by
a factor of 27 and attributed this to the imbalance of the Sbox DDT. Given
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the Stribog Sbox DDT, finding one key pair that follows the 8-round differen-
tial path takes up to two hours on an 8-core Intel i7 CPU running at 2.6 GHz.
Accordingly, it is important that the message differential path requires only one
key pair to be satisfied. In what follows, we give the details of our approach.

4.1 5-Round Free-Start Collision

Since the Stribog’s Sbox DDT is biased with possible differential probability
≈ 0.42, we bypass the Sbox matching phase by using a message differential path
such that local collisions are created every two rounds. The used key and message
paths are given by:

Key: 64 r1−→ 8 r2−→ 1 r3−→ 8 r4−→ 64

Message: 64 r1−→ 0 r2−→ 1 r3−→ 0 r4−→ 64 r5−→ 0

This message differential path allows us to bypass the rebound matching
part completely in our message search because the same input and output Sbox
differences in the key path are used for the message path. Thus the matching
probability is 1. Unlike the differential paths in [18], our message differential path

Fig. 4. 7.75 round differential path. Active bytes are coloured grey. Ellipses mark the
row and column restricted by the two inbounds.
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is satisfied practically using only one key pair. In this attack, we do not use the
matching part of the rebound attack in either the key or the message; we only
search for one byte value in the message to find a common solution between two
rounds which can be considered as a meet in the middle approach. As depicted
in Fig. 4, the steps for finding a key pair can be summarized as follows:

1. Choose a random difference and a random value for byte KL
2 [3, 3].

2. Hash backward until K1.
3. Hash forward until K5.

Accordingly, we have a key pair following the given key path. Let the differences
in MX

2 , MS
2 , MX

4 , and MS
4 be the same as the differences in KX

2 , KS
2 , KX

4 ,
and KS

4 , respectively. Having the same differences in the message states as in
the key states implies that no differential matching is needed at the Sboxes
of rounds 2 and 4, and guarantees that the differences in K3 and M3 cancel
out. Similar observation applies to K5 and M5. To search for a conforming
message pair, we need to find a common solution between the Sboxes of rounds
2 and 4 possible solutions. This can be achieved as follows. Since MX

2 [col 3]
and MS

2 [col 3] differentials are possible, then from the Sbox DDT there are at
least 28 values for MX

2 [col 3] that satisfy the path until MS
3 . For all solution

MX
2 [col 3], hash forward until MS

3 . Because MX
2 [col 3] is one column after the

P , L, X, and S transformations, its transformed value becomes MS
3 [row 3] as

indicated by the ellipse in Fig. 4. We store all possible values of MS
3 [row 3] in a list

L. As for MX
4 [row 3], and MS

4 [row 3], hashing all possible solutions backwards
restricts the values of MS

3 [col 3]. However we do not store the results in a another
list. Because the two restricted results intersect in only one byte MS

3 [3, 3] (the
intersection of the two ellipses in Fig. 4), we compare byte [3, 3] of each backward
result against byte [3, 3] from each entry in list L. The success probability for
finding a one byte match is 2−8 which can be easily fulfilled by the number of
entries in L. Once a match is found, we assign the matching list row to MS

3 [row 3]
and the backwards column to MS

3 [col 3]. The rest of the 49 unrestricted bytes
are free and can be used to satisfy a longer outbound.

4.2 8-Round Collision and 7.75-Round Near Collision Attacks

Extending the 5 round path to 8 rounds adds complexity to the key search part
because we need to use an improved version of the rebound attack to get a key
pair following a longer differential path. We employ the following message and
key differential paths:

Key: 64 r1−→ 8 r2−→ 1 r3−→ 8 r4−→ 64 r5−→ 8 r6−→ 8 r7−→ 64

Message: 64 r1−→ 0 r2−→ 1 r3−→ 0 r4−→ 64 r5−→ 0 r6−→ 8 r7−→ 64 r8−→ 0

and use the start form the middle technique [12] to solve the key inbound phase
between rounds 3 and 5. This approach finds states following a 1 −→ 8 −→
64 −→ 8 transition. Unlike the basic inbound that yields 264 solutions, using this
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approach on Stribog results in only one solution. For AES Sboxes, a solution is
expected in a time complexity of 28 and memory complexity of 28. However, for
Stribog’s biased Sbox DDT, one practical solution is found between 33 min to
2 h on an 8-core Intel i7 CPU running at 2.67 GHz. Accordingly, it is crucial
that the key outbound phase has high probability if one is aiming for practical
results and no rebound matching is used in the message search so that one key
is enough to get a conforming message pair. In the following steps, we briefly
describe the procedure we used for solving the 1 −→ 8 −→ 64 −→ 8 key inbound
phase. Figure 5 further illustrates the process.

1. Solve the basic inbound 8 −→ 64 ←− 8 as explained in Sect. 3.
2. From the DDT, each byte difference in KX

5 has at least 2 and at most 8
values, such that any value satisfies the path from KX

4 to K6.
3. To enforce the transition from 8 active bytes in KX

4 to 1 active byte in KP
3 ,

do the following:
a. Create a table TL of all possible 255 byte difference values d3 (candidates

for KP
3 [3, 3]) and their corresponding 8 byte difference values L(d3) (can-

didates for KX
4 [row 3]). These values are the result of applying the linear

transformation L to a difference at column 3.
b. Each candidate difference for KX

4 [row 3] has 8 active bytes that can
be manipulated independently. More precisely, to change the difference
value of byte i in KX

4 [row 3], one has to switch between 28 or more pos-
sible values of KX

5 [row i]. As illustrated by the ellipses in Fig. 5, a change
in the values of KX

5 [row 0] is reflected on the difference value of byte 0 in
KX

4 [row 3].
c. Go through the entries in table TL and change the values of KX

5 rows one
by one until a match is found, if not, restart from step 1.

Fig. 5. Start from the middle approach.

Finally, by hashing the obtained key pair two rounds backward and two
rounds forward, we get a conforming key pair that follows the key differential
path. Once we have the key, we can directly get a message pair in the same
way as explained in the previous section for the 5-round collision. This message
pair satisfies the message differential path up until ML

6 . However, to have an
8-round collision, we need the difference in K8 to cancel the difference in M8

after the X transformation in round 8. Since both L and P transformations are
linear, then this condition is satisfied if the 8 byte differences in KS

7 and MS
7

are equal. The difference in KS
7 is already set from the key search stage, so we

randomize the 49 unrestricted bytes in MS
3 , hash forward till MS

7 and compare
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the resulting 8 differences with KS
7 . The probability that the 8 byte differences

are equal is 2−64. To verify the applicability of this attack, we have implemented
a 7.75-round near collision attack where we were checking if only 5 out of 8
byte differences are equal in MS

7 and KS
7 . In Fig. 4, the implemented 7.75-round

differential pattern, with 240 time and 28 state memory complexities is given.
Table 2 shows an example for a free-start 5-round collision and 7.75-round near
collision for the internal cipher (E). Both the 5-round semi free-start collision
and the 7.75 semi free-start near collision are demonstrated by one example
because the 7.75 semi free-start near collision path collides at round 5.

5 Attacks on Stribog Compression Function

As depicted in Fig. 1, the compression function of Stribog employs a nonlinear
whitening round KN of the chaining value. This extra round randomizes the
chaining value before being introduced as a key for the block cipher E. As long
as there is no difference in the chaining value, most of the differential trails
proposed for Whirlpool are also applicable on the Stribog compression function.

In what follows, we consider semi free-start collision attacks on the compres-
sion function. Several approaches are used to extend the inbound phase can be
used to construct collision paths for the compression function. The extended 5
round inbound presented in [8] finds a pair of states satisfying the 8 r1−→ 64 r2−→
8 r3−→ 8 r4−→ 64 r5−→ 8 transition in 264 time and 28 memory. The main idea is to
solve two independent 8 r1−→ 64 r2−→ 8 and 8 r4−→ 64 r5−→ 8 inbounds and use the
freedom to choose key values that connect the resulting 8 differences and 64 byte
values. However, unlike the basic inbound, it provides only one solution or start-
ing point for the outbound paths. Using different outbounds with the extended
inbound, a semi free-start 7.75-round collision, and 7.75-round, 8.75-round, and
9.75-round near collisions are obtained.

7.75 Round Semi Free-Start Collision. This is obtained by using two out-
bounds in the form of 8 −→ 1. The probability of a transition from 8 active
bytes to 1 active byte through L is 2−8×7 = 2−56. Given the following path:

1 r1−→ 8 r2−→ 64 r3−→ 8 r4−→ 8 r5−→ 64 r6−→ 8 r7−→ 1,

one can produce a semi free-start collision. We need two transitions from 8 to
1 in both the forward and backward directions, and the one active byte in the
first and last states to be equal so that they cancel out after the feedforward.
Thus, one needs to try 256+56+8 times to satisfy the outbound phase. In other
words, we need 2120 inbound solutions. If the complexity of one inbound solution
is 264, then the time complexity of 7.75 rounds semi free-start collision is 2184

and the memory complexity is 28, as we can pass one active byte through X, S
and P transformations with probability one.
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7.75 Round Semi Free-Start Near Collision. While aiming for collision
requires both differences in the first and last states to be exactly in the same
place so that they cancel out after the feedforward, near collision requires only
few differences to cancel out. A 50-byte near collision is obtained by extending
the 5-round inbound with two transitions from 8 to 8 in both directions with no
additional cost. Using the following path:

8 r1−→ 8 r2−→ 64 r3−→ 8 r4−→ 8 r5−→ 64 r6−→ 8 r7−→ 8

one active byte would cancel out with probability 2−8 after feedforward. Con-
sequently, The complexity of 7.75 rounds semi free-start 50-byte collision is 272.
To demonstrate the correctness of the above concept, we have implemented a
4.75-round 50-byte near collision with a shorter practical inbound 8 r2−→ 64 r3−→ 8
as shown in Fig. 6. A 4.75-round near colliding pair is given in Table 1 using the
IV = 0 and N = 0.

Fig. 6. 4.75 round near collision path

8.75 Round Semi Free-Start Near Collision. Using one transition from 8
to 1 in the forward outbound has a complexity of 256 and results in the following
path:

8 r1−→ 8 r2−→ 64 r3−→ 8 r4−→ 8 r5−→ 64 r6−→ 8 r7−→ 1 r8−→ 8

The probability that one active byte is cancelled by the feedforward is 2−8.
Consequently the complexity of 8.75 rounds semi free-start 50-byte collision is
264+56+8 = 2128.

9.75 Round Semi Free-Start Near Collision. With a complexity of 2196,
a 9.75-round 50-byte near collision can be obtained with a lower complexity of
2184. By adding two 8 to 1 transitions in both the forward and the backward
directions for a complexity of 2112 and two 1 to 8 transitions in rounds one
(backward) and nine (forward) for no additional cost, the following path:

8 r1−→ 1 r2−→ 8 r3−→ 64 r4−→ 8 r5−→ 8 r6−→ 64 r7−→ 8 r8−→ 1 r9−→ 8

results in a 50-byte near collision. Additional complexity of 28 is needed for a
one byte cancellation after the feedforward.
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Table 1. Example of a 4.75-round near collision for the compression function.

m m′ Difference at M4

cd ed 17 46 d8 d7 f0 f3 cd ed 17 59 d8 d7 f0 f3 00 00 00 1f 00 00 00 00

3e d6 22 7a 99 4a c9 ea 3e d6 22 0c 99 4a c9 ea 00 00 00 76 00 00 00 00

cc 5d e2 f0 14 4f f0 3c cc 5d e2 ea 14 4f f0 3c 00 00 00 1a 00 00 00 00

4b bc 31 41 dd 99 68 0d 4b bc 31 4d dd 99 68 0d ba 38 7a 00 6f 93 95 37

b4 d1 27 0f 2d ed 55 28 b4 d1 27 58 2d ed 55 28 00 00 00 57 00 00 00 00

d8 ca c8 79 22 fa c8 14 d8 ca c8 f6 22 fa c8 14 00 00 00 8f 00 00 00 00

9f 06 fe 94 b3 3d 20 6a 9f 06 fe 80 b3 3d 20 6a 00 00 00 14 00 00 00 00

5a d6 10 10 51 4c a3 7a 5a d6 10 2b 51 4c a3 7a 00 00 00 3b 00 00 00 00

Table 2. Example of a 5-round collision and 7.75-round near collision for the internal
block cipher (E).

m m′ Difference at MP
7

ba aa da d1 92 9e 95 f5 3b 16 1b b0 76 fe 1e 78
3a 4a 35 2c 61 a8 84 f1 4c 03 4f 12 d1 a3 b4 bd
44 38 38 e2 d2 fa 5e ec c6 a7 81 ff 3a c7 3e 36
27 00 09 05 4f 53 05 f2 6c 76 3e 0a d6 92 72 00
cd 02 30 bb 3e b4 54 df 47 7e c6 e0 a4 6e 23 1a
fc c6 de 98 54 4e 5c b6 28 a4 20 68 ee e1 01 11 d7 4d 00 c8 00 00 00 00
60 dc 52 73 dc c9 5d f1 43 20 0a 43 12 ba fe a0 ff 60 00 60 00 00 00 00
72 99 45 8d 9b c8 73 f2 8a d2 ff b3 19 f4 e4 25 15 3c 00 c9 00 00 00 00

1b 49 00 ae 00 00 00 00
k k′ 03 81 00 42 00 00 00 00

1a ed 00 ea 00 00 00 00
f4 d7 d6 42 05 a4 b9 7a 75 6b 17 23 e1 c4 32 f7 37 8e 00 60 00 00 00 00
2f 70 68 1a 2c 59 f4 4e 59 39 12 24 9c 52 c4 02 61 b8 00 f2 00 00 00 00
8b 7b 44 12 38 36 84 87 09 e4 fd 0f d0 0b e4 5d
63 04 2f 7d de 3d b9 9f 28 72 18 72 47 fc ce 6d
78 db 37 55 73 39 f7 30 f2 a7 c1 0e e9 e3 80 f5
3f f2 8d fb 23 a9 6a 8a eb 90 73 0b 99 06 37 2d
20 18 3a e4 63 85 3a 81 03 e4 62 d4 ad f6 99 d0
b5 58 8a e7 d3 34 20 4d 4d 13 30 d9 51 08 b7 9a

6 Conclusion

In this paper, we have analyzed the Stribog compression function and its internal
cipher. As for the internal cipher, we have proposed a new message differential
path such that a local collision is enforced every two rounds. Accordingly, the
Sbox matching complexity caused by its DDT bias is bypassed. As a result,
we have efficiently produced free-start 5-round collision and 7.75-round near
collision examples for the internal cipher. Moreover, the compression function
is investigated and we have noted that the Stribog compression function key
whitening round KN enhances its resistance to free-start collision attacks. How-
ever, we have showed that the Stribog compression function is vulnerable to
semi free-start 7.75 round collision, 8.75 and 9.75 round near collision attacks
and presented an example for a 4.75 round 50-byte near colliding message pair.
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