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Abstract. Whirlwind is a keyless AES-like hash function that adopts
the Sponge model. According to its designers, the function is designed to
resist most of the recent cryptanalytic attacks. In this paper, we evaluate
the second preimage resistance of the Whirlwind hash function. More pre-
cisely, we apply a meet in the middle preimage attack on the compression
function which allows us to obtain a 5-round pseudo preimage for a given
compression function output with time complexity of 23%° and memory
complexity of 2'28. We also employ a guess and determine approach to
extend the attack to 6 rounds with time and memory complexities of 249
and 212 respectively. Finally, by adopting another meet in the middle
attack, we are able to generate n-block message second preimages of the
5 and 6-round reduced hash function with time complexity of 2*4° and
2°%5 and memory complexity of 2128 and 2'!2, respectively.

Keywords: Cryptanalysis - Hash functions - Meet in the middle + Second
preimage attack - Whirlwind

1 Introduction

Building a cryptographic primitive based on an existing component model has a
very important advantage other than the possibility of sharing optimized compo-
nents in a resource constrained environment. Namely, the advantage of adopting
a model that has took its fair share of cryptanalysis and is still going strong. Con-
sequently, the new primitive is expected to inherit most of the good qualities and
the underlying features. The Advanced Encryption Standard (AES) wide trail
strategy [8] has proven solid resistance to standard differential and linear attacks
over more than a decade. This fact has made AES-like primitives an attractive
alternative to dedicated constructions. Besides the ISO standard Whirlpool [21],
we have seen a strong inclination towards proposing AES-like hash functions
during the SHA-3 competition [20] (e.g., the SHA-3 finalists Grgstl [9] and JH
[28], and LANE [12]). Additionally, Stribog [16] the new Russian hash standard,
officially known as GOST R 34.11-2012 [1], is also among the recently proposed
AES-like hash functions. This shift in the hash functions design concepts is due
to the fact that Wang et al. attacks [26,27] are most effective on Add-Rotate-
Xor (ARX) based hash functions where one can find differential patterns that
propagate with acceptable probabilities. Moreover, these attacks take advantage
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of the weak message schedules of most of ARX-designs. Hence, using message
modification techniques [27], significant reduction in the attack complexity can
be achieved.

Whirlwind is a keyless AES-like hash function that adopts the Sponge model
[7]. Tt is proposed by Baretto et al. in 2010 as a response to the recent cryptan-
alytic attacks that have improved significantly during the SHA-3 competition.
Sharing the designers of Whirlpool, Whirlwind design is inspired by Whirlpool
and takes into account the recent development in hash function cryptanalysis,
particularly the rebound attack [17]. In fact, the designers add more security
features as a precaution against possible improvements. The most important fea-
tures are adopting an extended Sponge model where the compression function
operates on 2n-bit state and outputs an n-bit chaining value, and employing
16 x 16-bit Sboxes. Using large Sboxes aims to decrease the probability of a
given differential trail. Unlike Whirlpool, the Whirlwind compression function
has no independent mixing of the chaining value. In the latter, the chaining
value is processed independently and mixed with the message state at an XOR
transformation. The presence of the key schedule has been exploited as an addi-
tional degree of freedom by cryptanalysts. Consequently, it has contributed to
many improvements of the inbound phase of the rebound attack [14,18]. These
improvements have enabled the attack to cover more rounds. Accordingly, for the
designers of Whirlwind, eliminating both the key schedule and the interaction
between the message and the compression function output via the feedforward,
and employing large Sboxes, limit both the effect and scope of the rebound
attack to a great extent. However, from our perspective, some of these features
made one of our meet in the middle (MitM) pseudo preimage attacks on the
compression function easier and with lower complexity than that on Whirlpool
[29]. More precisely, with the absence of the key schedule, using large Sboxes
and the output truncation has enabled us to find an execution separation such
that the matching probability can be balanced with the available forward and
backward starting values as will be discussed in Sects.4 and 5.

Aoki and Sasaki proposed the meet in the middle preimage attack [5] fol-
lowing the work of Laurent on MD4 [15]. Afterwards, the first MitM preimage
attack on the AES block cipher in hashing modes was proposed by Sasaki in FSE
2011 [22]. He applied the attack on Whirlpool and a 5-round pseudo preimage
attack on the compression function was presented and used for a second preim-
age attack on the whole hash function in the same work. In the sequel, Wu et al.
[29] formalized the approach and employed a time-memory trade off to improve
the time complexity of the 5-round attack on the Whirlpool compression func-
tion. Moreover, they applied the MitM pseudo preimage attack on Grgstl and
adapted the attack to produce pseudo preimages of the reduced hash function.
Afterwards, a pseudo preimage attack on the 6-round Whirlpool compression
function and a memoryless preimage attack on the reduced hash function were
proposed in [24]. Finally, AlTawy and Youssef, combined MitM pseudo preimages
of the compression function of Stribog with a multicollision attack to generate
preimages of the reduced hash function [2].
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In this work, we investigate the security of Whirlwind and its compression
function, assessing their resistance to the MitM preimage attacks. Employing
the partial matching and initial structure concepts [22], we present a pseudo
preimage attack on the compression function reduced to 5 out of 12 rounds.
More precisely, we present an execution separation for the compression function
that balances the forward and backward starting values with the correspond-
ing matching probability [29]. Furthermore, we employ a guess and determine
approach [24] to guess parts of the state. This approach helps in maintaining
partial state knowledge for one more round. Consequently, we are able to extend
the attack by one more round. In spite of the compression function truncated
output, the proposed 6-round execution separation maximizes the overall prob-
ability of the attack by balancing the chosen number of starting values and the
guess size. Finally, we show how to generate n-block messages second preimages
of the Whirlwind hash function using the presented pseudo preimage attacks
on the compression function.

The rest of the paper is organized as follows. In the next section, the descrip-
tion of the Whirlwind hash function along with the notation used throughout the
paper are provided. A brief overview of the MitM preimage attack and the used
approaches are given in Sect. 3. Afterwards, in Sects. 4 and 5, we provide detailed
description of the attacks and their corresponding complexity. In Sect. 6, we show
how second preimages of the hash function are generated using the attacks pre-
sented in Sects. 4 and 5. Finally, the paper is concluded in Sect. 7.

2  Whirlwind Description

Whirlwind [6] is a keyless AES-like hash function that adopts a Sponge-like
model. The function employs a 12-round compression function which operates
on 1024-bit state. The internal state is represented by an 8 x 8 matrix S of
16-bit (word) elements where each element is indexed by its position in row 4
and column j.

S0,0 50,1 50,2 50,3 S0.4 So,5 So,6 So,7
S1,0 51,1 S1,2 51,3 S1,4 S1,5 S1,6 S1,7
S2,0 52,1 S22 52,3 S2,4 So.5 Sa.6 S2,7
S3.0 53,1 53,2 933 S3.4 S35 536 53,7
S4,0 Sa,1 Sa,2 Sa.3 Su.a Sap Sae Sar
S50 55,1 55,2 5.3 S5.4 S5.5 S5.6 S5,7
S6,0 56,1 56,2 56,3 6.4 S6,5 S6,6 S6,7
|S7.0 S7.1 87,2 873 S7.4 875 S7.6 S7.7)

An element S; ; can be seen as 4 x 1 matrix of 4-bit nibbles.

5i,4,0,0
g . — |Sidot
,j — S

7,7,1,0

Sij1
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Accordingly, each row of the state matrix S is in fact 4 x 8 4-bit nibble matrix.
The reason for the switch between the 16-bit elements and the 4-bit nibbles
is due to the fact that the adopted round transformations operate on different
fields (GF(2'¢) and GF(2%)). More precisely, the round function updates the
state by applying the following four transformations:

— 5: A nonlinear bijective mapping over G F(2!6). This substitution layer works
on the 16-bit elements where it replaces each 16-bit element by its multiplica-
tive inverse over GF(2') and zero is replaced by itself.

— 0: A linear transformation that mixes rows. It works by applying the linear
transformations A\g and \; on the 4-bit nibble elements. Hence, if each state
row is 4 x 8 4-bit nibble matrix, the updated row is:

Ao (Si%,0,0) = Si 0,0 - Mo
0(S;) = A1(Si%,0,1) = Six0,1 - M1
A1(Si%,1,0) = Siw1,0 - My
Ao(Siw11) = Six11 - Mo,

where * denotes the column index, My = dyadic(0z5, 0x4, 0z A, 026, 022, 02D,
028, 0x3), My = dyadic(025, 0z E, 024, 027, 021, 023, ox F, 028), and dyadic(m)
denotes the MDS dyadic matrix M corresponding to the sequencemover G F(2%),
i.e., M; j = m;g;. Nevertheless, 6 inherits the optimal diffusion properties of its
underlying transformations. However, these transformations cannot be directly
applied on elements of GF(2'%) through simple matrix multiplication as this
requires the use of a linearized polynomial.

— 7: A transposition layer where the 16-bit 8 x 8 matrix is transposed.

— o": A linear transformation where that 16-bit state is XORed with a round
dependant constant state C”.

As depicted in Fig. 1, the compression function ¢(h, m) operates on 512-bit mes-
sage block m and 512-bit chaining value h, both represented by 8 x 4 matrices of
16-bit elements. The internal state S is initialized such that its first four columns
are set to h and the last four columns are set to m. The state is then updated
by applying the four transformations for twelve rounds. Finally, the last four
columns of the last state are truncated and the input chaining value h is XORed
with the first four columns of the last state to generate the compression function
output.

Whirlwind employs a finalization step. More precisely, after processing all the
message blocks, an extra compression function call with a null message block is
adopted. If the desired output size is log,(N) bits, the output of the finalization
step is then reduced modulo N. Whirlwind also uses an adaptable initialization
value where the IV used to process the first message block depends on the
desired reduction value N. To compute the initial value hg, the reduction value
is converted to an 8 x 4 matrix, thus hg = ¢(0, N). To compute the hash of a
given message M, it is first padded by 1 followed by zeros to obtain a bit string
whose length is an odd multiple of 256, and finally with the 256-bit right justified
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Fig. 1. The compression function ¢.

binary representation of |M|. The padded message is then divided into t 512-bit
blocks: mg, m1,...m;_1. Finally, the message blocks are processed as follows:

ho = ¢(0, N),
hi = ¢(hi—1,mi—1), for i =1,2, .. ¢,
hit1 = ¢(hy,0).

The output H(M) is equal to hy11 mod N. For further details, the reader is
referred to [6,25].

2.1 Notation

Let S be (8 x 8) 16-bit state denoting the internal state of the function. The
following notation is used in our attacks:

— S;: The message state at the beginning of round 1.

— SY: The message state after the U transformation at round i, where U €
{v,0,7,0"}.

— Si[r, c]: A word at row r and column ¢ of state S;.

— Si[row r]: Eight words located at row r of state S;.

— S;[col ¢]: Eight words located at column c of state S;.

3 MitM Preimage Attacks

Given a compression function C'F’ that processes a chaining value / and a message
block m, a preimage attack on C'F is defined as follows: given h and z, where x
is the compression function output, find m such that CF(h,m) = xz. However,
in a pseudo preimage attack, only z is given and one must find A and m such
that CF(h,m) = z. The effect of a pseudo preimage attack on the compression
function by itself is not important. However, these attacks can be used to build a
preimage or second preimage attacks on the whole hash function [19]. As demon-
strated in Sect. 6, pseudo preimages of the Whirlwind compression function can
be utilized to compose an n-block second preimages of the hash function.

The main concept of the proposed MitM attacks is to divide the attacked
execution rounds at the starting point into two independent executions that pro-
ceed in opposite directions (forward and backward chunks). The two executions
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must remain independent until the point where matching takes place. To main-
tain the independence constraint, each execution must depend on a different set
of inputs, e.g., if only the forward chunk is influenced by a change in a given
input, then this input is known as a forward neutral input. Consequently, all
of its possible values can be used to produce different outputs of the forward
execution at the matching point. Accordingly, all neutral inputs for each execu-
tion direction attribute for the number of independent starting values for each
execution. Hence, the output of the forward and the backward executions can
be independently calculated and stored at the matching point. Similar to all
MitM attacks, the matching point is where the outputs of the two separated
chunks meet to find a solution from both the forward and backward directions
that satisfies both executions. While for block ciphers, having a matching point
is achieved by employing both the encryption and decryption oracles, for hash
function, this is accomplished by adopting the cut and splice technique [5] which
utilizes the employed mode of operation. In other words, given the compression
function output, this technique chains the input and output states through the
feedforward as we can consider the first and last states as consecutive rounds.
Subsequently, the overall attacked rounds behave in a cyclic manner and one can
find a common matching point between the forward and backward executions
and consequently can also select any starting point.

The MitM preimage attack has been applied to MD4 [5,10], MD5 [5], HAS-
160 [11], and all functions of the SHA family [3,4,10]. The attack exploits the
fact that all the previously mentioned functions are ARX-based and operate
in the Davis-Mayer (DM) mode, where the state is initialized by the chain-
ing value and some of the expanded message blocks are used independently in
each round. Thus, one can determine which message blocks affect each execu-
tion for the MitM attack. However, several AES-like hash functions operate in
the Miyaguchi-Preneel mode, where the input message is fed to the initial state
which undergoes a chain of successive transformations. Consequently, the pro-
cess of separating independent executions becomes relatively more complicated.
Cryptanalysts are forced to adopt a pseudo preimage attack when the compres-
sion function operates in Davis-Mayer mode. This is due to the fact that the main
execution takes place on a state initialized by the chaining value. Subsequently,
using the cut and splice technique enforces changes in the first state through the
feedforward. Additionally, even if function operates in the Miyaguchi-Preneel
mode, attempting a MitM preimage attack usually generates pseudo preimages
when the complexity of finding a preimage is higher than the available degrees of
freedom in the message. Consequently, the chaining value is utilized as a source of
randomization to satisfy the number of multiple restarts required by the attack.
As a result, we end up with a pseudo preimage rather than a preimage of the
compression function output.

This class of attacks has witnessed significant improvements since its incep-
tion. Most of these attacks aim to make the starting and matching points span
over more than one round transformation and hence increase the number of the
overall attacked rounds. More precisely, the initial structure approach [22,23]
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provides the means for the starting point to cover a few successive transforma-
tions where words in the states belong to both the forward and backward chunks.
Although neutral words of both chunks are shared within the initial structure,
independence of both executions is achieved in the rounds at the edges of the ini-
tial structure. Additionally, the partial matching technique [5] allows only parts
of the state to be matched at the matching point. This method is used to extend
the matching point further and makes use of the fact that round transformations
may update only parts of the state. Thus the remaining unchanged parts can
be used for matching. This approach is highly successful in ARX-based hash
functions which are characterized by the slow diffusion of their round update
functions and so some state variables remain independent in one direction while
execution is in the opposite direction. The unaffected parts of the states at each
chunk are used for partial matching at the matching point. However, in AES-
like hash functions, full diffusion is achieved after two rounds and this approach
can be used to extend the matching point of two states for a limited number of
transformations. Once a partial match is found, the inputs of both chunks that
resulted in the matched values are selected and used to evaluate the remain-
ing undetermined parts of the state at the matching point to check for a full
state match. Figure 2 illustrates the MitM preimage attack approaches for the
Whirlwind compression function. The red and blue arrows denote the forward
and backward executions on the message state, respectively. Sy is the first state
initialized by h and m and S; is the last attacked state.

Initial Partial

structure Matchin
So €----= > «-—--- g s

\ Compression
h < function

N

>
»

output

Fig. 2. MitM preimage attack techniques customized for Whirlwind operation (Color
figure online).

In the next section, we apply the techniques discussed in this section to
generate a 5-round pseudo preimage of the Whirlwind compression function.

4 A Pseudo Preimage of the 5-Round Compression
Function

To proceed with the attack, we first need to separate the two execution chunks
around the initial structure. More precisely, we divide the five attacked rounds of
execution into a 2-round forward chunk and a 2-round backward chunk around
a starting point (initial structure). The proposed chunk separation is shown
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in Fig.3. Our choices of forward and backward starting values in the initial
structure determine the complexity of the attack. Specifically, we try to balance
the number starting values in each direction and the number of known words
at the matching point at the end of each chunk. The total number of starting
values in both directions should produce candidate pairs at the matching point
to satisfy the matching probability. For further clarification, we first explain
how the initial structure is constructed. The main idea is to have maximum
state knowledge at the start of each execution chunk. This can be achieved by
choosing several words as neutral so that the number of corresponding output
words of the § and §~! transformations at the start of both chunk that are
constant or relatively constant is maximized. A relatively constant word is a
word at the state directly after the initial structure whose value depends on the
value of the neutral words in one execution direction but remains constant from
the opposite execution perspective. The initial structure for the 5-round MitM
preimage attack on the compression function of Whirlwind is shown in Fig. 4.
Following Fig. 4, our aim is to have five constants in the three lowermost rows
in state d and determine the available values of the corresponding blue rows that
make them hold. The values of the three lowermost blue rows are the available

1

|

| Initial structure
12 Bsy

121 Esy

Matching point
2% mv

Compression
function
output

I
HHH

[[] constant word [l Backward word [lll Forward word [_] Undetermined word [l Free word

Fig. 3. Chunk separation for a 5-round MitM pseudo preimage attack the compression
function. BSV: Backward starting value, FSV: Forward starting value, MV: Matching
value (Color figure online).
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[J constant byte [ll] Backward byte [l] Forward byte

[Jundetermined byte [l Relative constant

Fig. 4. Initial structure used in the attack on the 5-round compression function (Color
figure online).

backward starting values. For each row, we randomly choose the five constant
words in d[row 7] and then determine the values of blue words in ¢[row 7] so
that after applying 6 on c[row 7], the chosen values of the five constants hold.
Since the linear mapping is applied on the 4-bit nibbles, we need twenty constant
nibbles in d[row 7]. This can be achieved by maintaining twenty variable nibbles
in c[row 7] to solve a system of twenty equations when the other twelve nibbles
are fixed. Accordingly, for any of the last three rows in state ¢, we can randomly
choose any three blue words and compute the remaining five so that the output
of  maintains the previously chosen five constant words at d[row 7]. To this end,
we have nine free (blue) words, three for each row in state c¢. Thus the number
of backward starting values is 2'4* which means that we can start the backward
execution by 24 different starting values and hence 2'4* different output values
at the matching point S§. Similarly, we choose 32 constant words in state a
and for each row in state b we randomly choose four red nibbles and compute
the other sixteen red nibbles such that after the #~! transformation we get the
predetermined constants at each row in a. However, the value of the four shaded
blue words in each row of state a depends also on the three blue words in the
rows of state b. We call these bytes relative constants because their final values
cannot be determined until the backward execution starts and these values are
different for each backward execution iteration. Specifically, their final values are
the predetermined constants acting as an offset XORed with the corresponding
blue nibbles multiplied by M, Lor M 1 ! coefficients. In the sequel, we have eight
free words (one for each row in b) which means 2'2® forward starting value and
hence 2'28 different input values to the matching point Sy

As depicted in Fig. 3, the forward chunk starts at S{ and ends at SJ which is
the input state to the matching point. The backward chunk starts at Sj and ends
after the feedforward at S§ which is the output state of the matching point. The
red words are the neutral ones for the forward chunk and after choosing them
in the initial structure, all the other red words can be independently calculated.
White words in the forward chunk are the ones whose values depend on the
neutral words of the backward chunk which are the blue words in the initial
structure. Accordingly, their values are undetermined, i.e., these words cannot be
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evaluated until a partial match is found. Same rationale applies to the backward
chunk and the blue words. Grey bytes are constants which can be either the
compression function output or the chosen constants in the initial structure.
To find the pseudo preimage of the given compression function output, we
have to find a solution that satisfies both executions. This takes place at the
matching point where we match the partial state output from the forward exe-
cution at S7 with the full state (due to truncation) output from the backward
execution at Sg through the 6 transformation. As depicted in Fig.3, at the
matching point, in each row we have knowledge of five words from the forward
execution and four words from the backward execution. Since the linear mapping
is performed on 4-bit nibbles, we can form sixteen 4-bit linear equations using
twelve 4-bit unknowns and match the resulting forward and backward values
through the remaining four 4-bit equations. More precisely, we use the follow-
ing equation to compute the first 4-bit nibble row in the first state row bg ;0,0
through the linear transformation )¢ given the 4-bit nibble input row ag j0,0-
For ease of notation, we denote the first 4-bit nibble in a word located in the
first row and column j as a; (i.e., ag ;0,0 = @;). We use a similar notation for b.

[025 0x4 0zA 026 ]
0x4 0x5 0z6 0zA
0zA 0x6 0x5 0Ox4
] 026 0xA 0x4 0x5

0z2 OxD 0z8 0x3
0xD 0x2 0x3 0x8
028 0x3 0x2 0xD
| 03 0z8 OxD 0z2 |

3|
Q

Q

2 1a5 ag az = [bo by b bs]

[ao aq

Because we are evaluating the first 4-bit nibble in the output words and the
four rightmost column of the output state are truncated, we only use half of
the dyadic matrix Mj. In the above equation, we use the overline to denote the
unknown first 4-bit nibbles at the first row words. More precisely, there are three
unknown nibbles ao, az, and a4 in the input and all the nibbles in the output
are known. Accordingly, given the )y transformation linear matrix M, we can
form four linear equations to compute by, by, bs, and bz. Then we evaluate the
values of the three unknown nibbles as, asz, and a4 from three out of the four
equations and substitute their values in the remaining one. With probability
274 the right hand side of the remaining equation is equal to the corresponding
known backward nibble. Hence, the matching size per 4-bit nibble row is 2*
and since we have four 4-bit nibble rows per word row, the matching size is 26
for state row, Thus, the matching probability for the whole state is 27128, The
choice of the number of forward and backward starting values directly affects
the matching probability as their number determines the number of red and blue
words at a given state row at the matching point. If the number of blue and red
words are not properly chosen at the initial structure, we can reach no matching
value. More precisely, we cannot have a matching value if the total number of
red and blue words in a given row at the matching point is less than or equal to
eight. In what follows we summarize the attack steps:
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1. We randomly choose the constants in states S{ and Sy at forward and back-
ward output of the initial structure.

2. For each forward starting value fw; in the 212® forward starting values at Sy,
we evaluate the forward matching value fm; at S7 and store (fw;, fm;) in a
lookup table T'.

3. For each backward starting value bw; in the 2'44 backward starting values in
S7, we evaluate the backward matching value bm; at S§ and check if there
exists an fm; = bm; in T'. If found, then these solutions partially match
through the linear transformations and the full match should be checked
using the matched starting points fw; and bw;. If a full match exists, then
output the chaining value and the message M;, else go to step 1.

To minimize the attack complexity, the number of the starting values of both
execution and the matching value must be kept as close as possible to each other.
In the chunk separation shown in Fig. 3, the number of forward and backward
starting values, and the matching values are 2128, 2144 and 228 respectively. To
further explain the complexity of the attack, we consider the attack procedure.
After step 2, we have 212® forward matching values at S; and we need 2!28
memory to store them. At the end of step 3, we have 2'** backward matching
values at S§. Accordingly, we get 2!28+144 —= 2272 candidate pairs for partial
matching. Since the probability of a partial match is 27128, we expect 2144 pairs
to partially match. The probability that a partially matching pair results in a
full match is the probability that the matching forward and backward starting
values generates the three unknown columns in S, equal to the ones that resulted
from the partial match. This probability is equal to 224*16 = 27384 As we have
2144 partially matching pairs, we expect 21447384 = 27240 pairs to fully match.
Thus we need to repeat the attack 2240 times to get one fully matching pair.
The time complexity for one repetition of the attack is 2'?® for the forward
computation, 24 for the backward computation, and 2'44 to test if the partially
matching pairs fully match. Consequently, the overall complexity of the attack
is 2240(2128 4 9144 4 9144) ~ 2385 time and 2'?® memory.

5 Extending the Attack by One More Round

The wide trail strategy adopted by Whirlwind implies that one unknown word
leads to a full unknown state after two rounds. Consequently, in the previous
5-round attack, the matching point is chosen exactly two rounds away from the
initial structure in each direction. Attempting to go one more round in either
directions always fails because at the end of each chunk execution the state has
undetermined bytes at each row. Consequently, applying the linear transforma-
tion € to such state results in a full loss of state knowledge and matching cannot
be achieved. To maintain partial state knowledge, we adopt a guess and deter-
mine approach [24]. Hence, we can probabilistically guess some of the undeter-
mined row words in the state before the linear transformation in either direction.
Thus, we maintain knowledge of some state rows after the linear transformation
0 which are used for matching. Due to truncation and the large size of Sboxes, we
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have to carefully choose both starting values in the initial structure to minimize
the number of guessed words as much as possible and to result in an acceptable
number of correctly guessed matching pairs. The proposed chunk separation for
the 6-round MitM pseudo preimage attack is shown in Fig. 5. In order to be able
extend the attack by one extra round in the forward direction, we guess the six
unknown words (yellow words) in state S;. As a result, we can reach state SJ
with three determined columns where the matching takes place.

So
—t—
h m

: Initial structure
12128 Bsv
! 2'%Fsv

2% guessed
values

Compressio
function
output

]
i
[ constant word [l Backward word [l Forward word [l Free word
[J undetermined word [] Guessed word

Matching point
2128 My

Fig. 5. Chunk separation for a 6-round MitM pseudo preimage attack on the com-
pression function. BSV: Backward starting value, FSV: Forward starting value, MV:
Matching value (Color figure online).

The chosen separation and guessed values maximize the attack probability
by carefully selecting the forward, backward, and guessed bit values. We aim to
increase the number of starting forward values and keep the number of backward
and matching values as close as possible and larger than the number of guessed
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values. For our attack, the chosen number for the forward and backward starting
values, and the guessed values are 216, 2128 and 29, respectively. Setting these
parameters fixes the number of matching values to 2'28. In what follows, we give
an overview of the attack procedure and complexity based on the above chosen
parameters:

1. We first start by randomly choosing the constants in S} and S§ at the edges
of the initial structure.

2. For each forward starting value fw; and guessed value g; in the 2'¢ forward
starting values and the 2°¢ guessed values, we compute the forward matching
value fm; at SJ and store (fw;,g;, fm;) in a lookup table T

3. For each backward starting value bw; in the 2128 hackward starting values,
we compute the backward matching value bm; at S¢ and check if there exists
an fm; = bm; in T. If found, then a partial match exists and the full match
should be checked using the matched forward, guessed, and backwards start-
ing values fw;, g;, and bw;. If a full match exists, then we output the chaining
value h; and the message m;, else go to step 1.

The complexity of the attack is evaluated as follows: after step 2, we have
216496 — 9112 forward matching values which need 2''2 memory for the look up
table. At the end of step 3, we have 2!28 backward matching values. Accordingly,
we get 2112+128 — 9240 phartial matching candidate pairs. Since the probability of
a partial match is 27128 and the probability of a correct guess is 2726, we expect
2240-128-96 — 916 correctly guessed partially matching pairs. Due to truncation,
we are interested only in the uppermost four rows at the matching point. More
precisely, we want the partially matching starting value to result in the correct
values on the twenty four unknown words in both S} and SY that make the
blue and red words hold. The probability that the latter condition takes place
is 224X—16 — 9384 Consequently, the expected number of fully matching pairs
is 27368 and hence we need to repeat the attack 23® times to get a full match.
The time complexity for one repetition is 2!'? for the forward computation, 2128
for the backward computation, and 2'¢ to check that partially matching pairs
fully match. The overall complexity of the attack is 2368(2112 4 2128 4. 216) ~ 2496
time and 2''? memory.

6 Second Preimage of the Hash Function

In this section, we show how the previously presented pseudo preimage attacks
on the Whirlwind compression function can be utilized to generate second preim-
ages for the whole hash function. The last two compression function calls in the
Whirlwind hash function differ than the previous ones, hence they are considered
a final step in the execution of the function. In this step, the first compression
function call operates on the padded message, and the state of the second com-
pression function call is initialized by the chaining value and an 8 x 4 all zero
message. Accordingly, attempting to use our pseudo preimage attacks to invert
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the final compression function call does not result in the expected all zero mes-
sage and if extended can rarely satisfy the correct padding. Consequently, using
these attacks to generate preimages does not work. However, if we can get the
correct chaining values for the last two compression function calls such that
when both the correct padding and null message are used we get the target
compression function output, then we can use our pseudo preimage attack to
get the right messages. This requirements can be fulfilled if we consider a second
preimage attack. When one attempts a second preimage attack, one is given a
hash function H that operates with an initial value I'V and a message block
m. Then, one must find m’ such that Hry(m) = Hyy(m’). When we consider
a second preimage attack, using the give message m, we can know exactly the
input chaining values for the last two compression function calls such that we
get the desired hash function output. We only need to find another equal length
message m’ that is, given the I'V, generates the chaining value required by the
padding compression function call. Our attack is an n-block second preimage
attack (n > 2) where given an n-block message m, we generate another n-block
message m’ such that both messages hash to the same value. More precisely, to
build m/, we copy the finalization step of m and use our pseudo preimage attacks
along with another meet in the middle attack to search for m’. For illustration,
we are using 2-block messages to describe our attack. As depicted in Fig. 6, the
attack is divided into three stages:

Stage 3 ‘Stage 2

Fig. 6. Second preimage attack on the hash function.

1. Given a 2-block message m = mg||m and the truncation value N, we compute
the adaptable initialization vector Hy = ¢(0, N'), compose the padding message
ma = 1|0599||1]|0'%, and hash m and get the desired H (m). This process is shown
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in the upper hash function execution in Fig. 6. To begin building m’, we copy
the last compression function calls with there chaining values. Specifically, we
consider Hs to be the output of the compression function call operating on the
second block m/ of the massage we are searching for.

2. In this stage, given Hs, we produce 2P pseudo preimages for the second mes-
sage block compression function call. The output of this step is 2P pairs of a
candidate chaining value H{ and a candidate second message block m/. We
store these resulting candidate pairs (H{,m}) in a table T.

3. To this end, we try to search for the first message block m(, such that using the
initial vector Hy, ¢(Hp, m() produces one of the chaining values Hj in the table
T. In the sequel, we randomly choose my,, compute H; and check if it existsin T'.
As T contains 2P entries, it is expected to find a match after 2512~ evaluations
of the following compression function call with random m(, each time:

Hy = ¢(Ho,my)

Once a matching H{ value is found in 7', the chosen my is the first message
block and the corresponding m] is the second message block such that m’ =
mg|lm} and H(m) = H(m').

The time complexity of the attack is evaluated as follows: we need 2P X
(complexity of pseudo preimage attack) in stage 2, and 2°27P evaluations of
one compression function call for the MitM attack at stage 3. The memory
complexity for the attack is as follows: 2P states to store the pseudo preim-
ages for the MitM in stage 2, in addition to the memory complexity of the
pseudo preimage attack on the compression function which is 2128 or 2!12 for the
5-round or 6-round compression function. Since the time complexity is highly
influenced by p, we have chosen p = 64 for the 5-round attack and p = 8 for
the 6-round attack to obtain the maximum gain. Accordingly, 2-block second
preimages for 5-round Whirlwind hash function are produced with a time com-
plexity of 2644385 | 9512=64 ~ 9449 and memory complexity of 2128 + 264 ~ 2128,
The time complexity for the 6-round attack is 281496 4 2512=8 ~ 9505 and the
memory complexity is 2112 + 28 ~ 2112,

7 Conclusion

In this paper, we have analyzed Whirlwind and its compression function with
respect to preimage attacks. We have shown that with a carefully balanced chunk
separation, pseudo preimages for the 5-round reduced compression function are
generated. Additionally, we have adopted a guess and determine technique and
we were able to extend the 5-round attack by one more round. Finally, using
another MitM attack, we utilized the compression function pseudo preimage
attacks to produce 5 and 6-round hash function n-block second preimages.
Whirlwind is proposed to improve the Whirlpool design. While, the new
improvements limit the extent of rebound attacks significantly, they do not con-
sider MitM preimage attacks. It should be noted that the elimination of the
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compression function key schedule and using large Sboxes in the same time
made our attacks possible. Indeed, with the large state, the chosen constants in
the initial structure are enough to satisfy the number of restarts required by the
attack complexity. On the other hand, for Whirlpool, the available freedom in
the internal state only cannot by itself fulfill the attack complexity. Also, while
the adopted truncation and feedforward prohibit interaction between the input
message block and the output state thus limiting the ability of difference can-
cellation, it enhanced the full matching probability, particularly, if we can have
full state knowledge at one side of the matching point like our 5-round attack.
It is interesting to note that if the adopted model follows the exact Sponge con-
struction where the message is XORed to the internal state and truncation is
performed in the finalization step, thus the compression function always main-
tains a state larger than the hash function output size, our compression func-
tion attacks would not work. It should also be noted that the switch between
GF(2'%) and GF(2%) in different round transformations does not only alleviate
potential concerns regarding algebraic attacks but also enhances the resistance of
the function to integral attacks [13]. More precisely, the integral properties that
are preserved by the substitution layer are shared independently among nibbles
by the following linear transformation for the span of one round only. Finally,
we know that the presented results do not directly impact the practical secu-
rity of the Whirlwind hash function. However, they are first steps in the public
cryptanalysis of its proposed design concepts with respect to second preimage
resistance.
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