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Abstract. At ACISP 2000, Yoo et al proposed a fast public key cryp-
tosystem using matrices over a ring. The authors claim that the security
of their system is based on the RSA problem. In this paper we present a
heuristic attack that enables us to recover the private key from the pub-
lic key. In particular, we show that breaking the system can be reduced
to finding a short vector in a lattice which can be achieved using the
L3-lattice reduction algorithm.
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1 Introduction

Most practical public key schemes are very slow compared to symmetric key
schemes. This motivates extensive research for faster public key schemes. Several
lattice-based systems such as [1], [2] are among these schemes. Both of these
schemes, which are based on the closest vector problem and the shortest vector
problem [6] [7] are broken using the L3 lattice reduction algorithm. In fact, the
L3 algorithm was successfully used to attack many similar public key systems
[5]. Yoo et al [11] proposed a fast public key cryptosystem similar to the system
proposed in [2]. However, they claim that since the security of their scheme is
based on the RSA problem and not the lattice problems, their scheme is secure
against these lattice basis reduction attacks. In this paper we show that breaking
this system is equivalent to the problem of finding a short vector in a lattice
which can be solved using the L3-lattice reduction algorithm [4]. In particular,
our heuristic attack enables us to recover the private key from the public key
and hence represent a total break for the proposed system.
The paper is organized as follows. In section 2 we give a description for the
system proposed in [11]. In section 3, we describe our attack. Finally we give
a numerical example using the same parameters of the encryption-decryption
example in [11].
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2 Description of the Proposed Scheme

In this section we review the proposed public key scheme. Further details and
justification for the bounds on the parameters can be found in [11].
Let n be the dimension of a lattice. The basic steps to choose the parameters
are as follows:
1 Choose positive integers m̂, ê, dii, 1 ≤ i ≤ n, primes p, q and a matrix
D ∈ Matn(Z) with the following conditions:
1.1 N = pq.
1.2 m̂, ê : random integers such that m̂ ≈ q0.4, ê ≈ q0.3, where m̂ and ê are
upper bounds of messages and error vectors respectively.
1.3 D : diagonal matrix such that m̂ < |dii| < q0.5, where dii, 1 ≤ i ≤ n are
diagonal entries of D.
2 Choose an invertible matrix T = (tij)1≤i,j≤n ∈ Matn(Z) such that

∑n
j=1 tij <

q0.2.
3 Form the matrices R = DT and B = BqUL mod N where Bq = R−1 mod q,
L (respectively U) are uni-modular lower (respectively upper) triangular matrix
whose all entries except the diagonal entries are multiples of q.

B, ê, m̂ and N are public information. R, q and T are kept secret.
Encryption: Let M = (m1, · · · ,mn)t, 0 ≤ mi < m̂ be a message vector and

E = (e1, · · · en)t, 0 ≤ ei < ê be an arbitrary error vector. Then the ciphertext is

C = (BM + E) mod N.

Decryption: At first compute X = (x1, · · · , xn)t:

Cq = C mod q,

X = RCq mod q.

Then mi = xi(mod dii)1≤i≤n.

3 Attacking the Scheme

In this section we will present a heuristic attack that enables us to recover the
private key from the public key. In particular, this attack enables us to factor N
using the matrix B only. As mentioned in [11], once q is revealed, one can find
Bq and D and the system is totally broken. Recall that

B−1mod q = R.

The following lemma follows by noting that for N = pq and for any integer a we
have

a mod q = (a mod N) mod q.

Let V = B−1mod N . Then we have
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Lemma 1.

V mod q = (B−1 mod N) mod q = (B−1 mod q) = R.

Let rmax denote max{i,j} |rij |. Then from Section 3 in [11] we have

rmax <
q − m̂

nê
≈ q − q0.4

nq0.3
< q0.7.

Thus every element of the matrix V can be represented as

vij = aijq + rij ,

where 0 ≤ aij < p, rij < rmax, 1 ≤ i, j ≤ n.
The basic steps in the attack are as follows:

1. Calculate the matrix V = B−1 mod N .
2. Pick an m,m ≤ n2, elements from the set {vij}{1≤i,j≤n}. Let S = {si}{1≤i≤m}
denote the set formed from the elements above.
3. Use the L3 algorithm to find a reduced basis B for the (m + 1)-dimensional
lattice L which is generated by the rows of the matrix




N 0 0 · · · 0 0
0 N 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · N 0
−s1 −s2 −s3 · · · −sm 1



.

4. For each row l = (l1, l2, · · · , lm, lm+1) in B such that lm+1 	= N do the follow-
ing:
- Evaluate gcd(N, lm+1).
- If gcd(N, lm+1) 	= 1, return p = gcd(N, lm+1).
5. Return (Failure).

The following lemma is used to justify the success of the attack.

Lemma 2. The vector

x = ((a1N−ps1), (a2N−ps2), · · · , (amN−psm), p) = (−pδ1,−pδ2, · · · ,−pδm, p)

is in L and has length less than approximately (
√
m + 1 pq0.7).

Proof. The first part follows by noting that x is a linear combination of the rows
of L. The second part follows by noting that each of the elements si can be
represented as si = aiq + δi where δi < q0.7.

Note that our lattice has dimension (m+1) and volume Nm. From the lemma
above, x is short compared to the (m + 1)th root of the volume of the lattice.
Hence, there is a good possibility that the L3 algorithm will produce a reduced
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basis which include the vector x. If no solution exists then we can try another
subset of elements {vij}. Our experimental results show that the L3 algorithm
finds p with high probability.

Let {b1, b2, · · · , bm+1} denote the basis of the lattice L above. Let C ∈ R be
such that |bi|2 ≤ C for i = 1, 2, · · ·m + 1 and |bi| denote the length of the basis
bi. From [4], the number of arithmetic operations needed by the L3 algorithm is
O((m + 1)4logC), on integers of size O((m + 1)logC).

Remark 1. The lattice used in step 3 is the standard lattice used in the Simul-
taneous Diophantine Approximation (SDA) [4]. I.e., our problem can also be
formulated in terms of SDA. It was noted by Nguyen and Shparlinski [9] that
this formulation leads to unconditional provable attack provided that p and q
are much unbalanced (q > p10/3) because we would have an unusually good SDA
(See Fact 3.107 in [4]). In fact, in this case, we can easily solve the problem using
the continuous fraction approximation [3]. It was also noted in [9] that while the
attack in [8] can be applied to this cryptosystem, it is not an improvement of
our attack and our attack is much simpler in this case.

4 Numerical Example

In order to illustrate the steps in our cryptanalysis, we will use the same nu-
merical example given in [11]. Let q = 10570841 and p = 10570837. Then
N = 111742637163917. Let

D =




612 0 0 0
0 681 0 0
0 0 697 0
0 0 0 601


 ,

and

T =




5 2 3 7
4 3 1 2
4 7 1 3
2 3 4 9


 .

Then

R =




3060 1224 1836 4284
2724 2043 681 1362
2788 4879 697 2091
1202 1803 2404 5409


 .

Choose

U =




1 −10570841 10570841 −10570841
0 1 10570841 −10570841
0 0 1 10570841
0 0 0 1


 ,
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L =




1 0 0 0
10570841 1 0 0
10570841 −10570841 1 0
−10570841 10570841 10570841 1


 .

Then we have

B =




85902782524529 7783949494261 108645955098741 62082137341722
37207086894442 97811933363455 31492859166426 47829503460547
43940929239657 99629428908384 64015171957907 95852228892018
100737337377789 6871742549039 58298211039553 15913440226477


 .

Since B and N are public information, we can calculate

V = B−1mod N =



72960716256453 4761772750607 47819503708674 64505037116731
18354764339802 34264334590284 25746128923461 46666277809305
28770435964827 105706232411633 39730135919762 9119580812042
89276407646137 79398453561765 94718657144415 99534468035995




Then we arbitrarily select the set

S = {v11, v12, v13, v14} =

{72960716256453, 4761772750607, 47819503708674, 64505037116731}.
Using the L3 algorithm (See algorithm 3.101 in [4], [10] ), the basis to be reduced
is:



111742637163917 0 0 0 0
0 111742637163917 0 0 0
0 0 111742637163917 0 0
0 0 0 111742637163917 0

−72960716256453 −4761772750607 −47819503708674 −64505037116731 1



.

The L3-reduced basis is:



−32346761220 −12938704488 −19408056732 −45285465708 10570837
−87078711029 39709857984 7883945327 11690435622 4385339758
−12420733475 −4968293390 −7452440085 −17389026865 182590067501
−102740951106 −253999460687 146924464771 79909317394 26579009212

1917450399 −58848334744 −420915726704 231779925047 78377734153



.

Hence we get p = 10570837. Once p is revealed we calculate q = N/p. Then we
get R = V −1 mod q. After this we calculate dii = gcd(ri1, ri2, · · · rin), 1 ≤ i ≤ n.

It is worth noting that it only took us 91, 520 and 4802 seconds to break
the algorithm for the size of N = 256, 512 and 1024 bits respectively. We set
m = 10 through step 2 of the attack. We performed our experiments with Maple
V Release 5.1 running on a SUN ULTRA-80 workstation.
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