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Abstract Automatic service composition is the gener-
ation of a business process to fulfill business goals that

cannot be fulfilled by individual services. Planning al-

gorithms are frequently used to solve this problem. In

addition to satisfying functional goals, recent research

is geared towards selecting the best services to optimize
the QoS of the result business process. Without consid-

ering QoS, the planning algorithm normally searches for

the shortest plan, which actually implies the unit exe-

cution time for each service. With QoS, a longer plan
may have better QoS values, and thus is preferred over

a shorter one. In this paper, we are motivated to com-

bine a systematic search algorithm like Dijkstra’s algo-

rithm with a planning algorithm, GraphPlan, to achieve

both functional goals and QoS optimization at the same
time. The planning graph generated by GraphPlan is

a compact representation of all execution paths, which

makes it feasible to apply Dijkstra’s principle. In our

new QoSGraphPlan algorithm, we extend Dijkstra’s al-
gorithm from working on a single source graph to work-

ing on the planning graph whose nodes have multiple

sources. Using our method, we can get the best QoS

value for throughput and response time in polynomial

time when they are the single criteria. For the other QoS
criteria, such as execution time, reputation, successful

execution rate, and availability, our algorithm is expo-
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nential for both single criterion problem and multiple
criteria problem. In this case, we extend QoSGraphPlan

with beam search to solve the combination explosion

problem. As our algorithms search for an optimal so-

lution during the process of constructing the planning

graph, they belong to the category of anytime algo-
rithms that return better solutions if they keep running

for a longer time.

Keywords QoS optimization · Graph Plan · Web
service composition

1 Introduction

Web services are self-described software entities which
are posted across the Internet using a set of open stan-

dards such as SOAP [29], WSDL [30], and UDDI [19].

With these open standards, Web services are automat-

ically invokable and interoperable. This leads to the

important feature of composability, meaning that it is
possible to automatically generate a business process to

fulfill business goals that cannot be fulfilled by individ-

ual services.

Automated Service Composition (ASC) is studied
under different assumptions [21,25]. The most useful

and practical problem is to connect SOAP services into

a network by matching their parameters, so that this

network of services can produce a set of required out-

put parameters given a set of input parameters. This
is the composition problem studied in this paper. AI

Planning algorithms are frequently used to solve this

problem [23,24,40]. AI planning algorithms search the

problem space to find a path from the initial state to
a goal state. Normally the planning algorithms stop at

the first found feasible solution, which corresponds to

the shortest plan. This actually implies the execution
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time for each service is a unit. Thus, the shortest path

has the shortest execution time, hence the shortest re-

sponse time.

In addition to satisfying business goals, recent re-

search moves to selecting the best services to optimize
the QoS measures, such as throughput and response

time, of the target business process. With QoS consid-

eration, a shortest plan may not be preferred, because a

longer plan may have better QoS values. For example, a
plan with three consecutive services may be faster than

a plan with two consecutive services, when the response

time of the services varies. Therefore, we need to mod-

ify the classic planning algorithm to become QoS aware

so as to find a QoS optimized solution. In this paper,
we tackle the problem to satisfy the functional require-

ments, i.e.,produce functional goals, and optimize the

QoS at the same time.

People have used optimization algorithms such as

Dynamic Programming (DP) [14,15] and Integer Pro-
gramming (IP) [9] to find a QoS optimized solution.

We use planning algorithm topped by optimization al-

gorithm in this paper. We consider combining planning

algorithm and optimization algorithm can use knowl-
edge in both topic and reveal more facts about this

problem. A common problem in using DP is that the

optimal paths to reach individual functional goals are

combined to be the optimal solution. This kind of opti-
mal solutions can contain multiple redundant services

that removing them does not worsen the QoS value.

This problem is ignored in the literatures until our pa-

per [8]. In this paper, we discuss the cause of the re-

dundant services and how to remove them. We also find
that some of the models, e.g., [15] does not consider the

possibility of reusing the same service in a plan, which

can be avoided if using a planning algorithm. More com-

parison of our method with related work can be found
in Section 5.

The main contribution of our work is the combina-

tion of Dijkstra graph traversing with planning graph

algorithm to achieve both functional service composi-

tion and QoS optimization simultaneously. We apply
the principle of Dijkstra’s algorithm to systematically

search the optimal QoS path on a planning graph. A

planning graph generated by the GraphPlan algorithm

is a compact representation of all execution paths, which

makes it feasible to apply Dijkstra’s principle. We ex-
tend Dijkstra’s algorithm from working on a single source

graph to working on the planning graph whose nodes

have multiple sources. As our algorithms work during

the construction of the planning graph, we make them
return only the best solutions during the search. This

fact puts our algorithms into the category of anytime

algorithms [32]. We develop a group of algorithms in

the same spirit to deal with either single criterion or

multiple QoS criteria. Through our study, we find that

response time and throughput can be optimized in poly-

nomial time, while the other criteria optimization prob-

lems are NP complete problem. Our algorithms are able
to perform the following tasks:

1. For throughput and response time, QoSGraphPlan

can find a solution with the globally optimized QoS

value and possibly redundant services in polynomial

time. It takes polynomial time to remove the redun-

dant services.
2. For the single criterion problem with execution price,

reputation, successful execution rate and availabil-

ity, it is an NP-complete problem. QoSGraphPlanExt

can find a solution with globally optimized QoS value
and no redundant services in exponential time com-

plexity. Our BeamQoSGraphPlan is a heuristic search

algorithm which uses beam search to find an opti-

mal solution.

3. For multiple criteria problems, we use a non-preemptive
model [9] to aggregate the QoS values into a utility

value in order to compare the execution paths. Our

BeamQoSGraphPlan can also be used for multiple

criteria problem.

The paper is organized as follows. Section 2 gives

background knowledge of QoS criteria, Graph Plan,
and Dijkstra’s algorithm. Section 3 presents our any-

time QoS-aware service composition algorithm. We also

discuss the properties of our algorithm in this section.

Section 4 presents the results of the experiments with
artificial data sets. Related work is reviewed in Sec-

tion 5. We end up with a conclusion in Section 6.

2 Preliminaries

2.1 The QoS-Aware Service Composition Problem

We take the services as being stateless black boxes (no

conversations) in this paper. The services expose them-

selves in WSDL descriptions which do not include state
information1. We can associate semantic information to

inputs and outputs using SAWSDL [28] or OWL [27].

Definition 1 Given a setD of concepts, a service w is

a tuple (in(w), out(w), Q(w)), where in(w) ⊆ D (resp.

out(w) ⊆ D) denote the inputs (resp. the outputs) of

w, and Q(w) is a finite set of quality criteria for w.

1 For stateful services, we have developed a modelling tech-
nique to convert the sequential orders of each operation into
its preconditions and postconditions [24]. Therefore, if we
have QoS values for each operation in a stateful service, the
methods developed in this paper can be applied to both state-
ful and stateless services.
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The above definition assumes each service has one

operation. For a service w with n operations o1, . . . , on
we may do as if we had n services w : o1, . . . , w : on.

An output of one service could become the input of

another service if they are exactly the same concept, or

the input concept subsumes the output concept. For ex-
ample, assume one service needs “automobile” as one

of its inputs; if another service outputs “automobile”

or “car”, the two services can be connected via their

compatible parameters. In Section 4, we show the se-

mantic relations can be “flattened”. Therefore, in dis-
cussing the principle, we ignore the semantic relations,

but consider that the parameters can be matched by

their names.

We use σ = w1, w2, . . . , wn to represent a network of

connected services. If they are connected in sequence,
σ = w1;w2; . . . ;wn, or in parallel, σ = w1||w2|| . . . ||wn.

Some commonly used quality criteria for a Web ser-
vice w and their aggregated values over σ are listed as

below [11,2]:

– Response time Q1(w): the time interval between
the receipt of the end of transmission of an inquiry

message and the beginning of the transmission of

a response message to the station originating the

inquiry.

Q1(w1; . . . ;wn) =
∑

Q1(wi) (1)

Q1(w1|| . . . ||wn) = maxQ1(wi) (2)

– Throughput Q2(w): the average rate of success-

ful message delivery over a communication channel,

e.g.,10 successful invocations per second.

Q2(w1; . . . ;wn) = minQ2(wi) (3)

Q2(w1|| . . . ||wn) = minQ2(wi) (4)

– Execution price Q3(w): the fee to invoke w.

Q3(w1, . . . , wn) =
∑

Q3(wi) (5)

– Reputation Q4(w): a measure of trustworthiness

of w.

Q4(w1, . . . , wn) =
1

n

∑
Q4(wi) (6)

– Successful execution rate Q5(w): the probability

that w responds correctly to the user request.

Q5(w1, . . . , wn) =
∏

Q5(wi) (7)

– Availability Q6(w): the probability that w is ac-

cessible.

Q6(w1, . . . , wn) =
∏

Q6(wi) (8)

Definition 2 A service composition problem is a

tuple (W,Din, Dout, Q), where W is a set of services,

Din are provided inputs, Dout are expected outputs,

and Q is a finite set of quality criteria.

Some of the above criteria are negative, i.e., the

higher the value, the lower the quality. Response time

and execution price are in this category. The other crite-

ria are positive, i.e.,the higher the value, the higher the

quality. We want to have a uniform way to compare the
qualities, especially with the multiple criteria. We ap-

ply a Multiple Criteria Decision Making (MCDM) tech-

nique [26] to aggregate QoS value Q(w). First, we scale

the value of a quality i for a service wj . For negative
criteria (i.e.,response time and execution price), values

are scaled according to Equation 9. For positive and

non multiplication criteria (i.e.,throughput and repu-

tation), values are scaled according to Equation 10. For

positive and multiplication criteria (i.e.,successful exe-
cution rate and availability), values are scaled according

to Equation 11. The logarithm is used for multiplication

criteria so that the aggregated utility value for a net-

work can be monotonic to the aggregated QoS value.
For all the criteria, the higher the quality value, the

lower the utility value Ui(wj). Please notice that other

papers, like [38] and [5], do a similar conversion, but

their aggregate functions have the opposite monotonic

direction (the higher the quality value, the higher the
utility value). This is because the classic Dijkstra’s al-

gorithm finds the “shortest distance” (lowest cost) over

a graph. Therefore, we make our algorithms in order to

lower the utility value to keep the same sense.

Ui(wj) =

{
Qi(wj)−Qmin

i

Qmax
i −Qmin

i
if Qmax

i −Qmin
i �= 0

1 if Qmax
i −Qmin

i = 0
(9)

Ui(wj) =

{
Qmax

i −Qi(wj)

Qmax
i −Qmin

i
if Qmax

i −Qmin
i �= 0

1 if Qmax
i −Qmin

i = 0
(10)

Ui(wj) =

{
ln(Qmax

i )−ln(Qi(wj))

ln(Qmax
i )−ln(Qmin

i )
if Qmax

i −Qmin
i �= 0

1 if Qmax
i −Qmin

i = 0

(11)

The overall quality score for a Web service wj is
defined in Equation 12:

U(wj) =
∑

Ui(wj)×Wi (12)

where Wi ∈ [0, 1] and
∑

Wi = 1. Wi represents the

weight of criterion i.
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For a network of services σ = w1, w2, . . . , wn, we

want to get the aggregated utility value too. Equa-

tions 13 to 20 aggregate the single criterion values. We

can easily prove that Equations 13 to 20 sort the net-

works in the order as Equations 3 to 8 do. That means if
σ1 is better than σ2 according to one QoS criterion, σ1

should be better than σ2 according to its correspondent

utility criterion.

U1(w1; . . . ;wn) =
∑

U1(wi) (13)

U1(w1|| . . . ||wn) = maxU1(wi) (14)

U2(w1; . . . ;wn) = maxU2(wi) (15)

U2(w1|| . . . ||wn) = maxU2(wi) (16)

U3(w1, . . . , wn) =
∑

U3(wi) (17)

U4(w1, . . . , wn) =
1
n

∑
U4(wi) (18)

U5(w1, . . . , wn) =
∑

U5(wi) (19)

U6(w1, . . . , wn) =
∑

U6(wi) (20)

If we want to compare a network of services σ =

w1, . . . , wn under multiple criteria, we need to get the
single criteria utility values first, then aggregate them

into one general utility score. The aggregated utility

value for σ is as Equation 21. We need to apply a nor-

malization before we can aggregate the utility values.
For throughput and reputation, the aggregated utility

for single criterion is between [0,1]. For the other crite-

ria, the aggregated utility for single criterion is between

[0,n]. Thus we need to divide these values by n [15].

U(σ) =
∑

i=1,3,5,6

1

n
Ui(σ) ×Wi +

∑
i=2,4

Ui(σ)×Wi (21)

where Wi ∈ [0, 1] and
∑

Wi = 1.

We study QoS-aware service composition under both

single criterion and multiple criteria. For single criterion

problems, we can use either single QoS values or single
utility values to compare the plans. For multiple crite-

ria problems, we should first calculate the single utility

values and then aggregate them into one general utility

value using Equation 21.

If the QoS value is represented as a range, e.g., [90-
100], we need to define some arithmetic operators over

range as following.

[x1, y1] + [x2, y2] = [x1 + x2, y1 + y2] (22)

max ([x1, y1], [x2, y2]) = max (y1, y2) (23)

min ([x1, y1], [x1, y2]) = min (x1, x2) (24)

[x1, y1] ∗ [x2, y2] = [x1 ∗ x2, y1 ∗ y2] (25)

Based on these operators, we can refine functions 1

to 21 for range values. For example, assuming wi has a

range [xi, yi] for a quality criterion, functions 1 to 9 are

changed into follows (other functions can be changed in

the same way):

Q1(w1; . . . ;wn) = [
∑

xi,
∑

yi] (26)

Q1(w1|| . . . ||wn) = max yi (27)

Q2(w1; . . . ;wn) = minxi (28)

Q2(w1|| . . . ||wn) = minxi (29)

Q3(w1, . . . , wn) = [
∑

xi,
∑

yi] (30)

Q4(w1, . . . , wn) =
1
n [
∑

xi,
∑

yi] (31)

Q5(w1, . . . , wn) = [
∏

xi,
∏

yi] (32)

Q6(w1, . . . , wn) = [
∏

xi,
∏

yi] (33)

Ui(wj) =
[xj−minxj ,yj−minxj ]

max yj−minxj
(34)

In the rest of paper, our calculation uses single QoS
values, not range. However, our methods can be ex-

tended to range values following the discussion above.

2.2 The Planning Technique and Graph Plan

AI planning [17] has been applied with success to ser-

vice composition [22,7].

Definition 3 Given a finite set L = {p1, . . . , pn} of
proposition symbols, a planning problem [17] is a triple

P = ((S,A, γ), s0, g), where:

– S ⊆ 2L is a set of states.

– A is a set of actions, an action a being a couple
(pre, effects+) where pre(a) ⊆ L and effects+(a) ⊆
L denote respectively the preconditions and the (pos-

itive) effects of a.

– γ is a state transition function such that, for any

state s where pre(a) ⊆ s, γ(s, a) = s∪ effects+(a).
– s0 ∈ S and g ⊆ L are respectively the initial state

and the goal.

In Definition 3, pre(a) is the set of the propositions as

the precondition of action a. The definition in [17] takes

into account predicates and constant symbols which are
then used to define states (ground atoms made with

predicates and constants). We directly use propositions

here, because in the Web service models, we do not

have predicates. In [17], an action also includes nega-

tive effects. Since in Web service models, we have only
positive effects, we remove the negative effects defini-

tion for clarity.

Different algorithms have been proposed to solve

planning problems and get plans from them, e.g., de-
pending on whether they are building the underlying

graph structure in a forward (from initial state) or back-

ward (from goal) way [17]. The study in this paper
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is based on an AI planning algorithm called Graph

Plan [3]. Recent works have demonstrated the suitabil-

ity of this model for ASC [24,40]. Graph Plan is partic-

ularly interesting for our idea of applying Dijkstra’s al-

gorithm to it, because the planning graph used is a com-
pact representation of all the possible execution paths.

This makes it possible to do a systematic search

on the planning graph.

A planning graph G is a directed acyclic leveled

graph (see Fig. 1). The levels alternate proposition lay-
ers Pi and action layers Ai. The initial proposition layer

P0 contains the initial propositions (s0). An action a is

put in layerAi iff pre(a) ⊆ Pi−1 and then effects+(a) ⊆
Pi. The multiple actions added into one layer are inde-

pendent in the sense that they could possibly be exe-
cuted parallelly. The planning graph actually explores

multiple search paths at the same time when expanding

the graph. The construction of the planning graph stops

at a layer Ak iff the goal is reached (g ⊆ Ak) or in case
of a fixpoint (Ak = Ak−1). In the former case there

exists at least a solution, while in the latter there is

not. Solution(s) can be obtained using backward search

from the goal. In Graph Plan, the solution is layered as

defined in Definition 4.

Definition 4 A plan is a sequence of sets of actions

π1;π2; . . . ;πn, in which each πi (i = 1, . . . , n) is a set

of parallel actions (denoted with ||). π1 is applicable to
s0. πi is applicable to γ (si−2, πi−1) when i = 2, . . . , n.

g ⊆ γ(. . . (γ(γ(s0, π1), π2) . . . πn).

We can understand that a plan transfers the system
state from its initial state s0 to an end state sn which

contains the required goal g. The effects of the actions in

an action layer provide the preconditions of the actions

in the next action layer. The actions in one layer πi are

parallel to each other, i.e.,the effects of an action should
not be the precondition of another action. Finally, there

is no loop in a plan.

The Graph Plan approach contains two phases. The

planning graph construction phase builds the planning

graph from P0. The graph construction algorithm stops
when the goal is reached or a fixpoint is reached. The

complexity of this algorithm is polynomial [3]. If the

goal is reached, this means the problem has a solution.

Then the second phase is to extract a solution using

backward search from the goal layer. Normally the sec-
ond algorithm is more costly. In the most general case,

i.e.,if the problem has negative effects, the backward

search phase may require backtracking and the com-

plexity is NP-complete. If the problem has only positive
effects, we see that backtracking is not needed [13]. We

want to get a minimal set of services that can solve the

problem.

Following [40], it is possible to map a service compo-

sition problem (W, Din, Dout, Q) to a planning problem

P = ((S,W, γ), Din, Dout) with service inputs being

mapped to action preconditions (in(w) �→ pre(w)) and

outputs to positive effects (out(w) �→ effects+(w)).
Plans can be encoded in any orchestration language

with assignment, sequence, and parallel operators, e.g.,

WS-BPEL [20]. Additionally, planning graphs enable us

to retrieve plans with parallel invocations. These can be
encoded using parallel operations (WS-BPEL flow).

Example 1 A set of available services with their in-

put/output parameters and response time in millisec-

onds are listed in Table 1 (modified from [15]). The

composition query is (Din, Dout) = ({A,B,C}, {D}).
We use the Graph Plan approach to solve this service

composition problem. According to Din, Dout and the

available services in Table 1, we construct a planning

graph as shown in Figure 1.

In Figure 1, the no-op actions are represented by
dashed arrows. A no-op action simply inherits a true

proposition from a previous proposition layer. It has

no cost. A no-op action is preferred over a non no-op

action during the plan extraction phase. At an action
layer, all the enabled actions can be added, including

those possibly added in the previous layers (the shaded

actions in Fig 1. An action a at layer Ai takes the in-

coming arcs originating from its inputs at Pi−1 and con-

nects to its outputs at Pi. For example, w1 at A1 takes
three arcs originating from its inputs A, B and C at

P0 and connects to its output J at P1. To make the

figure readable, we do not draw all the no-op arcs on

A2, neither do we draw the arcs connecting the shaded
actions in the action layers after. Please notice that

the graph reaches the fix point at layer P4. After the

planning graph reaches the fixed-point layer, we extract

three solutions starting from goal D at P4: {w1;w6},
{w2;w3;w7} and {w2;w4;w8;w7}.

Table 1 A set of available services

wi inputs outputs response time utility value
w1 A,B,C J 800 1
w2 B,C E,F 100 0
w3 C,E H 600 0.71
w4 C,F G 100 0
w5 K H 600 0.71
w6 J D 100 0
w7 H D 300 0.29
w8 G H 100 0

Graph Plan can generate a plan with sequential and

parallel actions. Graph Plan can generate plans with re-

peated sequential actions. However, Graph Plan cannot
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H
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Fig. 1 The planning graph for Example 1.

generate a plan with loop or conditional construct. Con-

ditional planning (to include conditional construct and

loop construct in a plan) is a special topic to study in

planning domain, which is not a problem we try to solve
in this paper. Another work from us [24] proposed an

encoding method to re-define actions and propositions

in the exclusive choice construct into preconditions and

effects of actions that can be used by planning graph.
Using the encoding approach in [24], planning graph

can also handle the exclusive choice pattern. In this pa-

per, we concentrate on dealing with plans with no loop

constructs and no condition constructs.

2.3 Dijkstra’s Algorithm

Dijkstra’s algorithm’s goal is to find single-source short-

est paths in a graph [16]. Dijkstra’s algorithm is a sys-

tematic search algorithm. If the graph is finite, system-

atic search means that the algorithm will visit every
reachable state, and keep track of states already vis-

ited to avoid infinite loops when the graph has cycles.

If the graph is infinite, systematic search has a weaker

definition. If a solution exists, the search algorithm still

must report it in finite time; however, if a solution does
not exist, it is acceptable for the algorithm to search

forever. It is known that the planning graph is finite

and it takes polynomial time to construct the planning

graph. Thus, we are dealing with a finite graph in this
paper.

Suppose a graph G = (V,E) has every edge e ∈ E

labeled with a distance d(e). Assuming the edge e is
from a vertex v, we can also write it in the state-space

representation d(v, e).

For each vertex v, we define a cost-to-come function
C : V → [0,∞]. For each vertex, the value D∗(v) is

called the optimal cost-to-come from the initial vertex

vI . This optimal value is obtained by summing edge

distance, over all possible paths from vI to v and using
the path that produces the least cumulative distance. If

the cost is not known to be optimal, then it is written

as D(v).

A

B

C D

E

F

14

7

9

10

2

9

6

11

15

Fig. 2 The graph for Example 2.

Initially, D∗(vI) = 0. Each time a vertex v′ is vis-

ited, a distance is computed as D(v′) = D(v)∗+d(v, e),

in which e is the edge from v to v′. Here, D(v′) repre-
sents the best cost-to-come known so far, but we do not

write D∗ because it is not yet known whether v′ was
reached optimally. In the search algorithm, we have a

queue to record all the vertices to visit. If v′ is visited

again, which means a new path to v′ is discovered, the
cost-to-come value D(v′) may be updated if the new
path has a lower value.

The complexity of Dijkstra’s algorithm over a Graph

G = (V,E) is O(|V |2) without using a min-priority

queue. The common implementation based on a min-

priority queue implemented by a Fibonacci heap and
running in O(|E|+ |V |log|V |) is due to [10].

We can only describe the principle of Djikstra’s al-

gorithm in this paper. The following is an example to

explain how to find single-source shortest paths in a
graph through Dijkstra’s algorithm. More examples and

the pseudo code can be found in [32].

Example 2 Figure 2 is a graph with the arcs labeled

with their lengths. Node A is the source vertex. Table 2

presents the steps through Dijkstra’s algorithm to find

the shortest path from the origin A to any other desti-

nation vertex in the graph. In the table, d(.) represents
the distance of the node and p(.) represents the par-

ent of the node. Once we successfully find the shortest

path from the origin A to a node, the node is added

into “Solved nodes”in Table 2. For example, at “Step
5”, “Solved nodes”is ABCFD because nodes A, B, C,

F and D have found their shortest paths.

3 QoS-Aware Planning Graph

3.1 Take the Advantages of Both Planning Graph and
Dijkstra’s Algorithm

The principle of Dijkstra’s algorithm is to calculate the

best cost-to-come value for a vertex. If we think of a

proposition as a vertex of the planning graph, we could
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Table 2 Dijkstra’s algorithm

Step Solved nodes
B C D E F

d(B) p(B) d(C) p(C) d(D) p(D) d(E) p(E) d(F ) p(F )
1 A 7 A 9 A ∞ - ∞ - 14 A
2 AB - - 9 A 22 B ∞ - 14 A
3 ABC - - - - 20 C ∞ - 11 C
4 ABCF - - - - 20 C 20 F - -
5 ABCFD - - - - - - 20 F - -
6 ABCFDE - - - - - - - - - -

use the same principle to calculate the best cost-to-

come which is the best QoS value for each proposi-
tion. Then, we could get the overall cost-to-come for

all the goal propositions. And during the search, we

could record the best path which is the best plan.

The above idea is feasible, because the planning

graph can be understood as a compact representation

of all the execution alternatives. As all the applicable

actions are considered on each layer, the planning graph
is built to model the whole problem space until a solu-

tion is detected, rather than to solve a particular prob-

lem. Therefore, we could visit all the reachable system

states over the planning graph. This makes Dijkstra’s

principle work over the planning graph.

Yet, we need to overcome several difficulties. First of

all, Dijkstra’s algorithm is for single source situations,
i.e.,one edge represents one path between two vertices.

While in a planning graph, a service takes multiple in-

puts which could possibly come from multiple services.

Therefore, a cost value needs to be calculated from sev-
eral edges, instead of one. Second, the planning graph

presents both parallel and sequential connections be-

tween services, while a normal graph does not repre-

sent parallel connections. Third, different QoS criteria

have different formulas for calculation. We need to find
a way to calculate the aggregated QoS over the Plan-

ning graph. We present our solution in the following

subsections.

3.2 Generation of Tagged Planning Graph

For simplicity, we present our algorithm using response

time as the single quality criterion, i.e.,the cost(a) in

Algorithms 1-4 is either the QoS value (using Equa-
tions 1 and 2) or the utility value (using Equations 13

and 14) of response time for a service. And either way

should get the same solution. The calculation of the

other QoS criteria is discussed in Subsection 3.5.

We can consider a classic Planning Graph is a Di-

rected Acyclic Graph (DAG) G = (V,E). It has two
kinds of vertices V = VA ∪ VP , where VA are the ver-

tices representing actions and VP are the vertices repre-

senting propositions. Edges E = (VP ×VA)∪ (VA ×VP )

connect the vertices. The edges (VP × VA) connect the

input parameters with the actions, while (VA×VP ) con-
nect the actions with their output parameters.

We associate a real value to every vertex of a plan-

ning graph and obtain a Tagged Planning Graph (TPG):

Definition 5 A Tagged Planning Graph (TPG) is

a Planning Graph G = (V,E) with a cost function

cost(V ) for vertices, cost : V �→ 
, where 
 is the
real numbers.

The tags on the action vertices are the QoS values

(or utility values) for executing the actions, i.e.,cost(a)

is the cost of executing an action a. The tags of the

proposition vertices are the QoS values (or utility val-
ues) for obtaining this proposition, i.e.,cost(p) is the

cost of obtaining a proposition p.

Algorithm 1 called QoSGraphP lan is our main al-

gorithm. It is modified from the standard GraphPlan

algorithm [17] to calculate TGP and extract a solution.
QoSGraphP lan repeats ExpandGraph (Algorithm 2)

(line 2) until a fixed point (Definition 6) is detected

(line 7). When all the goals g are satisfied and some

of them are generated by non no-op actions (line 3),
which means a new solution is found, the algorithm

calls ExtractP lan (Algorithm 4) to extract the plan

(line 4). ExtractP lan returns a solution only when it

detects the found solution is better than the best solu-

tion found so far. This makes QoSGraphP lan an any-
time algorithm. As time goes by, QoSGraphP lan can

return better and better plans. When the fix point is

reached, QoSGraphP lan terminates.

Algorithm 2 expands the TPG by one layer. Line
1 gets all the enabled actions for action layer i. The

enabled actions are those whose inputs are in the pre-

vious proposition layer i − 1. Each action has a tag t

which is the cost value. The Pi layer contains the effects

of Ai. We want to calculate the cost-to-come value for
each p ∈ Pi. If an action a produces p, the cost of p is

the maximum of the costs of all the preconditions of a

plus cost(a). If there are several actions to produce p,

we choose the action which can produce the minimal
cost-to-come. This is what mina means and this action

is recorded as the best parent of p. If there is more than

one parent producing the best cost-to-come value, we



8 Yuhong Yan, Min Chen

Algorithm 1 QoSGraphP lan(A, s0, g)

Data: G = 〈P0, A1, P1, ..., Ai, Pi〉 is a planning graph;
i=1;

1: repeat
2: G = ExpandGraph(G);
3: if g ⊆ Pi and g generated by non no-ops then
4: print ExtractP lan(G, g);
5: end if
6: i = i+ 1;
7: until Fixedpoint(G)
8: if g �⊆ Pi then
9: print ∅;
10: end if

Algorithm 2 ExpandGraph(〈P0, A1, ..., Ai, Pi〉)
1: Ai = {(a, t)|pre(a) ⊆ Pi−1, a ∈ A, t = cost(a)};
2: Pi = {(p, t)|∃a ∈ Ai : p ∈ effects(a), t =

mina (max(cost(pre(a))) + cost(a)), record a that gener-
ates t as the best parent of p};

3: for each a ∈ Ai do
4: link a with precondition arcs and negative effects arcs

to pre(a) and effect−(a) in Pi−1;
5: link a with each of its effects(a) in Pi;
6: end for
7: return 〈P0, A1, ..., Ai, Pi〉;

Algorithm 3 Fixedpoint(〈P0, A1, ..., Ai, Pi〉)
1: if Pi = Pi−1 then
2: return true;
3: else
4: return false;
5: end if

Algorithm 4 ExtractP lan(〈P0, A1, ..., An, Pn〉, g)
Data: U is the QoS value for the current best
plan

1: U ′ = max(cost(l)), ∀l ∈ g;
2: if U ′ > U then
3: return ∅
4: else
5: U = U ′;
6: end if
7: for i = n, . . . , 1 do
8: Select an action set πi = {a|a is the best parent of

l, ∀l ∈ g};
9: g = {pre(a)|∀a ∈ πi};
10: end for
11: return π

can choose either one, because both paths are equally
the best. Lines 4 and 5 create the arcs between actions

and propositions.

Algorithm 3 checks if a fixed point layer is reached.

Definition 6 A fixed point layer in a TPG is a layer

k such that for ∀i, i ≥ k, layer i is identical to layer k,

i.e.,Pi = Pk and Ai = Ak.

Pi = Pk means the vertex-tag pairs are identical

between Pi and Pk. Formally, ∀(p, t) ∈ Pi, (p, t) ∈ Pk

and ∀(p′, t′) ∈ Pk, (p
′, t′) ∈ Pi. Ai = Ak has similar

meaning. Theorem 2 in the following subsection shows

we just need to check whether Pi = Pi−1 at a layer i.

Algorithm 4 first calculates the cost for the whole

plan in U ′. For response time, it is the maximal cost
of the all the goals U ′ = max(cost(l)) (line 2). It uses

U to record the best cost value known so far. Only if

the new cost U ′ is lower than U , the algorithm extracts

the new plan (line 7-9), otherwise, it returns ∅ (line

3). Since when the TPG is built we record the best
parent of a proposition, the extraction of a new plan

consists in just retrieving the recorded best parent for

each involved proposition.

Example 3 Figure 3 shows the TPG for the problem in

Example 1. Each proposition node or action node is la-

beled by its tag, denoted as “QoS value/utility value”,

in the TPG. At proposition layers, propositions are sep-
arated by dashed lines. w1 at layer A1 has a tag 800/1

because the response time of w1 is 800, w.r.t the utility

value of 1. J is the output of w1 and only w1 at layer

A1 produces J . According to line 2 of Algorithm 2,

max(cost(pre(w1))) + cost(w1) = 800. Therefore, J at
layer P1 has the response time of 800, w.r.t the utility

value of 1. Table 3 lists the value of “QoS value/utility

value”for each proposition over P0 to P4. At the fixed-

point layer P4, the goal D has its best response time
600. Using either the QoS values or the utility val-

ues, the best solution is obtained through backtracking:

{w2;w4;w8;w7}.
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w w
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Fig. 3 The tagged planning graph for Example 1.

Use QoSGraphPlan for throughput as sin-
gle criterion. If we use QoS value according to Equa-

tions 3 and 4, line 2 in Algorithm 2 should use t =

mina(min(cost(pre(a)), cost(a))) to calculate the cost
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Table 3 The QoS value (numerator) and the utility value
(denominator) for a proposition at each proposition layer p ∈
Pi (i = 1, . . . , 4) in the TPG for Example 1

Proposition P0 P1 P2 P3 P4

A 0 0 0 0 0
B 0 0 0 0 0
C 0 0 0 0 0
D - - 900/1 900/1 600/0.29
E - 100/0 100/0 100/0 100/0
F - 100/0 100/0 100/0 100/0
G - - 200/0 200/0 200/0
J - 800/1 800/1 800/1 800/1
H - - 700/0.71 300/0 300/0

value. If we use utility value according to Equations 15

and 16, t = maxa(max(cost(pre(a)), cost(a))) should be

used. When we calculate the cost for the whole plan in

line 1 of Algorithm 4, U ′ = min(cost(l)), ∀l ∈ g should
be used, if using QoS value, or U ′ = max(cost(l)), ∀l ∈ g

should be used, if using utility value.

The QoSGraphPlan algorithm works well for response

time and throughput when they are considered as a sin-

gle criterion. QoSGraphPlan has polynomial time com-
plexity (proofs in the next section).QoSGraphPlan con-

siders the best plan as the plan with the lowest cost.

Practically, QoSGraphPlan searches for the best path

to generate each proposition in the goal, and puts all
the best paths together as a best solution. However, it

is not necessary to use all the best paths to generate the

goal propositions, because the QoS value for the whole

plan is determined by the worst path. It is possible that

we can relax the best paths to some paths that could
share some services, which means lower execution cost

with the same best response time or throughput. We

discuss the redundancy problem in Subsection 3.4. Re-

dundancy removal only make sense when multiple cri-
teria are considered. For single criterion optimization,

redundancy removal is not necessary.

3.3 The Properties of QoSGraphPlan

We present the properties of our QoSGraphPlan in this

subsection.

Theorem 1 The time to expand a TPG to layer k is

polynomial to the size of the planning problem.

Proof : for a planning problem (A, s0, g) has a total of

n propositions and m actions, then ∀i : |Pi| ≤ n. This

is because even though a proposition may be associated

with different tags, a proposition can only appear once
in Pi. Thus |Pi| ≤ n. Further, |Ai| ≤ m + n which

include possibly n no-op actions. Therefore, the size of

a TPG with k layers is |s0|+ (m+ 2n)k �.

Theorem 2 Every TPG has a fixed point layer k, which

is the smallest k such that Pk−1 = Pk.

Proof : Ak+1 depends only on Pk. Thus Pk−1 = Pk im-

plies Ak+1 = Ak, and consequently Pk+1 = Pk. There-

fore, for ∀i > k,Ai = Ak, Pi = Pk. �

Theorem 3 QoSGraphPlan has polynomial time com-

plexity.

Proof : Theorem 1 shows the time to expand a TPG
is polynomial to the size of the problem. Theorem 2

proves the expansion of a TPG stops at a fixed point.

Now we only need to prove the solution extraction by

Algorithm 4 is polynomial. The complexity to get a so-

lution by Algorithm 4 lies in retrieving the parents of
the goals on each layer, until reaching the initial layer.

As the best parents are recorded during the construc-

tion phase, it takes |g| ≤ |D| operations to |g| parents
at each layer. It takes n ≤ |A| loops to do the retrieval
on n layers. Therefore, QoSGraphPlan is polynomial. �

QoSGraphPlan is also an anytime algorithm. When

it has finished, the best response time value and a cor-

respondent solution are produced. If the problem has
no solution, our algorithm can report no solution, as

the graph plan algorithm.

Understand the scheduling of services over

TPG. When a service is associated with response time
in TPG, a question that arises is when can the services

on the next action layers start? Is it after finishing all

the services in the previous action layer? One should

understand that TPG constrains the input and output

dependency among the services. If the inputs of a ser-
vice are produced, this service can start. TPG does not

show the time constraints among the services. There-

fore, it is possible that a service starts before all the

services in the previous action layer are finished. We
use ; and ‖ to represent the connections of the services

in TPG. But this representation does not express the in-

put and output dependency, nor the starting sequences

in the sense of scheduling.

Example 4 Figure 4 shows a planning graph with six

services and their input and output parameters. The
response time of each service is shown in the underneath

parenthesis. For clarity, we do not draw the duplicated

services and the no-ops at the action layers. Assume we

want two goals d6 and d7. Service w5 can possibly start
at the time point 40 when w1 or w3 is not finished, as at

the time point 40 its input is ready. The best solution

to this problem is {(w1;w4)||(w3;w6)} and the optimal

response time is max(T (d6), T (d7)) = max(90, 250) =

250.
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d3
(70)
d4
(40)

d5
(50)

d1
(0)

d2
(0)

w1

w3

P0 A1 P1 A2 P2

w6

(70)

(50) (200)

(60)
w2
(40)

w5

d6
(90)

d7
(250)

w4
(20)

Fig. 4 An example to explain the scheduling of services over
TPG

3.4 Redundant Activities

QoSGraphPlan calculates the lowest cost for each propo-
sition, including the goals. QoSGraphPlan simply puts

all the best paths to produce the individual goals to-

gether as a solution. This is the best solution in the

sense that each goal is generated with the lowest cost.

However, it is not necessary to use all the best paths to
generate the goal propositions, because the QoS value

for the whole plan is determined by the worst path. It

is possible that the less optimal paths can still keep the

same QoS value. Please check the following example.

Example 5 Figure 5 shows a planning graph with three

services w1, w2, w3 and their input and output param-

eters. The initial layer has d1 and d2 and the goal layer
has two goals d3 and d5. There is one no-op action to

connect d3 in P1 and P2 layers. For clarity, we do not

draw the duplicated services at the action layers.

Fig. 5 An example to explain redundant services

By our TGP technique, the best value for d3 is 100

and the best path to produce it is {w1}. Similarly, the

best value for d5 is 220 and the best path to produce it

is {w2;w3}. QoSPlanGraph puts the two paths together

to get the solution {(w1||w2);w3}. The response time
for the whole plan is determined by the longest path

which is T=220. If we consider the whole plan, we do

not need to maintain the best path for d3. This means

we can remove w1 from the solution. After the removal,
we will get d3 at T=120 which does not change the

QoS value for the whole plan. We give a redundancy

definition as below.

Definition 7 A plan without redundant services is a

plan for which removing any action causes unsatisfied

goals or increased utility value.

Redundancy is due to the optimization done on a
single criterion. For a single criterion, redundancy re-

moval does not change the optimal QoS value for the

whole plan, thus is not necessary. However, redundancy

removal implies reducing execution price. A full discus-

sion on multiple criteria QoS optimization is in Sub-
section 3.6. In the rest of this subsection, we present

a redundancy removal algorithm which can remove re-

dundant services while keeping single QoS criterion for

a solution unchanged. Now, we focus on the solution
from QoSGraphPlan (Def. 8).

Definition 8 A solution tagged planning graph

STPG is a subgraph of TPG with all the actions in a

solution and the propositions connecting these actions.

A solution graph removes the actions which are not

in the solution and the propositions which do not con-

nect actions in the solution from TPG.

Definition 9 A reproduced proposition is a propo-

sition which has more than one parent action in a STPG.

Proposition 1 A necessary condition for an action a

to be redundant is that all its post conditions in STPG
are reproduced propositions, i.e.,∀p ∈ (post(a)∩STPG),

p is a reproduced proposition.

With Proposition 1, if all the post conditions of an

action a can also be produced by at least another action
in the STPG, it is possible to remove a from the plan.

However, this is only a necessary condition of redun-

dancy. Redundancy also depends on the QoS values of

the other actions. Please check the following example.

Example 6 Figure 6 is similar to Figure 5, only w4 is

added. The goals are {d5, d6}. The best value for d6 is

240 which is the highest value among the goals. The

best solution is {(w1||w2); (w3||w4)}. There are no re-

dundant services, because if any of them is removed,
either some goals are not satisfied or the QoS value in-

creases. If we change the QoS value for w4 to T=100,

the best value for d6 is 200. Then the QoS value for the

entire plan becomes 220. And w1 is redundant. This is
because if we remove w1, the QoS value for the whole

plan does not change.

Example 6 shows that not only the connection re-

lations but also the QoS values determine whether a
service is redundant. It is not possible to determine

whether a service is redundant except by trying it out.

AlgorithmRemoveRedundancy (Alg. 5) scans the STPG
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Fig. 6 An example to explain redundant services

from the goal layer towards the initial layer to probe

whether a service is redundant by removing it from
the STPG and computing whether the QoS value is

changed. It uses Proposition 1 to pick the possible re-

dundant services in a layer (line 2). The second condi-

tion in line 2 happens after some services are removed

which may leave some propositions that are not used by
any services (ref. description about line 11). We try to

remove a possible redundant service and compute the

QoS value for the goals (line 4). If the QoS value for the

plan changed, the removed service is added back (line
5-6). If not, the arcs pointing to it are removed (line

8). A proposition that has no descendants is removed

as well (line 11). A lean solution is returned in line 13.

Algorithm 5RemoveRedundancy(〈P0, A1, ..., An, Pn〉)
〈P0, A1, ..., An, Pn〉) is a STPG

1: for i = n, . . . , 1 do
2: A′

i = {a|∀a ∈ A, a is a possible redundant services ∨
a that has no descendants };

3: for ∀a ∈ A′
i do

4: remove a from the graph and calculate QoS values
for the goals;

5: if the QoS for the plan worsened then
6: add a back;
7: else
8: remove the arcs pointing to a;
9: end if
10: end for
11: remove ∀p ∈ Pi that has no descendants, remove the

arcs pointing to p;
12: end for
13: return 〈P0, A1, ..., An, Pn〉)

RemoveRedundancy scans the STPG once from the

goal layer towards the initial layer. Its complexity is

polynomial.

Theorem 4 The complexity of RemoveRedundancy is

polynomial.

Proof: It needs n loops to scan the STPG graph 〈P0, A1,
..., An, Pn〉 once. To remove one service a from a layer

i, we need to re-compute the QoS value from the layer

i to the top layer n, which needs one scan. Maximally

there are |A| services at a layer to remove. Therefore,

it needs maximally |A| × n loops to remove all the ser-

vices at a layer. Therefore, we need |A|×n×n loops in

total. n’s upper bound is |A|. Therefore, the complexity

of RemoveRedundancy is |A|3. �
RemoveRedundancy results in a lean solution with-

out redundant services. In the cases that there are mul-

tiple removable services, RemoveRedundancy removes

the one it confronts first. Which service is the best to
remove is beyond discussion in this subsection, because

a second QoS criterion should be used to find the opti-

mal one.

For response time and throughput we have the fol-

lowing proposition.

Proposition 2 For response time and throughput
as a single criterion, Algorithms 1 to 5 can get com-

position solutions without redundancy, as well as the

globally optimized QoS value in polynomial time.

3.5 Calculate the Other Single QoS Criteria

The previous subsection calculates the optimal response

time and throughput when they are used as a single cri-

terion. In this section, we show how to calculate exe-

cution price, successful execution rate, and avail-

ability, when they are used as a single criterion. Dif-
ferent from response time and throughput, each ser-

vice contributes to these QoS values of the plan equally,

regardless of sequential or parallel connections. Please

check the following example.

Example 7 Reuse Figure 6 for execution cost. Assume

all the numbers represent the execution costs. We can

compute ∀p ∈ post(a), for execution price cost(p) =

max(cost(pre(a)) + cost(a). QoSGraphPlan reports a

best solution {(w1||w2); (w4||w3)} for a best execution
cost 460. If we use w2 to generate both d3 and d4 and

remove w1 from the solution, we reduce the execution

cost to 360.

Example 7 shows that if we use QoSGraphPlan for
execution price, it may not get the correct optimal QoS

value. This is because QoSGraphPlan calculates the

best path for each goal proposition independently and

puts together these paths as the optimal solution. For

the criteria in this subsection, all the services in the so-
lution contribute to the QoS of the whole plan equally.

Therefore, removal of any services affects the QoS of

the whole plan.

We can still use RemoveRedundancy to remove re-
dundancy. The result of RemoveRedundancy is still a

lean solution. However,RemoveRedundancy removes the

redundant services in the sequence of inspection. When
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there are choices to remove different services,RemoveRe-

dundancy does not do optimization. Therefore, the so-

lution obtained after RemoveRedundancy may not have

globally optimized the QoS value either. We have the

following proposition.

Proposition 3 For execution price, reputation,
successful execution rate, and availability as single

criteria, Algorithms QoSGraphPlan and RemoveRedun-

dancy can get composition solutions without redundancy
in polynomial time, but they do not guarantee to get a

globally optimized QoS value.

In order to extend our method to be able to cal-
culate the correct optimal QoS value for execution

price, reputation, successful execution rate and

availability, we modify the tags of the propositions to

record all the possible paths. We use multiple tags for

one proposition p. A tag tj represents one execution
path that leads to p, and has a list of parents and a

QoS value tj = ({tj .parentk}, tj .v). Please check the

following example.

Example 8 Figure 7 shows multiple tags are used for
calculating execution price on a TPG. Each tag of a

proposition corresponds to one path leading to the propo-

sition. A tag records the parent actions and the cost to

generate the proposition.

d6

d5

d3

d4

d1

d2

w1

w2

P0 A1 P1 A2 P2

w3

(100)

(120) (100)

(140)
w4

{( , 0)}

{( , 0)}

{({w1}, 100),
({w2}, 120)}

{({w2}, 120)}

{({w1, w4}, 240),
({w2, w4}, 260)}

{({w1, w3}, 220)}

Fig. 7 An example to explain multiple tags.

In the multiple tag situation, we use Algorithm 6

to replace Algorithm 2 for expanding the TPG. Algo-

rithm 6 calculates all the tags in line 2, which is the

only difference to Algorithm 2.

We call the extended versionQoSGraphPlanExt which
uses Algorithms 1, 6, 3, and 4.QoSGraphPlanExt probes

all the combinations, which can be huge. Assume a

proposition at layer i has k tags in average and a service

can be enabled by l paths from layer i. Then an output
of this service has k × l tags. Therefore, a proposition

at layer i + 1 has k × l tags. If the graph expands to

i+2 layer, a proposition at i+2 layer has k× l2 tags. If

Algorithm 6 ExpandGraphMultiTag(〈P0, A1, ..., Ai,

Pi〉, g)
1: Ai = {(a, t)|pre(a) ⊆ Pi−1, a ∈ A, t = cost(a)};
2: Pi = {(p, {tj})|∃a ∈ Ai : p ∈ effects(a), {tj} is all the

possible tags};
3: for each a ∈ Ai do
4: link a with precondition arcs to pre(a) in Pi−1;
5: link a with each of its effects(a) in Pi;
6: end for
7: return 〈P0, A1, ..., Ai, Pi〉;

a graph has n layers and k = 1 at layer 0, a proposition

has ln tags at layer n. l and n are bounded by |A| (A is

the set of services). Therefore, QoSGraphPlanExt has

exponential complexity. We propose a beam search al-
gorithm in Subsection 3.7 to solve the exponential prob-

lem. We have the following proposition for the proper-

ties of QoSGraphPlanExt.

Proposition 4 QoSGraphPlanExt gets a composition

solution without redundant services and with the best
QoS value for execution price, reputation, successful ex-

ecution rate, and availability as single criterion in ex-

ponential time.

Example 9 Suppose the quality criteria given in Table 1

is the execution cost. Figure 8 shows the multiple

tags for each p ∈ Pi (i = 0, . . . , 4) in the expanded
tagged planning graph for Example 1. At proposition

layers in the TPG, propositions are separated by dashed

lines. The tag of J at P1 is {({w1}, 800/1)} because

there is only one execution path {w1} up to layer P1

that leads to J . The best solution is {w2;w4;w8;w7}
with the minimal execution cost of 600, w.r.t. the utility

value of 0.29.

3.6 Under Multiple Criteria

When we need to consider multiple QoS criteria, we

aggregate them into a utility value according to Equa-
tion 21. We use the utility values to compare the dif-

ferent paths. As different QoS criteria have different

formulas to calculate their values, we need to calcu-

late the individual QoS values separately at each search

step, before aggregating them. Therefore, for a proposi-
tion in the TPG, the label can be as shown in following

example.

Example 10 Assume a proposition p has two paths to

reach {w1, w2} and {w1, w3, w4}. Table 4 shows the

QoS values and the aggregated utility value for the two
paths. We can represent the tags as {({w1, w2}, 10, 20,
30, . . . , 0.6), ({w1, w3, w4}, 15, 20, 35, . . . , 0.8)}. Compared

by their utility values, {w1, w2} is better than {w1, w3, w4}.
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Fig. 8 The multiple tags used for optimizing execution cost.

Table 4 An example of multiple criteria tag

paths Q1 Q2 Q3 . . . Utility
{w1, w2} 10 20 30 . . . 0.6
{w1, w3, w4} 15 20 35 . . . 0.8

As we try all the combinations, we can get the best
solution which has no redundant services to remove at

the end. When the combinations are huge, we can use

heuristics to tackle the problem as developed in the next

subsection.

3.7 BeamQoSGraphPlan with beam search

To solve the combination explosion problem, we incor-
porate QoSGraphPlan with beam search. Beam search

uses breadth-first search to build its search tree [31]. At

each level of the tree, it generates all successors of the

states at the current level, sorting them in increasing or-
der of heuristic cost. However, it only stores a predeter-

mined number of states at each level (called the beam

width). The greater the beam width, the fewer states

are pruned. With an infinite beam width, no states are

pruned and beam search is identical to breadth-first
search. The beam width bounds the memory required

to perform the search. Since a goal state could poten-

tially be pruned, beam search sacrifices completeness

(the guarantee that an algorithm will terminate with
a solution, if one exists) and optimality (the guarantee

that it will find the best solution).

We use beam search to keep only a few best tags for
each proposition. We propose a heuristic function in

our application as denoted by Equation 35. The heuris-

tic function is a weighted sum of two functions. The

first function U({tj .parents}) is the utility value of the

path.
∣∣∣⋃a∈tj .parents

effect(a) ∩ g
∣∣∣ is the number of goal

propositions that the outputs of services on the path

can satisfy.
|g|−

∣
∣
∣
⋃

a∈tj .parents effect(a)∩g
∣
∣
∣

|g| is the percent-

age of unsatisfied goals, which acts as an estimation of
the distance from current proposition to a goal state. A

tj with lower heuristic value is a better choice. Suppose

K is the beam width, we use QK
p represent the top K

tags sorted by h(tj).

BeamQoSGraphPlan uses beam search to keep only

top K tags for each search step. K is the beam width.

We use Algorithm 7 to replace Algorithm 2 to expand

the plan graph. Line 2 includes the function to select
the top K tags for a proposition. Therefore, BeamQoS-

GraphPlan includes Algorithm 1, 7, 3, and 4.

|h(tj)| = k1 ×
∑

Ui({tj .parents})

+k2 ×
|g| −

∣∣∣⋃a∈tj .parents
effect(a) ∩ g

∣∣∣
|g|

where k1 + k2 = 1 (35)

Algorithm 7ExpandGraphBeamWidth(〈P0, A1, ..., Ai,

Pi〉, g)
1: Ai = {(a, t)|pre(a) ⊆ Pi−1, a ∈ A, t = cost(a)};
2: Pi = {(p,QK

p )|∃a ∈ Ai : p ∈ effects(a) , QK
p is the set

of top K tags associated with proposition p};
3: for each a ∈ Ai do
4: link a with precondition arcs to pre(a) in Pi−1;
5: link a with each of its effects(a) in Pi;
6: end for
7: return 〈P0, A1, ..., Ai, Pi〉;
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BeamQoSGraphPlan can be used to solve the tag

explosion problem for both single criterion and multiple

criteria problem. It is a heuristic algorithm. It does not

guarantee optimal QoS and its solution may include

redundant services.

3.8 Summary of the Algorithms Developed

As a summary, we list the properties of all the algo-

rithms in this paper as below.

QoSGraphPlan:

– QoSGraphP lan uses Algorithms 1, 2, 3, and 4 to
first construct a TPG and then extract a solution

from the TPG.

– Best used for throughput and response time as sin-

gle criterion (best QoS value, with redundant ser-

vices).
– If used for execution price, reputation, successful ex-

ecution rate, and availability as single criterion, its

solution may have redundant services and may not

have the optimal QoS value.
– Complexity: polynomial.

– Use RemoveRedundancy (Alg. 5) to remove redun-

dancy.

QoSGraphPlanExt:

– QoSGraphP lanExt uses Algorithm 1, 6, 3, and 4 to

first construct a TPG with multiple tags and then
extract a solution from the multiple-tag TPG.

– Best used for execution price, reputation, successful

execution rate, and availability as single criterion.

– Complexity: exponential.
– Solution does not have redundant services and guar-

antees the optimal QoS value.

BeamQoSGraphPlan:

– BeamQoSGraphP lan uses Algorithms 1, 7, 3, and 4

to incorporate QoSGraphP lan with beam search.

– Best used for execution price, reputation, successful
execution rate, and availability as single criterion,

or all the multiple criteria cases.

– Heuristic algorithm.

– Solution may have redundant services and may not

have the optimal QoS value.
– Use RemoveRedundancy (Alg. 5) to remove redun-

dancy.

RemoveRedundancy:

– RemoveRedundancy as presented in Algorithm 5

removes redundant services from a solution to ob-
tain a lean solution without redundancy.

– Used for redundant service removal for single or

multiple criteria.

– No optimization on which service to remove.

– No guarantee to get the optimal QoS value.

4 Empirical Results

4.1 Data set

The data set used in our evaluation is generated by
the test set generator in Web Service Challenge 2009

(WSC09) [2]. The data generator generates a service

composition problem through the generation of Web

services in a WSDL file, ontology concepts in an OWL
file, and QoS values for Web services in a WSLA file.

The WSDL file is annotated with a simple extension

mechanism to link to the ontology definition in the

OWL file, instead of using full-fledged SAWSDL [28].

The Web service parameters are instances (“things” in
an OWL file) of the semantic concepts in OWL files.

The user can control the generated dataset by speci-

fying the number of services, the number of concepts,

and the number of solutions and their length (in ac-
tion steps). Given those parameters, the generator ran-

domly creates a set of concepts and selects a subset of

these concepts as the goals. Then, the generator returns

several groups of solutions at given lengths. When gen-

erating a group of solutions, the generator prepares a
set of inputs and outputs at each time step. A set of

services are then generated, each of which can inde-

pendently use these inputs/outputs. Thus, a group of

solutions are generated. Within a group, some services
can directly substitute others as they use the same in-

put set and produce the same outputs. The generator

randomly adds a lot of “padding” Web services around

the services used in solutions. These “padding” services

do not have the outputs that can be used by the ser-
vices within a solution. Each Web service in the data

set has a throughput and a response time defined in a

WSLA file.

4.2 Implementation

We have implemented all the algorithms presented in

this paper. We have also developed a verification tool to

check the correctness of the obtained solutions. We have

used a technique similar to those developed in [33] to
flatten the semantics and index the data. This has

proved to be important in speeding up the algorithms.

It works as the following example.

In the example in Figure 9, there are 4 concepts.
“Machine” subsumes the concept “Vehicle”, and “Ve-

hicle” subsumes “Car” and “Motorcycle”. Web service

A has an output “Ford 1986 Red” which is an instance
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of “Car” and Web service B accepts an input “An old

Vehicle” which is an instance of “Vehicle”. By checking

the semantic relationships, we can know that the out-

put of Web service A can be acceptable by Web service

B because “Car” is also a kind of “Vehicle”.

OWL

MotorcycleCar

Vehicle

Machine

An old 
vehicle

GM 1985 
Blue

Ford 1986 
Red

Yamaha 
2002

Thing

Concept

Web Service B

Input: An old vehicle
Output: ...

Web Service A

Input: ...
Output: Ford 1986 Red

Fig. 9 Semantic Relationship Between Web Service In-
put/Output parameters

Service Outputs of the Services
A Car, Vehicle, Machine
B . . .
... ...

Input Concept Services
Car . . .

Vehicle B
Machine ...

Table 5 Top: Example of the Output Indexing Table; Bot-
tom: Example of the Reverse Indexing Table

Rather than checking the relationship map in OWL

every time we need to find a list of invokable services,
we build two indexing tables as shown in Table 5. The

indexing tables are stored as hash tables so that we can

look up the services or the parameters in constant time.

4.3 Empirical Results

As the WSC09 data sets and the results are posted

at [2], we are able to compare our results with the first

place winning paper [14] and the second place winning
paper [34] in terms of response time and throughput of

the solutions. WSC09 has five data sets. Dataset 1 has

500 services and 5,000 concepts. Dataset 5 has 15,000

services and 100,000 concepts. The other datasets have
4,000-8,000 services and 40,000-60,000 concepts. Every

data set has a WSLA file to describe response time

and throughput of services. Other QoS values, such

as execution price and reputation, are not available.

For the experimental purpose, we take response time

and throughput as some other QoS values. We run

the experiments on a laptop with Intel(R) Core(TM)2

2.60GHz Duo CPU and 3.00GB of RAM. The algo-
rithms are implemented in Java.

In Table 6, we useQoSGraphPlan to work on through-
put and response time as single criterion. To refine the

solutions, we use RemoveRedundancy to remove redun-

dant services. We show whether the correct best QoS

values can be calculated (the checkmarks), how many

services are in the solution (the lines of #Services), and
how many services are redundant (lines of #Redunt).

We can see that QoSGraphPlan can find the correct

QoS values for all the five datasets, as the first place

winner does. Our method generates solutions without
redundant services or very few redundant services (≤ 4)

in the solutions on all data sets.

The first place winners [14] generate zero redun-
dant services in some datasets, but much more redun-

dant services in the other datasets, especially when they

compute throughput. [14] uses Dijkstra’s principle to

calculate the optimal value while searching all compo-

sition alternatives. It uses a table to record all the en-
abled services at a time step. All the enabled services

and parameters have a current best quality value, which

is a similar idea to ours. However, planning graph is a

much more matured graph designed for planning than
the graph in [14]. For example, for a planning prob-

lem, one should be able to reuse the same action mul-

tiple times in the plan, otherwise one may not find an

existing solution. [14] seems to filter out this possibil-

ity because the actions are not reused in their graph.
Also, without using the concept of no-op, [14]’s graph

loses the information about which services could have

produced a proposition, which is important in order to

remove the redundant services.

The second place winners [34] fail to find the cor-

rect QoS for Dataset4 and produce comparably more

redundant services on all the datasets than our method
and the first place winner. It is because [34] uses a sim-

ple breadth first search which could get only sequential

solutions. Therefore, [34] is not able to get the optimal

QoS value correctly, if some services can be concur-

rently executed.

According to the comparison, QoSGraphPlan algo-

rithm can find a solution that contains fewer redundant
services and has the optimal throughput or response

time on all data sets. RemoveRedundancy algorithm

working on an optimal solution makes the solution con-

tain no redundant services.

In Table 7, we show the composition time with re-

dundant services (Comp T1, time used by QoSGraph-
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Dataset1 Dataset2 Dataset3 Dataset4 Dataset5
Resp. Time �/�/� �/�/� �/�/� �/�/� �/�/�
#Services 8/5/18 21/20/52 10/10/18 42/93/133 32/32/4772
#Redunt. 3/0/13 1/0/32 0/0/8 2/53/93 0/0/4740
Throughput �/�/� �/�/� �/�/� �/�/- �/�/�
#Services 5/7/9 21/25/36 30/26/81 65/73/159 32/45/4772
#Redunt. 0/2/4 1/5/16 4/0/55 3/11/94 0/13/4740

Table 6 Results with the WSC09 Data Sets: our method/Paper [14]/Paper [34]

Dataset1 Dataset2 Dataset3 Dataset4 Dataset5
Comp T1 (ms) 90/75 470/449 531/535 2209/4176 1787/1951
Comp T2 (ms) 157/105 517/494 533/1502 2248/8318 1791/2028

Table 7 Our composition time: T1 with redundant service (Resp. Time/Throughput); T2 without redundant services (Resp.
Time/Throughput).

Solution Dataset1 Dataset2 Dataset3 Dataset4 Dataset5
Before removing Total execution price 80000 344000 82000 729000 319000

redundant services #Services 7 38 12 85 45
Comp T1 (ms) 219 2740 1675 5977 5032

After removing Total execution price 67000 208000 62000 339000 218000
redundant services #Services 5 20 10 42 32

Comp T2 (ms) 225 2744 1678 5987 5045

Table 8 Total execution price on the WSC09 Data Sets

Plan) and without redundant services (Comp T2, time

used by QoSGraphPlan and RemoveRedundancy) for

both response time and throughput. The composition

time T1 and T2 are the average of 10 runs, since we run

the same experiment over each dataset 10 times. We can
see that the computation time of removing redundant

services, i.e. T2-T1, is comparatively small compared

to the time spent in finding a solution with redundant

services (Comp T1) on all data sets. As no source code
is provided by the WSC09 teams, we cannot compare

our composition time with theirs’ on one machine.

In Table 8, we use BeamQoSGraphPlan on execu-

tion price as single criterion2. We show the solution

with the minimal total execution price for each data

set, how many services are in the solution (the lines of
#Services) and composition time before and after re-

moving redundant services. We use RemoveRedundancy

to remove redundant services from the solution. As for

the heuristic function in BeamQoSGraphPlan, we only

consider the QoS of execution price. In Equation 35, we
set k1 = 0.8, k2 = 0.2, and beam width K = 5 for the

heuristic function .

According to the results in Table 8, BeamQoSGraph-

Plan algorithm can find a solution with the minimal

execution price on all datasets. RemoveRedundancy al-

gorithm can remove redundant services from the solu-

2 We take the value of throughput of a service as its exe-
cution price for this experiment.

tion. Redundancy removal reduces the total execution

price of a solution.

In Table 9, we use BeamQoSGraphPlan on execu-
tion price and reputation as multiple criteria3. In Equa-

tion 21, we set W1 = 0.5 for the execution price and

W2 = 0.5 for the reputation to calculate the aggre-

gated utility value of execution price and reputation.

In Equation 35, we set k1 = 0.8, k2 = 0.2 and beam
width K = 5 to calculate the heuristic function. Ta-

ble 9 shows the utility value, the number of services

(the lines of #Services) in the best solution, and the

composition time before and after removing redundant
services (Comp T1 and Comp T2 respectively). The

composition time T1 and T2 are the average of 10 runs,

since we run the same experiment over each dataset 10

times. We use RemoveRedundancy to remove redundant

services from the solution.

According to the results in Table 9, BeamQoSGraph-

Plan algorithm can find the solution with the optimal

aggregated QoS values of execution price and reputa-
tion on all datasets. RemoveRedundancy algorithm can

remove redundant services from the optimal solutions.

3 We take the value of throughput of a service as its exe-
cution price, and the value of response time as its reputation
for this experiment.
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Solution Dataset1 Dataset2 Dataset3 Dataset4 Dataset5
Utility value 0.391 0.393 0.327 0.405 0.357

Before removing #Services 10 27 12 83 44
redundant services Comp T1 (ms) 323 4086 1905 7801 5190

Total execution price 93000 228000 92000 761000 352000
Average reputation 331 307.04 351.67 313.73 330.68

Utility value 0.391 0.374 0.314 0.392 0.345
After removing #Services 10 18 10 43 34

redundant services Comp T2 (ms) 326 4089 1908 7811 5204
Total execution price 93000 151000 68000 381000 244000
Average reputation 331 324.45 342 318.37 321.47

Table 9 Result considering aggregated value of execution price and reputation on the WSC09 Data Sets

5 Related Work

We study a QoS-aware service composition problem
that is to connect SOAP services into a network by

matching their parameters to achieve some business

goals so that the resulted network can satisfy func-

tional goals and QoS optimization at the same time.

This problem is also called vertical composition in [12].

Another QoS related problem is the service selection

problem [39,37]. Different from QoS-aware service com-
position, this kind of problem has a predefined business

process template and each task in the business process

can be fulfilled by a set of services with varied QoS.

The objective is to select a set of services that can op-

timize the QoS of the entire process. This problem is
also called horizontal composition in [12]. Please no-

tice in both problems, only SOAP services, i.e.,services

without internal behavior, are used.

For both problems, people need some methods to

compare the services under multiple QoS criteria. Most

papers use some multiple criteria decision-making (MCDM)
techniques to aggregate multi-criteria QoS values into

an overall score [39,37]. Our paper follows this method.

A skyline technique can be used to calculate a set of

dominating services [4], instead of getting one best ser-

vice based on the overall score. [36] considers computing
service skyline from uncertain QoS values. These tech-

niques are listed in Table 10.

To solve the QoS-aware composition problem, peo-

ple have used optimization algorithms like Dynamic

Programming (DP) [14,15] and Integer Programming

(IP) [9] to find a QoS optimized solution. [14,15] build

a graph of service connections and use DP on the graph.
They combine all the optimal paths to reach individ-

ual functional goals to be the optimal solution. This

kind of optimal solutions can contain multiple redun-

dant services that removing them does not worsen the
QoS value. If considering redundant services can make

the plan more expensive, removing them is needed. [15]

does not consider the possibility of reusing the same

service in a plan. Maybe the authors are more capable

in optimization but not so familiar with planning. IP

is based on a given linearized formulation. It involves
proper assignment of variables and some tweaks may be

needed to make the relation among the variables linear.

People can use standard IP solver to find a solution.

If modeling properly, IP can avoid the problem of re-

dundant services. IP is good at calculating the solution
from scratch. IP is generally NP-hard, though some IP

problems are solvable in polynomial time. Our method

is based on planning algorithm and combine planning

with optimization. It takes the advantage of known the-
ories in both planning and optimization. For example,

the actions are reusable in planning and the redun-

dant services have no meaning in planning, while us-

ing only optimization might forget these features. Our

research studies the individual criteria more carefully
and find out that response time and throughput op-

timization can be solved in polynomial time, which is

not reported in literatures using IP. Another advantage

to introduce planning graph is the possibility to reuse
the graph to answer different queries very fast without

calculating composition from scratch. In our previous

research [35], we developed such a technique without

QoS. We hope this paper and [35] can pave the road

to QoS aware plan adaptation. The techniques to solve
the QoS-aware composition problem as discussed above

are listed in Table 10.

The service selection problem is a combinatorial op-

timization problem. Integer programming is a power-

ful tool to solve it [39]. As this is an NP-complete

problem, heuristic search can be applied to search the

problem space only partially [37,1]. Genetic Algorithm
(GA) is another way to partially search the problem

space [6]. And the advantage of GA compared to inte-

ger programming is that GA can deal with nonlinear

constraints of QoS requirements. [12] models the prob-
lem as a constraint satisfaction problem (CSP). Rooted

on AI, CSP can model hard constraints, i.e.,the func-

tional requirements in ASC, and soft constraints, i.e.,
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Multiple QoS Overall score [39,37]
criteria Skyline [4,36]

QoS-aware Service Composition DP [14,15], IP [9],
(functional+QoS) our method: planning+optimization
Service selection CSP [12,18], IP [39], GA [6], heuristic search [37,1]

Table 10 QoS related service composition methods

optimizing QoS in ASC. The penalty of violating a hard

constraint is infinite, vs a finite penalty to sub-optimal

QoS values. Therefore, the CSP algorithms search for a
solution which minimizes the penalty. [12] proposes an

interactive algorithm for solving the problem with user

inputs. Their model can be used to solve the vertical

composition problem as well. [18] uses fuzzy constraints
to model service clients and providers’ preferences and

services can communicate with each other to find an

optimal solution in a distributed manner. All the tech-

niques to solve service selection problem as discussed

above are listed in Table 10.

6 Conclusion

In this paper, we present a new way to solve the QoS-

aware service composition problem. We use Dijkstra’s

algorithm on the planning graph to optimize the QoS,

satisfying the functions goals at the same time. We
extend Dijkstra’s algorithm to handle multiple source

graphs like the planning graph. We discuss how to cal-

culate the optimal QoS values for different single crite-

rion problems, as well as multiple criteria problem. For

throughput and response time as single criterion, we
have a polynomial algorithm to get the optimal QoS

value, and a solution without redundant services. For

the other single criterion problems and the multiple cri-

teria problems, we have only an exponential algorithm.
In this case, we use beam search which is a heuristic

algorithm to get feasible solutions.
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