
Fast Algorithms for Frequent
Itemset Mining Using FP-Trees

Gösta Grahne, Member, IEEE, and Jianfei Zhu, Student Member, IEEE

Abstract—Efficient algorithms for mining frequent itemsets are crucial for mining association rules as well as for many other data

mining tasks. Methods for mining frequent itemsets have been implemented using a prefix-tree structure, known as an FP-tree, for

storing compressed information about frequent itemsets. Numerous experimental results have demonstrated that these algorithms

perform extremely well. In this paper, we present a novel FP-array technique that greatly reduces the need to traverse FP-trees, thus

obtaining significantly improved performance for FP-tree-based algorithms. Our technique works especially well for sparse data sets.

Furthermore, we present new algorithms for mining all, maximal, and closed frequent itemsets. Our algorithms use the FP-tree data

structure in combination with the FP-array technique efficiently and incorporate various optimization techniques. We also present

experimental results comparing our methods with existing algorithms. The results show that our methods are the fastest for many

cases. Even though the algorithms consume much memory when the data sets are sparse, they are still the fastest ones when the

minimum support is low. Moreover, they are always among the fastest algorithms and consume less memory than other methods when

the data sets are dense.

Index Terms—Data mining, association rules.

�

1 INTRODUCTION

EFFICIENT mining of frequent itemsets (FIs) is a funda-
mental problem for mining association rules [5], [6], [21],

[32]. It also plays an important role in other data mining
tasks such as sequential patterns, episodes, multidimen-
sional patterns, etc. [7], [22], [17]. The description of the
problem is as follows: Let I ¼ fi1; i2; . . . ; ing be a set of items
andD be a multiset of transactions, where each transaction �
is a set of items such that � � I. For anyX � I, we say that a
transaction � contains X if X � � . The set X is called an
itemset. The set of all X � I (the powerset of I) naturally
forms a lattice, called the itemset lattice. The count of an
itemset X is the number of transactions in D that contain X.
The support of an itemset X is the proportion of transactions
inD that containX. Thus, if the total number of transactions
in D is n, then the support of X is the count of X divided by
n � 100 percent. An itemset X is called frequent if its support
is greater than or equal to some given percentage s, where s
is called the minimum support.

When a transaction database is very dense and the
minimum support is very low, i.e., when the database
contains a significant number of large frequent itemsets,
mining all frequent itemsets might not be a good idea. For
example, if there is a frequent itemset with size l, then all
2l nonempty subsets of the itemset have to be generated.
However, since frequent itemsets are downward closed in the
itemset lattice, meaning that any subset of a frequent
itemset is frequent, it is sufficient to discover only all the
maximal frequent itemsets (MFIs). A frequent itemset X is
called maximal if there does not exist frequent itemset Y

such that X � Y . Mining frequent itemsets can thus be
reduced to mining a “border” in the itemset lattice. All
itemsets above the border are infrequent and those that are
below the border are all frequent. Therefore, some existing
algorithms only mine maximal frequent itemsets.

However, mining only MFIs has the following deficiency:
From an MFI and its support s, we know that all its subsets
are frequent and the support of any of its subset is not less
than s, but we do not know the exact value of the support.
For generating association rules, we do need the support of
all frequent itemsets. To solve this problem, another type of
a frequent itemset, called closed frequent itemset (CFI), was
proposed in [24]. A frequent itemset X is closed if none of its
proper supersets have the same support. Any frequent
itemset has the support of its smallest closed superset. The
set of all closed frequent itemsets thus contains complete
information for generating association rules. In most cases,
the number of CFIs is greater than the number of MFIs,
although still far less than the number of FIs.

1.1 Mining FIs

The problem of mining frequent itemsets was first
introduced by Agrawal et al. [5], who proposed algorithm
Apriori. Apriori is a bottom-up, breadth-first search
algorithm. It uses hash-trees to store frequent itemsets and
candidate frequent itemsets. Because of the downward
closure property of the frequency pattern, only candidate
frequent itemsets, whose subsets are all frequent, are
generated in each database scan. Candidate frequent item-
set generation and subset testing are all based on the hash-
trees. In the algorithm, transactions are not stored in the
memory and, thus, Apriori needs l database scans if the size
of the largest frequent itemset is l. Many algorithms, such as
[28], [29], [23], are variants of Apriori. In [23], the kDCI
method applies a novel counting strategy to efficiently
determine the itemset supports without necessarily per-
forming all the l scans.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 10, OCTOBER 2005 1347

. The authors are with the Department of Computer Science, Concordia
University, 1455 De Maisonneuve Blvd. West, Montreal, Quebec, H3G
1M8, Canada. E-mail: {grahne, j_zhu}@cs.concordia.ca.

Manuscript received 28 Apr. 2004; revised 27 Nov. 2004; accepted 11 Mar.
2005; published online 18 Aug. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0123-0404.

1041-4347/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

In [14], Han et al. introduced a novel algorithm, known as
the FP-growth method, for mining frequent itemsets. The
FP-growth method is a depth-first search algorithm. In the
method, a data structure called the FP-tree is used for
storing frequency information of the original database in a
compressed form. Only two database scans are needed for
the algorithm and no candidate generation is required. This
makes the FP-growth method much faster than Apriori. In
[27], PatriciaMine stores the FP-trees as Patricia Tries [18]. A
number of optimizations are used for reducing time and
space of the algorithm. In [33], Zaki also proposed a depth-
first search algorithm, Eclat, in which database is “verti-
cally” represented. Eclat uses a linked list to organize
frequent patterns, however, each itemset now corresponds
to an array of transaction IDs (the “TID-array”). Each
element in the array corresponds to a transaction that
contains the itemset. Frequent itemset mining and candidate
frequent itemset generation are done by TID-array intersec-
tions. Later, Zaki and Gouda [35] introduced a technique,
called diffset, for reducing the memory requirement of TID-
arrays. The diffset technique only keeps track of differences
in the TID’s of candidate itemsets when it is generating
frequent itemsets. The Eclat algorithm incorporating the
diffset technique is called dEclat [35].

1.2 Mining MFIs

Maximal frequent itemsets were inherent in the border
notion introduced by Mannila and Toivonen in [20].
Bayardo [8] introduced MaxMiner which extends Apriori
to mine only “long” patterns (maximal frequent itemsets).
Since MaxMiner only looks for the maximal FIs, the search
space can be reduced. MaxMiner performs not only subset
infrequency pruning, where a candidate itemset with an
infrequent subset will not be considered, but also a
“lookahead” to do superset frequency pruning. MaxMiner
still needs several passes of the database to find the
maximal frequent itemsets.

In [10], Burdick et al. gave an algorithm called MAFIA to
mine maximal frequent itemsets. MAFIA uses a linked list
to organize all frequent itemsets. Each itemset I corre-
sponds to a bitvector; the length of the bitvector is the
number of transactions in the database and a bit is set if its
corresponding transaction contains I, otherwise, the bit is
not set. Since all information contained in the database is
compressed into the bitvectors, mining frequent itemsets
and candidate frequent itemset generation can be done by
bitvector and-operations. Pruning techniques are also used
in the MAFIA algorithm.

GenMax, another depth-first algorithm, proposed by
Gouda and Zaki [11], takes an approach called progressive
focusing to do maximality testing. This technique, instead of
comparing a newly found frequent itemset with all
maximal frequent itemsets found so far, maintains a set of
local maximal frequent itemsets. The newly found FI is only
compared with itemsets in the small set of local maximal
frequent itemsets, which reduces the number of subset tests.

In our earlier paper [12], we presented the FPmax
algorithm for mining MFIs using the FP-tree structure.
FPmax is also a depth-first algorithm. It takes advantage of
the FP-tree structure so that only two database scans are
needed. In FPmax, a tree structure similar to the FP-tree is
used for maximality testing. The experimental results in [12]

showed that FPmax outperforms GenMax and MAFIA for
many, although not all, cases.

Another method that uses the FP-tree structure is AFOPT
[19]. In the algorithm, item search order, intermediate result
representation, and construction strategy, as well as tree
traversal strategy, are considered dynamically; this makes
the algorithm adaptive to general situations. SmartMiner
[36], also a depth-first algorithm, uses a technique to
quickly prune candidate frequent itemsets in the itemset
lattice. The technique gathers “tail” information for a node
in the lattice. The tail information is used to determine the
next node to explore during the depth-first mining. Items
are dynamically reordered based on the tail information.
The algorithm was compared with MAFIA and GenMax on
two data sets and the experiments showed that SmartMiner
is about 10 times faster than MAFIA and GenMax.

1.3 Mining CFIs

In [24], Pasquier et al. introduced closed frequent itemsets.
The algorithm proposed in the paper, A-close, extends
Apriori to mine all CFIs. Zaki and Hsiao [34] proposed a
depth-first algorithm, CHARM, for CFI mining. As in their
earlier work in [11], in CHARM, each itemset corresponds
to a TID-array, and the main operation of the mining is
again TID-array intersections. CHARM also uses the diffset
technique to reduce the memory requirement for TID-array
intersections.

The algorithm AFOPT [19] described in Section 1.2 has
an option for mining CFIs in a manner similar to the way
AFOPT mines MFIs.

In [26], Pei et al. extended the FP-growth method to a
method called CLOSET for mining CFIs. The FP-tree
structure was used and some optimizations for reducing
the search space were proposed. The experimental results
reported in [26] showed that CLOSET is faster than CHARM
and A-close. CLOSET was extended to CLOSET+ by Wang
et al. in [30] to find the best strategies for mining frequent
closed itemsets. CLOSET+ uses data structures and data
traversal strategies that depend on the characteristics of the
data set to be mined. Experimental results in [30] showed
that CLOSET+outperformed all previous algorithms.

1.4 Contributions

In this work, we use the FP-tree, the data structure that was
first introduced in [14]. The FP-tree has been shown to be a
very efficient data structure for mining frequent patterns
[14], [30], [26], [16] and its variation has been used for
“iceberg” data cube computation [31].

One of the important contributions of our work is a novel
technique that uses a special data structure, called an FP-
array, to greatly improve the performance of the algorithms
operating on FP-trees. We first demonstrate that the FP-
array technique drastically speeds up the FP-growthmethod
on sparse data sets, since it now needs to scan each FP-tree
only once for each recursive call emanating from it. This
technique is then applied to our previous algorithm FPmax
for mining maximal frequent itemsets. We call the new
method FPmax*. In FPmax*, we also introduce our
technique for checking if a frequent itemset is maximal, for
which a variant of the FP-tree structure, called an MFI-tree,
is used. For mining closed frequent itemsets, we have
designed an algorithm FPclose which uses yet another
variant of the FP-tree structure, called a CFI-tree, for

1348 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 10, OCTOBER 2005

checking the closedness of frequent itemsets. The closedness
checking is quite different from CLOSET+. Experimental
results in this paper show that our closedness checking
approach is more efficient than the approach of CLOSET+.

Both the experimental results in this paper and the
independent experimental results from the first IEEE ICDM
Workshop on frequent itemset mining (FIMI ’03) [3], [32]
demonstrate the fact that all of our FP-algorithms have very
competitive and robust performance. As a matter of fact, in
FIMI ’03, our algorithms were considered to be the algo-
rithms of choice for mining maximal and closed frequent
itemsets [32].

1.5 Organization of the Paper

In Section 2, we briefly review the FP-growth method and
introduce our FP-array technique that results in the greatly
improved method FPgrowth*. Section 3 gives algorithm
FPmax*, which is an extension of our previous algorithm
FPmax, for mining MFIs. Here, we also introduce our
approach of maximality checking. In Section 4, we give
algorithm FPclose for mining CFIs. Experimental results are
presented in Section 5. Section 6 concludes and outlines
directions for future research.

2 DISCOVERING FI’S

2.1 The FP-Tree and FP-Growth Method

The FP-growthmethod [14], [15] is a depth-first algorithm. In
the method, Han et al. proposed a data structure called the
FP-tree (frequentpattern tree). TheFP-tree is a compact repre-
sentation of all relevant frequency information in a database.
Every branch of the FP-tree represents a frequent itemset and
thenodes along the branches are stored indecreasingorder of
frequency of the corresponding items with leaves represent-
ing the least frequent items. Compression is achieved by
building the tree in such a way that overlapping itemsets
share prefixes of the corresponding branches.

An FP-tree T has a header table, T:header, associated
with it. Single items and their counts are stored in the
header table in decreasing order of their frequency. The
entry for an item also contains the head of a list that links all
the corresponding nodes of the FP-tree.

Compared with breadth-first algorithms such as Apriori
and its variants, which may need as many database scans as
the length of the longest pattern, the FP-growth method
only needs two database scans when mining all frequent
itemsets. The first scan is to find all frequent items. These
items are inserted into the header table in decreasing order
of their count. In the second scan, as each transaction is
scanned, the set of frequent items in it is inserted into the
FP-tree as a branch. If an itemset shares a prefix with an
itemset already in the tree, this part of the branch will be
shared. In addition, a counter is associated with each node
in the tree. The counter stores the number of transactions
containing the itemset represented by the path from the root
to the node in question. This counter is updated during the
second scan, when a transaction causes the insertion of a
new branch. Fig. 1a shows an example of a data set and
Fig. 1b the FP-tree for that data set.

Now, the constructed FP-tree contains all frequency
information of the database. Mining the database becomes
mining the FP-tree. The FP-growth method relies on the
following principle: If X and Y are two itemsets, the count
of itemset X [Y in the database is exactly that of Y in the
restriction of the database to those transactions containing
X. This restriction of the database is called the conditional
pattern base of X and the FP-tree constructed from the
conditional pattern base is called X0s conditional FP-tree,
which we denote by TX. We can view the FP-tree
constructed from the initial database as T;, the conditional
FP-tree for the empty itemset. Note that, for any itemset Y
that is frequent in the conditional pattern base of X, the set
X [Y is a frequent itemset in the original database.

Given an item i in TX:header, by following the linked list
starting at i in TX:header, all branches that contain item i are
visited. The portion of these branches from i to the root forms
the conditional pattern base of X [fig, so the traversal
obtains all frequent items in this conditional pattern base. The
FP-growth method then constructs the conditional FP-tree
TX[fig by first initializing its header table based on the
frequent items found, then revisiting the branches of TX

along the linked list of i and inserting the corresponding
itemsets in TX[fig. Note that the order of items can be
different in TX and TX[fig. As an example, the conditional
pattern base of ffg and the conditional FP-tree Tffg for the

GRAHNE AND ZHU: FAST ALGORITHMS FOR FREQUENT ITEMSET MINING USING FP-TREES 1349

Fig. 1. An FP-tree example. (a) A database. (b) The FP-tree for the database (minimum support = 20 percent).

database in Fig. 1a is shown in Fig. 1c. The above procedure is
applied recursively, and it stops when the resulting new FP-
tree contains only one branch. The complete set of frequent
itemsets can be generated from all single-branch FP-trees.

2.2 The FP-Array Technique

The main work done in the FP-growth method is traversing
FP-trees and constructing new conditional FP-trees after the
first FP-tree is constructed from the original database. From
numerous experiments, we found out that about 80 percent
of the CPU time was used for traversing FP-trees. Thus, the
question is, can we reduce the traversal time so that the
method can be sped up? The answer is yes, by using a simple
additional data structure. Recall that, for each item i in the
header of a conditional FP-tree TX, two traversals of TX are
needed for constructing the new conditional FP-tree TX[fig.
The first traversal finds all frequent items in the conditional
pattern base of X [fig and initializes the FP-tree TX[fig by
constructing its header table. The second traversal constructs
the new tree TX[fig. We can omit the first scan of TX by
constructing a frequent pairs array AX while building TX.
We initialize TX with an attribute AX .

Definition. LetT be a conditional FP-tree and I ¼ fi1; i2; . . . ; img
be the set of items in T:header. A frequent pairs array (FP-
array) of T is a ðm� 1Þ � ðm� 1Þmatrix, where each element
of the matrix corresponds to the counter of an ordered pair of
items in I.

Obviously, there is no need to set a counter for both item
pairs ðij; ikÞ and ðik; ijÞ. Therefore, we only store the
counters for all pairs ðik; ijÞ such that k < j.

We use an example to explain the construction of the FP-
array. In Fig. 1a, supposing that the minimum support is
20 percent, after the first scan of the original database, we
sort the frequent items as b:5, a:5, d:5, g:4, f :2, e:2, c:2. This
order is also the order of items in the header table of T;.
During the second scan of the database, we will construct T;
and an FP-array A;, as shown in Fig. 2a. All cells in the FP-
array are initialized to 0.

According to the definition of an FP-array, in A;, each
cell is a counter of a pair of items. Cell A;½c; b� is the counter
for itemset fc; bg, cell A;½c; a� is the counter for itemset fc; ag,
and so forth. During the second scan for constructing T;, for
each transaction, all frequent items in the transaction are
extracted. Suppose these items form itemset J . To insert J
into T;, the items in J are sorted according to the order in
T;:header. When we insert J into T;, at the same time A;½i; j�
is incremented by 1 if fi; jg is contained in J . For instance,
for the second transaction, fb; a; f; gg is extracted (item h is
infrequent) and sorted as b; a; g; f . This itemset is inserted
into T; as usual and, at the same time, A;½f; b�; A;½f; a�,

A;½f; g�; A;½g; b�, A;½g; a�; A;½a; b� are all incremented by 1.
After the second scan, the FP-array A; contains the counts
of all pairs of frequent items, as shown in Fig. 2a.

Next, the FP-growth method is recursively called to mine
frequent itemsets for each item in T;:header. However, now
for each item i, instead of traversing T; along the linked list
starting at i to get all frequent items in i0s conditional
pattern base, A; gives all frequent items for i. For example,
by checking the third line in the table for A;, frequent
items b; a; d for the conditional pattern base of g can be
obtained. Sorting them according to their counts, we get
b; d; a. Therefore, for each item i in T;, the FP-array A;
makes the first traversal of T; unnecessary and each Tfig can
be initialized directly from A;.

For the same reason, from a conditional FP-tree TX, when
we construct a new conditional FP-tree for X [fig, for an
item i, a new FP-array AX[fig is calculated. During the
construction of the new FP-tree TX[fig, the FP-array AX[fig is
filled. As an example, from the FP-tree in Fig. 1b, if the
conditional FP-tree Tfgg is constructed, the FP-arrayAfgg will
be in Fig. 2b. This FP-array is constructed as follows: From
the FP-array A;, we know that the frequent items in the
conditional pattern base of fgg are, in descending order of
their support, b; d; a. By following the linked list of g, from
the first node, we get fb; dg : 2, so it is inserted as ðb : 2; d : 2Þ
into the new FP-tree Tfgg. At the same time, Afgg½b; d� is
incremented by 1. From the second node in the linked list,
fb; ag : 1 is extracted and it is inserted as ðb : 1; a : 1Þ into
Tfgg. At the same time, Afgg½b; a� is incremented by 1. From
the third node in the linked list, fa; dg : 1 is extracted and it is
inserted as ðd : 1; a : 1Þ into Tfgg. At the same time, Afgg½d; a�
is incremented by 1. Since there are no other nodes in the
linked list, the construction of Tfgg is finished and FP-array
Afgg is ready to be used for construction of FP-trees at the
next level of recursion. The construction of FP-arrays and
FP-trees continues until the FP-growth method terminates.

Based on the foregoing discussion, we define a variant of
the FP-tree structure in which, besides all attributes given in
[14], an FP-tree also has an attribute, FP-array, which
contains the corresponding FP-array.

2.3 Discussion

Let us analyze the size of an FP-array first. Suppose the
number of frequent items in the first FP-tree T; is n. Then,
the size of the associated FP-array is proportional toPn�1

i¼1 i ¼ nðn� 1Þ=2, which is the same as the number of
candidate large 2-itemsets in Apriori in [6]. The FP-trees
constructed from the first FP-tree have fewer frequent
items, so the sizes of the associated FP-arrays decrease. At
any time when the space for an FP-tree is freed, so is the
space for its FP-array.

There are some limitations for using the FP-array
technique. One potential problem is the size of the FP-array.
When the number of items in T; is small, the size of the FP-
array is not very big. For example, if there are 5,000 frequent
items in the original database and the size of an integer is
4 bytes, the FP-array takes only 50 megabytes or so.
However, when n is large, nðn� 1Þ=2 becomes an extremely
large number. At this case, the FP-array technique will
reduce the significance of the FP-growth method, since the
method mines frequent itemsets without generating any
candidate frequent itemsets. Thus, one solution is to simply
give up the FP-array technique until the number of items in
an FP-tree is small enough. Another possible solution is to

1350 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 10, OCTOBER 2005

Fig. 2. Two FP-array examples. (a) A;. (b) Afgg.

reduce the size of the FP-array. This can be done by
generating a much smaller set of candidate large two-
itemsets as in [25] and only store in memory cells of the FP-
array corresponding to a two-itemset in the smaller set.
However, in this paper, we suppose the main memory is big
enough for all FP-arrays.

The FP-array technique works very well, especially when
the data set is sparse and very large. The FP-tree for a sparse
data set and the recursively constructed FP-trees will be big
and bushy because there are not many shared common
prefixes among the FIs in the transactions. The FP-arrays
save traversal time for all items and the next level FP-trees
can be initialized directly. In this case, the time saved by
omitting the first traversals is far greater than the time
needed for accumulating counts in the associated FP-arrays.

However, when a data set is dense, the FP-trees become
more compact. For each item in a compact FP-tree, the
traversal is fairly rapid, while accumulating counts in the
associated FP-array could take more time. In this case,
accumulating counts may not be a good idea.

Even for the FP-trees of sparse data sets, the first levels of
recursively constructed FP-trees for the first items in a
header table are always conditional FP-trees for the most
common prefixes. We can therefore expect the traversal times
for the first items in a header table to be fairly short, so the
cells for these items are unnecessary in the FP-array. As an
example, in Fig. 2a, since b, a, and d are the first three items
in the header table, the first two lines do not have to be
calculated, thus saving counting time.

Note that the data sets (the conditional pattern bases)
change during the different depths of the recursion. In
order to estimate whether a data set is sparse or dense,
during the construction of each FP-tree, we count the
number of nodes in each level of the tree. Based on
experiments, we found that if the upper quarter of the tree
contains less than 15 percent of the total number of nodes,
we are most likely dealing with a dense data set. Otherwise,
the data set is likely to be sparse.

If the data set appears to be dense, we do not calculate
the FP-array for the next level of the FP-tree. Otherwise, we
calculate the FP-array of each FP-tree in the next level, but
the cells for the first several (we use 15 based on our
experience) items in its header table are not calculated.

2.4 FPgrowth*: An Improved FP-Growth Method

Fig. 3 contains the pseudo code for our new method
FPgrowth*. The procedure has an FP-tree T as parameter. T
has attributes: base, header, and FP -array. T:base contains
the itemset X for which T is a conditional FP-tree, the
attribute header contains the header table, and T:FP -array
contains the FP-array AX .

In FPgrowth*, line 6 tests if the FP-array of the current FP-
tree exists. If the FP-tree corresponds to a sparse data set, its
FP-array exists, and line 7 constructs the header table of the
new conditional FP-tree from the FP-array directly. One FP-
tree traversal is saved for this item compared with the FP-
growth method in [14]. In line 9, during the construction,
we also count the nodes in the different levels of the tree in
order to estimate whether we shall really calculate the FP-
array or just set TY :FP -array as undefined.

3 FPMAX*: MINING MFI’S

In [12], we developed FPmax, another method that mines
maximal frequent itemsets using the FP-tree structure. Since

the FP-array technique speeds up the FP-growth method for
sparse data sets, we can expect that it will be useful in
FPmax too. This gives us an improved method, FPmax*.
Compared to FPmax, in addition to the FP-array technique,
the improved method FPmax* also has a more efficient
maximality checking approach, as well as several other
optimizations. It turns out that FPmax* outperforms FPmax
for all cases we discussed in [12].

3.1 The MFI-Tree

Obviously, compared with FPgrowth*, the extra work that
needs to be done by FPmax* is to check if a frequent itemset is
maximal. The naiveway to do this is during a postprocessing
step. Instead, in FPmax, we introduced a global data
structure, the maximal frequent itemsets tree (MFI-tree), to
keep the track of MFIs. Since FPmax* is a depth-first
algorithm, a newly discovered frequent itemset can only be
a subset of an already discovered MFI. We therefore need to
keep track of all already discoveredMFIs. For this, we use the
MFI-tree. A newly discovered frequent itemset is inserted
into theMFI-tree, unless it is a subset of an itemset already in
the tree. From experience, we learned that a further
consideration for large data sets is that the MFI-tree will be
quite large, and sometimes one itemset needs thousands of
comparisons for maximality checking. Inspired by the way
maximality checking is done in [11], in FPmax*, we still use
the MFI-tree structure, but for each conditional FP-tree TX, a
small local MFI-treeMX is created. The treeMX will contain
all maximal itemsets in the conditional pattern base ofX. To
see if a localMFI Y generated from a conditional FP-tree TX is
globally maximal, we only need to compare Y with the
itemsets in MX. This speeds up FPmax significantly.

Each MFI-tree is associated with a particular FP-tree. An
MFI-tree resembles an FP-tree. There are two main differ-
ences between MFI-trees and FP-trees. In an FP-tree, each
node in the subtree has three fields: item-name, count, and
node-link. In anMFI-tree, the count is replaced by the level of
the node. The level field is used for maximality checking in a
way to be explained later. Another difference is that the
header table in an FP-tree is constructed from traversing the
previous FP-tree or using the associated FP-array, while the

GRAHNE AND ZHU: FAST ALGORITHMS FOR FREQUENT ITEMSET MINING USING FP-TREES 1351

Fig. 3. Algorithm FPgrowth*.

header table of an MFI-tree is constructed based on the item
order in the table of the FP-tree it is associated with.

The insertion of an MFI into an MFI-tree is similar to the
insertion of a frequent set into an FP-tree. Fig. 4 shows the
insertions of all MFIs into an MFI-tree associated with the
FP-tree in Fig. 1b. In Fig. 4, a node x : lmeans that the node is
for item x and its level is l. Fig. 4a shows the tree after
inserting ðb; cÞ, ðd; eÞ, and ðb; a; fÞ. Since ðb; a; fÞ shares prefix
b with ðb; cÞ, only two new nodes for a and f are inserted.
Fig. 4b is the tree after all MFIs have been inserted.

3.2 FPmax*

Fig. 5 gives algorithm FPmax*. In the figure, three attributes
of T , T:base, T:header, and T:FP -array, are the same as the
attributes we used in FPgrowth*. The first call of FPmax*
will be for the FP-tree constructed from the original
database, and it has an empty MFI-tree. Before a recursive
call FPmax�ðT;MÞ, we already know from line 10 that the

set containing T:base and all items in T is not a subset of any
existing MFI. During the recursion, if there is only
one branch in T , the path in the branch together with
T:base is anMFI of the database. In line 2, the MFI is inserted
into M. If the FP-tree is not a single-branch tree, then for
each item i in T:header, we start preparing for the recursive
call FPmax�ðTY ;MY Þ, for Y ¼ T:base [fig. The items in the
header table of T are processed in increasing order of
frequency, so that maximal frequent itemsets will be found
before any of their frequent subsets. Lines 5 to 8 use the FP-
array if it is defined or traverse TX. Line 10 calls function
maximality_checking to check if Y together with all frequent
items in Y 0s conditional pattern base is a subset of any
existing MFI in M (thus, we do superset pruning here). If
maximality_checking returns false, FPmax* will be called
recursively, with ðTY ;MY Þ. The implementation of function
maximality_checking will be explained shortly.

Note that, before and after calling maximality_checking, if
Y [tail is not a subset of any MFI, we still do not know
whether Y [tail is frequent. If, by constructing Y 0s
conditional FP-tree TY , we find out that TY only has a
single branch, we can conclude that Y [tail is frequent.
Since Y [tailwas not a subset of any previously discovered
MFI, it is maximal and will be inserted into MY .

The function maximality_checking works as follows:
Suppose tail ¼ i1i2; . . . ik, in decreasing order of frequency
according to M:header. By following the linked list of ik, for
each node n in the list, we test if tail is a subset of the
ancestors of n. Here, the level of n can be used for saving
comparison time. First, we test if the level of n is smaller
than k. If it is, the comparison stops because there are not
enough ancestors of n for matching the rest of tail. This
pruning technique is also applied as we move up the branch
and toward the front of tail. The function maximality_
checking returns true if tail is a subset of an existing MFI,
otherwise, false is returned.

Unlike an FP-tree, which is not changed during the
execution of the algorithm, an MFI-tree is dynamic. At
line 12, for each Y , a newMFI-treeMY is initialized from the
preceding MFI-tree M. Then, after the recursive call, M is
updated on line 14 to contain all newly found frequent
itemsets. In the actual implementation, we however found
that it was more efficient to update all MFI-trees along the
recursive path, instead of merging only at the current level.
In other words, we omitted line 14, and instead on line 2, B

1352 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 10, OCTOBER 2005

Fig. 4. Construction of maximal frequent itemset tree.

Fig. 5. Algorithm FPmax*.

is inserted into the current M, and also into all preceding
MFI-trees that the implementation of the recursion needs to
store in memory in any case.

In details, at line 12, when an MFI-tree MYj
for Yj ¼

i1i2 . . . ij is created for the next call of FPmax*, we know
that conditional FP-trees and conditional MFI-trees for
Yj�1 ¼ i1i2 . . . ij�1, Yj�2 ¼ i1i2 . . . ij�2, . . . ; Y1 ¼ i1, and Y0 ¼ ;
are all in memory. To make MYj

store all already found
MFIs that contain Yj, MYj

is initialized by extracting MFIs
from MYj�1

. The initialization can be done by following the
linked list for ij from the header table of MYj�1

and
extracting the maximal frequent itemsets containing ij.
Each such found itemset I is sorted according to the order
of items in MYj

:header (the same item order as in
TYj

:header) and then inserted into MYj
. On line 2, we

have found a new MFI B in TYj
, so B is inserted into MYj

.
Since Yj [B also contains Yj�1; . . . ; Y1, Y0 and the trees
MYj�1

; . . . ;MY1
;MY0

are all in memory, to make these MFI-
trees consistently store all already discovered MFIs that
contain their corresponding itemset, for each k ¼ 0; 1; . . . ; j,
the MFI B [ðYj � YkÞ is inserted into the corresponding
MFI-tree MYk

. At the end of the execution of FPmax*, the
MFI-tree MY0

(i.e., M;) contains all MFIs mined from the
original database. Since FPmax* is a depth-first algorithm,
it is straightforward to show that the maximality checking
is correct. Based on the correctness of the FPmax method,
we can conclude that FPmax* returns all and only the
maximal frequent itemsets in a given data set.

In FPmax*, we also used an optimization for reducing
the number of recursive calls. Suppose that, at some level of
the recursion, the item order in T:header is i1; i2; . . . ; ik.
Then, starting from ik, for each item in the header table, we
may need to do the work from line 4 to line 14. If for any
item, say im where m � k, its maximal frequent itemset
contains items i1; i2; . . . ; im�1, i.e., all the items that have not
yet called FPmax* recursively, these recursive calls can be
omitted. This is because any frequent itemset found by such
a recursive call must be a subset of fi1; i2; . . . ; im�1g, thus, it
could not be maximal.

3.3 Discussion

Onemaywonder if the space required for all theMFI-trees of
a recursive branch is too large. Actually, before the first call
of FPmax*, the first FP-tree has to fit in memory. This is also
required by the FP-growth method. The correspondingMFI-
tree is initialized as empty. During recursive calls of FPmax*,
new conditional FP-trees are constructed from the first FP-
tree or its descendant FP-trees. From the experience of [14],
we know the recursively constructed FP-trees are relatively
small. If we store all the MFIs in memory, we can expect that
the total size of those FP-trees is not greater than the final size
of the MFI-tree for ;. For the same reason, we can expect that
the MFI-trees constructed from their parents are also small.
During the mining, theMFI-tree for ; grows gradually, other
small descendant MFI-trees will be constructed for recursive
calls and then discarded after the call. Thus, we can conclude
that the total memory requirement for running FPmax* on a
data set is proportional to the sum of the size of the FP-tree
and the MFI-tree for ;.

The foregoing discussion is relevant for the case when we
store all MFIs in memory throughout the mining process.
Actually, storing all MFIs in memory is not necessary.
Suppose the current FP-tree is TX, the items in TX:header are

j1; j2; . . . ; jm and the current MFI-tree is MX. During the
current call of FPmax�ðTX;MXÞ, for each item jk, by a
recursive call of FPmax�ðTX[fjkg;MX[fjkgÞ, many MFIs
could be mined. For each MFI X [fjkg [Z, the branch
fjkg [Z will be inserted intoMX. However, recall that since
none of the candidate MFIsX [Z0 generated from the rest of
the current call contain jk, it is sufficient to compare Z0 with
Z, instead of comparing Z0 with fjkg [Z. Therefore, in our
implementation, when an MFI is inserted, we used an
alternative approach where only the Z-part of the MFI is
inserted into the MFI-trees. This leads to a reduction in the
sizes of the MFI-trees. As an example, Fig. 6 shows the size-
reduced MFI-tree for ; associated with the data set in Fig. 1.
Shown in Fig. 4b is the complete MFI-tree for ; which has
12 nodes, while the size-reducedMFI-tree has only six nodes.

Our initial experimental results showed that the memory
requirement of the size-reduced approach is drastically
lowered compared to storing complete maximal frequent
itemsets. Consequently, FPmax* in the experiments of
Section 5 is implemented with the size-reduced approach.

4 FPCLOSE: MINING CFI’S

Recall that an itemset X is closed if none of the proper
supersets of X have the same support. For mining frequent
closed itemsets, FPclose works similarly to FPmax*. They
both mine frequent patterns from FP-trees. Whereas
FPmax* needs to check that a newly found frequent itemset
is maximal, FPclose needs to verify that the new frequent
itemset is closed. For this, we use a closed frequent itemsets
tree (CFI-tree), which is another variation on the FP-tree.

4.1 The CFI-Tree and Algorithm FPclose

As in algorithmFPmax*, a newlydiscovered frequent itemset
can be a subset only of a previously discovered CFI. Like an
MFI-tree, a CFI-tree depends on an FP-tree TX and is denoted
as CX. The itemset X is represented as an attribute of T ,
T:base. The CFI-tree CX always stores all already found CFIs
containing itemset X and their counts. A newly found
frequent itemset Y that contains X only needs to be
compared with the CFIs in CX . If there is no proper superset
of Y in CX with the same count as Y , the set Y is closed.

In a CFI-tree, each node in the subtree has four fields:
item-name, count, node-link, and level. Here, level is still
used for subset testing, as in MFI-trees. The count field is
needed because when comparing Y with a set Z in the tree,
we are trying to verify that it is not the case that Y � Z and
Y and Z have the same count. The order of the items in a
CFI-tree’s header table is the same as the order of items in
header table of its corresponding FP-tree.

GRAHNE AND ZHU: FAST ALGORITHMS FOR FREQUENT ITEMSET MINING USING FP-TREES 1353

Fig. 6. Size-reduced maximal frequent itemset tree.

The insertion of a CFI into a CFI-tree is similar to the
insertion of a transaction into an FP-tree, except now the
count of a node is not incremented, but replaced by the
maximal count up-to-date. Fig. 7 shows some snapshots of
the construction of a CFI-tree with respect to the FP-tree in
Fig. 1b. The item order in the two trees are the same because
they are both for base ;. Note that insertions of CFIs into the
top level CFI-tree will occur only after recursive calls have
been made. In the following example, the insertions would
be performed during various stages of the execution, not in
bulk as the example might suggest. In Fig. 7, a node x : l : c
means that the node is for item x, that its level is l and that its
count is c. In Fig. 7a, after inserting the first six CFIs into the
CFI-tree, we insert ðd; gÞ with count 3. Since ðd; gÞ shares the
prefix dwith ðd; eÞ, only node g is appended and, at the same
time, the count for node d is changed from 2 to 3. The tree in
Fig. 7b contains all CFIs for the data set in Fig. 1a.

Fig. 8 gives algorithm FPclose. Before calling FPclose
with some ðT;CÞ, we already know from line 8 that there is
no existing CFI X such that 1) T:base � X and 2) T:base and
X have the same count (this corresponds to optimization 4
in [30]). If there is only one single branch in T , the nodes
and their counts in this single branch can be easily used to
list the T:base-local closed frequent itemsets. These itemsets
will be compared with the CFIs in C. If an itemset is closed,
it is inserted into C. If the FP-tree T is not a single-branch
tree, we execute line 6. Lines 9 to 12 use the FP-array if it is
defined, otherwise, T is traversed. Lines 4 and 8 call
function closed checkingðY ;CÞ to check whether a frequent
itemset Y is closed. Lines 14 and 15 construct Y 0s
conditional FP-tree TY and CFI-tree CY . Then, FPclose is
called recursively for TY and CY .

Note that line 17 is not implemented as such. As in
algorithm FPmax*, we found it more efficient to do the
insertion of lines 3-5 into all CFI-trees currently in memory.

To list all candidate closed frequent itemsets from an FP-
tree with only a single branch, suppose the branch with
counts is ði1 : c1; i2 : c2; . . . ; ip : cpÞ, where ij : cj means item
ij has the count cj. Starting from i1, comparing the counts of
every two adjacent items ij : cj and ijþ1 : cjþ1, in the branch,
if cj 6¼ cjþ1, we list i1; i2; . . . ; ij as a candidate closed frequent
itemset with count cj.

CFI-trees are initialized similarly to MFI-trees, described
in Section 3.2. The implementation of function closed_checking

is almost the same as the implementation of function
maximality_checking, except now we also consider the count
of an itemset. Given an itemset Y ¼ fi1; i2; . . . ; ikgwith count
c, suppose the order of the items in header table of the current
CFI-tree is i1; i2; . . . ; ik. Following the linked list of ik, for each
node in the list, we first check if its count is equal to or greater
than c. If it is, we then test if Y is a subset of the ancestors of
that node.Here, the level of a node can also be used for saving
comparison time, as in Section 3.2. The function closed_check-

ing returns true only when there is no existing CFI Z in the
CFI-tree such that Z is a superset of Y and the count of Y is
equal to or greater than the count of Z. At the end of the
execution of FPclose, the CFI-tree C; contains all CFIs mined

1354 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 10, OCTOBER 2005

Fig. 7. Construction of closed frequent itemset tree.

Fig. 8. Algorithm FPclose.

fromtheoriginaldatabase.Theproofof correctnessofFPclose
is straightforward.

When implementing FPclose, we also used an optimi-
zation which was not used in CLOSET+. Suppose an FP-
tree for itemset Y has multiple branches, the count of Y is
c and the order of items in its header table is i1; i2; . . . ; ik.
Starting from ik, for each item in the header table, we may
need to do the work from line 7 to line 17. If for any item,
say im, where m � k, Y [fi1; i2; . . . ; img is a closed itemset
with count c, FPclose can terminate the current call. This is
because closed_checking would always return true for the
remaining items.

By a similar analysis as in Secion 3.3, we can estimate the
total memory requirement for running FPclose on a data
set. If the tree that contains all CFIs needs to be stored in
memory, the algorithm needs space approximately equal to
the sum of the size of the first FP-tree and its CFI-tree. In
addition, as we did in Section 3.3 for mining MFIs, for each
CFI, by inserting only part of the CFI into CFI-trees, less
memory is used and the implementation is faster than the
one that stores all complete CFIs. Fig. 9 shows the size-
reduced CFI-tree for ; corresponding to the data set in Fig. 1.
In this CFI-tree, only 6 nodes are inserted, instead of
15 nodes in the complete CFI-tree in Fig. 7b.

5 EXPERIMENTAL EVALUATION AND

PERFORMANCE STUDY

In 2003, the first IEEE ICDM Workshop on Frequent Itemset
Mining (FIMI ’03) [3] was organized. The goal of the
workshop was to find the most efficient algorithms for
mining frequent itemsets. The independent experiments
conducted by the organizers compared the performance of
three categories of algorithms for mining frequent itemsets.
From the experimental results [3], [32], we can see that the
algorithms described in this paper outperformed all the
other algorithms submitted to the workshop for many cases.
FPmax* and FPclose were recommended by the organizers
as the best algorithms for mining maximal frequent itemsets
and closed frequent itemsets, respectively.

In this paper, we report three sets of experiments in
which the runtime, memory consumption, and scalability of
FPgrowth*, FPmax*, and FPclose were compared with
many well-known algorithms. These algorithms included
SmartMiner, CLOSET+, an optimized version of Apriori,
MAFIA, FP-growth, and GenMax.

Due to the lack of space, we only show part of our
experimental results here. In the data sets, T100I20D200K is
a synthetic and sparse data set. It was generated from the
application of [1]. It has 200,000 transactions and 1,000 items.

The average transaction length was 100 and the average
pattern length was 20. Another two data sets, connect and
accidents, are real data sets taken from [3]. The data set
connect is compiled from game state information. It has
129 items and its average transaction length is 43. Data set
accidents contains (anonymous) traffic accident data. It has
468 items and its average transaction length is 33.8. These
two real data sets are both quite dense, so a large number of
frequent itemsets will be mined even for very high values of
minimum support.

When measuring running time and memory consump-
tion, in each data set, we kept the number of transactions
constant and varied the minimum support. We do not report
experiments on the synthetic data sets where we varied the
number of items or the avarage length of transactions. We
found that when the number of items was changed, the
number of frequent items was still determined by the
minimum support. Similarly, we observed that the mini-
mum support determined the average transaction length
(once infrequent items were removed). Thus, the level of
minimum support was found to be the principal influence
on running time and memory consumption.

For scalability testing, we used the synthetic data sets and
varied the number of transactions between 2� 105 and 106.

The experiments were performed on a DELL Inspiron
8,600 laptop with a 1.6 GHz Pentium M and 1GB of RAM.
The operating system was RedHat version 9, using
Linux 2.4.20 and a gcc 3.2.2 C++ compiler. Both time and
memory consumption of each algorithm running on each
data set were recorded. Runtime was recorded by the
“time” command and memory consumption was recorded
by “memusage.”

5.1 FI Mining

In the first set of experiments, we studied the performance of
FPgrowth* by comparing it with the original FP-growth
method [14], [15], kDCI [23], dEclat [35], Apriori [5], [6], and
PatriciaMine [27]. To see the performance of the FP-array
technique, we implemented the original FP-growth method
on the basis of the paper [14]. The Apriori algorithm was
implemented by Borgelt in [9] for FIMI ’03. The source codes
of the other algorithms were provided by their authors.

5.1.1 The Runtime

Fig. 10 shows the time of all algorithms running on
T100I20D200K. In the figure, FPgrowth* is slower than
kDCI, Apriori, and dEclat for high minimum support. For
low minimum support, FPgrowth* becomes the fastest. The
algorithm which was the fastest, dEclat, now becomes the
slowest. The FP-array technique also shows its great

GRAHNE AND ZHU: FAST ALGORITHMS FOR FREQUENT ITEMSET MINING USING FP-TREES 1355

Fig. 9. Size-reduced closed frequent itemset tree. Fig. 10. Runtime of mining all FIs on T100I20D200K.

improvement on the FP-growth method. FPgrowth* is
always faster than the FP-growth method and it is almost
two times faster than the FP-growth method for low
minimum support. When the minimum support is low, it
means that the FP-tree is bushy and wide and the FP-array
technique saves much time for traversing the FP-trees.

The results shown in Fig. 10 can be explained as follows:
With sparse data sets, such as the synthetic ones, FPgrowth*
constructs bushy and wide FP-trees. However, when the
minimum support is high, not many frequent itemsets will
be mined from the FP-trees. On the contrary, when the
minimum support is low, the data set could have many
frequent itemsets. Then, the time used for constructing FP-
trees pays off. For Apriori, kDCI, and dEclat, when the
minimum support is high, there are fewer frequent itemsets
and candidate frequent itemsets to be produced. Thus, they
only need to build small data structures for storing frequent
itemsets and candidate frequent itemsets, which does not
take much time. But, for low minimum support, consider-
able time is spent on storing and pruning candidate
frequent itemsets. These operations take more time than
mining frequent itemsets from the FP-trees. This is why in
the experiments in Fig. 10, FPgrowth* is relatively slow for
high minimum support and relatively fast for low mini-
mum support when compared with the other methods.

Fig. 11 and Fig. 12 show the performance of all algorithms
on two dense real data sets, connect and accidents. In Fig. 12,
FPgrowth* is the fastest algorithm for low values of
minimum support, and the curves for FP-growth and
PatriciaMine almost totally overlap the curve for FPgrowth*.

In the two figures, one observation is that FPgrowth*
does not outperform FP-growth method for dense data sets.
This is consistent with our discussion in Section 2. We
mentioned that when the FP-trees constructed from the data
sets are compact, the time spent on constructing FP-arrays
will be more than the time for traversing FP-trees, therefore,
the FP-array technique is not applied on dense data sets.

Another observation is that PatriciaMine has perfor-
mance similar to the FPgrowth* method. This is because
both algorithms are based on a prefix tree data structure. In
Fig. 11, when the minimum support is low, FPgrowth* is
even slower than PatriciaMine. This means the Patricia Trie
data structure used in PatriciaMine saves not only the space
but also the time for traversing FP-trees.

These three figures show that no algorithm is always the
fastest. As discussed before, the sparsity/density of the data
set has a significant well understood influence on the
performance of the algorithms. The reasons for the
difference in performance between Figs. 11 and 12 are less
well understood. We believe that the data distributions in
the data sets have a big influence on the performances of the
algorithms. Unfortunately, the exact influence of the data
distribution for each algorithm is still unknown. We also
found that it is time-consuming to determine the data
distribution before mining the frequent itemsets. Thus, it
would be wise to choose a stable algorithm such as
FPgrowth* to mine frequent itemsets. Note that FPgrowth*
also is fairly stable with regard to the minimum support.

5.1.2 Memory Consumption

Fig. 13 shows the peak memory consumption of the
algorithms on the synthetic data set. The FPgrowth* and
the FP-growth method consume almost the same memory,
their curves overlap again. In the figure, kDCI uses the
lowest amount of memory when the minimum support is
high. The algorithm dEclat also consumes far less memory
than the other algorithms except kDCI.

We can see that FPgrowth* and the FP-growth method
unfortunately use the maximum amount of memory. Their
memory consumption is almost four times greater than the
data set size. Since the FPgrowth* and FP-growth methods
consume almost the same amount of memory, it means that
thememory spenton theFP-array technique isnegligible. The
memory is mainly used by FP-trees constructed in the FP-
growth method. The question of why the FP-growth method
consumes somuchmemorywhen runningonasyntheticdata
set can be answered as follows: In both figures, theminimum
support is fairly low, so there are many frequent single items
in the data sets. Therefore, wide and bushy trees have to be
constructed for mining all frequent itemsets. Since the
number of frequent single items stays almost the same when
the minimum support changes, the sizes of the FP-trees
remain almost the same, as we can see from the figure.

Comparing Fig. 10 with Fig. 13, we also can see that
FPgrowth* and the FP-growth method still have good speed
even when they have to construct big FP-trees.

1356 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 10, OCTOBER 2005

Fig. 11. Runtime of mining all FIs on connect.

Fig. 12. Runtime of mining all FIs on accidents.

Fig. 13. Memory consumption of mining all FIs on T100I20D200K.

We also can see from the figures that PatriciaMine
consumes less memory than FPgrowth*. This is because we
implemented FPgrowth* by a standard trie. On the other
hand, in PatriciaMine, the FP-tree structure was implemen-
ted as aPatricia trie,whichwill save somememory. In Figs. 14
and 15, the FP-tree structure shows great compactness. Now,
thememory consumption of FPgrowth* is almost the same as
that of the PatriciaMine and the FP-growth method. In the
figures, we almost cannot see the curves for the PatriciaMine
and the FP-growth method because they overlap the curves
for FPgrowth*. Although not clearly visible in the figures, the
experimental data show that, for highminimum support, the
memory consumed by FPgrowth* is even smaller than the
memory consumption of PatriciaMine, which means the
Patricia trie needsmorememory than the standard trie when
the FP-trees are very compact.

From the figures, we also notice that when minimum
support is low, the memory used by algorithms such as
Apriori and kDCI increases rapidly, while the memory used
by FPgrowth* and PatriciaMine does not change much. This
is because algorithms such as Apriori and kDCI have to
store a large number of frequent itemsets and candidate
frequent itemsets. The number of itemsets that needs to be
stored increases exponentially when the minimum support
becomes lower. For FPgrowth*, FP-growth, and Patricia-
Mine, if the number of frequent single items does not
change much when minimum support becomes lower, the
sizes of FP-trees do not change much, either.

5.1.3 Scalability

Though a synthetic data set is not the most favorable for
FPgrowth*, its parameters are easily adjustable. We there-
fore tested the scalability of all algorithms by running them
on data sets generated from T20I10. The number of
transactions in the data sets for Fig. 16 and Fig. 17 ranges
from 200K to 1 million. In all data sets, the number of items
is 1,000, the average transaction length is 20, the number of

patterns used as generation seeds is 5,000, and the average
pattern length is 10.

All algorithms ran on all data sets for minimum support
0.1 percent. Both runtime and memory consumption were
recorded. Fig. 16 shows the speed scalability of all
algorithms. In the figure, the curves for PatriciaMine,
FPgrowth*, and FPgrowth overlap each other, which means
that the three algorithms have almost the same scalability,
which is also the best scalability. Runtime increases about
four times when the size of data set increases five times,
while runtime of algorithms such as kDCI increases about
10 times when the number of transactions increases from
200K to 1 million. Fig. 17 gives the memory scalability of all
algorithms. In the figure, the curve for the FP-growth
method overlaps the curve for FPgrowth* and the curve for
dEclat overlaps the curve for PatriciaMine. The figure
shows that memory consumption of FPgrowth* and FP-
growth increases linearly when size of data sets changes. It
also shows that the growth rates of FPgrowth* and FP-
growth are not as good as other algorithms.

From the figures of runtime, memory consumption, and
scalability of all algorithms, we can draw the conclusion
that FP-growth* is one of the best algorithms for mining all
frequent itemsets especially when the data sets are dense.
For very sparse data sets, since FPgrowth* is an extension of
the FP-growth method, its memory consumption is un-
fortunately very high. However, when the minimum
support is low, FP-growth* is still one of the fastest
algorithms, thanks to the FP-array technique. We also note
as FIMI ’03 [32] did that PatriciaMine is a good algorithm
for mining all frequent itemsets.

5.2 MFI Mining

In our paper [12], we analyzed and tested the performance
of algorithm FPmax. We learned that FPmax outperformed
GenMax and MAFIA in some, but not all cases. To see the
impact of the new FP-array technique and the new
maximality_checking function that we are using in FPmax*,

GRAHNE AND ZHU: FAST ALGORITHMS FOR FREQUENT ITEMSET MINING USING FP-TREES 1357

Fig. 14. Memory consumption of mining all FIs on connect.

Fig. 15. Memory consumption of mining all FIs on accidents.

Fig. 16. Scalability of runtime of mining all FIs.

Fig. 17. Scalability of memory consumption of mining all FIs.

in the second set of experiments, we compared FPmax*
with MAFIA [10], AFOPT [19], GenMax [11], and Smart-
Miner [36]. FPmax* was implemented by storing reduced
MFIs in MFI-trees, as explained in 3.3, to save memory and
CPU time. Since the authors of SmartMiner implemented
their algorithm in Java, we implemented SmartMiner
ourselves in C++. The source codes of other algorithms
were provided by their authors.

5.2.1 The Runtime

Fig. 18 gives the result for running the five algorithms on
the data set T100I20D200K. In the figure, MAFIA is the
fastest algorithm. SmartMiner is as fast as FPmax* for high
minimum support, but slower than FPmax* for low
minimum support. In T100I20D200K, since the average
transaction length and average pattern length are fairly
large, FPmax* has to construct bushy FP-trees from the data
set, which can be seen from Fig. 21. The time for
constructing and traversing the FP-trees dominates the
whole mining time, especially for high minimum support.
On the contrary, if MAFIA does not have much workload
for high minimum support, few maximal frequent itemsets
and candidate maximal frequent itemsets will be generated.
However, as shown in Fig. 18, when the minimum support
is low, FPmax* outperforms all other algorithms except
MAFIA because now the construction of the large FP-tree

offers a big gain as there will be a large number of maximal
frequent itemsets.

Fig. 19 and Fig. 20 show the experimental results of
running the five algorithms on real data sets. In the figures,
FPmax* shows the best performance on both data sets, for
both high and low minimum support, benefiting from the
great compactness of the FP-tree structure on dense data
sets. SmartMiner has performance similar to FPmax* when
minimum support is high, and is slower than FPmax* when
minimum support is low.

All experiments on both synthetic and real data sets show
that ourmaximality_checking function is indeed very effective.

5.2.2 Memory Consumption

Similar to the memory consumption for mining all frequent
itemsets on synthetic data sets, FPmax* in Fig. 21 still uses
much memory for mining maximal frequent itemsets.
However, by comparing Fig. 21 with Fig. 13, we also can
see that the amounts of memory consumed by FPmax* and
FPgrowth* are very close. This means the MFI-trees
constructed from the sparse data sets are fairly small, and
the memory is still mainly used for constructing FP-trees.
This is consistent with the explanation of why FPmax* is
slower than MAFIA in Fig. 18.

Figs. 22 and 23 show the memory consumption of all
algorithms running on data sets Connect and Accidents.
Because of the compactness of FP-tree data structure for
dense data sets, FPmax* consumes far less memory than for
sparse data sets. In the two figures, the curves for
SmartMiner overlap the curves for FPmax* for high mini-
mum support. However, when theminimum support is low,
SmartMiner consumes much more memory than FPmax*.
The curve of AFOPT in Fig. 22 totally overlaps the curve for
FPmax* and, in Fig. 23, FPMAX* and AFOPT consume
similar amounts of memory. MAFIA uses a large amount of
memory in Fig. 22 and it consumes the least memory in

1358 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 10, OCTOBER 2005

Fig. 18. Runtime of mining MFIs on T100I20D200K.

Fig. 19. Runtime of mining MFIs on Connect.

Fig. 20. Runtime of mining MFIs on Accidents.

Fig. 21. Memory consumption of mining MFIs on T100I20D200K.

Fig. 22. Memory consumption of mining MFIs on Connect.

Fig. 23 when the minimum support is very low. For most
cases, GenMax consumes more memory than FPmax*.

One observation from the two figures is that the memory
consumption of FPmax* and GenMax increases exponen-
tially when the minimum support becomes very low. This
can be observed, for example, in Fig. 23. The increase
happens because the algorithms have to store a large
number of maximal frequent itemsets in memory, and the
data structures such as MFI-trees become very large. We can
also see that when the memory needed by the algorithms
increases rapidly, their runtime also increases very fast. The
pair of Fig. 19 and Fig. 22. is a typical example.

5.2.3 Scalability

Fig. 24 shows the speed scalability of all algorithms on
synthetic data sets. The same data sets were used in
Section 5.1 for testing the scalability of all algorithms for
mining all frequent itemsets. Fig. 24 shows that FPmax* is
also a scalable algorithm. Runtime increases almost
five times when the data size increases five times. The
figures also demonstrate that other algorithms have good
scalability. No algorithms have exponential runtime increase
when the data set size increases.

Fig. 25 shows that FPmax* possesses good scalability of
memory consumption as well. Memory consumption grows
from 76 megabytes to 332 megabytes when data size grows
from 16 megabytes to 80 megabytes. All algorithms have
similar scalability on synthetic data sets.

In conclusion, the experimental results of runtime and
memory consumption of all algorithms show that our MFI-
tree data structure and maximality-checking technique
work extremely well. Though FPmax* is not the fastest
algorithm for some cases and it sometimes consumes much
more memory than other algorithms, overall, it still has
very competitive performance when compared with four
other excellent algorithms. This result is consistent with the
results of FIMI ’03 which showed FPmax* as one of the best
algorithms for mining maximal frequent itemsets.

5.3 CFI Mining

In the third set of experiments, we compared the perfor-
mances of FPclose, Charm [34], AFOPT [19], Apriori [5], [6],
and CLOSET+ [30]. FPclose is implemented by storing
reduced CFIs in CFI-trees, as explained in the end of
Section 4. The executable code of CLOSET+was downloaded
from [4]. The algorithm Apriori for mining closed frequent
itemsets was implemented by Borgelt in [9] for FIMI ’03. In
Borgelt’s implementation, CFIs are computed by generating
all FIs first, then removing nonclosed ones. The source codes
of Charm and AFOPT were provided by their authors.

In order to show a clear distinction between FPclose and
CLOSET+, in this set of experiments, we report the results
of running the algorithms on five data sets. In the
two previous sets of experiments, the two additional data
sets did not expose any further trends, and the results were
therefore not included there. Besides the runtime and
memory consumption of all algorithms running on data sets
T100I20D200K, Connect, and Accidents, we now also com-
pare the performance of the algorithms running on
two additional real data sets, Kosarak and Pumsb*. Both
data sets were taken from [3]. Kosarak contains (anonymous)
click-stream data of a Hungarian online news portal. It has
41,270 items and its average transaction length is 8.1. Data
set pumsb* is produced from census data of Public Use
Microdata Sample (PUMS). There are 2,088 items in the data
set and the average transaction length of the data set is 50.5.

5.3.1 The Runtime

Fig. 26 shows the runtime of all algorithms on the synthetic
data set. FPclose is slower than Apriori and CHARM only
for high minimum support. When the minimum support is
low, FPclose becomes the fastest algorithm. CLOSET+ is
always the slowest one. FPclose is slower than Apriori and
CHARM for high minimum support because FPclose
spends much time constructing a bushy and wide FP-tree
while the FP-tree yields only small number of closed
frequent itemsets. On the contrary, Apriori and CHARM

GRAHNE AND ZHU: FAST ALGORITHMS FOR FREQUENT ITEMSET MINING USING FP-TREES 1359

Fig. 23. Memory consumption of mining MFIs on Accidents.

Fig. 24. Scalability of runtime of mining MFIs.

Fig. 25. Scalability of memory consumption of mining MFIs.

Fig. 26. Runtime of mining CFIs on T100I20D200K.

only need small sized data structures to store and generate
candidate frequent itemsets and closed frequent itemsets.
When the minimum support is low, FPclose is fast because
its work on the first stage pays off, as many closed frequent
itemsets will be generated. In this case, Apriori and other
algorithms have to do a considerable amount of work to
deal with a large number of candidate frequent itemsets.

When running the algorithms on real data sets, FPclose
andCLOSET+ both show great speed. In Fig. 27, CLOSET+ is
the fastest algorithm, which means that the strategies
introduced in [30] work especially well for data set connect.
FPclose is faster than CLOSET+ when running on all other
data sets, as indicated in Figs. 28, 29, and 30. In Fig. 29,
CLOSET+ even demonstrates the overall worst performance.

One of the reasons why FPclose is usually faster than
CLOSET+ is that CLOSET+ uses a global tree to store
already found closed frequent itemsets. When there is a
large amount of frequent itemsets, each candidate closed
frequent itemset has to be compared with many existing
itemsets. In FPclose, on the contrary, multiple smaller CFI-
trees are constructed. Consequently, a candidate closed
frequent itemset only needs to be compared with small set of
itemsets, saving a lot of time.

In Figs. 27, 28, 29, and 30, Apriori, which now has to
construct big hash-trees for storing frequent itemsets and

candidate frequent itemsets, always has bad performance.
AFOPT and CHARM have similar performance, but they
are both slower than FPclose.

5.3.2 Memory Consumption

Fig. 31 shows the peak memory consumption of the
algorithms when running them on the synthetic data set.
In Section 5.1 and Section 5.2, the memory consumption of
FPgrowth* and FPmax* for synthetic data was high. Here,
FPclose consumes much memory as well. By comparing
Fig. 31 with Fig. 13, we can see that the amounts of memory
consumed by FPclose and FPgrowth* are very close. This
means the CFI-trees constructed from the sparse data sets
are fairly small, and the memory is still mainly used for
constructing FP-trees.

CLOSET+ uses the maximum amount of memory in
Fig. 31. This is not surprising. Besides the memory
consumed for the bushy and wide FP-trees for the synthetic
data sets, it has to store a big tree for closedness testing as
well. At the same time in FPclose, only reduced closed
frequent itemsets were stored in small CFI-trees, as
explained in Section 3.3.

The FP-tree and CFI-tree structure once again show great
compactness on dense data sets. In Figs. 32, 33, 34, and 35,
FPclose uses the least amount of memory. The only
exception is in Fig. 33 where FPclose uses more memory
than CHARM does. This happens when the minimum
support is very low, although, FPclose still uses less
memory than CLOSET+. In Fig. 32, for the minimum
support 10 percent, CLOSET+ consumes eight times more
memory than FPclose. The memory consumption of
CLOSET+ is only less than that of Apriori.

5.3.3 Scalability

Figs. 36 and 37 show the scalability of all algorithms when
running them on synthetic data sets. These data sets are the
same that were used in Section 5.1 and Section 5.2.

1360 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 10, OCTOBER 2005

Fig. 27. Runtime of mining CFIs on Connect.

Fig. 28. Runtime of mining CFIs on Accidents.

Fig. 29. Runtime of mining CFIs on Kosarak.

Fig. 30. Runtime of mining CFIs on Pumsb*.

Fig. 31. Memory consumption of mining CFIs on T100I20D200K.

All the algorithms are scalable algorithms for runtime,
according to Fig. 36. The difference is their growth rates. In
the figure, we can see that FPclose has the smallest rate.

In Fig. 37, CLOSET+ shows the worst scalability with
respect to main memory consumption, while FPclose has a
reasonable scalability compared with the other algorithms.
Main memory size increases four times when the size of
synthetic data sets increases five times. AFOPT shows the
best memory scalability.

In summary, though FPclose consumes a large amount of
memory for very sparse data sets, it is still the fastest
algorithmwhen theminimum support is low. For dense data
sets, FPclose has a performance usually better than CLO-
SET+ for speed, and its memory consumption is far lower
than the memory consumption of CLOSET+. Our CFI-tree
data structure and the closedness testing technique are very
efficient. The results of FIMI ’03 that did not include
CLOSET+ showed that FPclose is “an overall best algorithm”
[32]. Our results in this paper also allow us to conclude that
overall FPclose is one of the best algorithms for mining
closed frequent itemsets, even when compared to CLOSET+.

6 CONCLUSIONS

We have introduced a novel FP-array technique that allows
using FP-trees more efficiently when mining frequent

itemsets. Our technique greatly reduces the time spent on
traversing FP-trees, and works especially well for sparse
data sets.

By incorporating the FP-array technique into the FP-
growth method, the FPgrowth* algorithm for mining all
frequent itemsets was introduced. Then we presented new
algorithms for mining maximal and closed frequent
itemsets. For mining maximal frequent itemsets, we ex-
tended our earlier algorithm FPmax to FPmax*. FPmax* not
only uses the FP-array technique, but also an effective
maximality checking approach. For the maximality testing, a
variation on the FP-tree, called an MFI-tree was introduced
for keeping track of all MFIs. In FPmax*, a newly found FI is
always compared with a small set of MFIs that are stored in
a local MFI-tree, thus making maximality-checking very
efficient. For mining closed frequent itemsets we gave the
FPclose algorithm. In this algorithm, a CFI-tree, another
variation of the FP-tree, is used for testing the closedness of
frequent itemsets. For all of our algorithms we have
introduced several optimizations for further reducing their
running time and memory consumption.

Both our experimental results and the results of the
independent experiments conducted by the organizers of
FIMI ’03 show that FPgrowth*, FPmax*, and FPclose are
among the best algorithms for mining frequent itemsets.

GRAHNE AND ZHU: FAST ALGORITHMS FOR FREQUENT ITEMSET MINING USING FP-TREES 1361

Fig. 32. Memory consumption of mining CFIs on Connect.

Fig. 33. Memory consumption of mining CFIs on Accidents.

Fig. 34. Memory consumption of mining CFIs on Kosarak.

Fig. 35. Memory consumption of mining CFIs on Pumsb*.

Fig. 36. Scalability of runtime of mining CFIs.

Fig. 37. Scalability of memory consumption of mining CFIs.

The algorithms are the fastest algorithms for many cases.
For sparse data sets, the algorithms need more memory
than other algorithms because the FP-tree structure needs a
large amount of memory in these cases. However, the
algorithms need less memory for dense data sets because of
the compact FP-trees, MFI-trees, and CFI-trees.

Though the experimental results given in this paper show
the success of our algorithms, the problem that FPgrowth*,
FPmax* and FPclose consume lots of memory when the data
sets are very sparse still needs to be solved. Consuming too
much memory reduces the scalability of the algorithms. We
notice from the experimental result in Section 5.1 that using
a Patricia Trie to implement the FP-tree data structure could
be a good solution for the problem. Furthermore, when the
FP-tree is too large to fit in memory, the current solutions
need a very large number of disk I/Os for reading and
writing FP-trees onto secondary memory or generating
many intermediate databases [15], which makes mining
frequent itemsets too time-consuming. We are currently
investigating techniques to reduce the number of disk I/Os
and make frequent itemset mining scale to extremely large
databases. Preliminary results are reported in [13].

REFERENCES

[1] http://www.almaden. ibm.com/cs/quest/syndata.html, 2003.
[2] http://www.almaden.ibm.com/cs/people/bayardo/resources.

html, 2003.
[3] http://fimi.cs.helsinki.fi, 2003.
[4] http://www-sal.cs.uiuc.edu/~hanj/pubs/software.htm, 2004.
[5] R. Agrawal, T. Imielinski, and A. Swami, “Mining Association

Rules between Sets of Items in Large Databases,” Proc. ACM-
SIGMOD Int’l Conf. Management of Data, pp. 207-216, May 1993.

[6] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules,” Proc. Int’l Conf. Very Large Data Bases,
pp. 487-499, Sept. 1994.

[7] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc.
Int’l Conf. Data Eng., pp. 3-14, Mar. 1995.

[8] R.J. Bayardo, “Efficiently Mining Long Patterns from Databases,”
Proc. ACM-SIGMOD Int’l Conf. Management of Data, pp. 85-93, 1998.

[9] C. Borgelt, “Efficient Implementations of Apriori and Eclat,” Proc.
IEEE ICDM Workshop Frequent Itemset Mining Implementations,
CEUR Workshop Proc., vol. 80, Nov. 2003.

[10] D. Burdick, M. Calimlim, and J. Gehrke, “MAFIA: A Maximal
Frequent Itemset Algorithm for Transactional Databases,” Proc.
Int’l Conf. Data Eng., pp. 443-452, Apr. 2001.

[11] K. Gouda and M.J. Zaki, “Efficiently Mining Maximal Frequent
Itemsets,” Proc. IEEE Int’l Conf. Data Mining, pp. 163-170, 2001.

[12] G. Grahne and J. Zhu, “High Performance Mining of Maximal
Frequent Itemsets,” Proc. SIAM Workshop High Performance Data
Mining: Pervasive and Data Stream Mining, May 2003.

[13] G. Grahne and J. Zhu, “Mining Frequent Itemsets from Secondary
Memory,” Proc. IEEE Int’l Conf. Data Mining, pp. 91-98, Nov. 2004.

[14] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without
Candidate Generation,” Proc. ACM-SIGMOD Int’l Conf. Manage-
ment of Data, pp. 1-12, May 2000.

[15] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining Frequent Patterns
without Candidate Generation: A Frequent-Pattern Tree Ap-
proach,” Data Mining and Knowledge Discovery, vol. 8, no. 1,
pp. 53-87, 2004.

[16] J. Han, J. Wang, Y. Lu, and P. Tzvetkov, “Mining Top-K Frequent
Closed Patterns without Minimum Support,” Proc. Int’l Conf. Data
Mining, pp. 211-218, Dec. 2002.

[17] M. Kamber, J. Han, and J. Chiang, “Metarule-Guided Mining of
Multi-Dimensional Association Rules Using Data Cubes,” Proc.
ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining,
pp. 207-210, Aug. 1997.

[18] D. Knuth, Sorting and Searching. Reading, Mass.: Addison Wesley,
1973.

[19] G. Liu, H. Lu, J.X. Yu, W. Wei, and X. Xiao, “AFOPT: An Efficient
Implementation of Pattern Growth Approach,” Proc. IEEE ICDM
Workshop Frequent Itemset Mining Implementations, CEUR Work-
shop Proc., vol. 80, Nov. 2003.

[20] H. Mannila and H. Toivonen, “Levelwise Search and Borders of
Theories in Knowledge Discovery,” Data Mining and Knowledge
Discovery, vol. 1, no. 3, pp. 241-258, 1997.

[21] H. Mannila, H. Toivonen, and I. Verkamo, “Efficient Algorithms
for Discovering Association Rules,” Proc. ACM SIGKDD Int’l Conf.
Knowledge Discovery and Data Mining, pp. 181-192, July 1994.

[22] H. Mannila, H. Toivonen, and I. Verkamo, “Discovery of Frequent
Episodes in Event Sequences,” Data Mining and Knowledge
Discovery, vol. 1, no. 3, pp. 259-289, 1997.

[23] S. Orlando, C. Lucchese, P. Palmerini, R. Perego, and F. Silvestri,
“kDCI: A Multi-Strategy Algorithm for Mining Frequent Sets,”
Proc. IEEE ICDM Workshop Frequent Itemset Mining Implementa-
tions, CEUR Workshop Proc., vol. 80, Nov. 2003.

[24] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering
Frequent Closed Itemsets for Association Rules,” Proc. Int’l Conf.
Database Theory, pp. 398-416, Jan. 1999.

[25] J. Park, M. Chen, and P. Yu, “Using a Hash-Based Method with
Transaction Trimming for Mining Association Rules,” IEEE Trans.
Knowledge and Data Eng. vol. 9, no. 5, pp. 813-825, 1997.

[26] J. Pei, J. Han, and R. Mao, “CLOSET: An Efficient Algorithm for
Mining Frequent Closed Itemsets,” Proc. ACM SIGMOD Workshop
Research Issues in Data Mining and Knowledge Discovery, pp. 21-30,
May 2000.

[27] A. Pietracaprina and D. Zandolin, “Mining Frequent Itemsets
Using Patricia Tries,” Proc. IEEE ICDM Workshop Frequent Itemset
Mining Implementations, CEURWorkshop Proc., vol. 80, Nov. 2003.

[28] A. Savasere, E. Omiecinski, and S. Navathe, “An Efficient
Algorithm for Mining Association Rules in Large Databases,”
Proc. Int’l Conf. Very Large Data Bases, pp. 432-443, Sept. 1995.

[29] H. Toivonen, “Sampling Large Databases for Association Rules,”
Proc. Int’l Conf. Very Large Data Bases, pp. 134-145, Sept. 1996.

[30] J. Wang, J. Han, and J. Pei, “CLOSET+: Searching for the Best
Strategies for Mining Frequent Closed Itemsets,” Proc. Int’l Conf.
Knowledge Discovery and Data Mining, pp. 236-245, Aug. 2003.

[31] D. Xin, J. Han, X. Li, and B.W. Wah, “Star-Cubing: Computing
Iceberg Cubes by Top-Down and Bottom-Up Integration,” Proc.
Int’l Conf. Very Large Data Bases, pp. 476-487, Sept. 2003.

[32] Proc. IEEE ICDM Workshop Frequent Itemset Mining Implementa-
tions, B. Goethals and M.J. Zaki, eds., CEUR Workshop Proc.,
vol. 80, Nov. 2003, http://CEUR-WS.org/Vol-90.

[33] M.J. Zaki, “Scalable Algorithms for Association Mining,” IEEE
Trans. Knowledge and Data Mining, vol. 12, no. 3, pp. 372-390, 2000.

[34] M.J. Zaki and C. Hsiao, “CHARM: An Efficient Algorithm for
Closed Itemset Mining,” Proc. SIAM Int’l Conf. Data Mining,
pp. 457-473, Apr. 2002.

[35] M.J. Zaki and K. Gouda, “Fast Vertical Mining Using Diffsets,”
Proc. ACM SIGKDD Int’l Conf. Knowledge Discovery and Data
Mining, pp. 326-335, Aug. 2003.

[36] Q. Zou, W.W. Chu, and B. Lu, “SmartMiner: A Depth First
Algorithm Guided by Tail Information for Mining Maximal
Frequent Itemsets,” Proc. IEEE Int’l Conf. Data Mining, Dec. 2002.

Gösta Grahne recieved the PhD degree from
the University of Helsinki and was a postdoctoral
fellow at the University of Toronto. He is currently
an associate professor in the Department of
Computer Science, Concordia University. His
research interests include database theory, data
mining, database engineering, semistructured
databases, and emerging database environ-
ments. He is the author of more than 50 papers
in various areas of database technology. He is a

member of the IEEE and ACM.

Jianfei Zhu received the MEng degree in
computer science from Zhejiang University,
China, in 1995 and the PhD degree in computer
science from Concordia University, Canada, in
2004. He is currently a software engineer at
Google Inc. He was a senior lecturer at Zhejiang
University, China, and has taught many compu-
ter science courses at Zhejiang University and
Concordia University. His research interests
include data mining, data warehousing, online

analytical processing, and information retrieval. He is a member of the
ACM and a student member of the IEEE.

1362 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 10, OCTOBER 2005

