
Optimizing the Performance-Related Configurations of
Object-Relational Mapping Frameworks Using a

Multi-Objective Genetic Algorithm

Ravjot Singh†, Cor-Paul Bezemer†, Weiyi Shang‡, Ahmed E. Hassan†
Software Analysis and Intelligence Lab (SAIL), Queen’s University, Canada†

Department of Computer Science and Software Engineering, Concordia University, Canada‡

{rsingh, bezemer, ahmed}@cs.queensu.ca†, shang@encs.concordia.ca‡

ABSTRACT

Object-relational mapping (ORM) frameworks map low-level
database operations onto a high-level programming API that
can be accessed from within object-oriented source code.
ORM frameworks often provide configuration options to op-
timize the performance of such database operations. How-
ever, determining the set of optimal configuration options is
a challenging task.

Through an exploratory study on two open source applica-
tions (Spring PetClinic and ZK), we find that the difference
in execution time between two configurations can be large.
In addition, both applications are not shipped with an ORM
configuration that is related to performance: instead, they
use the default values provided by the ORM framework. We
show that in 89% of the 9 analyzed test cases for PetClinic
and in 96% of the 54 analyzed test cases for ZK, the de-
fault configuration values supplied by the ORM framework
performed significantly slower than the optimal configura-
tion for that test case. Based on these observations, this
paper proposes an approach for automatically finding an
optimal ORM configuration using a multi-objective genetic
algorithm. We evaluate our approach by conducting a case
study of Spring PetClinic and ZK. We find that our approach
finds near-optimal configurations in 360-450 seconds for Pet-
Clinic and in 9-12 hours for ZK. These execution times allow
our approach to be executed to find an optimal configuration
before each new release of an application.

Keywords

object-relational mapping performance, performance config-
uration optimization

1. INTRODUCTION
As software becomes more complex and operates in dif-

ferent settings, it requires more flexibility in its underlying
libraries and used frameworks. Hence, software libraries and
frameworks tend to provide a high level of configurability.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

ICPE’16, March 12-18, 2016, Delft, Netherlands

c©2016 ACM. ISBN 978-1-4503-4080-9/16/03 ...$15.00.

DOI: http://dx.doi.org/10.1145/2851553.2851576.

On the one hand, configurability offers a great deal of flex-
ibility. However, this flexibility comes at a cost as configu-
ration errors can have a disastrous impact [28, 31]. The po-
tentially large impact of misconfiguration has lead to a large
body of research in the area of (mis)configurability [11,15,30,
31,33,34]. Yin et al. [31] show that 27% of all reported cus-
tomer issues are related to misconfiguration. Around half of
these configuration issues are caused by misinterpretation of
configuration options. Moreover, up to 20% of the reported
cases of misconfiguration caused severe performance degra-
dation [31]. Considering the high potential cost per issue,
such as the estimated cost of 1.6 billion US dollar for a 1-
second slowdown for Amazon [9], the cost of performance
misconfiguration can rise to billions each year [32].

Object-relational mapping (ORM) is a technique that was
introduced to provide a mapping between the higher level
object-oriented model and the lower level relational model
of a database management system. ORM frameworks of-
fer a variety of configuration options that allow the user
to configure how this mapping is performed statically and
at run-time. Since ORM frameworks create a layer between
the database and source code, their configuration can impact
the performance of database operations. Chen et al. [3] show
that ORM configurations can suffer from performance anti-
patterns, indicating that ORM misconfiguration is a com-
mon problem.

In this paper, we first show through an exploratory study
that ORM misconfigurations can indeed have a significant
impact on the performance of an application. Additionally,
we show that the optimal configuration performs signifi-
cantly better than the configuration that is currently used
by our subject applications for the analyzed workload.

The observations of our exploratory study motivate the
second part of this paper, in which we propose an approach
for automatically optimizing the performance-related config-
urations of ORM frameworks using a multi-objective genetic
algorithm. We evaluate our approach through a case study
of two open source applications (Spring PetClinic and ZK).
Our case study shows that our approach is capable of find-
ing configurations that are in the top 25% best-performing
configurations for each studied workload. In short, we make
the following contributions:

1. The observations that, in our studied subject applica-
tions:

(a) ORM configurations have a large impact on the
performance of an application



Figure 1: ORM configuration code for Hibernate

(b) The default configuration as supplied by the ORM
framework performs in many cases significantly
worse than the optimal configuration

2. An approach for automatically finding a near-optimal
ORM configuration using a multi-objective genetic al-
gorithm

The rest of this paper is organized as follows. Section 2
provides background information about ORM configuration.
Section 3 presents the setup and results of our exploratory
study. Section 4 gives an introduction to genetic algorithms.
Section 5 presents our approach for automatically finding
an optimal ORM configuration for an application. Section 6
and 7 describe the setup and results of the case study that
we performed to evaluate our approach. Section 8 describes
the threats to the validity of our work. Section 9 gives an
overview of related work. Finally, Section 10 concludes the
paper.

2. ORM PERFORMANCE-RELATED CON-

FIGURATION
ORM frameworks allow developers to perform database

operations without writing boilerplate code for maintaining
the connection or executing queries. One of the most pop-
ular [13] ORM frameworks is Hibernate1 for Java. Figure 1
shows an example of the configuration code for the Hiber-
nate framework. The configuration file hibernate.hbm.xml
contains system-wide configuration options.

In Figure 1, the performance-related configuration speci-
fies that caching should be used. Enabling the cache does
not necessarily lead to an improvement in performance. In
fact, using a cache in a situation in which data is infrequently
used will lead to many cache misses, which may lead to a
non-optimal performance.

Another example is the hibernate.max fetch depth con-
figuration option. Hibernate maps database objects onto
object-oriented programming objects. Data normalization
is a concept heavily used in databases to keep tables small,
which makes searching through them faster. An example
of a simple database is depicted by Figure 2. To retrieve
all information for a person, we have to perform three sep-
arate queries or one query with multiple joins. The hiber-
nate.max fetch depth configuration option defines how Hi-
bernate approaches such cross table queries. When set to

1http://hibernate.org/

0, the use of joins for such queries is disabled and Hiber-
nate will use three separate queries. When configured to a
value higher than 0, Hibernate will use that value as the
maximum depth of joins to perform in such a query. Using
a single query with multiple joins is generally faster than
using separate queries when all information returned by the
query is used. However, in many situations only a part of
the data is used and the overhead caused by retrieving the
unnecessary data results in non-optimal performance.

The former two examples show that ORM performance-
related configuration is specific to the workload and appli-
cation and requires domain knowledge, which makes finding
the optimal ORM configuration a challenging task. In the
next section, we perform an exploratory study on the per-
formance impact of ORM misconfiguration.

Figure 2: Database example

3. EXPLORATORY STUDY
To motivate our work, we perform an exploratory study

to get an indication of how ORM configuration impacts per-
formance.

How Does ORM Configuration Impact Performance?

By revealing the performance impact of changing the ORM
configuration, we can demonstrate the importance of search-
ing for an optimal configuration. For example, if the poten-
tial performance improvement after changing the configura-
tion is small, it may not be worth the risk of making changes
to the configuration of a stable software system.

We conducted an exploratory study with two subject ap-
plications (Spring PetClinic2 and ZK3), that both use Hiber-
nate. We selected eleven Hibernate configuration options
that can influence the performance of the subject appli-
cations (see Table 3). We encode a configuration of these
eleven options as a string of eleven bits. We converted the
non-boolean options to boolean options by encoding their
lowest allowed value as 0 and the highest allowed value as
1. This limits the total number of possible configurations
to 211 = 2, 048, which allows us to perform an exhaustive
analysis on the solution space.

To evaluate the performance impact of changing the con-
figuration, we need to evaluate the performance of an appli-
cation when it is using that configuration. Because we do not
have access to performance tests or workload generators for
most systems, we use their unit tests, in particular, the ones
that use ORM. To extract these tests we statically analyze
the source code of a subject application and identify func-
tions that use ORM using a list of keywords. Then we use
reflection to find the unit tests that execute those functions.
This process is described in more detail in Section 5.2.

We populated the database used by PetClinic and ZK with
one million records that were randomly generated based on
the database schema requirements. We selected 9 test cases
for PetClinic and 54 for ZK. For each of the 2,048 possible

2http://docs.spring.io/docs/petclinic.html
3http://zkoss.org/

http://hibernate.org/
http://docs.spring.io/docs/petclinic.html
http://zkoss.org/


Table 1: Example of the relative difference calculation

Selection Test case Avg. time c1 Avg. time c2 Diff.

#1 t1 10 20 100%
#2 t1 11 15 36%
#3 t1 8 15 88%

configurations, we run the selected test cases 30 times to
minimize variability in the performance measurements and
we collect the execution time of each run for each test case.

To investigate the impact of ORM configurations on per-
formance, we calculate the difference in execution time of
the test cases when they are executed using two randomly
selected configurations. We perform the following process
1,000 times for each selected test case in the subject appli-
cation:

1. Randomly select two ORM configurations: c1 and c2

2. Take the average of the execution time of 30 runs for
the test case using configuration c1

3. Repeat step 2 using configuration c2

4. Calculate the relative difference in execution times across
both configurations

Based on the collected data, we make the following obser-
vation:
✄

✂

�

✁

Observation 1: Changing the ORM configuration can
have a large impact on the execution time of an applica-
tion.

The impact of performance-related ORM configuration
options is large. Table 1 shows example output of the pro-
cess we used to calculate the relative difference for one test
case t1 and three random selections of c1 and c2. Figure 3
shows the distribution of the standard deviation of the rel-
ative difference in execution time for two randomly selected
ORM configurations across all selected test cases. For Pet-
Clinic, the median standard deviation is around 20%, while
the median standard deviation for ZK is 140%.

How Does the Default ORM Configuration Perform?

Our subject applications do not include an ORM configura-
tion. Instead, they use the default values provided by the
ORM framework. We investigate the performance of this
default configuration as compared to the optimal configura-
tion.

We compared the execution times for each test case us-
ing the default configuration with the execution times using
the optimal configuration for that test case using a t-test
(p < 0.05). For the test cases that had a significant dif-
ference in execution time, we also calculated the effect size
using Cohen’s d [1]. Based on earlier work [14], we use the
following classification for d :

Effect Size : d =



















< 0.16 Trivial

0.16− 0.6 Small

0.6− 1.4 Medium

> 1.4 Large
Table 2 summarizes the results of this comparison. We

observe that for 89%-96% of the test cases, their optimal
configuration is significantly better than the default config-
uration as supplied by the ORM framework. In 88%-100%

Table 2: Default vs. optimal configuration

PetClinic ZK

# test cases using ORM 9 54
% test cases significantly slower than optimal 89% 96%

Effect size (only for cases that are significantly slower):

d = small 12% 0%
d = medium 25% 71%
d = large 63% 29%

Table 3: Performance-related configuration in
Hibernate [19]

Option Value

order updates TRUE|FALSE
jdbc.batch size LOW|HIGH
order inserts TRUE|FALSE
connection.release mode TRUE|FALSE
default batch fetch size LOW|HIGH
jdbc.batch versioned data TRUE|FALSE
max fetch depth LOW|HIGH
id.new generator mappings TRUE|FALSE
jdbc.fetch size TRUE|FALSE
bytecode.use reflection optimizer TRUE|FALSE
cache.use second level cache TRUE|FALSE

0

100

200

300

400

Spring PetClinic ZK

S
ta

n
d

a
rd

 d
e
v
ia

ti
o

n
 i
n

 e
x
e
c
u

ti
o

n
 t

im
e
 (

in
 %

)

Figure 3: Standard deviation of relative difference in
execution time (in %) for two randomly selected ORM

configurations

of those cases, the difference was classified to have at least
a medium effect size.
✄

✂

�

✁

Observation 2: For both subject applications, the default
configuration as supplied by the ORM framework per-
forms significantly worse than the test-specific optimal
configuration for each test case.

Our two aforementioned observations motivate our work
for finding a method that automates the configuration pro-
cess. In the remainder of this paper, we will present and eval-
uate our approach for automatically optimizing the performance-
related ORM configurations using a multi-objective genetic
algorithm. First, we will give a brief introduction to genetic
algorithms.

4. GENETIC ALGORITHMS
A genetic algorithm is a search-based heuristic that searches

for an optimized solution in a population of solutions based



Figure 4: Phases in NSGA-II

on one or more objectives [4]. Since these objectives may be
conflicting, there may be multiple optimal solutions that all
have a slight bias towards one or more objectives. Genetic
algorithms follow a process that closely resembles natural
evolution, in particular, the ‘survival of the fittest’ princi-
ple. During the search, solutions that have attributes that
appear to have a positive impact on one of the objectives, are
selected to steer the evolution of the population. Attributes
are characteristics that solutions can inherit from their par-
ent solutions. The goal of a genetic algorithm is to improve
the population during every iteration (generation). In our
approach, we will use the non-dominated sorted genetic al-
gorithm (NSGA-II) [5], a multi-objective genetic algorithm
(MOGA) which aims to quickly find a set of optimal solu-
tions. Figure 4 depicts the phases of NSGA-II, which we
will explain in the remainder of this section. First, we will
explain the concept of dominance and we will describe our
running example that we use to demonstrate the algorithm.

4.1 Dominance
To compare two solutions that have multiple objectives,

MOGAs usually rely on the concept of dominance [4]. A
solution s1 is said to dominate solution s2, i.e. s1 � s2, when
1) s1 is no worse than s2 in all objectives and 2) s1 is strictly
better than s2 in at least one objective. By using dominance,
we can compare multi-objective solutions without purposely
creating a bias towards an objective.

4.2 Running Example
In a genetic algorithm, members of the population are rep-

resented as binary strings. For every member, a bit i indi-
cates whether that member possesses the boolean attribute
i. In our work, we encode configuration options as boolean
attributes. In this section, we will use a running example
of four boolean configuration options: {order updates, or-
der inserts, jdbc.batch size, cache.use second level cache}. As
a result, the member 1110 in the population of all combi-
nations of these four configuration options represents the
configuration in which all options except the cache are en-
abled. For simplicity, we will only use execution time as
the objective in our running example. The member (1110,
50) represents that the execution time of a workload using
configuration 1110 is 50 seconds. In the remainder of this
section, we will explain the phases of NSGA-II using our
running example.

4.3 Initialization Phase
During the initialization phase, the algorithm is started by

randomly selecting a set P of members, i.e., binary strings,
that will act as the initial parents in the evolution. |P | rep-
resents the number of members ∈ P . The randomly selected
parents in our random example are:

P = {(0000, 100), (1110, 50), (1101, 100), (0111, 60)}

4.4 Tournament Phase
At the start of each generation, a tournament will be held

to select the best performing parents. In the tournament
phase, we:

1. Randomly select two parents P1, P2 ∈ P that have not
been in the tournament for this generation

2. Perform a pairwise dominance comparison of P1 and
P2 and add the dominant parent to the mating pool
M

3. Repeat steps 1 and 2 until all parents ∈ P have been
in the tournament

After the tournament phase, M contains |P |/2 members
that will be used during the evolution phase.

In our running example we compare (0000, 100) with
(1110, 50) and (1101, 100) with (0111, 60). Because we have
only one objective, the configurations that have a shorter ex-
ecution time win the comparison. As a result,

M = {(1110, 50), (0111, 60)}

4.5 Evolution Phase
During the evolution phase, randomly-selected parents

from the mating pool produce offspring. Evolution happens
as follows:

1. Randomly select from M two parents P1 and P2 that
have not yet evolved in this generation

2. Create an offspring that randomly inherits attributes,
i.e., bits, from P1 and P2 (crossover)

3. Flip a random number of bits of the offspring (muta-
tion)



4. Store the offspring in the offspring pool Q

In our running example we create the offspring 0110 by
inheriting the first three bits from (0111, 60) and the last bit
from (1110, 50) (crossover). Then, we mutate the offspring
into the mutation 1111 by flipping the first and last bit.
We evaluate the execution time of the workload using the
mutated offspring and find that it is 40 seconds. Hence,

Q ={(1111, 40)}

P ∪Q ={(0000, 100), (1110, 50),

(1101, 100), (0111, 60), (1111, 40)}

4.6 Selection Phase
During the selection phase, members with the most pos-

itive impact on the objectives are selected. First, P and Q
are combined into population X by taking their union. To
select the optimal solutions, non-dominated and crowding-
distance sorting are used.

During non-dominated sorting, X is ranked based on dom-
inance: for every two members xi, xj ∈ X, the dominating
member is assigned a higher rank than the other member,
with 1 being the highest rank. We indicate the subpopu-
lation that shares the same rank k with Fk. As a result,
F1 contains the optimal solutions found thus far, since rank
1 contains all xi ∈ X for which there is no xj ∈ X that
dominates them.

Applying non-dominated sorting to X in our running ex-
ample results in:

F1 = (1111, 40)

F2 = (1110, 50)

F3 = (0111, 60)

F4 = {(0000, 100), (1101, 100)}

To continue the evolution, we want to select |P | mem-
bers from the highest ranks, starting at F1. If a rank has
more members than we want to select from it, we calcu-
late the niche count [5] between all pairs of members of the
subpopulation in that rank. We calculate the niche count
by counting the number of ‘niche’ attributes a member has
compared to the other member, i.e., the number of attributes
it can contribute to the population. For every two members
xi, xj ∈ X, the member with the highest niche count has
a higher niche rank, with 1 being the highest rank. We se-
lect the required number of members from the highest niche
ranks. When members share a niche rank, we select random
members from that rank.

(1101, 100) has a higher niche count than (0000, 100),
because 1101 can contribute the first, second and fourth
attribute to the population, while 0000 can contribute none.
Hence, applying niche count sorting to F4 results in:

F4,1 = (1101, 100)

F4,2 = (0000, 100)

Therefore, the set of solutions we select is:

Solutions = {(1111, 40), (1110, 50), (0111, 60), (1101, 100)}

Figure 5: Finding the optimal ORM configuration

4.7 Stopping Phase
The algorithm stops when the following constraint is met:

the output of the selection phase consists of members from
F1 only. If this constraint has not been satisfied, a new gen-
eration is started by using the output of the selection phase
as P for the new generation. Alternatively, a generation
threshold T can be specified that stops the algorithm after
T generations.

5. AUTOMATIC PERFORMANCE OPTIMIZA-

TION
In this section, we present our approach for automatically

finding an optimal ORM configuration for a given applica-
tion and workload. Our approach finds cross-test optimal
configurations, i.e., configurations that optimize the per-
formance for all test cases and objectives. Our approach
requires three inputs: 1) the objectives that must be op-
timized, 2) the workload and 3) the configuration options.
Figure 5 depicts the steps of our approach, which will be
explained in this section.

5.1 Defining the Objectives
First, we must define the objectives that we want to op-

timize. Because the performance of a system has multiple,
often conflicting aspects, we use a multi-objective approach.
For example, optimizing both CPU usage and memory us-
age is a trade-off between CPU and memory. By following a
multi-objective approach, we can identify the configuration
that finds the optimal trade-off between conflicting objec-
tives.

Our approach uses normalized performance metrics as ob-
jectives to avoid a bias towards objectives that have a large
range of values. For example, execution time has a larger
range than CPU usage, which is expressed in percentage.
When optimizing execution time and CPU usage together,
the algorithm may prefer the large absolute improvements
a configuration can make for the execution time over the
seemingly smaller improvements that can be made for CPU.
In addition, normalization makes our results easier to inter-
pret. We normalize a metric by calculating the change in
percentage using a configuration compared with the per-
formance using the current application configuration. We
demonstrate the normalization process using CPU usage in
n test cases for a configuration c as example below.

1. Monitor the average CPU usage for each test case i
using the default configuration (CPUi,current)

2. Monitor the average CPU usage for each test case i
using c (CPUi,c)

3. Calculate the % change for each test case i between
CPUi,c and CPUi,current:

∆CPUi,c =
CPUi,c−CPUi,current

CPUi,current
∗ 100



Table 4: Example CPU usage normalization

Testcase CPUi,c CPUi,current ∆CPUi,c

t1 90 100 -10
t2 110 100 10
t3 70 100 -30

4. Calculate the % change for all n test cases combined:

∆CPUc = aggr({CPUt,c|t ∈ {1, .., n}})

In the last step of the process, aggr() is an aggregation
such as median(), which can be chosen based on the desired
objective. As ∆CPUc indicates the relative increase in CPU
usage using configuration c as compared to the default con-
figuration, our objective is to find the configuration c that
has the smallest value for ∆CPUc. In CPUt,c t is the subset
of all test cases for an application which use ORM.

Table 4 shows an example of 3 test cases t1, t2 and t3.
The ∆CPUi,c column shows that configuration c improves
the CPU usage for t1 and t3 by 10 and 30 percent compared
to the current configuration. The choice for the aggregation
function influences ∆CPUc. For example, for median(),
∆CPUc = 10 and for mean(), ∆CPUc = −10.

5.2 Selecting a Workload
To get the performance impact of a configuration com-

pared with the default configuration, we must run a work-
load for the application that we want to optimize using that
configuration. We propose to use a subset of the unit test
suite that uses ORM. For example, we can select these test
cases for Java projects as follows:

1. Define a list of keywords that identify ORM usage in
functions

2. Search the subject application for functions that use
ORM using the keywords

3. Collect the call hierarchy using reflection and the Eclipse
JDT4

4. Select the unit test cases in the call hierarchy of the
functions that use ORM

5.3 Selecting Configuration Options
We must define the set of configuration options that we

want to use during the optimization process. This set can
be selected from the documentation of the ORM framework.
Every boolean configuration option can be encoded using
one bit. Non-boolean options can be encoded by reserving a
group of bits large enough to express the possible values. For
simplicity, we use only the minimum and maximum allowed
values of such options in this paper.

5.4 Executing the MOGA
After defining the objectives and selecting the workload

and configuration options, we can start the MOGA as ex-
plained in Section 4. During its execution, the algorithm
will generate new configurations. Every time a new config-
uration is generated, it is evaluated using the workload and
the normalized metrics for that configuration are stored in a

4http://www.eclipse.org/jdt/

temporary local database, so that a configuration does not
have to be reevaluated when it is encountered again during
the evolution.

When the algorithm terminates, a set of optimal config-
urations found thus far is returned. We order these config-
urations based on the number of options that are changed
compared to the default configuration and select a random
configuration with the lowest number of changed options.
Because the execution of the MOGA is fully automated, it
can be integrated in a continuous integration environment to
find the optimal ORM configuration for every new release.
By proposing an improved configuration that requires few
changes to the default configuration, we can reduce the risk
of updating the configuration.

6. CASE STUDY SETUP
We evaluate our approach through a case study with two

subject applications. In this section, we present the subject
applications and the setup of our case study.

6.1 Subject Applications
To evaluate our approach, we use the same subject ap-

plications as used in our motivational study. Spring Pet-
Clinic is a demonstration application for the Java Spring
framework. PetClinic is used regularly in performance re-
search [3, 12, 21] as case study subject application. ZK is a
web framework that assists developers in creating web GUIs.
We selected ZK because of its maturity (i.e., over 22 thou-
sand commits on GitHub) and its use of Hibernate.

6.2 Implementation
We implemented our approach in Java using the MOEA

framework5 for NSGA-II. We used SIGAR6 to monitor the
performance metrics that are used in our objectives. All
test cases were executed on an Intel i7 3.6GHz quad-core
processor with 16 GB RAM.

6.3 MOGA Parameters

Objectives

In our evaluation we focus on optimizing the CPU usage,
memory usage and execution time. Since we express our
objectives in the difference in percentage compared to the
current configuration, our MOGA should search for configu-
rations c that have minimized values for ∆CPUc , ∆MEMc

and ∆EXECTIMEc. Because our approach is multi-objective,
it will search for a configuration that optimizes all these
objectives together. As aggregation function for calculat-
ing ∆CPUc , ∆MEMc and ∆EXECTIMEc we evaluated
mean() and median().

Workload

We selected the PetClinic and ZK unit test cases that use
ORM as described in Section 5.2. This resulted in 9 (out
of 13) test cases that use ORM for PetClinic and 54 (out of
55) that use ORM for ZK.

Configuration Options

We used the configuration options that are described in Ta-
ble 3.

5http://moeaframework.org/
6http://sigar.hyperic.com/

http://www.eclipse.org/jdt/
http://moeaframework.org/
http://sigar.hyperic.com/


Stopping Rule

To terminate the MOGA, we run our experiments with two
different stopping rules, using a t-test and the mutual dom-
inance rate. The goal of the stopping rules is to stop the
algorithm when no progress is being made in finding a bet-
ter configuration.

T-test [26]: We use a t-test on each objective of all con-
figurations generated in two consecutive generations gi and
gj . For example, assume the solutions found in gi are con-
figurations a1, a2 and a3 in Table 5. Likewise, b1, b2 and
b3 are found in gj . In our example in Table 5, we have two
objectives (CPU and MEM). Hence, we run two t-tests
to compare the configurations: one on the values of ∆CPU
and one on the values of ∆MEM for all configurations in
both generations. When the t-tests for all objectives show
insignificant differences (p > 0.05) for two consecutive gen-
erations, we stop the MOGA.

Mutual Dominance Rate (MDR) [16]: The mutual
dominance rate is an indicator of the progress that is made
by the algorithm. We introduce the number of configura-
tions in set A that are dominated by at least one configu-
ration in set B as dom(A,B). We define set A as the set of
configurations that are found during the previous generation
of the MOGA. B is the set of configurations that are found
during the current generation of the MOGA. Table 5 con-
tains two sets A and B, for which dom() can be calculated
as follows:

b1 � a2, b1 � a3 → dom(A,B) = {a2, a3}

a1 � b2, a1 � b3 → dom(B,A) = {b2, b3}

Using dom(), the MDR is defined as:

MDR =
|dom(A,B)|

|A|
−

|dom(B,A)|

|B|

MDR =
2

3
−

2

3
= 0

When MDR is 0, no progress is being made as both the
previous set and current set of found configurations contain
the same number of dominating configurations.

When MDR is -1, the solutions are actually becoming
worse as the configurations in the previous set were better
than in the current set (C).

MDR =
|dom(A,C)|

|C|
−

|dom(C,A)|

|A|

MDR =
0

3
−

3

3
= −1

When MDR is 1, we know that the algorithm is progress-
ing as there are more configurations in the current set of
found configurations that are better than the configurations
in the previous set. We can see that set D is better than A
because:

MDR =
|dom(A,D)|

|A|
−

|dom(D,A)|

|D|

MDR =
3

3
−

0

3
= 1

Because of the randomness in the MOGA, consecutive
MDR may have alternative signs. Hence, when the MDR

Table 5: Example set A, B, C and D

Set A Set B

∆CPU ∆MEM ∆CPU ∆MEM

a1 50 50 b1 50 50
a2 20 20 b2 40 40
a3 10 10 b3 10 10

Set C Set D

c1 5 5 d1 100 100
c2 5 5 d2 100 100
c3 5 5 d3 100 100

is close to zero, the MOGA can terminate.
In total, we evaluate the following 4 stopping criteria (all

conditions must hold for 2 consecutive generations):

1. STOPt: t-test, p > 0.05

2. STOP0.5: −0.5 < MDR < 0.5

3. STOP0.25: −0.25 < MDR < 0.25

4. STOP0.1: −0.1 < MDR < 0.1

Combining the possible aggregation functions and stop-
ping rules, we inspect a total of 8 combinations of aggrega-
tion functions and stopping rules (2 aggregation functions
each evaluated with 4 stopping rules) for both studied ap-
plications during our case study. In the next section, we
present our case study.

7. CASE STUDY
In this section, we discuss our case study. In particular,

we focus on:

RQ1 How close are the configurations that are found
by our approach to the optimal configurations?
(closeness)

RQ2 What is the number of configurations that we
need to inspect before our approach stops? (speed)

For both research questions, we explain the motivation
behind it, our approach and our findings.

7.1 RQ1: Closeness
Motivation: The goal of our approach is to find the optimal
configurations. However, limitations such as the required
execution time for gathering the performance evaluation of
a configuration require us to define a stopping rule. In this
section, we evaluate how close the configurations found by
our approach are to the optimal configurations. In addition,
we evaluate how the aggregate function and stopping rule
affect this closeness.

Approach: We rank all possible configurations for each sub-
ject application using non-dominated sorting, using the per-
formance metrics that we collected during the execution of
the workload (i.e., all test cases). After that, we calculate
the number of configuration options that each configuration
differs from the default configuration. We use this distance



●

●

●

●

●

●

A
ll

S
T

O
P

0
.5

S
T

O
P

0
.2

5

S
T

O
P

0
.1

S
T

O
P

t

R
a
n
d
o
m

5
0

R
a
n
d
o
m

1
0

0

Median

R
a
n
k
in

g
 a

ft
e
r 

s
o
rt

in
g
 b

y
 d

o
m

in
a
n
c
e
 a

n
d
 c

o
n
fi
g
u
ra

ti
o
n
 d

is
ta

n
c
e

1
5
1

1
0
1

1
5
1 ●

●

●

●

●

●

●

A
ll

S
T

O
P

0
.5

S
T

O
P

0
.2

5

S
T

O
P

0
.1

S
T

O
P

t

R
a
n
d
o
m

5
0

R
a
n
d
o
m

1
0

0

Mean

R
a
n
k
in

g
 a

ft
e
r 

s
o
rt

in
g
 b

y
 d

o
m

in
a
n
c
e
 a

n
d
 c

o
n
fi
g
u
ra

ti
o
n
 d

is
ta

n
c
e

1
5
1

1
5
1

2
5
1

3
5
1

4
5
1

(a) Spring PetClinic

●

●

●

●

● ●

●

●

●

●

A
ll

S
T

O
P

0
.5

S
T

O
P

0
.2

5

S
T

O
P

0
.1

S
T

O
P

t

R
a
n
d
o
m

5
0

R
a
n
d
o
m

1
0

0

Median

R
a
n
k
in

g
 a

ft
e
r 

s
o
rt

in
g
 b

y
 d

o
m

in
a
n
c
e
 a

n
d
 c

o
n
fi
g
u
ra

ti
o
n
 d

is
ta

n
c
e

1
5
1

1
0
1

1
5
1

2
0
1

●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●

●

●

●

●

●

●

A
ll

S
T

O
P

0
.5

S
T

O
P

0
.2

5

S
T

O
P

0
.1

S
T

O
P

t

R
a
n
d
o
m

5
0

R
a
n
d
o
m

1
0

0

Mean

R
a
n
k
in

g
 a

ft
e
r 

s
o
rt

in
g
 b

y
 d

o
m

in
a
n
c
e
 a

n
d
 c

o
n
fi
g
u
ra

ti
o
n
 d

is
ta

n
c
e

1
5
1

1
5
1

2
5
1

3
5
1

(b) ZK

Figure 6: Distribution of the ranks of all possible configurations and configurations found by our approach (rank 1 contains
the optimal configuration, non-dominated and distance ranking)

to rank the configurations within a non-dominated rank. To
illustrate this, Table 6 shows the top 5 ranks for PetClinic
using mean() as an aggregate function, STOP0.25 as the
stopping rule and 00000000000 as the default configuration.
Because randomness is involved in the execution of a genetic
algorithm, we execute our approach 100 times for all 8 inves-
tigated combinations of aggregation functions and stopping
rules to minimize the effects of variation.

To get a baseline to compare the closeness of our approach
with, we implement random selection. During the execution
of our approach, we need to inspect a number of configura-
tions n. We expect that our approach finds higher-ranked
configurations as compared to when we randomly pick n
configurations and select the optimal one. We perform ran-
dom picking 100 times to minimize the impact of outliers.
Hence, we repeat the following 100 times:

1. We select 50 (Random50) and 100 (Random100) con-
figurations randomly from all possible configurations
(without replacement)

2. We rank the configurations based on dominance and
configuration distance and we select the configuration
with the highest rank and the smallest distance

Figure 6 depicts the distribution of ranks of all possible
configurations, our found solutions and the solutions that are
found during our random experiments, after ranking them
by dominance and configuration distance as explained.

Findings: Our approach clearly outperforms random selec-
tion for all combinations of parameters. Figure 6 shows that
the rank of the worst configuration that is selected by our
approach is in all cases equal to or higher (i.e., closer to 1)
than the median rank of the randomly-selected configura-
tions.
✄

✂

�

✁

Case study result 1: Our approach finds configurations
that are much closer to the optimal configuration than
when repeatedly selecting random configurations.

The second observation that we make in Figure 6 is that
for all combinations of aggregation functions and stopping

rules, our approach finds configurations that are within the
top ranked 25% of all possible configurations, i.e., the bot-
tom of the boxplot. The boxplots in Figure 6 show that
median() is the best performing aggregation function.

✄

✂

�

✁

Case study result 2: Our approach finds configurations
that are within the top ranked 25% of all possible con-
figurations when using all combinations of aggregation
functions and stopping rules in both subject applications.

Table 6: Top 5 ranks for PetClinic (mean, STOP0.25)

Rank Non-dominated rank Distance Configurations

0 0 3 00000011100
00000100110

1 0 4 00010101010
00001011001

2 0 5 10001110010
10001110001
10011001010
10001111000

3 0 6 10001111010
10010111001
00010111101
10001110101
01100111001

4 0 7 00110111011
00110011111

7.2 RQ2: Speed
Motivation: The speed with which our approach finds an
optimal solution, i.e., the number of configurations it has to
inspect, defines the practical applicability of our approach.
Because the workload has to be executed (preferably mul-
tiple times to remove variation) in order to evaluate the
performance of a configuration, the speed of our approach
is dependent on the number of configurations that must be
inspected.



●

●

●

●

●●

●

●

S
T

O
P

0
.5

S
T

O
P

0
.2

5

S
T

O
P

0
.1

S
T

O
P

t

0

100

200

300

400

500

600

Median
#

 o
f 

c
o

n
fi
g

u
ra

ti
o

n
s

●
●

●
●

●

●

●

●

●●

S
T

O
P

0
.5

S
T

O
P

0
.2

5

S
T

O
P

0
.1

S
T

O
P

t

0

100

200

300

400

500

600

Mean

#
 o

f 
c
o

n
fi
g

u
ra

ti
o

n
s

(a) Spring PetClinic

●

●

●

●

●

●

●

S
T

O
P

0
.5

S
T

O
P

0
.2

5

S
T

O
P

0
.1

S
T

O
P

t

0

100

200

300

400

500

Median

#
 o

f 
c
o

n
fi
g

u
ra

ti
o

n
s

●●

●

●

●●

●
●

●

●

●
●

S
T

O
P

0
.5

S
T

O
P

0
.2

5

S
T

O
P

0
.1

S
T

O
P

t

0

100

200

300

400

500

Mean

#
 o

f 
c
o

n
fi
g

u
ra

ti
o

n
s

(b) ZK

Figure 7: Number of configurations generated to find an optimal configuration

●

●

●

●

●●

●

●

S
T

O
P

0
.5

S
T

O
P

0
.2

5

S
T

O
P

0
.1

S
T

O
P

t

0

20

40

60

80

100

Median

T
o

ta
l 
e
xe

c
u

ti
o

n
 t

im
e

 (
m

in
u

te
s
)

●
●

●
●

●

●

●

●

●●

S
T

O
P

0
.5

S
T

O
P

0
.2

5

S
T

O
P

0
.1

S
T

O
P

t

0

20

40

60

80

100

Mean

T
o

ta
l 
e
xe

c
u

ti
o

n
 t

im
e

 (
m

in
u

te
s
)

(a) Spring PetClinic

●

●

●

●

●

●

●

S
T

O
P

0
.5

S
T

O
P

0
.2

5

S
T

O
P

0
.1

S
T

O
P

t

0

1000

2000

3000

4000

5000

6000

Median

T
o

ta
l 
e
xe

c
u

ti
o

n
 t

im
e

 (
m

in
u

te
s
)

●●

●

●

●●

●
●

●

●

●
●

S
T

O
P

0
.5

S
T

O
P

0
.2

5

S
T

O
P

0
.1

S
T

O
P

t

0

1000

2000

3000

4000

5000

6000

Mean

T
o

ta
l 
e
xe

c
u

ti
o

n
 t

im
e

 (
m

in
u

te
s
)

(b) ZK

Figure 8: Total execution time of our approach

Approach: To evaluate the speed with which our approach
finds a solution, we monitor the number of new configura-
tions that are generated before the algorithm terminates.

Findings: Because our approach requires the execution of
the workload for every newly generated configuration, the
number of new configurations generated directly influences
the time in which our approach can find an optimal config-
uration. The execution time of the workload (i.e., all test
cases executed sequentially) for PetClinic is 0.3 seconds and
for ZK 28.1 seconds using the default configuration. To re-
move variation, we execute every workload 30 times. Hence,
analyzing a new configuration for PetClinic takes 9 seconds
and for ZK 843 seconds. To illustrate, analyzing all possi-
ble configurations using the subset of performance-related
configuration options in Table 3 takes 5 hours for PetClinic
and almost 20 days for ZK. When using a large number
of configuration options, exhaustive analysis of all possible
configurations is no longer feasible.

Figure 7 shows the distribution of the number of new con-
figurations that are generated by our approach in order to
find an optimal configuration for all combinations of aggre-
gation functions and stopping rules. Figure 8 shows the

distribution of the execution time of our approach. When
using STOP0.5, STOP0.25 or STOPt as the stopping rule,
the number of analyzed configurations causes our approach
to run for 360-450 seconds for PetClinic and for 9-12 hours
for ZK to find an optimal configuration. This allows our
approach to be run before the release of an application to
find an optimal configuration.
✄

✂

�

✁

Case study result 3: The execution time of our approach
allows it to be executed before a new release to find an
optimal configuration.

We observe that STOP0.5, STOP0.25 and STOPt generate
approximately the same number of configurations (40-50)
before the algorithm terminates. For STOP0.1, this number
is much higher, while we observed in the previous section
that the closeness does not increase. The large number of
configurations generated shows that STOP0.1 is too strict
as a stopping rule.

8. THREATS TO VALIDITY
In this section, we present the threats to the validity of

our work.



8.1 Internal Validity
In this paper we proposed an approach to identify the op-

timal ORM configuration for an application. We considered
all ORM configuration options as binary values. However,
some of the configuration options are non-binary values. To
keep the total number of configurations low, we made these
non-binary options binary by allowing only their low and
high values in our motivational study and case study eval-
uation. This allowed us to exhaustively execute all possible
configurations when evaluating the configurations that are
found by our approach.

For the same reason, we selected only a subset of ORM
configurations. However, the set of configuration options
that are used is independent from our approach and as such,
the set of configuration options can easily be adapted or
extended.

During our case study we used unit test cases to evaluate
the performance impact of an ORM configuration change.
The advantage of using unit test cases is that they are usu-
ally readily available and repeatable in an automated fash-
ion. In addition, the unit test cases allow us to find per-
formance issues at the unit level. The disadvantage is that
they are unlikely to be representative of a realistic workload.
Our approach is agnostic to the used workload and defined
objectives, making it flexible to adapt. We believe there are
no limitations on the workload, other than that it should
not be random, as randomness makes a fair comparison of
monitored metrics impossible.

We evaluated only two different types of stopping rules
(i.e. t-test and MDR). While algorithm termination is a
widely researched topic in MOGA research [4, 16, 26], these
two types are used regularly.

8.2 External Validity
In our case study we studied two open source projects.

The evaluation of our approach may not generalize to other
projects. In addition, ORM is widely adapted by enterprise
applications [20]; while our studied projects are open source
projects. Our findings may not generalize to enterprise ap-
plications. In future work, we plan to evaluate our approach
on a large-scale industrial project.

One programming language (Java) and one ORM frame-
work (Hibernate) is covered in our case study. Although the
studied language and ORM framework are widely used in
practice, the findings may be different for other program-
ming languages and other frameworks. More case studies
with more projects, especially enterprise applications, other
programming languages and also other ORM frameworks,
would complement our work.

9. RELATED WORK
We now describe prior research that is related to this pa-

per. We focus on the research that aims to optimize con-
figurations of large software systems. We discuss two types
of prior research towards optimizing configurations: 1) Un-
derstanding the impact of configuration and 2) Proactive
configuration optimization.

9.1 Understanding the Impact of Configura-
tion Options

Large software systems often provide a large number of
configuration options [2]. All too often, practitioners are

not aware of the impact of configuration options. However,
a thorough understanding of the options is essential for op-
timizing configurations. Prior research proposes techniques
that assist in understanding the impact of configuration op-
tions.

In existing work, performance models are built that use
configuration options to predict performance metrics (e.g.
response time, resource utilization). Practitioners can better
understand the impact of configuration options by measur-
ing the impact of these options on the performance metrics
in the model. Siegmund et al. [22] build linear regression
models to understand the performance impact of configu-
ration options. To address the challenge of having a large
number of configuration options, Siegmund et al. [23] lever-
age forward and backward feature selection techniques to re-
duce the number of configuration options in the model. Guo
et al. [10] leverage non-linear regression models to model
system performance. Their approach automatically identi-
fies the configuration options that have the largest impact
on performance and builds models with such configuration
options. As a follow-up work, Zhang et al. [34] leverage
Fourier transformations on performance counters to build
performance prediction models.

Statistical methodologies are often leveraged for under-
standing the impact of configuration options. However, to
quantify the impact of each configuration option, one would
need to evaluate the performance of using every possible
combination of configuration options. To reduce such effort,
Debnath et al. [6] assume that the impact of configuration
options on performance is monotonic and there only exist
single and two-factor interactions among configuration op-
tions on performance. With this assumption, Debnath et al.
leverages Plackett and Burman statistical design method-
ology [25] to rank the impact of configuration options on
system performance.

Prior research can assist practitioners in understanding
the impact of configuration options on performance. How-
ever, even with such knowledge, practitioners may still need
help in choosing the optimal configurations. Moreover, all
too often, the optimal configurations depend on the specific
workload. Therefore, instead of understanding the impact of
configuration options on performance, this paper focuses on
automatically suggesting configurations to achieve optimal
performance.

9.2 Proactive Configuration Optimization
To suggest better configurations for large software sys-

tems, prior research proposes techniques that proactively
optimizes the configurations of a system. These techniques
do not target any particular configuration issues in the sys-
tem.
Configuration optimization with optimizing algorithms.
The most widely used approach to optimize configurations
is through the use of an optimizing algorithm, such as hill-
climbing. Duan et al. [8] proposes a framework that assists
in leveraging such optimizing algorithms to find optimal con-
figurations. The framework leverages adaptive sampling to
select the experiments to evaluate performance of configu-
rations with and performs on-line experiments in the pro-
duction environment with near zero performance overhead.
Xi et al. [29] optimize the configuration for the applica-
tion server using sampling and a smart hill-climbing algo-
rithm, which selects important samples for the experiment



to search the optimal configuration. Lengauer et al. [15] pro-
poses an approach that identifies the optimal configuration
for the JVM garbage collector. Their approach leverages
the ParamILS algorithm which performs local search itera-
tively. Wang et al. [27] propose an approach to optimize the
configuration for Hadoop based on a hill-climbing algorithm.

To address the challenge of having a large search space
for the optimal configurations, Osogami et al. [17] propose
approaches that perform adaptive search to find a configu-
ration that is better than the default configuration. Their
approach only considers the configurations with minimal
changes while searching for the better configuration. In
addition, their approach aims to reduce the total time re-
quired for searching the best configuration by reducing the
evaluation time for each configuration. A follow up work
by Osogami et al. [18] improves their prior approach [17] by
guessing the performance of configurations based on similar-
ities between configurations. Instead of reducing the time of
evaluating configuration performance, Thonangi et al. [24]
reduces the candidates of optimal configurations by selecting
a sample of configurations that most likely have the optimal
performance.

In this paper, we also leverage an optimization algorithm,
i.e., a multi-objective genetic algorithm, to find the opti-
mal configurations for performance. Above mentioned tech-
niques optimize the configurations of a system based on sin-
gle objective i.e., the execution time. In contrast, our work
focuses on optimizing multiple objectives at once.
Configuration optimization based on performance
models. Section 9.1 presents prior research that build per-
formance models in order to understand the impact of con-
figurations. Such models are further leveraged to optimize
configurations. Zheng et al. [35] propose an approach for
optimizing configurations by traversing a configuration op-
tion dependency graph based on performance models. Diao
et al. [7] monitor the CPU and memory utilization for web
servers. Diao et al. model CPU and memory utilization and
leverage such a model to achieve optimal configuration for
an application.
Configuration optimization based on user experi-
ence. Popular large software systems often have a large user
base. Experiences of choosing configuration options provide
valuable information and can be generalized as guidelines of
optimizing configurations of the system. Zheng et al. [36]
observe that different users of a system may have the same
optimal configurations and each user can have multiple near-
optimal configurations. Therefore, Zheng et al. propose an
approach that leverages existing configuration from different
users and applies the configuration accordingly on the new
software installation.

10. CONCLUSION
Object-relational mapping (ORM) provides a mapping be-

tween the higher level object-oriented model and the lower
level relational model of a database management system.
ORM frameworks offer a variety of configuration options
that allow the user to configure how this mapping is per-
formed in an optimal fashion.

In our motivational study we observe that ORM configu-
rations have a large impact on the performance of an appli-
cation.

Motivated by this observation, we propose an approach for
automatically optimizing the performance configurations of

ORM frameworks using a multi-objective genetic algorithm
(MOGA). Using a MOGA allows us to optimize the perfor-
mance based on multiple, possibly conflicting, objectives. In
summary, these are the most important results of this paper:

• Two randomly selected configurations can lead to a
large difference in execution time

• The default configuration as supplied by the ORM
framework performed in 89-96% of the analyzed test
cases significantly slower than the optimal configura-
tion for that case

• Our approach can find a near-optimal configuration in
a time that makes it feasible to find such a configura-
tion before the new release of an application

11. REFERENCES

[1] Using effect size - or why the p value is not enough.
http://www.ncbi.nlm.nih.gov/pmc/articles/

PMC3444174/.
[2] W. A. Babich. Software configuration management:

coordination for team productivity. Addison-Wesley
Reading, 1986.

[3] T.-H. Chen, W. Shang, Z. M. Jiang, A. E. Hassan,
M. Nasser, and P. Flora. Detecting performance
anti-patterns for applications developed using
object-relational mapping. In Proceedings of the 36th
International Conference on Software Engineering,
pages 1001–1012. ACM, 2014.

[4] K. Deb. Multi-objective optimization using
evolutionary algorithms, volume 16. John Wiley &
Sons, 2001.

[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
Nsga-ii. Evolutionary Computation, IEEE
Transactions on, 6(2):182–197, 2002.

[6] B. K. Debnath, D. J. Lilja, and M. F. Mokbel. Sard:
A statistical approach for ranking database tuning
parameters. In Data Engineering Workshop, 2008.
ICDEW 2008. IEEE 24th International Conference
on, pages 11–18. IEEE, 2008.

[7] Y. Diao, J. L. Hellerstein, S. Parekh, and J. P. Bigus.
Managing web server performance with autotune
agents. IBM Systems Journal, 42(1):136–149, 2003.

[8] S. Duan, V. Thummala, and S. Babu. Tuning database
configuration parameters with ituned. Proceedings of
the VLDB Endowment, 2(1):1246–1257, 2009.

[9] K. Eaton. How one second could cost amazon $1.6
billion in sales.
http://www.fastcompany.com/1825005/

how-one-second-could-cost-amazon-16-billion-sales

(last visited: Sep 17 2015).
[10] J. Guo, K. Czarnecki, S. Apel, N. Siegmund, and

A. Wasowski. Variability-aware performance
prediction: A statistical learning approach. In
Automated Software Engineering (ASE), 2013
IEEE/ACM 28th International Conference on, pages
301–311. IEEE, 2013.

[11] F. Hutter, H. H. Hoos, K. Leyton-Brown, and
T. Stützle. Paramils: an automatic algorithm
configuration framework. Journal of Artificial
Intelligence Research, 36(1):267–306, 2009.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3444174/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3444174/
http://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
http://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales


[12] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora.
Automatic identification of load testing problems. In
IEEE International Conference on Software
Maintenance (ICSM), pages 307–316. IEEE, 2008.

[13] Java tools and technologies landscape for 2014.
http://zeroturnaround.com/rebellabs/

java-tools-and-technologies-landscape-for-2014/

(last visited: Oct 7 2015).
[14] V. B. Kampenes, T. Dyb̊a, J. E. Hannay, and D. I. K.

Sjøberg. A systematic review of effect size in software
engineering experiments. Information and Software
Technology, 49(11-12):1073–1086, Nov 2007.

[15] P. Lengauer and H. Mössenböck. The taming of the
shrew: Increasing performance by automatic
parameter tuning for java garbage collectors. In
Proceedings of the 5th ACM/SPEC international
conference on Performance engineering, pages
111–122. ACM, 2014.

[16] L. Mart́ı, J. Garćıa, A. Berlanga, and J. M. Molina.
An approach to stopping criteria for multi-objective
optimization evolutionary algorithms: the mgbm
criterion. In IEEE Congress on Evolutionary
Computation (CEC), pages 1263–1270. IEEE, 2009.

[17] T. Osogami and T. Itoko. Finding probably better
system configurations quickly. In ACM SIGMETRICS
Performance Evaluation Review, volume 34, pages
264–275. ACM, 2006.

[18] T. Osogami and S. Kato. Optimizing system
configurations quickly by guessing at the performance.
In ACM SIGMETRICS Performance Evaluation
Review, volume 35, pages 145–156. ACM, 2007.

[19] Red Hat Middleware, LLC. Hibernate manual:
Configuration.
https://docs.jboss.org/hibernate/orm/3.3/

reference/en/html/session-configuration.html

(last visited: Sep 24 2015).
[20] A. R. Seddighi. Spring Persistence with Hibernate:

Build Robust and Reliable Persistence Solutions for
Your Enterprise Java Application. Packt Publishing
Ltd, 2009.

[21] V. Sharma and S. Anwer. Performance antipatterns:
Detection and evaluation of their effects in the cloud.
In Services Computing (SCC), 2014 IEEE
International Conference on, pages 758–765, June
2014.

[22] N. Siegmund, A. Grebhahn, S. Apel, and C. Kästner.
Performance influence models for highly configurable
systems. In Proceedings of the International
Symposium on Foundations of Software Engineering
(FSE), 2015.

[23] N. Siegmund, S. S. Kolesnikov, C. Kästner, S. Apel,
D. Batory, M. Rosenmüller, and G. Saake. Predicting
performance via automated feature-interaction
detection. In Proceedings of the 34th International
Conference on Software Engineering, pages 167–177.
IEEE Press, 2012.

[24] R. Thonangi, V. Thummala, and S. Babu. Finding
good configurations in high-dimensional spaces: Doing
more with less. In Modeling, Analysis and Simulation
of Computers and Telecommunication Systems, 2008.
MASCOTS 2008. IEEE International Symposium on,
pages 1–10. IEEE, 2008.

[25] J. Tyssedal. Plackett–burman designs. Encyclopedia of
Statistics in Quality and Reliability, 2008.

[26] T. Wagner, H. Trautmann, and L. Mart́ı. A taxonomy
of online stopping criteria for multi-objective
evolutionary algorithms. In Evolutionary
Multi-Criterion Optimization, pages 16–30. Springer,
2011.

[27] K. Wang, X. Lin, and W. Tang. PredatorâĂŤan
experience guided configuration optimizer for hadoop
mapreduce. In Cloud Computing Technology and
Science (CloudCom), 2012 IEEE 4th International
Conference on, pages 419–426. IEEE, 2012.

[28] A. Wool. A quantitative study of firewall configuration
errors. Computer, 37(6):62–67, June 2004.

[29] B. Xi, Z. Liu, M. Raghavachari, C. H. Xia, and
L. Zhang. A smart hill-climbing algorithm for
application server configuration. In Proceedings of the
13th international conference on World Wide Web,
pages 287–296. ACM, 2004.

[30] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng,
D. Yuan, Y. Zhou, and S. Pasupathy. Do not blame
users for misconfigurations. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating
Systems Principles, pages 244–259. ACM, 2013.

[31] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N.
Bairavasundaram, and S. Pasupathy. An empirical
study on configuration errors in commercial and open
source systems. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles,
pages 159–172. ACM, 2011.

[32] M. Yonkovit. The cost of not properly managing your
databases. https://www.percona.com/blog/2015/04/
06/cost-not-properly-managing-databases/ (last
visited: Sep 17 2015).

[33] S. Zhang and M. D. Ernst. Automated diagnosis of
software configuration errors. In Proceedings of the
2013 International Conference on Software
Engineering, pages 312–321. IEEE Press, 2013.

[34] Y. Zhang, J. Guo, E. Blais, and K. Czarnecki.
Performance prediction of configurable software
systems by fourier learning. In Proceedings of the
International Conference on Automated Software
Engineering (ASE), 2015.

[35] W. Zheng, R. Bianchini, and T. D. Nguyen. Automatic
configuration of internet services. ACM SIGOPS
Operating Systems Review, 41(3):219–229, 2007.

[36] W. Zheng, R. Bianchini, and T. D. Nguyen. Massconf:
automatic configuration tuning by leveraging user
community information. In ICPE, pages 283–288,
2011.

http://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-for-2014/
http://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-for-2014/
https://docs.jboss.org/hibernate/orm/3.3/reference/en/html/session-configuration.html
https://docs.jboss.org/hibernate/orm/3.3/reference/en/html/session-configuration.html
https://www.percona.com/blog/2015/04/06/cost-not-properly-managing-databases/
https://www.percona.com/blog/2015/04/06/cost-not-properly-managing-databases/

	Introduction
	ORM Performance-Related Configuration
	Exploratory Study
	Genetic Algorithms
	Dominance
	Running Example
	Initialization Phase
	Tournament Phase
	Evolution Phase
	Selection Phase
	Stopping Phase

	Automatic Performance Optimization
	Defining the Objectives
	Selecting a Workload
	Selecting Configuration Options
	Executing the MOGA

	Case Study Setup
	Subject Applications
	Implementation
	MOGA Parameters

	Case Study
	RQ1: Closeness
	RQ2: Speed

	Threats To Validity
	Internal Validity
	External Validity

	Related work
	Understanding the Impact of Configuration Options
	Proactive Configuration Optimization

	Conclusion
	References

