
Detecting Problems in the Database Access Code of Large
Scale Systems

An Industrial Experience Report

Tse-Hsun Chen
Software Analysis and
Intelligence Lab (SAIL)

Queen’s University, Canada
tsehsun@cs.queensu.ca

Weiyi Shang
Concordia University

Quebec, Canada
shang@encs.concordia.ca

Ahmed E. Hassan
Software Analysis and
Intelligence Lab (SAIL)

Queen’s University, Canada
ahmed@cs.queensu.ca

Mohamed Nasser
BlackBerry, Canada

Parminder Flora
BlackBerry, Canada

ABSTRACT
Database management systems (DBMSs) are one of the most
important components in modern large-scale systems. Thus,
it is important for developers to write code that can ac-
cess DBMS correctly and efficiently. Since the behaviour
of database access code can sometimes be a blackbox for
developers, writing good test cases to capture problems in
database access code can be very difficult. In addition to
testing, static bug detection tools are often used to detect
problems in the code. However, existing bug detection tools
usually fail to detect functional and performance problems
in the database access code. In this paper, we document
our industrial experience over the past few years on find-
ing bug patterns of database access code, implementing a
bug detection tool, and integrating the tool into daily prac-
tice. We discuss the challenges that we encountered and the
day-to-day lessons that we learned during integrating our
tool into the development processes. Since most systems
nowadays are leveraging frameworks, we also provide a de-
tailed discussion of five framework-specific database access
bug patterns that we found. We hope to encourage further
research efforts on framework-specific detectors, instead of
the current research focus on general programming language
bug patterns and associated detectors.

1. INTRODUCTION
Due to the emergence of cloud computing and big data

applications, modern software systems become more depen-
dent on the underlying database management systems (DBMSs)
for providing data management and persistency. As a result,
DBMSs have become the core component in such database-
centric systems, with DBMSs usually interconnecting other
components. Thus, due to the complexity of how developers
interact with the DBMSs, it can be difficult to discover and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2016 ACM. ISBN 978-1-4503-4205-6.

DOI: 10.1145/1235

locate problems (e.g., bugs) in database access code.
Since the exact behaviour of these DBMSs are often black-

boxes to developers, writing high quality test cases that can
uncover all database access problems is nearly impossible. In
additional to testing, developers usually use static bug detec-
tion tools, such as FindBugs [14] and PMD [27], to provide a
complete coverage of the entire system. However, these bug
detection tools usually only provide patterns for detecting
general code bugs, but cannot detect domain-specific bug
patterns that are associated with accessing databases. For
example, modern systems usually leverage different frame-
works to abstract database access to speed up development
time and reduce maintenance difficulty. Thus, using these
frameworks incorrectly may introduce more domain-specific
bug patterns. In addition, existing static bug detection tools
usually rely on scanning the binary files, but many database
access bug patterns that we see in practice require parsing
specialized annotations in the code or analyzing external
SQL scripts.

In our prior research [8], we implemented a prototype
tool to detect two database access bug patterns in collab-
oration with industry. Our research-based domain-specific
static bug detection tool, DBChecker, received very positive
feedback from developers, and was adopted and integrated
as part of the day-to-day development processes of the in-
dustrial system. We worked closely with developers in order
to ease the adoption of our tool. However, during such pro-
cess, we encountered challenges and learned lessons that are
associated with how to successfully make practitioners adopt
a research-based domain-specific static bug detection tool.
In this paper, we document and discuss the challenge and
lessons learned. We believe that our experiences can help
other researchers improve bug detection tools and ensure a
smoother adoption process of their tools in practice.

This paper also presents five framework-specific database
access bug patterns that we observed while working on sev-
eral industrial systems. Our goal is to give readers concrete
examples of framework-specific bug patterns. Since most
modern systems are leveraging frameworks, framework-specific
bug patterns can have a large impact in practice. Hence, we
hope to encourage further research efforts on framework-
specific detectors, instead of the current research focus on
general programming language bug patterns and associated
detectors.

10.1145/1235

Table 1: A list of popular static bug detection tools.

Tool Focused Input Language Open
bug types sourced

FindBugs [14] General Binary Java Yes
Error Prone [13] General Binary Java Yes
Infer [10] General Binary Multiple Yes
PMD [27] General Source Multiple Yes
Coverity [9] General Source Multiple No
AppScan [15] Security Source Multiple No

The main contributions of this paper are:
• We find that most of the existing static bug detection

tools are not able to detect bugs that are associated
with database access code — highlighting the need
for more specialized bug detection tools for domain-
specific problems.

• We provide an experience report that discusses the
lessons that we learned on discovering, locating, and
detecting the bug patterns, and the challenges that we
encountered when adopting our bug detection tool in
practice.

• We provide detailed documentation on the root causes
and impact of five database access bug patterns that
we have seen in the studied industrial systems over the
past few years.

Paper Organization. Section 2 surveys related work.
Section 3 discusses the background story and the technolo-
gies that are related to the studied database access bug pat-
terns. Section 4 discusses the challenges and lessons that we
learned when integrating our tool in practice. Section 5 pro-
vides a detail discussion of the five studied database access
bug patterns. Finally, Section 6 concludes the paper.

2. RELATED WORK
In this section, we discuss related work to our study.

2.1 Static Bug Detection Tools
Table 1 shows a list of popular static bug detection tools.

FindBugs [14] is an open source static Java bug detection
tool that is widely used. FindBugs scans Java binaries to
detect general bugs, bad coding styles, and some security
problems. PMD [27] is a static source code analyzer that
detect potential problems in the code using pre-defined rules
related to general coding problems (e.g., empty code blocks
and bad code design). Error Prone [13] is a code analysis
tool developed by Google, where the tool aims to give de-
tection results during compilation, and can give suggested
fixes. Most of the bug patterns encoded by Error Prone are
general problems related to coding errors such as compar-
ing arrays using “==”. Infer [10] is a static bug detection
tool built by Facebook. The tool focuses on detecting prob-
lems in programming languages that are used for developing
mobile apps (e.g., Java and Obj-C). Coverity [9] is a com-
mercial static bug detection tool, which looks for different
kinds of bug patterns in various programming languages. Fi-
nally, AppScan [15] is a static bug detection tool developed
by IBM and is specialized in detecting security bugs.

Although the above-mentioned static bug detection tools
are widely used and are able to detect many kinds of bugs,
none of them have emphasis on detecting domain-specific

bugs, such as bugs related to performance or database. How-
ever, as recent studies show [8,17,25,26], such bugs also have
significant impact on software quality, and developers are in-
terested in detecting those bugs.

In this paper, we discuss our experience on discovering and
detecting database access bug patterns, which the above-
mentioned tools do not detect. As modern systems are re-
lying more heavily on DBMSs, detecting database access
bugs can significantly help improve the user experience and
software quality. We document some functional and non-
functional (i.e., performance-related) database access bug
patterns that we see in practice, and provide the challenges
that we encountered and the lessons that we learned when
adopting our static bug detection tool into practice.

2.2 Integrating Code Analysis Research Tools
into Practice

In addition to this paper, there are some prior studies dis-
cussing the challenges associated with adopting static bug
detection research tool into practice. Johnson et al. [18]
interview 20 developers regarding the challenges that they
see when using static bug detection tools. Johnson et al.
find that tool configuration (e.g., filtering mechanism), inte-
gration with development workflow, and report formatting
affect developers’ willingness to use a static bug detection
tool. Ayewah et al. [6] evaluate the generated warnings by
FindBugs on production software. They found that Find-
Bugs finds many true bugs with little or no functional im-
pact, and there is a need for prioritizing high impact defects.
Nanda et al. [24] discuss how they use an online portal to
help improve the adoption of static bug detection tools at
IBM. The portal provides cloud-based code scanning and
allows developers to communicate by adding discussion to
the static bug detection reports. Smith et al. [29] conduct a
user study on the questions that developers ask when using
static bug detection based security tools. They found that
the security tools should provide better reporting systems
to help developers locate the problems.

In this paper, we focus on database access bug patterns,
which have different characteristics than general bug pat-
terns. For example, due to the differences in the nature
of the accessed database tables (e.g., size), some detected
bug patterns may be more severe in practice. Since adopt-
ing research results in practice can be very challenging [22],
we discuss the challenges and lessons that we learned when
adopting our static bug detection tool in practice.

3. BACKGROUND
In this section, we briefly discuss the industrial systems

that we use, and the background story for creating a tool to
detect database access bug patterns.

Studied Systems. In this paper, we document the database
access bug patterns that we see in industrial systems over
the past years. Due to non-disclosure agreement (NDA), we
cannot give the exact details of the systems. However, the
industrial systems are very large in sizes (millions of lines
of code), support a large number of users concurrently, and
are used by millions of users worldwide on a daily basis. Be-
low, we discuss the two main technologies that these indus-
trial systems often use for accessing DBMS and managing
database transactions.

That there are a slew of similar technologies used in prac-

tice today by researchers and developers. Hence, the dis-
cussed patterns and our experiences are general, and are not
specific to a particular technology; instead, the patterns are
due primarily to the interaction between application code
and database. We discuss these two technologies below be-
cause of their popularity and our need to provide concrete
examples throughout the paper, so the reader can better
grasp the raised concerns and the documented patterns.

Accessing DBMS Using Hibernate. Hibernate is a
Java-based object-relational mapping (ORM) framework that
is used for accessing the DBMS. Hibernate is the most pop-
ular Java ORM used in industry. A recent survey [31] finds
that that among 2,164 surveyed Java developers, 67.5% use
Hibernate for accessing the DBMS. ORM frameworks auto-
matically map objects in object-oriented languages to records
in the DBMS, and ORM frameworks can automatically trans-
late object manipulations to database operations. Thus,
ORM frameworks have become very popular [19] in the in-
dustry, since using ORM can significantly reduce mainte-
nance efforts and the amount of boilerplate code that needs
to be written to interface with modern DBMSs [20].

Figure 1 shows an example of using Hibernate to configure
a class as a database entity class (a class that is mapped to
a table in the DBMS). Developers can add annotations such
as @Entity to specify a class as a database entity class,
which is then mapped to a table in the DBMS (specified
using the @Table). Developers can add @Id to map an
instance variable to the primary key, and use @Column to
specify which column an instance variable is mapped to. De-
velopers can also specify the relationships between database
entity classes. In this example, there is a one-to-many rela-
tionship between User and Group, which means that a user
may belong to one or many groups. Developers can configure
how the associated objects should be fetched. An EAGER
fetch type means that the associated objects will always be
retrieved regardless whether they will be used or not. For
example, if fetch type is EAGER, fetching Group will always
also fetch all Users in that group. On the other hand, a fetch
type of LAZY means that the associated objects will only
be fetched whenever they are used in the code.

After configuring a class as a database entity class, devel-
opers can use code such as:

User u1 = new User("Peter");
save(u1);
User u2 = find(User.class , id);

to insert a new user to the DBMS, or retrieve a user by
id from the DBMS. Thus, using Hibernate significantly ab-
stracts the details of the underlying database access.

In our experience, we have seen a number of database
access bug patterns that are related to Hibernate. Some bug
patterns occur because of Hibernate’s database abstraction.
Some developers may not notice that the code that they
write may access the DBMS, and thus end up in writing
inefficient database access code [8]. We also see bug patterns
that are caused by system evolution. For example, using an
EAGER fetch may work better for some use cases, but may
cause performance problems in other newly introduced use
cases. Thus, automatically identifying such suboptimal uses
of configurations is important, as systems constantly evolve.

Transaction Management Using Spring. Spring [30] is
a widely used framework for database transaction manage-
ment, based on an aspect-oriented approach. A recent sur-

@Entity
@Table (name = ”user”)
public class User {

@Id
@Column(name=”user_id”)
private long userId ;

@Column(name=”user_name”)
private String userName;

... other instance variables

@ManyToOne()
@JoinColumn(name=”group_id”)
private Group group ;

void setName(String name){
this.userName = name;

}
... other getter and setter functions

}

User.java

map to DB attributes

map to DB tableprimary key

@Entity
@Table (name = ”group”)
public class Group {

@Id
@Column(name=”group_id”)
private long groupId ;

@Column(name=”group_name”)
private String userName;

... other instance variables

@OneToMany(mappedBy=”group”,
fetch = FetchType.LAZY)

private List<User> users;

void setGroupName(String name){
this.userName = name;

}
... other getter and setter functions

}

Group.java

Fetch only when necessary

Figure 1: An example of configuring database entity
classes using Hibernate.

vey [31] shows that Spring is the most commonly used Java
web framework (more than 40% of developers use Spring).
Spring abstracts database transaction management code us-
ing annotations. For example:

@Transactional
public void performBusinessTransaction (){

...
}

In this simple code example, by adding the annotation @Trans-
actional, the method performBusinessTransaction and all the
timemethods called within it will be executed in a single
database transaction. Thus, developers can avoid writing
boilerplate code, instead they can focus on the business logic
of the system.

In practice, we see some database access bug patterns that
are related to how a transaction is configured when using
Spring. For example, a transaction can have the default
configuration, where a transaction will be created if the an-
notated method is not already in a transaction. If the anno-
tated method is already within a transaction (e.g., one of the
caller methods is also annotated with @Transactional),
the method would be executed in the parent transaction
and will not create a new transaction. If the annotation
has the property @Transactional(REQUIRES NEW),
then a new transaction will always be created, and the par-
ent transaction will be suspended until the newly created
transaction is completed. If the annotation has the property
@Transactional(NOT SUPPORTED), then the parent
transaction will be suspended until the annotated method
returns. In practice, we have seen incorrect uses of such con-
figuration that cause functional or non-functional problems
(e.g., deadlocks, feature bugs, and scalability issues).

4. CHALLENGES AND LESSONS LEARNED
We encountered many bugs that are associated with ac-

cessing a DBMS when developing large-scale industrial sys-
tems. In our prior work [8], we derived some bug patterns
based on such bugs, and implemented a prototype static
bug detection tool. Our tool received very positive feedback
from developers, and attracted interests from various devel-
opment teams. After active discussion and cooperation with
the developers, we received many additional database access

bug patterns that the developers have seen over the years in
the field. Based on our experience and from developers’ feed-
back, these database access bug patterns can have significant
impact on the system quality. As these database access bug
patterns cannot be detected using readily available static
bug detection tools such as FindBugs or PMD, the first au-
thor implemented the detection algorithms and integrated
them into our DBChecker tool. However, although devel-
opers see value in our database access bug detection tool,
we encountered many roadblocks when adopting this line of
research into practice. As a result, we feel that, in addition
to discussing new database access bug patterns that we have
seen since our prior work, documenting the challenges that
we encountered and the lessons that we learned can further
help researchers create tools that have a higher chance to be
adopted in practice, and can reduce the gap between static
bug detection research and practice.

Below, we provide detailed discussions on the challenges
that we encountered when adopting our tool to detect database
access bug patterns. For each challenge, we provide the de-
scription and impact of the challenge, our solutions to ad-
dress the challenges, and the lessons that we learned.

C1: Handling the Large Size of Detection Re-
sults
Challenge Description. A common challenge when using
static bug detection tools is that these tools usually report a
large number of problems that overwhelm the developers [18,
28], and our tool is not an exception. However, we found
that not all of the detected problems are real problems, since
some of them may be false positives. In addition, to the
best of our knowledge, there is no prior study that discusses
the integration of static performance bug detection tool in
practice. We found that many detected performance bug
patterns are true bugs, but their impact may be too small
to be relevant.

Challenge Impact. Showing all the detected problems to
the developers at once would quickly reduce developers’ in-
terest and trust in the tool. In addition, developers usually
only have limited time and resources to investigate a portion
of the detected problems. So it is important to highlight the
problems that have the highest impact. Therefore, helping
developers make fast decision on whether a detected prob-
lem is a false positive, and how to prioritize their efforts on
reviewing the detection results is very important for effective
QA resource utilization.

Solutions to Handling the Large Size of Detection
Results and Lessons Learned. We found that in many
cases, the detected problems may not have the same impact,
even though the problems belong to the same pattern. For
example, a detected problem that is related to a frequently
accessed database table can have a larger impact in practice,
compared to problems related to rarely accessed tables. We
also found that we need to consider the size the table that
the database access code is accessing, since large data sizes
can increase the impact of a problem [12]. However, it is im-
possible to get the above-mentioned information using static
analysis, but the information can greatly help reduce devel-
opers’ effort on inspecting the static analysis results. Based
on the feedback we received from developers, we have in-
tegrated several functionalities into DBChecker that helped
us improve tool adoption and acceptance.

Grouping Detected Problems. Grouping the detected prob-
lems allows developers to allocate more resources to impor-
tant components of the system. Figure 2 shows an example
detection report of the nested transaction bug pattern (c.f.
Section 5.2.1). We group the detected problems according
to the source (i.e., packages or root causes) to which they
belong, such that developers can focus on features that are
more important (similar features are usually located in the
same package and affected by the same problem). In order to
identify whether the detected problem is real and has a size-
able impact in a timely manner, our tool also recommends
the experts that should investigate the problem, based on
the developer who last modified the method, in which the
detected problem was found.�
�

�
�

To help developers allocate quality assurance effort, we
group the detected problems according to their locations
in the code.

Prioritizing Detected Problems. We found that some of the
studied database access bug patterns may have varying sever-
ity in different use cases, especially for performance related
bug patterns. For example, if a bug pattern is related to
relationships between two database tables, a many-to-many
relationship would be more severe than one-to-one [8]. In
the case of eagerly fetching data from the DBMS, a one-to-
many relationship between two tables, e.g., user and group
in Figure 1, means that if we retrieve data of one user from
the DBMS, we will also eagerly retrieve data of all the groups
to which the user belongs. Thus, the problem becomes more
severe compared to the same pattern but with a one-to-one
relationship. Hence, it is important to prioritize the detected
problems according to their potential severity to reduce the
inspection effort of developers. We also found that provid-
ing a sorting mechanism in the detection report can further
help developers allocate QA resources. Since some database
tables are accessed more frequently or have more data, de-
tected problems that involve those tables should be ranked
higher. Developers should be able to choose the database ta-
ble of interest, and the report would prioritize the detected
problems that are related to those tables.�
�

�
�

To help developers allocate quality assurance efforts, we
prioritize the detected problems according to their poten-
tial severity.

Characterizing the Detected Problems. In order to improve
the readability of our report and help developers understand
the detected problems faster, we provide a detailed break-
down of each detected problem in the report. Figure 2 shows
an example detection report of the nested transaction bug
pattern. For each detected problem, the report shows the
root transactional method (deleteUser) and the package to
which it belongs. The report further shows that if any of
the methods in the subsequently called methods contain a
read or write to the DBMS (Recovered DB Access column
in the report), and the transaction propagation of the root
transactional method (REQUIRED). We also show the ac-
tual annotations that are declared in the code for the root
transactional method (Annotation column), and whether
the annotation is annotated at the method or class level.
Finally, the report shows the nested transactional method
(deleteUser), its propagation level, and the call path from

{
“propagationLeaf”: [

“NOT_SUPPORTED”
]

}

submit

Transactional Method Total Number 3

package.service.UserService.deleteUser 1

package.service.groupService.addUser 2

Recovered DB
access

Propagation
(Root)

Trans Declared
at Class Level

Annotation Nested
Transactional
Method

Propagation (Leaf) Call Path

WRITE REQUIRED False @Transactional() package.db.User
Dao.deleteUser

REQUIRES_NEW package.service.UserService.deleteUser
-> package.db.UserDao.deleteUser

Figure 2: An example detection report for the nested transaction bug pattern.

the root transactional method to the nested transactional
method. We provide similar breakdowns of each detect prob-
lems for other database access bug patterns. In short, we
found that by providing a detailed breakdown of each bug
pattern in the report, we can help developers understand the
problem and uncover its root cause faster. Thus, developers
can allocate the QA resources accordingly.�

�

	
We provide a detailed breakdown of each detected prob-
lem in order to help developers understand the root cause
of the problem faster and identify more important prob-
lems.

Learning From Developers. As discussed by Johnson et al. [18],
developers usually want more customizability of static bug
detection tools or outputs. From our experience, we found
that developers can tolerate a certain amount of false posi-
tives, but it is important for the bug detection tool to learn
which detected patterns should not show up again in the
detection report, based on developers’ feedback. Integrating
developers’ feedback on what to do with a reported problem
is useful for hiding detected database access bug patterns
that developers have already verified, or hiding bug patterns
that are less interesting (e.g., the bug patterns have minor
impact or the component with detected bug pattern is not
a high priority component).

After discussing with developers, we implement a func-
tionality in DBChecker to integrate developers’ feedback to
improve future reports. For example in Figure 2, develop-
ers can decide that all detected problems that have a RE-
QUIRED transaction propagation should be hidden in fu-
ture reports. Then, by clicking REQUIRED (under the
column Propagation (ROOT)) in the first detected problem
in the report, all detected problems that have the propa-
gation level of REQUIRED would not appear in future
reports.

On the other hand, if a developer decides to hide the de-
tected problems according to the transactional method (e.g.,
deleteUser), then only that particular problem would be hid-
den. Developers can also use the text area (i.e., the form
with a submit button in Figure 2) to see and to update
their previous decisions.�
�

�
�

In our experience, integrating developers’ feedback on de-
tected problems can help developers prioritize their re-
sources.

C2: Giving Developers Rapid Feedback
Challenge Description. We found that it is difficult to ask
every developer to run static bug detection tools in his/her

own local environment. A similar challenge was previously
encountered by Shen et al. while using other static bug de-
tection tools [28]. Setting up and running the tools may
interrupt developers’ common workflow. However, it is im-
portant to provide developers with prompt alerts about new
problems in the code in a timely manner. If we only scan
the code once a while, the tool may find a large number of
newly introduced problems. Such a large number may re-
duce developers’ motivation to inspect the detection results.

Challenge Impact. Based on our experience, if we only
present the report to developers every once a while, we lower
developers’ attention and interest in the detected problems.
Developers may forget about the details of the code that
caused the problems, which makes it even more difficult to
fix the detected problems. Moreover, since there may be new
code that is dependent on the detected problems, fixing the
detected problems may sometimes even require redesigning
the APIs.

Solutions to the Giving Developers Rapid Feedback
and Lessons Learned. In order to allocate resources to
investigate detected database bug access patterns more effi-
ciently, DBChecker is currently integrated in the Continuous
Delivery process. Continuous Delivery [7] is a common de-
velopment process for ensuring the quality of the system,
where development teams continuously generate products
(newer versions of a system) that are reliable for releasing
in short cycles. For example, Facebook releases new ver-
sion of its system into production twice a day, and Amazon
makes changes to its production systems every 11.6 seconds
on average1.

To solve the above-mentioned issues, we host DBChecker
in a cloud environment to scan the newest versions of the
systems once a day, and generate a report of all the detected
problems, as well as the new problems that are introduced
since its last run. Since there is not usually a large amount
of new code is added since the last run, developers only need
to examine a small number of newly introduced problems.
In addition, developers do not need to worry about setting
up and running DBChecker on their local environment.�

�

	
Based on our experience, integrating our static bug de-
tection tool in the Continuous Delivery process can help
increase developers’ interest in the detection results and
allow prompt attention to the detected problems.

1https://www.thoughtworks.com/insights/blog/case-
continuous-delivery

C3: Maintaining Developers’ Interest in the De-
tection Results
Challenge Description. We found that developers may
lose interests in the static bug detection results if the de-
tected problems are not related to the components that are
under active development, or if the detected problems are
not related to the currently-faced development challenges.
Namely, developers have goals in their development cycles,
so they may focus more on their current goals first instead
of allocating time to fix the detected problems that might
not have an impact in the field yet.

Challenge Impact. Static bug detection tools are only
useful if the developers are willing to investigate the detected
problems and provide fixes. Thus, if developers lose interest
in the tool, or do not trust the tool’s output, the tool would
provide no benefit to the developers.

Solutions to Maintaining Developers’ Interest in the
Detection Results and Lessons Learned. From our
experience, we found that in order to increase developers’
adoption and interest of static bug detection tools, it is im-
portant to have developers involved in tool development to
some extent. In our previous study [8], we implemented our
static bug detection tool and walked developers through the
bugs that we found. The developers were not only inter-
ested in the problems that we detected, but they were also
interested in how the tool was developed and whether the
tool can be extended to detect other bug patterns. Now we
sometimes receive requests from developers to implement
detectors for new bug patterns that they see, and cannot
be detected using existing tools such as FindBugs. We also
found that developers have extremely high interest in re-
viewing the detected problems related to the new bug pat-
terns that they asked us to develop, since developers are still
actively working on fixing those problems.�

�

	
We found that having developers involved in the devel-
opment and discussion of the static bug detection tool
can increase developers’ interest and motivation to fix
the detected problems.

C4: Communicating the Problems with Devel-
opers
Challenge Description. As systems become more com-
plex, developers usually abstract SQL queries as method
calls using various frameworks (e.g., Hibernate). However,
since not all developers have deep understanding about the
frameworks, we encountered some challenges when demon-
strating the results of our newly implemented detection al-
gorithm. Even after the tool is widely accepted, it is still
very important to assign the right person to fix the problem
to speed up the bug fixing process.

Challenge Impact. Developers may not take the static
bug detection results seriously if they cannot understand the
impact of the detected problems. Also, we found that some-
times developers may be unwilling to fix detected problems if
they are not the one who introduced the detected problems.

Solutions to Communicating the Problems with De-
velopers and Lessons Learned. We found that when
demonstrating the tools to developers, it is important to ed-
ucate them about the bug patterns. Since it is impossible
for every developer to understand all components of a sys-

tem, some developers may not understand the impact and
cause of some bug patterns. Therefore, we had to find some
key examples from the detected problems and demonstrate
their impact. In short, we cannot simply give the detection
reports without highlighting and demonstrating the reasons
that the problems are detected, and the possible impact of
the problems.

We hosted several “static bug detection result workshops”
to advertise our tool to various development teams. We
focused on explaining how the tool works and the detection
results, and letting developers know how the tool can be
extended to help them detect other problems. One of the
benefits of hosting such workshops is to learn more patterns
from developers’ experiences. In fact, we found most of the
studied bug patterns in this paper through interacting with
developers in the workshops.

We also found that some developers do not want to take
the responsibility of fixing the detected problems. The rea-
son can be that the developers are not familiar with the
detected problems, or the developers think they are not the
one who introduced the problems. Thus, it is important to
determine an effective bug triaging mechanism or policy be-
forehand in order to react rapidly to the detected problems.�

�

�

We found that it is necessary to educate developers about
the root causes and the possible impact of the detected
problems to increase developers’ awareness of the sever-
ity of the detected problems. In addition, an effective bug
triaging policy is needed to react rapidly to the detected
problems.

5. DATABASE ACCESS BUG PATTERNS

5.1 The Need for Framework-Specific and Non-
General Bug Patterns

The detection algorithms that we use to detect the stud-
ied database access bug patterns are straightforward, but
knowing the bug patterns in the first place requires extensive
domain knowledge. As systems become more complex, de-
velopers start to leverage different frameworks and technolo-
gies during development. There may be many new kinds of
bug patterns that are related to these frameworks, but since
these bug patterns are not available in most existing static
bug detection tools, developers are left in the dark. As an
example, a recent study [31] found that there are three times
more Java developers who use Hibernate (67.5%) than those
who use JDBC (22%). However, although there are many
JDBC-related patterns in the surveyed static bug detection
tools, there is only one Hibernate-related bug pattern (which
is related to SQL injection) in Coverity. Therefore, finding
bug patterns that are more specific can further help improve
system quality significantly. Due to the wide rise of frame-
works throughout industry, in the following subsection, we
discuss the framework-specific database access bug patterns
that we have seen in practice. Our goal of presenting these
patterns is to give readers concrete examples of framework-
specific bug patterns. Hence, we hope to encourage further
research efforts on framework-specific detectors, instead of
the current research focus on general programming language
bug patterns and associated detectors. We feel future stud-
ies should also consider detecting bug patterns that may be
more specific to certain frameworks but have a significant
impact in most industrial systems.

5.2 Studied Bug Patterns
After our prototype [8] was adopted in practice, we re-

ceived active feedback from developers, and they showed
enormous interest in the detected problems. After active dis-
cussion and cooperation with the developers, we found five
new database access bug patterns. These bugs have caused
both functional and non-functional problems in the systems,
and some problems were difficult to capture. Unfortunately,
current static bug detection tools such as FindBugs or PMD
fail to capture most of these bug patterns. As a result, we
improved our DBChecker tool to further detect these five
database access bug patterns.

To provide more detailed information and breakdown of
each bug pattern, we discuss each bug pattern using the
following template:

Impact. Whether it is functional or non-functional (i.e.
performance).

Description. A detailed description of the database access
bug pattern.

Example. An example of the bug pattern.

Developer awareness. We search the database access bug
pattern on developer forums or blogs (e.g., Stack Over-
flow) to determine whether the bug pattern affects
other developers, or whether the bug pattern is specific
to our studied systems. We also summarize developers’
discussions and thoughts.

Possible solutions. We discuss possible solutions to re-
solve the bug pattern.

Detection approach. We briefly describe the implemen-
tation of our bug detection tool for detecting the bug
pattern.

5.2.1 Nested Transaction
Impact. Non-functional.

Description. Developers may use the annotation @Trans-
actional to execute a method and its subsequent method
calls in a transaction. In addition to using the annotation
directly, developers can also specify the properties for the
transaction. The properties can be REQUIRES NEW or
NOT SUPPORTED (as described in Section 3). When a
method (e.g., method A) is annotated using @Transac-
tional, and its subsequent method (e.g., method B) is anno-
tated with properties such as REQUIRES NEW, method B
will be executed inside a new transaction. Then, the trans-
action in which method A resides will be suspended until B
is finished. This is the intended behaviour of the properties;
however, as the system becomes more complex, there may
be other usages of method B that do not require method B
to be executed in a separate transaction. In addition, the
requirement of method A may be changed, and suspend-
ing the transaction may cause a transaction timeout. We
also found that using the properties incorrectly can cause
database deadlocks in practice. As a result, our tool detects
and labels Nested Transaction as a warning, and developers
are required to perform further inspection.

Example. As an example:

Class A{
@Transactional(timeout = 300ms)
public User updateUserById(int id) {

...
notifyServer ();
...

}
}
Class B{

@Transactional(REQUIRES_NEW)
public void notifyServer (){

...
}

}

Assuming that whenever the data of a user is updated, the
server is notified about the event (e.g., for doing data anal-
ysis). In this example, there will be two transactions, one is
created in updateUserById and another one is created in noti-
fyServer. However, because the transaction property is RE-
QUIRES NEW in updateUserById, notifyServer would sus-
pend the transaction in updateUserById until notifyServer is
finished. Such transaction configuration may cause trans-
action timeouts (the timeout time is 300ms for updateUser-
ById) and unnecessary transaction overhead (we may exe-
cute notifyServer asynchronously). Note that, if any subse-
quent method in notifySever also requires modifying or read-
ing data in the User table, a deadlock may occur, because
the suspended parent transaction is holding the lock but the
second transaction is also trying to grant the lock.

Developer awareness. We found instances of developers
discussing the potential problems of using REQUIRES NEW
incorrectly [16], such as blocking DBMS connection or dead-
lock. Thus, it is important to notify developers about nested
transaction, and manually investigate if the detected bug
patterns can cause potential problems.

Possible solutions. There are many possible solutions de-
pending on the nature of the problem. For example, develop-
ers may remove the transaction property if the transaction
is not needed, or they can execute the second transaction
asynchronously if two transactions do not depend on each
other. One may also refactor the code to place the anno-
tation in other methods, or provide new APIs that have
different transactional behaviours.

Detection approach. Our detection algorithm first con-
structs the call graph of the entire system, and records the
annotation information for each method. Then, for each
method that will be executed in a transaction, we traverse
the method’s call graph, and report a problem if any subse-
quent method in the call graph is annotated with @Trans-
actional and have properties such as REQUIRES NEW.

5.2.2 Unexpected Transaction Behaviour
Impact. Functional.

Description. As the default behaviour of Spring’s trans-
action management, the @Transactional annotation does
not create a transaction if the annotated method is called
within the same class (i.e., self-invocation). Hence, if de-
velopers call a method that is annotated with @Trans-
actional(REQUIRES NEW) within the same class, the
method would not be executed in a new transaction, and
the transaction would not be rolled back if errors occur.

Example. Consider the following example:

Class A{
@Transactional(timeout = 300ms)
public User updateUserById(int id) {

...
notifyServer ();

}
@Transactional(REQUIRES_NEW)

public void notifyServer (){
...

}
}

In this example, since both updateUserById and notifyServer
are in the same class, notifyServer would not be executed in
a separate transaction when called in updateUserById. Thus,
the actual behaviour would be different from the developer’s
intention.

Developer awareness. There are many developers who
are facing this problem and seek help online [3, 4]. Detect-
ing such bug pattern can be beneficial, because as shown in
the Stack Overflow posts, developers may not be fully aware
of the mechanism of how Spring manages transactions. As a
system becomes more complex, it is difficult and time con-
suming to manually discover such problem in the code, or
to notice such unexpected transaction behaviour during pro-
gram execution.

Possible solution. To solve Unexpected Transaction Be-
haviour, one solution is to refactor the code so that methods
annotated with @Transactional(REQUIRES NEW) are
in a different class than the caller methods that are anno-
tated with @Transactional().

Detection approach. Our detection algorithm first con-
structs the call graph of the entire system, and records the
annotation information for each method. Then, for each
method that will be executed in a transaction, we traverse
the method’s call graph, and report a problem if any subse-
quent method in the call graph is annotated with @Trans-
actional(REQUIRES NEW) and both annotated meth-
ods are defined in the same class.

5.2.3 Inconsistent Transaction Read-Write Level
Impact. Non-functional.

Description. Developers can specify a transaction anno-
tation to be read-only when the annotated method (and its
subsequent method calls) do not modify data in the DBMS.
Setting a transaction to read-only provides a hint to the
underlying Hibernate engine, and Hibernate may choose to
open a read-only transaction, which has a smaller perfor-
mance overhead compared to a read-write transaction. Note
that even if the DBMS does not support read-only trans-
action, setting a transaction to read-only still has perfor-
mance benefits when using Hibernate. Setting a transaction
to read-only tells Hibernate not to automatically flush un-
committed changes to the DBMS. Flushes force Hibernate
to synchronize the in-memory data to the DBMS [23], even
though the transaction is not yet committed. Since read-
only transactions do not modify the data in the DBMS,
flushes are not necessary. Thus, setting the transaction to
read-only can help improve performance even if the underly-
ing DBMS does not support read-only transactions. Despite
the benefits of read-only transactions, sometimes developers
may forget to set the transaction to read-only for methods
with only read-access to the DBMS.

Example. Consider the following example:

@Transactional ()
public User readUserById(int id) {

return session.find(User.Class , id)
}

In the above-mentioned example, the transaction read-write

level is set to default, but the method only reads from the
DBMS. Thus, ideally setting the transaction to read-only
may help improve performance.

Developer awareness. In practice, we also see many de-
velopers who do not understand the difference between read-
only and the default transaction level. For example, there
are many posts on Stack Overflow asking the benefits of
setting a transaction to read-only [1, 2]. Manually identify-
ing all methods that have a mismatch between the transac-
tion level and the database access can be a time-consuming
task. Hence, automatically detecting such patterns can sig-
nificantly reduce developers’ effort.

Possible solution. The solution would require developers
to change the annotated transaction to a read-only transac-
tion for methods that do not modify data in the DBMS.

Detection approach. Our detection algorithm first re-
covers the call graph for the entire system, as well as the
annotations that are associated with each method. Then,
for each annotated method and its subsequent methods, we
traverse the call graph to see if there are any API calls that
modify data in the DBMS. If there is only API calls that
read data from the DBMS, and the method is not anno-
tated with read-only, then we report the detected problem
as a warning.

5.2.4 Sequence Name Mismatch
Impact. Functional.

Description. In Hibernate, developers may choose which
sequence object that a database entity class uses in the
DBMS. Developers can add an annotation to an instance
variable to specify the name of the sequence object that the
variable uses. Sequence objects generate the next sequen-
tial number (e.g., primary key) when a new sequence object
is created. However, there may be human errors that the
name of the sequence object in the SQL schema file does
not match with the name that is specified in the annotation
in the code. In such cases, duplicated sequences may occur,
and may cause duplicated primary key errors.

Example. Consider the following example:

Class User{
@Id
@SequenceGenerator(sequenceName=

"user_seq")
@Column(name="user_id")
private int id;
...

}

user_schema.sql
user_id BIGINT NOT NULL DEFAULT nextval

(’user_id_seq ’)

In this example, we have a User class, which is mapped to
the user table in the DBMS. The user id instance variable
is mapped to the primary key column in the DBMS, and
the name of the sequence object (“user sql”) is specified in
the annotation @SequenceGenerator. However, in the
user table schema file, we can see that the sequence name is
“user id sql” and not “user sql”. Such sequence name mis-
match may be caused by copy-and-paste error.

Developer awareness. Although there aren’t many devel-
oper discussions online, copy-paste related bugs are common
in practice [21]. However, most existing static bug detection

tools fail to detect Sequence Name Mismatch, since the er-
ror is caused by copy-paste errors between code and external
SQL scripts, and most tools only consider source code files.

Possible solution. The solution is to use the same se-
quence name in both the annotation and in the SQL schema
definition.

Detection approach. Our detection algorithms first scan
all the annotations in the source code, and extract the se-
quence name in the annotation. Then, we scan all the SQL
files, and look for mismatches between the sequence name
that is specified in SQL and the sequence name that is spec-
ified in the annotation.

5.2.5 Incorrect SQL Order
Impact. Functional.

Description. When using frameworks such as Hibernate,
sometimes the order of the database access code and the
generated SQL queries may not match. For example, if de-
velopers try to first delete a user using a unique key and
then reinsert the user with an updated key, the resulting
SQL queries may be an update follows by a delete, which
does not match developers’ intended behaviour in the code.
The reason of the mismatch is that Hibernate may reorder
the SQL queries for some optimization, but such reordering
causes unexpected problems to developers.

Example. Consider the following example:

group.getUserList (). clear ();
group.addUser(user);
update(group);

resulting SQL queries:

INSERT into User values ...
DELETE from User where ...

In this example, we are trying to first clear all the users in
a group, and then add a new user to the group. However,
the generated SQL queries first insert the new user and then
delete users from the group. The order of the SQL queries
is different from the order in the code. This may cause
duplicate key problems, or result in unexpected outcomes.

Developer awareness. There are many discussions related
to incorrect SQL order online [5,11], and the problem often
causes many unexpected functional errors.

Possible solution. A possible solution would be to force
Hibernate to synchronize the in-memory data with the DBMS.
Calling synchronization calls would allow the SQL queries
to be executed in the correct order. However, manually de-
tecting where the problems are can be difficult, especially
for large systems.

Detection approach. To detect incorrect SQL order, we
perform control flow analysis on the system source code. Our
tool looks for Hibernate update and delete calls that will be
executed together in a method under the same control flow.
Our tool also ensures that the Hibernate update and delete
calls will modify data in the same DBMS table to reduce the
number of false positives.

6. CONCLUSION
In this paper, we provide an experience report on the chal-

lenges and lessons that we learned when adopting our static
bug detection tool in practice. Our static bug detection tool

focuses on detecting database access bug patterns that ex-
isting static bug detection tools cannot detect. Since these
database access bug patterns are different from general code
bug patterns in many aspects, we discuss how we help de-
velopers prioritize detection results and what is needed to
detect additional specialized bug patterns. We also discuss
how we implement the tool to increase developers’ interest
on the tool, and the importance of giving developers rapid
feedback. Finally, we discuss five database access bug pat-
terns that we have observed in large-scale industrial systems
over the past years. We believe that our findings can help re-
searchers create static bug detection tools that have higher
chances to be adopted in practice. We also highlight the
need to create tools to detect more framework-specific bugs,
since most systems nowadays are leveraging frameworks in-
stead of being built with basic programming constructs (the
main focus of much of the current research in static bug
detectors).

Acknowledgments
We are grateful to BlackBerry for providing access to many
of the enterprise systems that we used in our case study.
The finding and opinions expressed in this paper are those of
the authors and do not necessarily represent or reflect those
of BlackBerry and/or its subsidiaries and affiliation. Our
results do not in any way reflect the quality of BlackBerry’s
products.

7. REFERENCES
[1] Spring @Transactional read-only propagation.

http://stackoverflow.com/questions/1614139/
spring-transactional-read-only-propagation, 2009.
Last accessed 15 Feb 2016.

[2] Spring transaction readonly. http://stackoverflow.
com/questions/2562865/spring-transaction-readonly,
2010. Last accessed 15 Feb 2016.

[3] Starting new transaction in spring bean.
http://stackoverflow.com/questions/3037006/
starting-new-transaction-in-spring-bean, 2010. Last
accessed 15 Feb 2016.

[4] Spring transaction: requires new beharivour.
http://stackoverflow.com/questions/22927763/
spring-transaction-requires-new-beharivour, 2014.
Last accessed 15 Feb 2016.

[5] How to change the ordering of SQL execution in
Hibernate.
http://stackoverflow.com/questions/20395543/
how-to-change-the-ordering-of-sql-execution-in-\
hibernate, 2015. Last accessed 15 Feb 2016.

[6] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix,
and Y. Zhou. Evaluating static analysis defect
warnings on production software. In Proceedings of the
7th ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, PASTE
’07, pages 1–8, 2007.

[7] L. Chen. Continuous delivery: Huge benefits, but
challenges too. IEEE Software, 32(2):50–54, Mar 2015.

[8] T.-H. Chen, W. Shang, Z. M. Jiang, A. E. Hassan,
M. Nasser, and P. Flora. Detecting performance
anti-patterns for applications developed using
object-relational mapping. In Proceedings of the 36th

http://stackoverflow.com/questions/1614139/spring-transactional-read-only-propagation
http://stackoverflow.com/questions/1614139/spring-transactional-read-only-propagation
http://stackoverflow.com/questions/2562865/spring-transaction-readonly
http://stackoverflow.com/questions/2562865/spring-transaction-readonly
http://stackoverflow.com/questions/3037006/starting-new-transaction-in-spring-bean
http://stackoverflow.com/questions/3037006/starting-new-transaction-in-spring-bean
http://stackoverflow.com/questions/22927763/spring-transaction-requires-new-beharivour
http://stackoverflow.com/questions/22927763/spring-transaction-requires-new-beharivour
http://stackoverflow.com/questions/20395543/how-to-change-the-ordering-of-sql-execution-in-\hibernate
http://stackoverflow.com/questions/20395543/how-to-change-the-ordering-of-sql-execution-in-\hibernate
http://stackoverflow.com/questions/20395543/how-to-change-the-ordering-of-sql-execution-in-\hibernate

International Conference on Software Engineering,
ICSE 2014, pages 1001–1012, 2014.

[9] Coverity. Coverity code advisor.
http://www.coverity.com/, 2016. Last accessed 15 Feb
2016.

[10] Facebook. Infer. http://fbinfer.com/, 2016. Last
accessed 15 Feb 2016.

[11] H. U. Forum. Delete then insert in collection - order of
executed sql.
https://forum.hibernate.org/viewtopic.php?t=934483,
2004. Last accessed 15 Feb 2016.

[12] S. F. Goldsmith, A. S. Aiken, and D. S. Wilkerson.
Measuring empirical computational complexity. In
Proceedings of the the 6th joint meeting of the
European software engineering conference and the
ACM SIGSOFT symposium on The foundations of
software engineering, ESEC-FSE ’07, pages 395–404,
2007.

[13] Google. Error prone. http://errorprone.info/, 2016.
Last accessed 15 Feb 2016.

[14] D. Hovemeyer and W. Pugh. Finding bugs is easy.
SIGPLAN Not., 39(12):92–106, Dec. 2004.

[15] IBM. Security appscan source. http://www-03.ibm.
com/software/products/en/appscan-source, 2016. Last
accessed 15 Feb 2016.

[16] M. Jedyk. Transactions (mis)management: how to kill
your app. http://www.resilientdatasystems.co.uk/
java/transactions-mis-management-how-to-kill-app/,
2014. Last accessed 15 Feb 2016.

[17] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu.
Understanding and detecting real-world performance
bugs. In Proceedings of the 33rd ACM SIGPLAN
conference on Programming Language Design and
Implementation, PLDI ’12, pages 77–88, 2012.

[18] B. Johnson, Y. Song, E. Murphy-Hill, and
R. Bowdidge. Why don’t software developers use
static analysis tools to find bugs? In Proceedings of
the 2013 International Conference on Software
Engineering, ICSE ’13, pages 672–681, 2013.

[19] R. Johnson. J2EE development frameworks.
Computer, 38(1):107–110, 2005.

[20] N. Leavitt. Whatever happened to object-oriented
databases? Computer, 33(8):16–19, Aug. 2000.

[21] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner:
Finding copy-paste and related bugs in large-scale
software code. IEEE Trans. Softw. Eng.,

32(3):176–192, Mar. 2006.

[22] D. Lo, N. Nagappan, and T. Zimmermann. How
practitioners perceive the relevance of software
engineering research. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, pages 415–425, 2015.

[23] V. MIHALCEA. A beginner’s guide to JPA/Hibernate
flush strategies. http://vladmihalcea.com/2014/08/07/
a-beginners-guide-to-jpahibernate-flush-strategies/,
2014. Last accessed 15 Feb 2016.

[24] M. G. Nanda, M. Gupta, S. Sinha, S. Chandra,
D. Schmidt, and P. Balachandran. Making
defect-finding tools work for you. In Proceedings of the
32nd International Conference on Software
Engineering, ICSE ’10, pages 99–108, 2010.

[25] A. Nistor, P.-C. Chang, C. Radoi, and S. Lu. Caramel:
Detecting and fixing performance problems that have
non-intrusive fixes. In Proceedings of the 2015
International Conference on Software Engineering,
ICSE ’15, pages 902–912, 2015.

[26] A. Nistor, L. Song, D. Marinov, and S. Lu. Toddler:
detecting performance problems via similar
memory-access patterns. In Proceedings of the 2013
International Conference on Software Engineering,
ICSE ’13, pages 562–571, 2013.

[27] PMD. Pmd. https://pmd.github.io/, 2016. Last
accessed 15 Feb 2016.

[28] H. Shen, J. Fang, and J. Zhao. Efindbugs: Effective
error ranking for findbugs. In Proceedings of the 2011
IEEE International Conference on Software Testing,
Verification and Validation, ICST ’11, pages 299–308,
2011.

[29] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and
H. R. Lipford. Questions developers ask while
diagnosing potential security vulnerabilities with
static analysis. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, pages 248–259, 2015.

[30] SpringSource. Spring framework.
www.springsource.org/, 2013. Last accessed 15 Feb
2016.

[31] ZeroturnAround. Java tools and technologies
landscape for 2015.
http://zeroturnaround.com/rebellabs/
java-tools-and-technologies-landscape-for-2014/, 2014.
Last accessed 15 Feb 2016.

http://www.coverity.com/
http://fbinfer.com/
https://forum.hibernate.org/viewtopic.php?t=934483
http://errorprone.info/
http://www-03.ibm.com/software/products/en/appscan-source
http://www-03.ibm.com/software/products/en/appscan-source
http://www.resilientdatasystems.co.uk/java/transactions-mis-management-how-to-kill-app/
http://www.resilientdatasystems.co.uk/java/transactions-mis-management-how-to-kill-app/
http://vladmihalcea.com/2014/08/07/a-beginners-guide-to-jpahibernate-flush-strategies/
http://vladmihalcea.com/2014/08/07/a-beginners-guide-to-jpahibernate-flush-strategies/
https://pmd.github.io/
www.springsource.org/
http://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-for-2014/
http://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-for-2014/

