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A Framework for Evaluating the Results of the
SZZ Approach for Identifying Bug-Introducing

Changes
Daniel Alencar da Costa, Shane McIntosh, Weiyi Shang, Uirá Kulesza, Roberta Coelho, Ahmed E. Hassan

Abstract— The approach proposed by Śliwerski, Zimmermann, and Zeller (SZZ) for identifying bug-introducing changes is at the
foundation of several research areas within the software engineering discipline. Despite the foundational role of SZZ, little effort has
been made to evaluate its results. Such an evaluation is a challenging task because the ground truth is not readily available. By
acknowledging such challenges, we propose a framework to evaluate the results of alternative SZZ implementations. The framework
evaluates the following criteria: (1) the earliest bug appearance, (2) the future impact of changes, and (3) the realism of bug introduction.
We use the proposed framework to evaluate five SZZ implementations using data from ten open source projects. We find that previously
proposed improvements to SZZ tend to inflate the number of incorrectly identified bug-introducing changes. We also find that a single
bug-introducing change may be blamed for introducing hundreds of future bugs. Furthermore, we find that SZZ implementations report
that at least 46% of the bugs are caused by bug-introducing changes that are years apart from one another. Such results suggest that
current SZZ implementations still lack mechanisms to accurately identify bug-introducing changes. Our proposed framework provides a
systematic mean for evaluating the data that is generated by a given SZZ implementation.

Index Terms—SZZ, Evaluation framework, Bug detection, Software repository mining, Software engineering.
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1 INTRODUCTION

SOFTWARE bugs are costly to fix [1]. For instance, a recent
study suggests that developers spend approximately

half of their time fixing bugs [2]. Hence, reducing the
required time and effort to fix bugs is an alluring research
problem with plenty of potential for industrial impact.

After a bug has been reported, a key task is to identify
the root cause of the bug such that a team can learn from
its mistakes. Hence, researchers have developed several
approaches to identify prior bug-introducing changes, and
to use such knowledge to avoid future bugs [3–10].

A popular approach to identify bug-introducing changes
was proposed by Śliwerski, Zimmermann, and Zeller
(“SZZ” for short) [9, 11]. The SZZ approach first looks for
bug-fixing changes by searching for the recorded bug ID in
change logs. Once these bug-fixing changes are identified,
SZZ analyzes the lines of code that were changed to fix
the bug. Finally, SZZ traces back through the code history
to find when the changed code was introduced (i.e., the
supposed bug-introducing change(s)).
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Two lines of prior work highlight the foundational role
of SZZ in software engineering (SE) research. The first line
includes studies of how bugs are introduced [9, 10, 12–
22]. For example, by studying the bug-introducing changes
that are identified by SZZ, researchers are able to correlate
characteristics of code changes (e.g., time of day that a
change is recorded [9]) with the introduction of bugs. The
second line of prior work includes studies that leverage
the knowledge of prior bug-introducing changes in order
to avoid the introduction of such changes in the future.
For example, one way to avoid the introduction of bugs
is to perform just-in-time (JIT) quality assurance, i.e., to
build models that predict if a change is likely to be a bug-
introducing change before integrating such a change into a
project’s code base. [6, 8, 23–25].

Despite the foundational role of SZZ, the current evalua-
tions of SZZ-generated data (the indicated bug-introducing
changes) are limited. When evaluating the results of SZZ
implementations, prior work relies heavily on manual anal-
ysis [9, 11, 26, 27]. Since it is infeasible to analyze all
of the SZZ results by hand, prior studies select a small
sample for analysis. While the prior manual analyses yield
valuable insights, the domain experts (e.g., developers or
testers) were not consulted. These experts can better judge
if the bug-introducing changes that are identified by SZZ
correspond to the true cause of the bugs.

Unfortunately, to conduct such an analysis is impractical.
For instance, the experts would need to verify a large sample
of bug-introducing changes, which is difficult to scale up
to the size of modern defect datasets. Additionally, those
changes may be weeks, months, or even years old, forcing
experts to revisit an older state of the system that they
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are unlikely to recall reliably. Making matters worse, the
experts with the relevant system knowledge may no longer
be accessible due to developer turnover in large software
organizations.

Still, evaluating SZZ-generated data is important, since
(a) SZZ is used as an experimental component in several
studies [9, 10, 12–22, 28] and (b) SZZ is used to detect the
origin of bugs in practice [29]. If the SZZ-generated data is
not sound, it may taint the conclusions of the analyses that
rely upon such data.

To address the challenges associated with evaluating
SZZ, we propose an evaluation framework based on three
criteria: (1) the earliest bug appearance, which factors in the
estimation by the development team of when a bug was
introduced, based on data that is recorded in the Issue
Tracking System (ITS, e.g., Bugzilla); (2) the future impact of
a change, which analyzes the number of future bugs that a
given bug-introducing change introduces; and (3) the realism
of bug introduction, which analyzes if the bug-introducing
changes found by SZZ realistically correspond to the actual
bug introduction context.

The main goal of our framework is to provide practition-
ers and researchers with a means for exploring and navigat-
ing SZZ-generated data before performing further analyses.
For instance, our framework may highlight subsets of SZZ-
generated data that are very likely to be inaccurate. Such an
assessment of SZZ may also guide future manual analyses
that are to be performed upon SZZ-generated data.

While prior work has used SZZ to study the relationship
between bug-introducing changes and code clones [18],
code ownership [13], fault-prone bug-fixing changes [16],
and other factors [12, 14, 15, 17, 19–22, 28], this study eval-
uates the underlying SZZ approach itself. We perform an
analysis of five SZZ implementations. Through an empirical
study of ten open source projects, we make the following ob-
servations:
1) Earliest bug appearance: We find that previously pro-

posed SZZ implementations [27] increase the likelihood
of incorrectly flagging a code change as bug-introducing
with respect to the earliest bug appearance criteria. For
instance, the SZZ implementation that selects only the
most recent bug-introducing change has the highest ratio
of disagreement (median of 0.43) with the opinion of
team members.

2) Future impact of a change: We find that the most realistic
result among SZZ implementations (i.e., the result that
produces the fewest outliers) is that 29% of the bug-
introducing changes lead to multiple future bugs that
span at least one year. These results suggest that SZZ
still lacks mechanisms to accurately flag bug-introducing
changes. Indeed, it is unlikely that all 29% of the bug-
introducing changes in a project do in fact introduce bugs
that took years to be discovered.

3) Realism of bug introduction: Another unrealistically
result from the evaluated SZZ implementations is that
46% of the bugs are caused by bug-introducing changes
that span at least one year. Again, it is unlikely that all
46% of the bugs were in fact caused by code changes that
are years apart.
The remainder of this paper is organized as follows:

Section 2 introduces the background concepts and discusses

related work. Section 3 describes our proposed evaluation
framework. Section 4 describes our study settings. Section 5
presents the results of our study, while we derive practical
guidelines for using our framework in Section 6. The threats
to the validity of our work are described in Section 7. Finally,
Section 8 draws conclusions.

2 BACKGROUND & RELATED WORK

This section describes the concepts that are necessary to
understand our study, and surveys the related work.

2.1 Implementations of SZZ
2.1.1 SZZ approach
The SZZ approach was first defined by Śliwerski et al. [9].
The main goal of SZZ is to identify the changes that in-
troduce bugs. SZZ begins with a bug-fixing change, i.e., a
change that is known to have fixed a bug. Nowadays, many
projects have adopted a policy of recording the ID of the
bug that is being fixed in the change log. In the basic SZZ
implementation [9], to ensure that a change is indeed a bug-
fixing change, the bug ID that is found in the change-log is
checked in the ITS to verify that the ID is truly a bug.

Step 1 in Figure 1 shows the bug-fixing change
for bug OPENJPA-68. Step 2 shows the bug fix,
which involves updating an if condition in the file
PCClassFileTransformer.java. The if condition checks for
an incorrect package name, i.e., the string value should be
org/apache/openjpa/enhance/PersistenceCapable rather
than openjpa/enhance/PersistenceCapable.

For each identified bug-fixing change, SZZ analyzes the
lines of code that were updated. For instance, Step 2 in
Figure 1 shows the differences between changes #468455
and #468454 in the PCClassFileTransformer.java. In this
case, in order to fix the bug, the if condition at line 201 was
changed.

Thus, to identify the change that introduced bug
OPENJPA-68, SZZ traces through the history of the source
configuration management (SCM) system. The basic SZZ im-
plementation [9] uses the annotate function that is provided
by most SCM systems to identify the last change that a
given line of code underwent prior to the bug-fixing change.
Step 3 in Figure 1 shows that change #425473 is flagged as a
potential bug-introducing change by SZZ.

Furthermore, if a potential bug-introducing change was
recorded after the bug under analysis was reported, it is
excluded from further consideration, since it cannot be the
bug-introducing change. Henceforth, we refer to the basic
SZZ implementation as B-SZZ.

2.1.2 Improvements to B-SZZ
B-SZZ [9] has several limitations. For instance, B-SZZ may
flag style changes (e.g., modifications to the code indenta-
tion, code comments, and blank lines), as bug-introducing
changes. These style changes cannot be the cause of a bug
because they do not impact the behaviour of the system.

Instead, Kim et al. [11] proposed an SZZ implementation
that excludes style changes from the analyses. Furthermore,
Kim et al. [11] propose the use of the annotation graph [30]
rather than the annotate function because the annotation
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Step 1. Bug-fixing change 
 Change#468455 
 ---------------------------------- 
 Message:  "Fixed OPENJPA-68" 
 files:  PCClassFileTransformer.java 

   
 Step 2. Diff 
PCClassFileTransformer.java#468454  (--) 
PCClassFileTransformer.java#468455  (++) 
---------------------------------------------------------------------- 
201 - if ("openjpa/enhance/PersistenceCapable".equals(name)) 
201  +  if  ("org/apache/openjpa/enhance/PersistenceCapable".equals(name)) 

Step 3. Bug-introducing change 
Change#425473 
------------------------------------------------------------ 
PCClassFileTransformer.java 
201 + if ("openjpa/enhance/PersistenceCapable".equals(name)) 

  

Diff with previous change 

Annotate 

Time 

SZZ 

Fig. 1: Overview of the SZZ approach. SZZ first looks into a change log to find a bug-fixing change (Step 1). Then, it uses
a diff algorithm to localize the exact fix (Step 2). Finally, it traces back to the origin of the modified code (Step 3). The origin
of the modified code is a potential bug-introducing change.
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Fig. 2: Overview of the annotation graph.

graph provides traceability for lines that move from one
location to another within a file. We refer to the SZZ im-
plementation that is proposed by Kim et al. as AG-SZZ (an-
notation graph SZZ). Figure 2 shows an example of how the
annotation-graph tracks the evolution of lines across three
different changes (c1 to c3). Every line is a node. Each node
has an edge connecting the line to its previous version. For
instance, from c1 to c2, one line was deleted and two lines
were added. Line 5 of c2 is mapped to line 4 in c1. If several
lines are modified (i.e., deleted and added as understood by
the SCM), the annotation graph conservatively maps every
added line in c2 as an evolution of every deleted line in c1.
To find the bug-introducing changes, AG-SZZ performs a
depth-first search on the annotation graph.

Furthermore, Williams and Spacco propose an enhance-
ment to the line mapping algorithm of SZZ [26, 31]. The
enhanced algorithm uses weights to map the evolution
of a line. For example, if a given change modified an if

condition to a different if condition and added a new

line of code, the annotation graph would indicate that the
previous if condition changed into these two lines. On the
other hand, the enhanced algorithm would place a heavier
weight on the edge between the previous and the updated
if conditions to indicate that the previous if condition is
more likely to have changed into the updated if condition
rather than to be a new line of code. Moreover, Williams
and Spacco use the DiffJ tool [32] to identify changes at a
semantic level rather than a textual one.

2.2 Usage of SZZ
Before the advent of SZZ, researchers were limited to the
information that is provided by bug fixes. In order to
analyze bug fixes, techniques to link bug-fixing changes to
bug reports were proposed [33–36]. This bug fix information
enables useful analyses, such as: (1) counting the number of
bugs per file [37], (2) bug prediction [38], and (3) finding
risky modules within a software system [39].

However, solely with bug-fixing information, one can-
not study how bugs are introduced. By detecting bug-
introducing changes, SZZ has enabled a wealth of studies
that can be broken down into: (1) empirical research on
how bugs are introduced, and (2) research that leverages such
knowledge to avoid introducing new bugs.
How bugs are introduced. Śliwerski et al. [9] used SZZ
to study the size of bug-introducing changes, and to in-
vestigate which day of the week bug-introducing changes
are more likely to appear. Eyolfson et al. [10] used SZZ to
correlate bug-introducing changes with the time of the day
and the developer experience.

Other studies used SZZ to relate bug-introducing
changes with code clones [18], code ownership [13], fault-
prone bug-fixing changes [16], and many other factors that
may be related to bug introduction [12, 14, 15, 17, 19–22, 28].
Our study aims to evaluate the SZZ approach rather than
studying the characteristics of bug-introducing changes that
are detected by SZZ.
Just-in-time (JIT) quality assurance. Prior work used SZZ
to label changes that are recorded within datasets as bug-
introducing or not [6, 8, 23–25, 40]. Such datasets are then
used to train models that classify whether a future change
will be bug-introducing one or not. For instance, Kim et

3
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al. [6] used the identifiers within added and deleted code,
and the words within change logs to classify changes as bug-
introducing or not. Our study evaluates the SZZ-generated
data itself rather than using it to train classification models.

In short, a good understanding of the quality of the SZZ
data is essential to ensure the validity of any findings that
are derived from such data.

2.3 Evaluations of SZZ
The ideal way to evaluate if the bug-introducing changes
that are flagged by SZZ are correct would be to compare
them to a ground truth dataset that contains each line of
code that contributes to the introduction of each bug of the
studied projects. This ground truth information could be
provided by domain experts, such as developers, since they
have the domain knowledge necessary to understand the
context of the bug-introducing changes.

Unfortunately, it is impractical to produce such dataset
because the domain experts would need to analyze a large
amount of historical data in order to pinpoint the changes
that introduced bugs. Given the scale of the bug datasets
that are commonly analyzed in SE research nowadays, such
a task is unrealistic. Furthermore, the domain experts may
not recall enough context to identify the cause of bugs
that were addressed a long time ago. Moreover, the experts
with relevant system knowledge may no longer be available
(e.g., s/he stopped contributing to the project).

Given the described challenges, prior research that eval-
uated SZZ has relied on manual analyses to label bug-
introducing changes as true and false positives [11, 26, 27].
These manually labeled bug-introducing changes are then
compared to the bug-introducing changes flagged by SZZ.
While such manual analyses are important and produce
valuable insight, they still have limitations.

First, the domain experts are not consulted due to the
aforementioned challenges. Although the research team
may thoroughly analyze the possible causes of a bug, their
lack of domain and system knowledge introduces bias in
the results. For example, the domain experts, when trying
to fix a bug, may fail to eliminate the cause of the bug in
the first attempt [41]. Therefore, finding the correct bug-
introducing changes manually may be more challenging
when the domain knowledge is not accessible. Second, due
to the effort that is needed to scale up manual analyses, prior
evaluations have been performed on small subsamples. For
example, Davies et al. [27] performed an evaluation of two
approaches to detect bug-introducing changes: (1) the text
approach (i.e., B-SZZ) and (2) the dependence approach [42].
The authors defined the ground truth by manually labeling
the bug-introducing changes of 174 bugs from the Eclipse1,
Rachota2, and JEdit3 projects. Furthermore, to evaluate AG-
SZZ, Kim et al. [11] compared two sets of bug-introducing
changes: the set of bug-introducing changes detected by B-
SZZ (S), and the set of bug-introducing changes detected
by AG-SZZ (K). The authors assumed that AG-SZZ is
more accurate than B-SZZ, and computed the false positives
( |S−K||S| ) and false negatives ( |K−S||K| ). Finally, Williams and

1. https://www.eclipse.org/ (April 2016)
2. http://rachota.sourceforge.net/en/index.html (April 2016)
3. http://jedit.org/ (April 2016)

Spacco [26] proposed a line mapping algorithm to improve
the SZZ approach. They measured the improvement by
performing a manual analysis of 25 bug-fixing changes.

2.4 Contributions of this paper
This paper addresses several of the limitations of prior eval-
uations of the SZZ approach. Table 1 provides an overview
of the scope of prior evaluations of the SZZ approach. First,
the ground truth for our study is composed of a large sam-
ple of 32,033 bug-fixing changes from 10 studied projects,
whereas prior work analyzes samples of 25-543 bug-fixing
changes from 1-3 studied projects. Second, our study com-
pares five SZZ implementations, while prior studies have
compared two. Third, our study proposes an evaluation
framework that systematically assesses SZZ-generated data.
Finally, our framework also factors in the estimates by the
development team to perform the evaluation — our work is
based on the estimates for 2,637 bug-fixing changes.

We do note that our proposed framework complements
the valuable knowledge of domain experts. Since asking
experts to produce entire datasets of thousands of bugs is
impractical, our framework can be used to flag suspicious
entries in automatically generated SZZ data. Moreover,
when domain experts are not available to researchers and
practitioners, the criteria of our evaluation framework is
a practical alternative to spot suspicious entries in SZZ-
generated data. For instance, research that uses SZZ to
classify code changes as bug-introducing (e.g., JIT quality
assurance [6, 8, 23–25, 40]) may produce more reliable clas-
sification models once they are trained using data that is
robust to the false positives that our framework can flag.

3 EVALUATION FRAMEWORK

This section describes our proposed framework to evalu-
ate SZZ. The framework has three evaluation criteria: (1)
earliest bug appearance, (2) future impact of changes, and
(3) realism of bug introduction. We explain the rationale
behind each proposed criterion, i.e., why it may help in the
detection of false positives in SZZ-generated data.

3.1 Earliest Bug Appearance
The earliest bug appearance criterion is concerned with how
much SZZ disagrees with the estimates given by the de-
velopment team. To quantify the disagreement between
an SZZ implementation and such estimates, we compute
the disagreement ratio, which relies on bug report data that
we collect from the JIRA ITS.4 The JIRA ITS is a system
developed by Atlassian, which provides issue tracking and
project management functionality.

What makes JIRA an important asset to our work is the
affected-version field, which allows teams to record the ver-
sions of the system that a given bug impacts. For example,
the HADOOP-1623 issue report states that versions 0.12.3
and 0.13.0 are impacted.5

To compute the disagreement ratio, we count the number
of disagreements that SZZ has when compared to the earliest

4. https://www.atlassian.com/software/jira (April 2016)
5. https://issues.apache.org/jira/browse/HADOOP-1623 (April

2016)
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TABLE 1: Summary of the evaluations of the SZZ approach as performed by prior work.

Year #fixes Subject projects Accuracy Measures
D

av
ie

s
[2

7]

2014 543 Eclipse Rachota, and JEdit

The predictions of bug-introducing changes made by the simulation of B-
SZZ were compared to the manually classified bug-introducing changes.
In this way, the authors measured the true positives, false positives, and
false negatives. Precision and recall were also computed.

W
ill

ia
m

s
[2

6]

2008 25 Eclipse No definition of accuracy measures. The research team judged if the bug-
introducing changes flagged by SZZ were likely to be correct.

K
im

[1
1]

2006 301 Columba and Eclipse

The authors considered the predictions of the AG-SZZ as the ground
truth. By comparing the predictions of AG-SZZ and B-SZZ, the authors
computed the false positives and false negatives that are produced by
B-SZZ.

T
hi

s
pa

pe
r

2016 2,637∗-32,033
HBase, Hadoop Common, Derby, Geronimo,
Camel, Tuscany, OpenJPA, ActiveMQ, Pig,
and Mahout

We use the measures of our proposed framework (Section 3) to evaluate
five SZZ implementations.

∗ Only 2,637 bug-fixes can be analyzed by the earliest bug appearance criterion. The other criteria can analyze all 32,033 bug-fixes.

affected-version. To compute the disagreements, we first
identify the earliest affected-version. For example, if a team
member indicates that Bug-01 impacts versions 1.5 and 2.0,
we select version 1.5 as the earliest version. We use the
earliest affected-version because SZZ aims to find when a
bug was actually introduced. Hence, SZZ’s results have to
be compared with the first known version in which a bug is
known to appear.

We classify a potential bug-introducing change that is
flagged by SZZ as incorrect (according to the earliest affected
version) if the change was recorded after the release date
of the earliest affected-version. On the other hand, if SZZ
flags a bug-introducing change that was recorded before the
release date of the earliest affected-version, such a change
may or may not be the actual cause of the bug. As we do
not have enough information about which version such bug-
introducing changes were integrated into, we classify those
bug-introducing changes as unknown.

We count a bug as a disagreement if all of the potential
bug-introducing changes that are flagged by SZZ for that
bug are classified as incorrect. Furthermore, a change could
not lead to a bug if it was performed after the bug has
been reported. Hence, if all of the potential bug-introducing
changes for a given bug are recorded after the bug report
date, we consider it to be a disagreement. Our proposed
disagreement ratio is a lower-bound metric to verify how
much a particular SZZ implementation disagrees with the
estimates that are provided by team members.

After counting disagreements, the disagreement ratio R

for a studied project S is: R(S) = D(S)
B(S) , where D is the

number of disagreements in S, and B is the total number of
bugs in S. The disagreement ratio R ranges from 0 to 1.

PIG-204 is an example of how the number of disagree-
ments can indicate problems in the studied SZZ implemen-
tations. PIG-204 has the highest number of disagreements
in the SZZ-generated data for the Pig project. MA-SZZ flags
changes 617338 and 644033 as potentially bug-introducing
for PIG-204. These changes refer to file/directory renam-
ing changes, i.e., they are not the original changes that
introduced the buggy code. Such problems happen because
Subversion does not track the history of renamed files, so
SZZ cannot trace back further in the history to find the

Bug-01 C#90 C#32 C#30 

Time span of bug-introducing changes 

Bug-02 Bug-03 

Time span of future bugs 

Fig. 3: The time-span of bug-introducing changes and time-
span of future bugs measures. The dashed lines indicate
relationships that are only used in the time-span of future
bugs computation.

original bug-introducing change.

3.2 Future Impact of Changes
The future impact of changes criterion is concerned with the
impact that a bug-introducing change has upon future bugs.
This criterion has two associated metrics: (1) count of future
bugs and (2) time-span of future bugs.

Figure 3 shows how the count of future bugs is com-
puted. For example, when SZZ analyzes the fix(es) of Bug-
01, it flags change #90 as a potential bug-introducing change.
However, it also happens that change #90 is flagged as
a bug-introducing change for Bug-02 and Bug-03, which
means that the count of future bugs for change #90 is three.

We suspect that a change with a high count of future
bugs (e.g., hundreds of future bugs) indicates either that
(a) the change was highly problematic or (b) the SZZ-
generated data is not correct. For instance, let us suppose
that change #90 is flagged as a potential bug-introducing
change in the fixes of more than 100 future bugs. It is
unlikely that a single change could have truly introduced so
many bugs. Indeed, manually verified SZZ-generated data
from prior work (Williams and Spacco [26]) reveals that 93%
of the changes have a relatively low count of 1 to 3 future
bugs. On the other hand, potential bug-introducing changes
that are flagged by SZZ in the fixes of many bugs could
be foundational changes that introduce core functionality,
which has to be changed frequently while performing bug
fixing activities [43, 44]. Nevertheless, we expect the number
of such bug-introducing changes to be rather low.

5
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Median + MAD

Lower MAD:
Median - MAD

50
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X

Fig. 4: The upper and lower MADs. The upper MAD is the
sum of the median value and the MAD, while lower MAD is
the difference between the median value and the MAD

The second metric that we use to quantify the future
impact of changes is the time-span of future bugs. This metric
counts the number of days between the first and last future
bugs of a potential bug-introducing change. For example,
the time-span of future bugs for change #90 in Figure 3 is
the number of days between Bug-01 and Bug-03.

In case that a bug-introducing change leads to several
bugs in the future, we suspect that the other future bugs
are unlikely to be discovered several years after the first
discovered bug [45] (e.g., a time-span above the upper
Median Absolute Deviation of the SZZ-generated data). On
the other hand, prior research has acknowledged the exis-
tence of dormant bugs, i.e., bugs that are reported much
later after they were actually introduced [46]. Nevertheless,
although dormant bugs may inflate the time-span of future
bugs (since their report date is much later after they were
introduced), they may account for 33% of the bug data in
prior research [46]. Therefore, if a change leads to future
bugs with a time-span of several years it can either indicate
that (a) the last bug could be dormant for a long time or (b)
the SZZ-generated data is not correct.

We consider bug-introducing changes that have a time-
span of future bugs above the upper Median Absolute Devi-
ation (MAD) to be suspicious. MAD is a robust statistic to
analyze deviations with respect to the median [47]. We use
the MAD statistic instead of other measures of dispersion
(e.g., standard deviation), since prior work finds that MAD
is more effective at identifying outliers [48], especially in
data that does not follow a normal distribution [47]. Figure 4
shows how we use MAD to analyze our results. The upper
MAD is the sum of the median value of the data and the
MAD, while the lower MAD is the difference between the
median value and the MAD.

Change #355543 has one of the highest counts of future
bugs (74 future bugs) in the SZZ-generated data for the
ActiveMQ project. Change #355543 refers to the initial code
import of the ActiveMQ 4.x code-base in the Subversion

SCM. However, ActiveMQ was originally hosted using CVS
before, which means that SZZ could trace back further in
the history if it had access to the CVS data.6 The high count
of future bugs may be indicating that change #355543 is a
roadblock for many bugs that should be traced back further
in the history.

3.3 Realism of bug introduction
Previous research has recognized that it is unlikely that all of
the modifications made in a bug-fixing change are actually
related to the bug-fix (e.g., it may contain an opportunistic
refactoring) [11, 27]. The aim of the realism of bug introduction
criterion is to evaluate the likelihood that all of the bug-
introducing changes that are flagged by SZZ are indeed the
actual cause of a given bug.

We use the time-span of bug-introducing changes to quan-
tify the realism of bug introduction. For a given bug, this
metric counts the number of days between the first and last
potential bug-introducing changes that are flagged by SZZ.
Figure 3 shows an example of how the time-span of bug-
introducing changes metric is calculated. SZZ flags changes
#30, #32, and #90 as the potential bug-introducing changes
of Bug-01. To compute the time-span of bug-introducing
changes, we count the days between change #30 (the first
change), and change #90 (the last change).

We suspect that the time-span between bug-introducing
changes should be short (e.g., below the upper MAD).
Indeed, prior work suggests that bugs are unlikely to be
noticed years after their introduction [45]. Therefore, we
suspect that a very long time-span (e.g., several years)
is unlikely to represent the true sequence of changes
that introduced a particular bug. For example, the poten-
tially bug-introducing changes that are flagged by SZZ
for GERONIMO-6370 span 2,684 days (i.e., the time-span
between changes #153289 and #1350831). However, the most
recent change (#1350831) is actually a file/directory renam-
ing change. If SZZ was able to trace back further to find
the original bug-introducing change, the time-span between
the potential bug-introducing changes would likely be more
realistic (e.g., below the upper MAD).

The proposed framework is stronger when the three criteria
are considered in tandem with each other. While a naı̈ve SZZ
implementation may perform well in terms of one criterion,
it will likely suffer in terms of the other two criteria.

4 STUDY SETTINGS

This section describes our study settings: (1) the different
SZZ implementations that we evaluate, (2) the studied
projects, and (3) the study procedures.

4.1 Evaluated SZZ implementations
In this work, we evaluate five SZZ implementations. Table 2
shows the mapping and selection mechanisms of each SZZ
implementation. The mapping mechanism is the strategy
used to link bug-fixing changes to potential bug-introducing
changes. The selection mechanism filters away changes that
are unlikely to be bug-introducing changes. For example,

6. http://activemq.apache.org/cvs.html (April 2016)
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TABLE 2: The mapping and selection mechanisms of the studied SZZ implementations. In addition to the selection
mechanisms described directly in each row, the selection mechanisms of the prior rows that have the † symbol are also
inherited. For example, L-SZZ inherits all of the previous selection mechanisms except the one from R-SZZ. Finally, the ‡
symbol indicates that all of the potential bug-introducing changes are returned by that SZZ implementation

Description Mapping Mechanism Selection Mechanism

B-
SZ

Z First SZZ implementation proposed by
Śliwerski et al. [9].

The annotate function is used to prepend the last change that
modified each line of code within a file in a given change. Next,
each line of code is scanned in order to identify the last change
that modified the lines that were involved in the bug-fixing
change. Such changes are potential bug-introducing changes.

†‡Potential bug-introducing
changes that are dated after
the bug report date are re-
moved.

A
G

-S
Z

Z

B-SZZ improvement proposed by Kim
et al. [11]. The annotation-graph is used to represent evolution of each

line of code within source files. A depth-first search of the
annotation-graph is used to find the potential bug-introducing
changes.

†‡Changes such as
comments, format changes,
blank lines, and code
movement are not flagged
as potential bug-introducing
changes.

M
A

-S
Z

Z It is built on top of the AG-SZZ, but it is
aware of meta-changes. This implemen-
tation is proposed in this paper.

†‡Potential bug-introducing
changes that are meta-
changes are removed.

R
-S

Z
Z B-SZZ improvement proposed by

Davies et al. [27]. We build R-SZZ on
top of MA-SZZ in this paper.

The latest potential bug-
introducing change is indi-
cated as bug-introducing.

L-
SZ

Z B-SZZ improvement proposed by
Davies et al. [27]. We build L-SZZ on
top of MA-SZZ in this paper.

The largest potential bug-
introducing change is indi-
cated as bug-introducing.

AG-SZZ uses the annotation graph to implement the map-
ping mechanism.

After prototyping B-SZZ and AG-SZZ, we noticed that
meta-changes (i.e., changes that are not related to source
code modification) were being reported as bug-introducing.
We observe three types of potential bug-introducing meta-
changes: (1) branch-changes, (2) merge-changes, and (3)
property-changes. A branch change is a meta-change that
copies the project state from one SCM branch to another
(e.g., from the trunk to a feature branch). A merge-change is
a meta-change that applies change activity from one branch
to another (e.g., from a feature branch to the trunk). Finally,
a property-change is a meta-change that only impacts file
properties that are stored in the SCM (e.g., end of line prop-
erty). Ideally, meta-changes should not be flagged as bug-
introducing, since they do not change system behaviour,
and hence, cannot introduce bugs.

In order to address the meta-change problem, we im-
plement an enhancement to the previous annotation graph
that is used by AG-SZZ [49]. The original annotation graph
relies on hunks to build the nodes and edges. A hunk denotes
a contiguous set of changed lines. The differences between
two versions of a file may contain more than one hunk.
For instance, when two changes are compared by the svn
diff command, the output is a set of hunks that shows the
differences between two changes.

In the original annotation graph algorithm [49], if there
are no hunks between the changes, the edges between nodes
are not built. However, when comparing a meta-change
with its previous change (i.e., origin of the meta-change), no
hunks are produced, and no edges are built. For example,
let us consider that c3 in Figure 2 is a copy of c2 on a
different branch. The original definition of the annotation
graph algorithm [49] would not map the nodes from c3
to c2, i.e., the diff command would produce no hunks,
so no edges would be built. Hence, AG-SZZ could not
find the actual bug-introducing change (which is c2) when

performing the depth-first search of the annotation graph.
Our enhancement consists of linking all of the nodes

of a given meta-change to its previous version (i.e., edges
from c3 to c2 are built). Our enhancement helps us avoid
reporting meta-changes as bug-introducing changes. Other
approaches could also be used to avoid the flagging of meta-
changes by SZZ. For example, the history slice proposed by
Servant et al. [50] would also allow SZZ implementations
to avoid meta-changes. The history slice approach uses a
history graph rather than an annotation graph. The major
difference between a history graph and an annotation graph
is that the annotation graph uses a hunk granularity when
linking nodes while the history graph uses a line granularity
(i.e., a line can only be linked to one line). We refer to the
enhanced version of AG-SZZ as MA-SZZ (meta-change aware
SZZ). After implementing MA-SZZ, we further improve
it using two selection mechanisms that are proposed by
Davies et al. [27] (i.e., R-SZZ and L-SZZ).

4.2 Illustrative Example of the Studied SZZ implemen-
tations

Figure 5 provides an example that we use to illustrate the
differences among the five studied SZZ implementations.
The example consists of code that checks if a particular
customer is old enough to watch a given movie and if the
customer qualifies for a discount. A bug-fix is performed by
change #4, where the conditional that checks the age of the
customer and the discount price are fixed.

In this example, B-SZZ traces the history of all of the
lines that are removed by change #4, including the “//
check loyalty card” comment. B-SZZ would generate a
false positive by flagging line 2 of change #2 as poten-
tially bug-introducing. On the other hand, AG-SZZ would
ignore the Java comment. However, AG-SZZ would incor-
rectly flag change #3 (i.e., a meta-change) as potentially
bug-introducing, generating another false positive. MA-SZZ

7
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No diff. It is a copy from a 
branch to another one (meta-
change)

Rev. 1 Rev. 2 Rev. 3 Rev. 4 Rev. 5

Change #1 Change #2 Change #3 Change #4

1. if (age >= 18) {
2.    if (loyaltycard) {
3.       //give 30% discount
4.       price = price * 0.7;
5.    }
6.    can_watch = true;  
7. }
8. return price;
... other code here

1. if (age > 18) {
2. //check loyalty card
3.    if (loyaltycard) {
4.       //give 30% discount

5.       price = price * 0.8;
6.    }
7.    can_watch = true;
8. }
9. return price;
... other code here

1. if (age > 18) {
2. //check loyalty card
3.    if (loyaltycard) {
4.       //give 30% discount
5.       price = price * 0.8;
6.    }
7.    can_watch = true;
8. }
9. return price;
... other code here

1. if (age > 18) {
2.    can_watch = true;
3. }
4. return price;
... other code here

... other code here

- 1. if ( age >18 ) {

- 2. // check loyalty card
- 5. price = price * 0.8
+ 1. if (age >= 18) {
+ 4. price = price * 0.7

+ 2. // check loyalty card
+ 3. if (loyaltycard) {
+ 4.    // give 30% discount
+ 5.    price = price * 0.8
+ 6. }

+ 1. if (age > 18) {
+ 2.    can_watch = true;    
+ 3. }
+ 4. return price;

Fig. 5: An overview of the studied SZZ implementations. The boxes contain the differences between revisions.

would ignore Java comments and meta-changes. Thus, MA-
SZZ would correctly flag line 1 of change #1 and line 5
of change #2 as potentially bug-introducing. L-SZZ would
only select change #1 from the potential bug-introducing
changes, since it is the largest code change (comments are
ignored). On the other hand, R-SZZ would select change
#2, since it is the most recent change of the potential bug-
introducing changes.

4.3 Studied Projects

In this paper, we study 10 Apache projects that are managed
using the JIRA ITS. We considered the following criteria to
select our studied projects: (1) the number of linked changes,
i.e., bug-fixing changes that can be linked to bug reports
and (2) the proportion of bugs with the affected-version field
filled in.

Table 3 provides an overview of the studied projects. For
each studied projects, we evaluate ten years of historical
data from August 2003 to September 2013.

4.4 Study Procedures

Figure 6 provides an overview of the steps that are involved
in our study. In Step 1, we collect raw data from each studied
project. This raw data includes the bug reports from the
JIRA ITS and the source code changes from the Subversion
SCM. Next, in Step 2, we link the bug reports to the bug-
fixing changes based on the approaches that are proposed
by Śliwerski et al. [9] and Eyolfson et al. [10]. These
approaches parse potential bug IDs within change logs and
verify whether such bug IDs really exist in the JIRA ITS.
After obtaining the linked bug data, in Step 3, we select the
subset of linked bugs that have the affected-version field filled
in (as shown in Table 3). In Step 4, we execute the different
SZZ implementations and obtain the SZZ-generated data
(see Table 2). In Step 5, we compute metrics using the SZZ-
generated data. Finally, we perform a manual analysis of
the obtained results. The goal of our manual analysis is to
investigate if the proposed metrics help identify subsets of
the SZZ-generated data that are suspicious.

Our manual analysis consists of two steps. First, we an-
alyze items (i.e., bugs and bug-introducing changes), of the

upper extremes of the SZZ-generated data produced by each
SZZ implementation. For instance, we analyze the data with
the highest number of disagreements, largest time-span of bug-
introducing changes, and highest count of future bugs. Second,
we analyze the lower extremes of the SZZ-generated data
produced by each SZZ implementation. Finally, we compare
the obtained results for the upper and lower extremes. We
suspect that the upper extremes should contain most of the
suspicious SZZ-generated data (see Section 3), while the
lower extremes should contain sound data (i.e., they are
unlikely to contain false positives). The upper extremes may
vary among SZZ implementations. For example, as B-SZZ
is prone to flag cosmetic changes as bug-introducing, it may
have different items in the upper extreme of time-span of bug-
introducing changes than another SZZ implementation that
ignores cosmetic changes.

We exclude R-SZZ and L-SZZ from our manual analysis
for the following reasons: (i) they do not generate data
for the time-span of bug-introducing changes metric (i.e., they
select only one bug-introducing change) and (ii) we already
gain perspective about the R-SZZ and L-SZZ generated
data as their selection mechanisms are applied to MA-SZZ,
which we manually analyze. In total, we analyze 240 items
in our manual analyses: 60 items for each analyzed SZZ
implementation (20 items for each of the three analyzed
metrics) as well as an additional 60 items for the lower
extreme of the MA-SZZ generated data (which we discuss
in more details in Section 5.4).

Additionally, we analyze the data from a prior study by
Williams and Spacco [26] (who gratefully shared their data).
We compute the count of future bugs metric using their data.
Unfortunately, since affected-versions information is not
available, we cannot compute the disagreement ratio metric.
We also cannot compute the time-span of bug-introducing
changes metric because the dates of the changes were not
available in the shared data. Finally, we study the number
of false positives that our criteria can spot within the shared
data.

5 STUDY RESULTS

This section presents the results of our analysis of the five
studied SZZ implementations (see Table 2) using the ten

8
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Fig. 6: Overview of the steps involved in our study.

TABLE 3: Overview of the studied Apache projects.

Project Description Changes that
can be linked to
bug reports

Bugs with affected-
version

HBase HBase is the Hadoop database — a distributed, scalable, big data store. 6,507 168
Hadoop
Common

Hadoop processes large data sets using clusters of computers. 5,337 201

Derby Derby is an open source relational database implemented in Java. 2,228 220
Geronimo Geronimo is an open source application server compatible with the Java Enterprise Edition (Java

EE) 6 specification.
4,404 123

Camel Camel is a tool to build routing and mediation rules in a variety of domain-specific languages. 3,715 141
Tuscany Tuscany provides the infrastructure for easily developing and running applications using a

service oriented approach.
2,838 94

OpenJPA OpenJPA is an implementation of the Java Persistence API. 2,454 72
ActiveMQ ActiveMQ is a message broker with a full Java Message Service (JMS) client. 2,229 142
Pig Pig is a high level platform for creating MapReduce programs with Hadoop. 1,953 81
Mahout Mahout provides implementations of distributed or scalable machine learning algorithms. 368 26

Totals 32,033 1,268

studied projects. The results are presented for each criterion
of the proposed framework. Table 4 provides an overview
of the obtained results for each SZZ implementation with
respect to each criterion.

5.1 Earliest Bug Appearance
Unfortunately, the affected-version field is not mandatory,
and is left empty for some bugs in the studied projects.
Therefore, we consider only the linked bugs with a filled in
affected-version field when computing the disagreement ratio.

Table 3 shows that we analyze 2,637 bug-fixing changes
that are linked to 1,268 unique bugs with the affected-
version field filled in. Despite analyzing only a subset of
the bugs of the studied projects, the number of bug-fixing
changes that we analyze in this paper still exceeds the
manual-analyzed changes of prior work (see Table 1).
The B-SZZ implementation has the lowest disagreement
ratio (0%-9%). Table 5 shows the results of the disagreement
ratio for each SZZ implementation. We find that B-SZZ has
the lowest disagreement ratio in general (0%-9%), followed
by the MA-SZZ (0%-17%). The R-SZZ implementation has
the highest disagreement ratio (24%-50%) followed by the
L-SZZ (6%-29%).

Interestingly, for the Mahout project, both the B-SZZ and
MA-SZZ implementations have a disagreement ratio of 0%.
This indicates that these SZZ implementations did not iden-
tify any bug-introducing changes after the earliest affected-
versions. Still, the AG-SZZ has a disagreement ratio of 14%
for the Mahout project. The only difference between MA-
SZZ and AG-SZZ is that MA-SZZ is aware of meta-changes.

Indeed, our manual analysis of the 20 bugs with the largest
disagreements reveals that AG-SZZ flagged meta-changes
as potential bug-introducing in all of the 20 bugs.

Although B-SZZ has the best result in the earliest bug
appearance criterion, it is not enough to convey that the
B-SZZ-generated data is better than the others. In fact, the
20 manually analyzed bugs related to B-SZZ flag cosmetic
changes, blank lines and comments as bug-introducing
changes.

Furthermore, B-SZZ is more likely to flag changes before
the earliest affected-version because it flags more potentially
bug-introducing changes per bug than the other studied
SZZ implementations. We perform a Kruskall Wallis test
to compare the distributions of bug-introducing changes
per bug that are flagged by B-SZZ, AG-SZZ, and MA-SZZ.
We omit L-SZZ and R-SZZ, since they select only one bug-
introducing change per bug. We obtain a p-value of 2.2e−16,
which indicates that the distributions are indeed statistically
different. We also compute the Cliff’s delta effect-size mea-
sure [51] to quantify the magnitude of the difference in bug-
introducing change counts of each studied SZZ implemen-
tation. In fact, we obtain a small effect-size (delta = 0.17)
when comparing B-SZZ and AG-SZZ, indicating that B-SZZ
is more likely to have a higher number of bug-introducing
changes.

When considering only the SZZ implementations that
ignore cosmetic changes, blank lines, and code comments
(i.e., all the evaluated implementations except B-SZZ), MA-
SZZ is the one that has the lowest disagreement ratio.
Moreover, it is not surprising that L-SZZ and R-SZZ have

9
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TABLE 4: Summary of the obtained results. The obtained results are shown for each SZZ implementation with respect to
each criterion of our proposed framework.

Earliest Bug Appearance Future Impact of a Change Realism of Bug Introduction Meta-changes
Summary Evaluates the extent to which an

SZZ implementation disagrees
with the team members of a
project

Evaluates the number of future bugs that a given bug-
introducing change leads to

Evaluates the likelihood that
the identified bug-introducing
changes reflect the actual cause
of the bug

Changes that are not the ac-
tual cause of bugs (i.e., branch-
changes, merge-changes, and
property-changes)

Metric Disagreement Ratio Count of Future Bugs (% of
multiple future bugs)

Timespan of Future Bugs (me-
dian of days)

Timespan of Bug-introducing
Changes (median of days)

Does it flag meta-changes
as potential bug-introducing
changes?

B-SZZ 0%-9% 45% 451 429 Yes
MA-SZZ 0%-17% 38% 368 316 No
L-SZZ 6%-29% 26% 273 Not applied No
R-SZZ 24%-50% 20% 162 Not applied No

TABLE 5: The disagreement ratio for the SZZ implementa-
tions.

B-SZZ AG-SZZ MA-SZZ R-SZZ L-SZZ
ActiveMQ 0.07 0.16 0.11 0.51 0.24
Camel 0.01 0.09 0.05 0.42 0.16
Derby 0.09 0.17 0.08 0.47 0.15
Geronimo 0.02 0.07 0.04 0.28 0.13
Hadoop Common 0.07 0.26 0.17 0.46 0.28
HBase 0.02 0.12 0.07 0.50 0.24
Mahout 0 0.14 0 0.36 0.09
OpenJPA 0.09 0.22 0.16 0.44 0.28
Pig 0.02 0.14 0.04 0.32 0.06
Tuscany 0.06 0.13 0.04 0.31 0.13

the highest disagreement ratios, since they are less likely to
have a bug-introducing change before the earliest affected-
version date — these approaches select one bug-introducing
change per bug. Additionally, R-SZZ is more likely to have
the highest disagreement ratios of both, since it selects the
latest potential bug-introducing change. Previous research
that assessed L-SZZ and R-SZZ selection mechanisms re-
ported an improvement of precision [27], whereas in our
work, we find that L-SZZ and R-SZZ inflate the number
of incorrectly flagged bug-introducing changes according to
the earliest affected-versions.

AG-SZZ flags at least one meta-change as bug-introducing
for 90%-98% of the bugs. On the other hand, B-SZZ flags
at least one meta-change as bug-introducing for 0%-48% of
the bugs. For example, for the OpenJPA and Derby projects,
B-SZZ flags 19% and 48% meta-changes as bug-introducing,
respectively. The only type of meta-change that B-SZZ in-
correctly flagged as bug-introducing was the property-change
type, since the built-in annotate function of SZZ recognizes
changes in the SCM that are copies of others (e.g., a copy
from one branch to another or the synchronization of a
merge).

Moreover, manual analysis of the 20 bugs that AG-SZZ
disagreed with earliest affected-versions reveals that AG-
SZZ flagged meta-changes as bug-introducing for all of
these 20 bugs.

SZZ still needs improvements to accurately identify bug-
introducing changes. AG-SZZ flags meta-changes as bug-
introducing for 90%-98% of the bugs. Moreover, L-SZZ
and R-SZZ, which are more precise according to previous
research, have a median disagreement ratio of 17% and 38%,
respectively.

TABLE 6: Measures of the future impact of changes criteria.
The highest and lowest values are in bold.

B-SZZ MA-SZZ L-SZZ R-SZZ
%MFB 45% 38% 26% 20%
MD 451 368 273 162
UMAD 981 809 611 371
%AUMAD 25% 27% 26% 29%

Legend
%MFB Percentage of multiple future bug
MD Median in days of the time-span of future bugs
UMAD Upper median absolute deviation (days)
%AUMAD Percentage of samples above UMAD

5.2 Future Impact of Changes

This section presents the results of the two measures that
are associated with the future impact of changes criterion.
Since AG-SZZ is prone to flagging meta-changes as bug-
introducing (see Section 5.1), we do not consider it for
further analysis in the remaining two criteria.
R-SZZ has the lowest proportion of bug-introducing
changes that lead to multiple future bugs (20%). Table 6
shows the proportions of bug-introducing changes that lead
to multiple future bugs for each SZZ implementation. B-
SZZ has the highest proportion of multiple future bugs
(45%) followed by MA-SZZ (38%). On the other hand R-
SZZ and L-SZZ have the lowest proportions (20% and 26%,
respectively).

B-SZZ is more likely to have a large proportion of
changes that lead to multiple bugs because it identifies more
bug-introducing changes per bug (see Section5.1). Such be-
haviour may happen because B-SZZ flags cosmetic mod-
ifications, comments, and blank lines as bug-introducing.
Therefore, these bug-introducing changes are more likely
to overlap when B-SZZ is applied to find the cause of
future bugs. Indeed, manual analysis of 20 bug-introducing
changes with the highest future bugs counts for B-SZZ
reveals that seven changes are cosmetic modifications only
(e.g., checkstyle and indentation changes).

Moreover, L-SZZ and R-SZZ are more likely to have the
lowest proportions of multiple future bugs because they
select only one bug-introducing change per bug. As L-SZZ
selects the bug-introducing changes with the most lines of
code, it is more likely that one of these lines is changed or
deleted in a bug fix in the future. Such a change, if selected
by L-SZZ, is more likely to lead to multiple future bugs
when compared to R-SZZ.
R-SZZ has the shortest time-span of future bugs (162 days).
Figure 7 shows the time-span of future bugs in days. The
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Fig. 7: The time-span of future bugs for each SZZ implementation with upper and lower Absolute Median Deviation
(MAD).
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Fig. 8: The relationship between the count of future bugs (x-axis) and the time-span of future bugs (y-axis) measures
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lines in the middle of the boxes are the medians, and the
upper and lower dashed lines are the upper and lower
MADs, respectively. B-SZZ has the largest time-span of
future bugs (451 days in the median) with an upper MAD
of 981 days. On the other hand, R-SZZ has the shortest time-
span of future bugs (162 days in the median).

Although it is not surprising that R-SZZ has the best
results, the results are still relatively poor. For instance,
29% of the bug-introducing changes that are flagged by
R-SZZ have a time-span of future bugs above the upper
MAD (427 days as shown in Table 6). Furthermore, if we
consider MA-SZZ, the time-spans become even higher (27%
above 745 days). Such results suggest that the evaluated
SZZ implementations still lack mechanisms to accurately
flag bug-introducing changes. For example, considering R-
SZZ, it is higly unlikely that all 29% of the bug-introducing
changes indeed lead to future bugs that span over 427 days.

Finally, in Figure 8 we use hexbin plots to show the
relationship between the two measures of the future impact
of changes criteria. We present the data for bug-introducing
changes that have multiple future bugs, i.e., that lead to
more than one future bug. The paler the shade of a hexagon,
the more instances that fall within that hexagon. We observe
that the time-span of future bugs does not always tend
to increase as the count of future bugs increases (median
spearman correlation of 0.39). The majority of the analyzed
changes have two future bugs.

The best performing SZZ implementation still flags 29% of
bug-introducing changes with a time-span of future bugs
of over 427 days. Such results suggest that current state-
of-the-art SZZ implementations still need improvements to
accurately flag bug-introducing changes.

5.3 Realism of Bug Introduction
This section describes the results of the realism of bug in-
troduction criterion. As discussed in Section 5.2, we do not
consider AG-SZZ for this analysis because it is prone to
flagging meta-changes as bug-introducing changes. Further-
more, since we analyze the time-span of bug-introducing
changes, we can only analyze bugs with more than one bug-
introducing change. Hence, we also omit the results for L-
SZZ and R-SZZ, because these two implementations select
only one bug-introducing change per bug fix.
The bugs that are analyzed by MA-SZZ have the shortest
time-span of bug-introducing changes (316 days). Figure 9
shows the time-span of bug-introducing changes in days (y
axis). B-SZZ has the longest time-span of bug-introducing
changes (429 days in the median). On the other hand, the
median for MA-SZZ is 316 days. Furthermore, the upper
MAD for MA-SZZ and B-SZZ are 710 and 916 days, re-
spectively. Even for the best result among the studied SZZ
implementations (316 days median), such a result is still
relatively poor. For example, it is unlikely that bugs take
almost a year (316 days) to be detected on average (median).

We also analyze how many bug-introducing changes
span at least one year. MA-SZZ and B-SZZ have 46% and
65% of bug-introducing changes that span at least one year.
Such results suggest that the evaluated SZZ implementa-
tions still need improvements. Indeed, it is unlikely that
46% of the bugs are introduced by changes that span at least
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Fig. 9: Time-span of bug-introducing changes that are iden-
tified by SZZ with the upper and lower MAD.

one year. Furthermore, for 5 out of the 20 manually ana-
lyzed bugs with the highest time-span of bug-introducing
changes, MA-SZZ flags changes that are the initial import
commits of code into the repository. Since these initial
commits occur early in the project history, flagging them as
potential bug-introducing changes tends to inflate the time-
span of bug-introducing changes.

We highlight that although B-SZZ performs better in
terms of the earliest bug appearance criterion, it has a higher
ratio of multiple future bugs (and future bug time-spans)
and a larger time-span of bug-introducing changes. These
results highlight the importance of considering the criteria
(and associated metrics) of our framework in tandem: while
a more naı̈ve SZZ implementation may have strong perfor-
mance along one criterion, it may perform poorly according
to the other criteria.

We find that for 46% and 65% of bugs, MA-SZZ and B-
SZZ flag potential bug-introducing changes that span at
least one year. These results suggest that state of the art
SZZ implementations still need improvement to accurately
flag bug-introducing changes.

5.4 Manual Analysis

We perform a manual analysis of 240 items (160 bugs as a
whole and 80 bug-introducing changes) as explained in Sec-
tion 4.4. We follow open coding from Grounded Theory [52]
to group the manually analyzed items into categories of
changes that are unlikely to be truly bug-introducing. The
categories are the following: (i) missing bug-introducing
changes, (ii) initial code import, (iii) directory/file renaming
changes, (iv) semantically equivalent changes, (v) backout
changes, and (vi) general changes with low likelihood of
being bug-introducing. The changes within categories (i)-
(v) are easier to identify, since they do not require a deep
understanding of the code of the studied projects. On the
other hand, category (vi) requires a careful code reading
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TABLE 7: Changes found during our manual analysis that highlight possible improvement directions for SZZ implemen-
tations.

Missed Initial code importing Directory/File renaming Semantically equivalent Backout Low likelihood True positive
Disagreement ratio 5 0 3 1 0 2 9

Count of future bugs 0 5 4 5 0 0 6
Time-span of bug-introducing changes 0 5 3 0 1 4 7

Total 5 10 10 6 1 6 22

to be judged upon. The data from this manual analysis is
available online to the interested reader.7

We report the amount of changes within each category
in Table 7. We report the results for MA-SZZ, since it
inherits the selection mechanisms of B-SZZ and AG-SZZ
and it is not prone to flagging meta-changes as potential
bug-introducing changes. With limited domain knowledge
about the studied projects, we are able to find 38 out of 60
changes from the upper extreme of our data that may taint
MA-SZZ results. Conversely, a manual analysis of the lower
extreme of the MA-SZZ generated data only finds 1 out of 60
changes which is included in the categories of changes that
are unlikely to introduce bugs (initial code import). Such
result suggests focusing analysis effort on the upper extreme
is a cost effective mechanism for spotting suspicious entries
in SZZ-generated data. In the following, we describe each
of the categories that are presented in Table 7.
Missing bug-introducing changes. This category refers
to the bugs to which all of the bug-introducing changes
are dated after the bug-report date (see Section 3). For
instance, MA-SZZ flags changes 832300 and 832306 as
bug-introducing for bug OPENJPA-1369. However, bug
OPENJPA-1369 was created at October 30th of 2009, while
both potential bug-introducing changes were recorded in
November 2009. Hence, such bug-introducing changes
could not have introduced that bug.
Directory/File renaming. MA-SZZ flags potential bug-
introducing changes that are actually directory/file
renaming changes. For example, when analyzing
the PIG-204 bug, MA-SZZ flags change #617338
as a potential bug-introducing change within
MapReducePlanCompile.java file. However, change
#617338 performs a deletion of file /physicalLayer/-

MapreducePlanCompiler.java and an addition of file
/executionengine/MapreducePlanCompiler.java. SVN
does not track renamed files. Therefore, MA-SZZ
cannot connect the code changes that are performed
on /executionengine/MapreducePlanCompiler.java to
the changes that are performed on /physicalLayer/-

MapreducePlanCompiler.java. The same sort of change
happens when considering HBASE-5967 on change
#1342856, in which several files are moved to different
packages in order to convert the source tree into Maven-
compliant modules. These broken historical links could be
heuristically recovered using repository mining techniques
like those proposed by Steidl et al. [53].
Semantically equivalent changes. It is known that AG-
SZZ and MA-SZZ are aware of comments, blank lines, in-
dentation, and whitespace changes. However, SZZ still has
problems with other sorts of format changes. In this regard,
Williams and Spacco et al. [26] used the DiffJ tool to make

7. http://sailhome.cs.queensu.ca/replication/szz evaluation/

SZZ aware of other types of format changes (e.g., reordering
and renaming parameters).

Nevertheless, we find other types of changes of which
current SZZ implementations are not aware. For example,
when analyzing the TUSCANY-1867 bug, MA-SZZ selects
change #641567 as a bug-introducing change within file
SCANNodeManagerService.java, which is a java interface.
Change #641567 only removes the “public” access modifier
from the methods defined in this interface. The use of
the “public” modifier is optional in Java interfaces since
methods defined in interfaces are “public” by default.8 For
instance, using DiffJ, such a change would be mapped to
the accessRemoved change type. Even though DiffJ makes
SZZ aware that the access modifier was removed, it is not
obvious that such a change is not bug-introducing. Only by
making SZZ aware that public and blank interface methods
have the same level of accessibility would allow SZZ to
avoid flagging such a change as bug-introducing.

Another type of semantically equivalent changes is the
renaming of variables. For instance, change #563607 has
the highest count of future bugs in project Camel (MA-
SZZ). This change renames the variable log to LOG within
file MyInterceptorProcessor.java. DiffJ classifies such a
change as variableAdded (at the variable definition) and
codeChanged (when the renamed variable is used within
methods). Again, it is not obvious that variableAdded and
codeChanged should be interpreted as a change that cannot
introduce a bug.

Other example of a semantically equivalent change is a
change to the Java iteration style for loop constructs. For
example, for (Object obj : objects) and for (int i =

0; i < objects.size(); i++), are semantically equivalent.
DiffJ flags these as the codeChanged type. It is again non-
trivial to detect that these are semantics preserving changes.

Naturally, we would suggest that SZZ could be im-
proved by making it more language-aware (e.g., to be aware
that the default access within Java interfaces is public). This
would allow SZZ to avoid flagging changes that do not
change system behaviour as bug-introducing.
Initial code importing changes. Our manual analysis re-
veals that MA-SZZ flags changes that are initial code im-
porting changes. Initial code import changes may still rep-
resent true positives. However, in case that the analyzed
project by SZZ had been migrated from one SCM system
(e.g., CVS) to another (e.g., SVN), a good practice would
be to enable SZZ to trace back further in the old data,
since the initial code importing of an SCM might not be
the starting point of the project development, but an import
of several changes that have been performed in the past.
Indeed, the initial code import changes that we analyze refer

8. https://docs.oracle.com/javase/tutorial/java/IandI/
interfaceDef.html (April 2016)
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Fig. 10: The proposed methodology to be used along with our framework. The elipses show the steps of the methodology,
while the rectangles show the output of each step.

to hundreds of classes being imported (300 to 800), which
might suggest that the work that is contained in those initial
code imports had evolved progressively on another SCM.
For instance, MA-SZZ flags change #355543 for the AMQ-
4563 bug. Change #355543 refers to the initial code import
of the ActiveMQ 4.x code base within the Subversion SCM.
However, ActiveMQ had been hosted in CVS before. It is
likely that MA-SZZ could trace back further if it had access
to the CVS data.9

Backout changes. A backout change is a change that reverts
another change [54]. Backout changes may also mislead
SZZ to flag bug introducing changes. For instance, MA-SZZ
flags a backout change (an if statement re-added by change
#1243702) for bug OPENJPA-2131 as bug-introducing. How-
ever, change #1243702 re-adds that same if statement that
was introduced in change #1222818 for the purpose of
reverting to the previous version of the studied project. SZZ
should flag change #1222818 (which is the actual origin of
the if statement) as bug-introducing rather than change
#1243702.

We suggest the use of techniques to identify backout
changes [54]. SZZ can skip such changes and trace back
further to find the actual bug-introducing changes.
General changes with low likelihood of bug-introduction.
Changes with low likelihood of being bug-introducing are
changes where we perform a deeper analysis of the code
and identify that they are unlikely to introduce the bug. For
instance, the most recent potential bug-introducing change
of bug MAHOUT-1017 (change #1336424) adds a new
message when throwing an exception — from throw new

IllegalStateException("Clusters is empty!"); to throw

new IllegalStateException("No input clusters found.

Check your -c argument."). However, such a change is
very unlikely to introduce bug MAHOUT-1017, since this
bug is about searching data in wrong directories.

SZZ implementations still have room for improvement. SZZ
implementations have to handle changes such as directory/file
renames, semantically equivalent changes, and initial code
importing changes in order to more accurately flag bug-
introducing changes.

5.5 Analysis with prior work data

We analyze the Eclipse SZZ-generated data from prior work
of Williams and Spacco [26], which includes 3,282 transac-
tions (i.e., grouped CVS commits) of 2,341 bug reports.10

From this data, 27 transactions (containing 43 lines of code)
were manually tagged as 8 false positives and 19 true
positives.

9. http://activemq.apache.org/cvs.html (April 2016)
10. https://eclipse.org/eclipse/ (April 2016)

We compute the count of future bugs metric for the entire
dataset. Unfortunately, we could not compute the disagree-
ment ratio metric nor the timespan of bug-introducing changes
because such data was not available.

The upper MAD of the count of future bugs is one,
since a great majority of transactions lead to one future
bug only (69%). 7 out of the 8 false positives (87%) have
a count of future bugs that is higher than the upper MAD.
This result suggests that our framework holds promise in
identifying false positives in SZZ-generated data. If we were
able to compute all three criteria, they could have worked in
tandem with each other to spot suspicious entries. If more
data from related work were available (i.e., [27]), we could
have performed deeper analysis.

6 PRACTICAL GUIDELINES

Prior work enhanced the SZZ approach by improving the
way that SZZ considers that a line of code has changed
(e.g., ignoring format changes) [11], improving the way
that SZZ links the bug-fixing changes to bug-introducing
changes (e.g., annotation graph) [11, 26], and changing the
selection mechanism of SZZ [27].

Our work proposes a framework to evaluate the data
that is generated by SZZ implementations by using three
criteria: (i) earliest bug appearance, (ii) future impact of
changes, and (iii) realism of bug introduction. In Figure 10,
we show an overview of a methodology that we propose to
be used along with our framework. We explain each step in
the methodology below.

After running an SZZ implementation (Step 1), it is
important to verify if the SZZ implementation works in
tandem with the SCM that is being used (Step 2). For
instance, in this work, we observe that B-SZZ and AG-
SZZ may flag meta-changes as potential bug-introducing
changes when they are applied to the Apache Subversion
SCM — which makes heavy use of branches and merges
to manage the software development process of Apache
projects. The verification that is performed in Step 2 may
lead to fixes on how the SZZ-generated data is produced
(e.g., we fix the annotation graph of SZZ which leads to the
MA-SZZ implementation). Next (Step 3), the criteria that
are proposed in our framework can be computed using
the SZZ-generated data. We suggest that the criteria of
our framework should be used in tandem with each other.
For instance, while an SZZ implementation may obtain a
lower disagreement ratio, it may just reveal that such an
implementation is flagging much more cosmetic changes as
bug-introducing. In such a case, another criterion such as
the count of future bugs could highlight a problem with the
implementation.

Finally, in Step 4, the obtained measurements can then
be used as an input for data analyses. In this paper, we
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propose the use of the upper MAD (Section 3) to spot
extremes within the SZZ-generated data that are likely to
be suspicious. We also perform a manual analysis of the
extremes of our SZZ-generated data and highlight oppor-
tunities for improvement of current state of the art SZZ
implementations.

Nevertheless, the data analysis step (Step 4) should
be performed based on the practitioner’s experience and
availability (e.g., the choice of certain thresholds and outlier
analyses). Moreover, we highlight below some practical
guidelines based on our observations.
1) Use affected-versions as a selection criterion: We factor

in the estimates of the development teams in our frame-
work by using the affected-version field that is available
in the JIRA ITS. We suggest that the earliest affected-
version date can be used to filter out bug-introducing
changes that are likely to be false positives in the SZZ-
generated data.

2) Investigate suspicious entries: Our proposed criteria
such as future impact of changes and realism of bug intro-
duction can be used to expose the extremes of the SZZ-
generated data at hand (e.g., bug-introducing changes
with hundreds of future bugs). We suggest that prac-
titioners can use such criteria to flag suspicious entries
within the SZZ-generated data and act on it accordingly.
For instance, we perform a manual analysis of the SZZ-
generated data at hand in Section 5.4 in which we high-
light opportunities to improve the current state of the art
of SZZ implementations.

7 THREATS TO VALIDITY

This section describes the threats to the validity of our work.

7.1 External Validity
External threats to validity are concerned with the extent to
which we can generalize our results. We studied 10 open
source projects from the Apache Software Foundation. Even
though our results may not generalize to other projects, we
carefully chose projects of different sizes and domains to
combat bias.

In addition, our earliest bug appearance criterion depends
on the availability of the affected-version data. Nevertheless,
the main goal of this paper is not to provide generalizable
SZZ results, but rather to provide a framework for re-
searchers and practitioners to evaluate SZZ-generated data
before using it.

7.2 Internal Validity
Internal threats to validity are concerned with the extent
to which our conclusions are valid when considering the
particular dataset that we used. In this regard, the main
internal threat is related to the representativeness of the
affected-versions data that we used. In addition, we are
aware that the data that is provided by the development
team may not be complete. For instance, a bug may be
present in versions that were released prior to the earliest
version that is indicated by team members. Hence, the
disagreement ratio should be interpreted as a lower-bound,
rather than a concrete value.

The scarcity of affected-versions data limits the scope of
our earliest bug appearance analysis. However, our analysis is
valuable because: (1) to the best of our knowledge, no prior
work has considered the affected-versions when evaluating
SZZ, and (2) although only a subset of the full dataset could
be analyzed, the subset surpasses the amount of manually
verified bug-fix changes in prior research [26, 27].

Moreover, we implement five variations of SZZ based on
the specifications that is provided by related work [9, 11, 27].
This introduces the risk that our implementations may not
be fully aligned with what was proposed by prior work.

7.3 Construct Validity

Threats to construct validity are concerned with the de-
gree to which a metric is measuring what it claims to
be measuring. In our work, we factor in the knowledge
of team members by using the affected-version field from
the JIRA ITS. The affected-version enables us to identify
entries of the SZZ-generated data that are suspicious, i.e., the
potential bug-introducing changes that are dated after the
release of the earliest affected-version. Nevertheless, we do
not identify the true bug-introducing changes. For instance,
even if a bug-introducing change is dated before the re-
lease of the earliest affected-version (i.e., the unknown bug-
introducing change according to our classification), such a
bug-introducing change can still be incorrectly flagged by
SZZ. The ground truth for such a problem is not available,
since one would have to have access to domain experts
who would have to specify which exact code changes led
to a bug. Moreover, we do not observe any case in which
the date of the bug-introducing change is the same as the
release date of the earliest affected-version in our SZZ-
generated data.

Our manual analysis of the suspicious bug-introducing
and bug-fixing changes is subject to our own opinion. If
the data were analyzed by another group of researchers,
they may arrive at different results. Nonetheless, we lim-
ited the manual analysis categories to those that could be
understood with limited domain knowledge. Hence, we
suspect that although other researchers may highlight other
characteristics, the conclusions will remain stable. Moreover,
the data that we use in our manual analysis is publicly
available and researchers are encouraged to replicate and
extend our study.11

SZZ has some core limitations. For example, SZZ cannot
analyze bugs that are due to missing a change (in contrast
to bugs that are due to performing incorrect changes). Our
proposed criteria help researchers and practitioners to find
false positives in SZZ-generated data. However, the identi-
fication of false negatives (i.e., bug-introducing changes that
are not flagged as such by SZZ) remains an open challenge.

There are more sophisticated techniques than SZZ for
studying the future impact of a code change [43, 44, 55]. For
instance, Herzig and Zeller [55] used change genealogies
to mine cause-effect-chains of code changes. This approach
may be used to study what sequence of events cause a bug,
for example. Nevertheless, we did not intend to propose
an exhaustive list of criteria. Instead, we propose three

11. http://sailhome.cs.queensu.ca/replication/szz evaluation/
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simple criteria that can spot suspicious entries in the SZZ-
generated data and that can be computed when using the
commonly used SZZ implementations [9–11]. Finally, our
proposed framework can be used to guide non-experts in
their exploration of large sets of SZZ-generated data.

8 CONCLUSION AND FUTURE WORK

In this paper, we propose a framework to evaluate the
implementations of the SZZ approach. The proposed frame-
work is comprised of three criteria: (1) earliest bug ap-
pearance, (2) future impact of changes, and (3) realism of
bug introduction. Through analysis of ten projects from the
Apache Software Foundation, we evaluate five implemen-
tations of the SZZ approach using our framework. We find
that:

• The suggested SZZ improvements by previous research
(i.e., R-SZZ, L-SZZ) have a lower rate of agreement with
respect to the earliest affected-versions criterion. When
R-SZZ was applied to the ActiveMQ project, up to 50%
of the bugs are linked to bug-introducing changes that
are not in agreement with the earliest affected-version
of those bugs.

• B-SZZ has the worst results regarding the future impact
of a change criterion. For example, 45% of the identified
bug-introducing changes by B-SZZ lead to multiple
future bugs.

• B-SZZ also has the worst results for the realism of bug in-
troduction criteria criterion. When using B-SZZ, we iden-
tified bug-introducing changes that span over one year
for 65% of the bugs. Even for MA-SZZ (an enhancement
to B-SZZ), 46% of bugs have bug-introducing changes
that span over one year.

• We report several opportunities to improve SZZ imple-
mentations. For example, one has to carefully consider
meta-changes, directory/file renaming changes, syntax
equivalent changes, and backout changes.

We recognize that SZZ still has core problems that are
not currently addressed. For instance, SZZ cannot find the
true location of bugs that are fixed by only adding code. In
addition, SZZ may flag potential bug-introducing changes
that were correct changes at the time of their writing, but
start leading to bugs because of external changes (e.g., user
requirement changes or project structure changes). Never-
theless, the main goal of our proposed framework is to help
practitioners and researchers to evaluate the SZZ-generated
data at hand. For instance, practitioners and researchers
can analyze the upper extremes that are spotted by our
proposed criteria to find suspicious entries in the SZZ-
generated data.

Our results suggest that SZZ implementations that are
currently available still need improvements in order to
accurately detect bug-introducing changes. Additionally,
researchers and practitioners should carefully scrutinize
potential bug-introducing changes that are suggested by
current state of the art SZZ implementations. The evaluation
framework that we propose in this paper is a first step
towards improving the quality of SZZ-generated data and
SZZ implementations themselves.
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