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ABSTRACT
The need for automated software engineering tools and tech-
niques continues to grow as the size and complexity of stud-
ied systems and analysis techniques increase. Software engi-
neering researchers often scale their analysis techniques us-
ing specialized one-off solutions, expensive infrastructures,
or heuristic techniques (e.g., search-based approaches). How-
ever, such efforts are not reusable and are often costly to
maintain. The need for scalable analysis is very prominent
in the Mining Software Repositories (MSR) field, which spe-
cializes in the automated recovery and analysis of large data
stored in software repositories. In this paper, we explore
the scaling of automated software engineering analysis tech-
niques by reusing scalable analysis platforms from the web
field. We use three representative case studies from the MSR
field to analyze the potential of the MapReduce platform to
scale MSR tools with minimal effort. We document our
experience such that other researchers could benefit from
them. We find that many of the web field’s guidelines for
using the MapReduce platform need to be modified to better
fit the characteristics of software engineering problems.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—performance mea-
sures

General Terms
Performance

Keywords
Mining Software Repositories; Cloud computing; MapRe-
duce

1. INTRODUCTION
The Mining Software Repositories (MSR) field recovers

and studies data stored in large software repositories, includ-
ing source control repositories, bug repositories, archived
communications, deployment logs, and code repositories [23].
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The MSR field is one of the many fields within software en-
gineering that continue to benefit from the development of
automated software engineering tools and techniques.

These automated techniques continuously need to scale as
larger systems are being analyzed and more complex tech-
niques are being used to analyze these systems. For instance,
recent studies show that the Debian Linux distribution dou-
bles in size every two years (currently at 323M SLOC [4,17]),
while recent efforts [2, 11, 30] continue to archive very large
repositories of source code based on the strong belief that the
wisdom of thousands of coders can help improve the quality
of any one project. Moreover, complex model checking and
analysis techniques continue to be developed to help locate
bugs in large software (e.g., [38]).

To cope with the scale of the analyzed data and the com-
plexity of the used algorithms, researchers often make use of
one-off solutions, heuristic-based optimizations (e.g., search
based software engineering [20]), or specialized commercial
systems (e.g., [8]). However, these solutions are too expen-
sive to acquire or maintain, and they often require lengthy
development time. The lack of off-the-shelf ways to scale
analysis techniques hinders research progress, as researchers
spend considerable time tackling side-problems that are of
limited interest to them, but which they must solve to ensure
the adoption of their research in practice. For example, D-
CCFinder [28], a distributed version of the CC-Finder [26]
clone detection tool, achieves a speed-up factor of 20 us-
ing a custom client/server architecture consisting of 80 PCs.
This specialized architecture requires substantial develop-
ment and maintenance effort to keep it running correctly.

Standard platforms are needed that would enable large-
scale studies with minimal effort and without the need for
continuous maintenance. Over the past decade, the web
field has developed a significant expertise in dealing with
large-scale problems. That community has developed sev-
eral standard platforms that have been extensively reused
by its members. Hadoop [39] and Pig [33] are examples of
such platforms. We firmly believe that our community can
benefit from these platforms to scale software engineering
studies. In prior work [35], we explored the use of Hadoop, a
MapReduce [15] implementation, to scale and speed-up one
particular software evolution study. We could reduce the
running time of the study tool by 60 to 70%. It is not clear,
though whether findings generalize to other kinds of software
engineering analyses, and how to address the challenges we
encountered with configuration and designing MapReduce
strategies.

In this paper, we use the MSR field, as a sub-field within



software engineering, to study the benefits and challenges of
scaling several software engineering analyses using the large-
scale data processing platforms. In particular, we use three
representative case studies from the MSR field to demon-
strate that the MapReduce web analysis platform could be
used to successfully scale MSR tools with minimal effort.
The main contributions of our paper are as follows:

1. We document our experience in scaling several MSR
problems, such that other researchers could benefit
from our experience.

2. We also report the changes needed to the web field’s
guidelines for the MapReduce platform when applying
MapReduce to MSR analyses. These changes high-
light the different characteristics of software engineer-
ing analyses compared to web analyses and must be ad-
dressed to ensure that software engineering researchers
get the most benefit out of the MapReduce platform.

While we apply scalable web analysis platforms in the
context of MSR analyses, we believe that many software
engineering research problems that require automated anal-
ysis would benefit from these platforms. We hope that our
work will encourage other researchers to explore the scaling
of their automated techniques using such platforms.

The rest of the paper is organized as follows. Section 2
provides the background and related work of our research.
MapReduce and the expected challenges of migrating MSR
tools to MapReduce are introduced in Section 3. We present
our case study in Section 4, followed by a report about our
experiences in addressing the challenges in Section 5. Sec-
tion 6 evaluates the ability of MapReduce to scale different
types of MSR analyses. Section 7 discusses threats to valid-
ity. Finally, Section 8 presents the conclusions of this paper.

2. BACKGROUND
Trends in MSR. In recent years, two major trends can

be observed in the MSR field that are also representative
for many other fields of ASE. The first trend is that the
data analyzed by software engineering researchers is explod-
ing in size. Recent empirical studies exhibit such a trend,
with many researchers exploring large numbers of indepen-
dent software products instead of a single software prod-
uct. Empirical studies on Debian GNU/Linux by Gonzalez-
Barahona et al. [17] analyze up to 730 million lines of source
code from 6 releases of the Debian distribution, which con-
tains over 28,000 software packages. Similarly, Mockus and
Bajracharya et al. have been developing methods to amass
and index TBs of source code history data [11,30]. Estima-
tion indicates that an entire year of processing is needed to
amass such large source code [30]. This growth of data is
not exceptional. Studies show that the Debian distribution
is doubling in size approximately every two years [17].

A second trend in software engineering is the use of ever
more sophisticated automated techniques. Clone detection
techniques are examples of this trend. Text-based and token-
based techniques, such as CC-Finder [26], use raw source
code or lexical “tokens” to detect code clones in a software
project. However, as these clone detection techniques are
only able to detect a limited number of clone types [34],
more complex techniques that require much more comput-
ing power and running time are needed to detect more types
of code clones with higher precision.

Approaches to scale MSR. The growth of data and
the increase in the complexity of MSR studies bring many
challenges that hinder the progress of the MSR field. Yet,
there is little work that aims to address these challenges.

To enable large-scale MSR studies, researchers continue to
develop ad hoc solutions that migrate MSR studies to dis-
tributed computing environments. The simplest and most
naive way is using batch scripts to split input data across
a cluster of machines, deploy the tools (unchanged) to the
machines, run the tools in parallel, and finally merge the out-
put of every machine. However, naive approaches mostly do
not support load balancing, error recovery and require ad-
ditional programming effort. Other approaches, such as D-
CCFinder [28], Kenyon [14] and SAGE [16], re-engineer the
original, non-distributed MSR study tools to enable them
to run on a distributed environment. Distributed comput-
ing libraries, such as MPI [19], can assist in developing dis-
tributed MSR study tools. However, the re-engineering of
existing tools requires additional programming effort and
software engineering researchers are neither experts in dis-
tributed system programming nor willing to spend effort on
the programming.

Over the past 20 years, parallel database systems, such
as Vertica [8], have been used to perform large-scale data
analyses. Recently, work by Stonebraker et al. [37] shows
that parallel database systems are challenging to install and
configure properly and they typically do not provide efficient
fault tolerance. MSR researchers are neither experts in in-
stalling parallel databases nor can they afford the time to
learn the intricacies of such systems. Moreover, MSR exper-
iments typically only extract and read large amounts of data
from software repositories, without ever updating this data.
Using parallel database system is not an optimal solution
for scaling MSR experiments.

Search-based software engineering (SBSE) [21] holds great
promise for scaling software engineering techniques by trans-
forming complex algorithms into search algorithms, which
yield approximate solutions in a shorter time span. For
example, Kirsopp et al. [27] use various search algorithms
to find an accurate cost estimate for software projects. In
addition to optimized performance, most search algorithms
are naturally parallelizable to support even larger scale ex-
periments [20]. However, SBSE only offers a set of gen-
eral techniques to solve problems, and still require consider-
able application-specific customization to achieve significant
speed-ups. Not all MSR analyses benefit from approximate
solutions either.

The web field has developed large-scale data analysis plat-
forms over the years. These platforms, such as MapRe-
duce [15], are designed to run in distributed environments,
and typically leverage a distributed data storage technique.
Widely and successfully used in the web field, these plat-
forms are able to analyze massive amounts of web data. Be-
cause the intensive analyses in the MSR field and the web
field are both scan-centric (no random access) and read-only,
these platforms are very promising for scaling MSR analy-
ses. Shang et al. [35] have presented preliminary results that
demonstrate that the analysis of large-scale software engi-
neering data could benefit from such large-scale data anal-
ysis platforms, despite a number of challenges. This paper
explores whether MapReduce can successfully scale a range
of typical MSR analyses, discusses how to address the var-
ious challenges of migrating MSR analyses to MapReduce



and analyzes the differences between guidelines from the web
field and our experience. We then show the applicability of
MapReduce in scaling other types of MSR analyses.

3. MAPREDUCE
MapReduce is a distributed platform for processing very

large data sets [15]. The platform, originally proposed by
Google, is used by Google on a daily basis to process large
amounts of web data.

MapReduce enables a distributed divide-and-conquer pro-
gramming model. The model consists of two phases: a mas-
sively parallel “Map” phase, followed by an aggregating “Re-
duce”phase. The input data for MapReduce is broken down
into a list of key/value pairs. Mappers (processes assigned to
the “Map” phase) accept the incoming pairs, process them
in parallel and generate intermediate key/value pairs. All
intermediate pairs having the same key are then passed to a
specific Reducer (process assigned to the “Reduce phase”).
Each Reducer performs computations to reduce the data to
one single key/value pair. The output of all Reducers is the
final result of a MapReduce run.
An Example of MapReducing an MSR analysis.

To illustrate how MapReduce can be used to support
MSR, we consider performing a classical MSR analysis of
the evolution of the total number of lines of code (#LOC)
of a software project. The input data of this MSR analysis is
a source code repository. The repository is broken down into
a list of key/value pairs as “version number/source code file
name”. Mappers accept every such pair, count the #LOC of
the corresponding source file and generate as intermediate
key/value pair “version number/#LOC”. For example, for a
file with 100 LOC in version 1.0, a Mapper will generate a
key/value pair of “1.0/100”. Afterwards, each list of key/-
value pairs with the same key, i.e., version number, is sent to
the same Reducer, which sums #LOCs in the list, and gen-
erates as output the key/value pair “version number/SUM
#LOC”. If a Reducer receives a list with key “1.0”, and the
list consists of two values “100” and “200”, the Reducer will
sum the values “100” and “200” and output “1.0/300”.

The MapReduce platform holds great promise for scaling
MSR experiments, because it is

1. a mature and proven platform. MapReduce is
widely used with great success by the web field and
other communities. For example, the New York Times
has recently used MapReduce to transform all its old
articles into PDF format in a cost-effective manner [6].

2. a simple and affordable solution. MapReduce
uses a simple, distributed divide-and-conquer program-
ming model. MapReduce can be deployed on commod-
ity hardware, which makes scaling MSR experiments
more affordable.

3. a read-optimized platform. MapReduce is designed
to perform large-scale read-only data analyses, such as
the scan-centric MSR analyses.

Challenges of MapReducing MSR analyses
Although MapReduce holds great promise for MSR, we

envision a number of important challenges based on our
previous experience of using MapReduce [35]. We use the
MapReduce example above to motivate and explain these
challenges. The goal of this paper is to document our ex-
periences addressing these challenges across various types
of MSR analyses and to carefully examine the guidelines

proposed by the web field regarding these challenges. By
documenting the differences in analyses and data processed
by both communities, we hope that the software engineering
field will be able to exploit the full power of MapReduce to
scale software engineering analyses.
Challenge 1: Migrating MSR analyses to a divide-
and-conquer programming model.

The first challenge is to find out how to migrate an existing
MSR analysis to a divide-and-conquer programming model.
This migration has two important aspects.

1. Locality of analysis. A Divide-and-conquer pro-
gramming model works best when the processing of
each broken data part is independent of the processing
of the other parts (i.e., a local algorithm). Counting
the number of lines of code (#LOC) for every source
file is an example of a local algorithm as this can be
done for each file in isolation and the results of each
data part can just be added up. Global algorithms
(e.g., clone detection [34]) would require each data part
(e.g., set of files) to have access to the whole data set.
Semi-local algorithms (e.g., source code differencing)
require more data than just local data, but not the
whole data set (e.g., only two files). It is interesting to
note that an analysis might be global due to the imple-
mentation of an analysis, not due to the analysis itself.
For example, several analyses require access to the full
code base, when robust techniques such as island pars-
ing [31] could be used to overcome this implementation
requirement and would ensure local analysis.

2. Availability of source code. Having access to the
source code of an MSR study tool provides more flex-
ible ways to map an MSR algorithm to a divide-and-
conquer programming model. However, re-engineering
a tool internally increases the risk of introducing bugs.

Challenge 2: Locating a suitable cluster.
Distributed platforms typically run on a cluster of ma-

chines. We list below a few aspects for locating clusters:

1. Private cluster versus Public cluster. A public
cluster is available and accessible to everyone, whereas
a private cluster is not.

2. Dedicated cluster versus Shared cluster. Dedi-
cated clusters ensure that only one user uses the ma-
chines at the same time, while machines in the shared
cluster may be used by many users at the same time.

3. Specialized cluster versus General-purpose clus-
ter. Specialized clusters are designed and optimized
for MapReduce (e.g., [1]), while general-purpose clus-
ters might result in sub-optimal performance.

On the one hand, private, dedicated, specialized clusters
provide the most optimal performance. On the other hand,
public, shared, general-purpose clusters require the lowest
financial cost. There are eight possible combinations of
the three aforementioned aspects. To illustrate the possi-
ble types of clusters, we show four types as examples.

• Machines in a research lab (Private, Dedicated
and Specialized). Research shows that computers
are idle half of the time [10]. By bundling these com-
puters together, a small cluster can be created.

• Machines in a student lab (Private, Dedicated
and General). Computers in student labs of universi-
ties can be used as medium-sized MapReduce clusters.



• Scientific clusters (Public, Shared, and Gen-
eral). Some scientific clusters, e.g., SHARCNET [7],
have hundreds or thousands of machines and are specif-
ically designed for scientific computing. The large scale
of these clusters enables running experiments on mas-
sive amounts of data.

• Optimized clusters (Public, Dedicated and Spe-
cialized). Some clusters are optimized for MapRe-
duce, e.g., the EC2 MapReduce instances offered by
Amazon [1]. Optimized clusters are often too costly.

Challenge 3: Optimizing MapReduce strategy de-
sign and cluster configuration.

The different implementations and configurations of the
MapReduce platform influence the performance of MapRe-
duce experiments, yet finding the optimal implementation
and configuration is challenging.

1. Static breakdown of analysis. The optimal gran-
ularity for breaking down the analysis should be care-
fully examined. For example, counting the #LOC of a
software project can be decomposed into different data
parts that are executed in parallel to count the #LOC
of: 1) every source code file (fine-grained) or 2) every
subsystem (coarse-grained). The finer the granularity,
the more parallelism that can be achieved. However,
finer granularity leads to more overhead since addi-
tional “Map” and “Reduce” procedures must be sched-
uled and executed. Although this granularity principle
is well known in distributed computing, choosing the
best granularity in the context of the MapReduce plat-
form is still challenging.

2. Dynamic breakdown of processing. Once the
static breakdown is determined, the granularity of pro-
cessing the input data can still be altered dynamically.
MapReduce implementations typically allow sending a
number of “Map” and “Reduce” procedures to a ma-
chine at the same time as a “Hadoop task”. In our
#LOC example, one single source code file could be
sent to a machine for analysis, or an ad hoc group of
files could be sent together in a batch. The composi-
tion of Hadoop tasks can be completely arbitrary by
the MapReduce platform.

3. Determining the optimal number of machines.
A third way to optimize the performance of a MapRe-
duce cluster is by changing the number of machines.
Adding more machines might not always lead to better
performance or effective use of resources, due to plat-
form overhead. For example, adding more machines
requires more data transfer over the network, extra
computing power, and possibly additional usage fees.

Challenge 4: Managing data during analysis.
MapReduce needs a data management strategy to store

and propagate large data fast enough to avoid being a bot-
tleneck. Two data storage choices are typically available:

1. Distributed file system. Input data and intermedi-
ate data are stored in one distributed file system that
spreads its data to every machine of the cluster to in-
crease I/O bandwidth and the total amount of storage,
and to achieve fault tolerance.

2. Local file system. Saving data in the local file sys-
tem does not require data replication and transfer on
the network.

Table 1: Eight types of MSR Analyses.
Name Description Locality

Metadata anal-
ysis

Direct analysis on the ex-
tracted metadata from soft-
ware repositories, e.g., [13].

local

Static source
code analysis

Static program analysis on
source code, e.g., [18] .

local/global/
semi-local

Source code
differencing
and analysis

Analysis of changes between
versions of source code,
e.g., [22].

semi-local

Software met-
rics

Measuring and analyzing met-
rics of software repositories,
e.g., [36].

local/global/
semi-local

Visualization Visualizing information mined
from software repositories,
e.g., [32].

global

Clone detec-
tion methods

Detecting and analyzing sim-
ilar source code fragments,
e.g. [26].

global

Data Mining Applying Data mining tech-
niques on software repositories,
e.g., [29].

global

Social network
analysis

Social and behavioural anal-
ysis on software repositories,
e.g., [12].

semi-local

Choosing the best data storage strategy for different types
of analyses is very important and challenging.
Challenge 5: Recovering from errors.

During the experiments, the machines in the cluster might
crash and the MSR study tools used in the experiments
might fail or throw exceptions. The MapReduce platform
needs to catch failures and exceptions from both hardware
and software during large-scale experiments. Handling and
recovering errors is important when migrating MSR study
tools to a MapReduce cluster.

4. CASE STUDIES
This section briefly presents the three case studies that

we used to study how to address the challenges of migrating
MSR tools to the MapReduce platform.

4.1 Subject systems and input data
We chose three representative MSR case studies and asso-

ciated tools to counter potential bias. Prior research identi-
fies eight major types of MSR analyses [25], as shown in Ta-
ble 1. Techniques across these types require time-consuming
processing and must cope with growing input data. We se-
lect three MSR tools that cover six out of the eight types
of MSR analyses. Section 6 discusses the applicability of
MapReduce to the two types of MSR analyses that are not
covered by our case studies (i.e., visualization and social net-
work analysis). We summarize below our case study tools.

J-REX. CVS repositories [3] contain the historical snap-
shots of every file in a software project, with a log of every
change during the history of the software project. J-REX,
similar to C-REX [22], processes CVS repositories to:

• Extract information (e.g., author name and change
message) from each CVS transaction.

• Transform source code into an XML representation.
• Abstract source code changes from the line level (“line

1 has changed”) to the program entity level (“function
f1 no longer calls function f2”) .

• Calculate software metrics, e.g., #LOC.



Table 2: Overview of the three subject tools.
J-REX CC-Finder JACK

Programming
Language

Java Python Perl

Source code available not available available
Input data Eclipse,

Datatools
FreeBSD Log files No.

1 & 2
Input data
type

CVS repos-
itory

source code execution log

Table 3: Characteristics of the input data.
Data Size Data Type # Files

Eclipse 10.4GB CVS repository 189, 156
Datatools 227MB CVS repository 10, 629
FreeBSD 5.1GB source code 317, 740
Log files No.1 9.9GB execution log 54
Log files No.2 2.1GB execution log 54

J-REX performs 4 types of MSR analyses, i.e., Metadata
analysis, Static source code analysis, Source code differenc-
ing and Software metrics [25].

CC-Finder. CC-Finder is a token-based clone detection
tool [26] designed to extract code clones from systems de-
veloped in several programming languages (e.g., C++, and
C). CC-Finder belongs to the clone detection analysis type.

JACK. JACK is a log analyzer that uses data mining
techniques to process system execution logs, and automat-
ically identify problems in load tests [24]. JACK performs
the Metadata analysis and Data Mining MSR studies.

Source code of J-REX and JACK was available to us.

4.2 Experimental environment
To perform our evaluation, we require input data, a cluster

of machines and a MapReduce implementation.
We use the CVS repository archives of Eclipse, a widely

used Java IDE, and Datatools, a data management platform,
as J-REX’s input data. We downloaded the latest version of
these archives on September 15, 2009. FreeBSD is an open
source operating system. We use the source code distribu-
tion of FreeBSD version 7.1 as the input data for CC-Finder.
Finally, two groups of execution log files are used as input
data of JACK [24]. Tables 2 and 3 give an overview of the
three software engineering tools and their input data.

Our experiments are performed on two clusters: 18 ma-
chines of a student lab and 10 machines of a scientific cluster
called SHARCNET [7]. Table 4 shows the configuration of
the two clusters. From previous research [35], we also have
experience using a cluster in a research lab.

We choose Hadoop [39] as our MapReduce implementa-
tion. Hadoop is an open-source implementation of MapRe-
duce supported by Yahoo! and widely used in industry.
Hadoop not only implements the MapReduce model, but
also provides a distributed file system, called the Hadoop
Distributed File System (HDFS). Hadoop supplies Java in-
terfaces to implement MapReduce operations and to control
the HDFS. Another advantage for users is that Hadoop by
default comes with libraries of basic and widely used “Map”
and “Reduce” implementations, for example to break down
files into lines. With these libraries, users occasionally do
not have to write new code to use MapReduce.

4.3 Performance
To illustrate the scalability improvements of MapReduce

for MSR analyses, we briefly discuss the performance ob-
tained using MapReduce in our experiments, compared to

Table 4: Configuration of MapReduce clusters.
Student Lab SHARCNET

# Machines 18 10
CPU Intel Q6600 (2.4GHz) 8 × Xeon(3.0GHz)
Memory 3GB 8GB
Network Gigabit Gigabit
OS Ubuntu 8.04 CentOS 5.2
Disk size 10GB 64GB

Table 5: Best results for the migrated MSR tools.
Tool name Input

data
One ma-
chine

MapReduce
version

Cluster

J-REX Eclipse 755min 80min SHARCNET
CC-Finder FreeBSD − 59hours student lab
JACK Log file

No.1
580min 98min SHARCNET

the performance on a single machine without MapReduce.
We repeated each experiment three times, and always re-
port the median value of our results. A more detailed anal-
ysis of the performance gains of MapReduce for J-REX can
be found in previous work [35]. Table 5 shows the best
performance for each tool with the Eclipse CVS repository,
FreeBSD source code and the 10GB system execution log
files as input data respectively. For CC-Finder, we cannot
perform code clone detection in the FreeBSD source code on
one machine because of memory limitations. From the table,
we can see that on a cluster of 10 machines (SHARCNET),
the running time of J-REX and JACK is reduced by a fac-
tor 9 and 6 respectively. For CC-Finder, the running time is
only 59 hours. Livieri et al. [28] claim that using CC-Finder
to detect code clones in the FreeBSD source code requires 40
days. Although the experiments are performed on different
hardware environments, the huge difference of running time
gives an idea of the scalability of MapReduce.

5. MIGRATION EXPERIENCES
While the previous section confirms that MapReduce can

effectively scale several types of MSR analyses, it took us
several attempts and experiments to achieve such perfor-
mance results. In this section we distill our experience such
that others would benefit from them. For each challenge
from Section 3, we discuss our findings and provide advice
based on our experience. We also compare our findings rel-
ative to common guidelines provided by the web field.
Challenge 1: Migrating MSR tools to a divide-and-
conquer programming model.

We used the following strategies to map the MSR tools to
a divide-and-conquer programming model.
J-REX. Similar to the original J-REX, the history of every
single file is processed in isolation. Every input key/value
pair contains the raw data of one file in the CVS repository.
The Mappers pass the key/value pairs as “file name/version
number of the file” to Reducers. Reducers perform compu-
tations to analyze the evolutionary information of all the
revisions of a particular file. For example, if file “a.java” has
three revisions, the mapping phase gets file names and revi-
sion numbers as input, and generates every revision number
of the file, such as “a.java/a 0.java”. The Reducer gener-
ates “a.java/evolutionary information of a.java”. The full
implementation details are discussed in [35].
CC-Finder. Our MapReduce implementation adopts the
same computation model as D-CCFinder [28], which consists
of the following steps:



Figure 1: Example of the typical computational
model of clone detection techniques.

1. Dividing source code into a number N of file groups.
2. Combining every two file groups together, resulting

into N × (N + 1)/2 “file group pair id/file names in
both file groups” pairs, which are sent to Mappers.

3. Mappers send the pair to a Reducer.
4. The Reducer invokes CC-Finder on a particular pair

to run the clone analysis.

Figure 1 shows an example of the computational model
for detecting code clones in 3 files. From the figure, we can
see that every file needs to be compared to every other file
and to itself, resulting into 6 pairs.
JACK. JACK detects system problems by analyzing log
files. The Mapper receives every file name as input key/-
value pair, and passes “file name, file name” to the Reducer.
Passing only the file name instead of the file content avoids
I/O overhead. Reducers receive the file name and invoke
JACK to analyze the file.

In the global analyses, we have to put required data into
Reducer. For local analyses, such as evolution of SLOC and
JACK, we can use both Mapper and Reducer. Semi-local
analyses can follow the migration strategy of either global
or local analyses. Since the outputs of the different JACK
invocations do not need to be aggregated, we only need one
MapReduce phase instead of both Mappers and Reducers.
We put all JACK functionality in Reducers, but could just
as well have put it in the Mappers. Similar migration strate-
gies are found in examples of MapReduce strategies such as
“Distributed Grep” [15].
Notable Findings.

We summarize below our main observations.

1. Locality of analysis. A majority of MapReduce uses
in the web field are local in nature, while for our case
study we find that our three tools cover three levels of
locality. The JACK tool performs local analysis, be-
cause the analysis of a file does not depend on other
files. CC-Finder performs global analysis because ev-
ery source code file must be compared to all the input
source code files. J-REX performs semi-local analy-
sis, because it compares consecutive revisions of ev-
ery source code file. In another perspective, both J-
REX and JACK have the algorithmic complexity of n,
which is the number of input files; while CC-Finder has
the algorithmic complexity of n2. Yet, all tools show
good performance after being MapReduced. For CC-
Finder, we adopted the computation model proposed
by [28] using the services provided by the MapReduce

platform instead of spending considerable time imple-
menting the platform for such a computation model.
For J-REX, we found that for each analysis we needed
a subset of the data (i.e., all consecutive revisions of
a particular file), hence we had to ensure that all the
data is mapped to the same machine in the cluster.

2. Availability of source code. When no source code
was available, we used a program wrapper, which cre-
ates a process to call executable programs. When
the source code was available, we sometimes had to
use a program wrapper to invoke the tool because the
tool and the MapReduce implementation used differ-
ent programming languages (e.g., JACK is written in
Perl while developers need to use Java on Hadoop).
When the tool’s source code was available and written
in Java, e.g., for J-REX, the source code of the tool
was modified to migrate to MapReduce.

Migrating local and semi-local analyses is much simpler
than migrating global analyses. Little design effort is re-
quired for migrating J-REX and JACK. CC-Finder, as a
global analysis, required more design effort than the other
tools. We implemented 300 to 500 lines of Java code to
migrate each tool.
Challenge 2: Locating a suitable cluster

In previous research [35], we used a four-machine MapRe-
duce cluster in our research lab. In this paper, we used a
cluster in a student lab and a cluster in SHARCNET. We
document below our experiences using these three types of
clusters.
Research lab. The heterogeneous nature of research labs
complicates the deployment of MapReduce implementations
such as Hadoop. These implementations require common
configuration choices on every machine, such as a common
user name and installation location. In an effort to reduce
the complexity of deployments in research labs, we explored
the use of virtual machines instead of the actual machines.
The virtual machines unify the operating system, user name
and installation location. However, virtual machines intro-
duce additional overhead especially for I/O intensive anal-
ysis, while for CPU intensive analysis the overhead turned
out to be minimal.
Student lab. The limited and unstable nature of stor-
age in the student lab limited the use of Hadoop. All too
often student labs provide too limited disk space for analy-
sis and machines are typically configured to erase all space
when booting up. The limited storage space prevented us
from running experiments that performed global or semi-
local analysis.
SHARCNET. While SHARCNET (and other scientific com-
puting clusters) provide the desired disk space and homo-
geneous configuration, we were not able to use the main
clusters of SHARCNET. Most scientific clusters make use
of specialized schedulers to ensure fair sharing of the clus-
ter, which do not support Hadoop. Fortunately, the SHAR-
CNET operators gave us special access to a small testing
cluster without scheduling requirements.
Notable Findings.

Heterogeneous infrastructures are not frequently used in
the web field. Hence, the support provided by MapReduce
implementations, like Hadoop, for such infrastructures is
limited. In the research community, heterogeneous infras-
tructures are the norm rather than the exception. We hope
that future versions of Hadoop will provide better support.



For now, we have explored the use of virtual machines
on heterogenous infrastructures to provide a homogeneous
cluster. The virtual machine solution works well for non-
I/O intensive analysis and as a playground for analysis and
debugging before deployment on larger clusters. We have
used such a virtual playground to verify our MapReduce mi-
gration before deploying on expensive commercial Hadoop
clusters, such as the Amazon EC2 Hadoop images [1].

While scientific clusters provide an ideal homogeneous in-
frastructure, their schedulers have yet to adapt to MapRe-
duce’s model. Researchers should work closer with the ad-
ministration teams of scientific clusters such that MapReduce-
friendly schedulers are adopted by these clusters.
Challenge 3: Optimization of MapReduce

We now discuss our observations regarding the optimiza-
tion of MapReduce processing.

1) Static breakdown of analysis.
We explored the use of fine-grained (most often used in

the web field) and coarse-grained breakdown in our migra-
tion of the different tools. For example, for the CC-Finder
tool we started to read files from the input source code repos-
itory and record the size of every file until the total file size
reached a certain threshold. The fine-grained breakdown
processed 200MB of files per part while the coarse-grained
breakdown processed 1GB of data per part (the CC-Finder
version we had did not support more than 1GB of data). For
J-REX, we explored the use of single files and sub-folders for
breakdown granularity. In these experiments, we found that
coarse-grained breakdown is two to three times faster than
fine-grained breakdown because the processing time of each
fine-grained unit has a large portion wasted on communica-
tion overhead. This finding confirms common knowledge in
distributed computing.

2) Dynamic breakdown of processing.
We studied the impact of the dynamic breakdown of pro-

cessing on performance by varying the number of process-
ing tasks in Hadoop. We experimented with J-REX using
the Datatools CVS repository and JACK using the Log files
No.2, on 10 machines in SHARCNET. We set the number of
Hadoop tasks to 10 (the number of machines) and recorded
the running time of every machine in the cluster. In the
violin plots of Figure 2, the top value corresponds to the
maximum machine running time across all the machines,
which determines the running time of the whole MapRe-
duce process. The taller the grey box in the violin plot, the
less balanced the workload of machines.

We then increased the number of Hadoop tasks to 100 for
J-REX and 54 (the number of files, see Table 3) for JACK
and compared the findings for the increased Hadoop task
count to the performance of J-REX and JACK with just 10
Hadoop tasks. The plots in Figure 2 show that the running
time of every machine after increasing the number of Hadoop
tasks is more balanced than before (lower grey boxes in the
violin plot). However, running JACK with more Hadoop
tasks is faster than with fewer Hadoop tasks, while running
J-REX with more Hadoop tasks is slower.

This contradictory result is caused by the different types
of input data in the two software systems. The input data
of J-REX is a CVS repository [3]. CVS repositories store
the history of each file in a separate file, leading to a large
number of input files. As shown in Table 2, JACK only has
a few dozen files as input. The granularity of input files is
finer for J-REX than for JACK. Increasing the number of

Figure 2: Violin plots of machine running-time for
JACK and J-REX.

Hadoop tasks, yields a more balanced workload for both J-
REX and JACK. However, this also increases the overhead
of the platform to control and monitor Hadoop tasks. As a
result, the best number of Hadoop tasks for J-REX seems
to be the number of machines, i.e., coarsest granularity. For
JACK, the best number of Hadoop tasks seems to be the
number of input files, i.e., the finest granularity.

3) Determining the optimal number of machines.
To determine the optimal number of machines in our case

study, we varied the number of machines from 5 to 10 on J-
REX for the Datatools CVS repository and on JACK for the
No.1 Log files. The number of Hadoop tasks are 10 and 54
(optimal dynamic breakdown) for J-REX and JACK respec-
tively. Figure 3 shows the corresponding running times. We
notice that the performance of J-REX grows sub-linearly,
while the performance of JACK plateaus. Closer analysis
indicates that this is primarily due to two reasons:

1. Platform overhead. The platform overhead is the
time that the MapReduce platform uses to control
Hadoop tasks, while the analysis time is the actual ex-
ecution time of Mappers and Reducers. In our exper-
iments, we find that the platform overhead is around
13% of the total running time with 5 machines and 23%
of the total running time with 10 machines. Adding
machines into the cluster introduces additional over-
head. However, as the platform overhead is dominated
by the analysis time when doing large-scale analysis,
MapReduce performs better with larger scale analyses.

2. Unbalanced workload. An unbalanced workload
causes machines to be idle. For example, a machine
that is assigned much heavier work than others in-
creases the total running time, as the whole MapRe-
duce run will have to wait for that machine. In our
experiments, unbalanced workload is the main reason
for the un-optimal of JACK. In Figure 3, JACK does
not improve its performance when moving from 6 ma-
chines to 10 machines. We checked the system logs
of the MapReduce platform and found that one of the
Hadoop tasks with the largest input log file took much
longer than the other Hadoop tasks, which had to wait
for that one Hadoop task to finish.

As a distributed platform, MapReduce requires transfer-
ring data over the network. Accessing a large amount of data
also requires a large amount of I/O. Intuitively, I/O might
be another possible source of the overhead. We observed the
output of vmstat on every machine in the cluster and found
that the percentage of CPU time spent on I/O is less than
1% on average, which means that in our experiment I/O was
not a bottleneck.



Figure 3: Running time trends of J-REX and JACK
with 5 to 10 machines.

Notable Findings.
The web field often uses MapReduce to perform local anal-

ysis, with each broken-down part requiring substantial pro-
cessing. In contrast, based on our case studies we note that
many software engineering tasks (e.g., parsing a single file)
require analyses that vary in locality. On the one hand,
we would suggest researchers to analyze files in groups in-
stead of individually in order to reduce platform overhead.
However, the grouping of files might cause imbalance in the
running time of Hadoop tasks, with some parts requiring
more processing time than others. This in turn reduces the
parallelism of the platform. In short, we can conclude that
large-scale analysis on balanced input data benefits more
from more machines in the cluster than small-scale analysis
with unbalanced input data.

Our studies indicate that the recommended parameter
configurations for using Hadoop on web data do not work
well for all types MSR studies. For web data, it is recom-
mended that the number of “Map” procedures is set to a
value in between 10 to 100 × m, and that the number of
“Reduce” procedures is set to 0.95 or 1.75 × m × n, with
n being the number of machines and m being the number
of processes that can run simultaneously on one machine,
which is typically the number of cores of the machines [39].

This recommendation works well for web analysis, which is
typically fine-grained. Fine-grained MSR tools like J-REX,
which have a large number of input key/value pairs, can still
adopt these recommendations. Coarse-grained MSR tools
like JACK, which have a small number of input key/value
pairs, should not adopt these recommendations. Instead,
such tools should set the number of “Reduce” procedures to
be the same as the number of input key/value pairs, i.e., the
number of input files.
Challenge 4: Managing data during analysis

We used both distributed and local file systems.

1. Distributed file system. Hadoop offers a distributed
file system (HDFS) to exchange data between different
machines of a cluster. Such file systems are optimized
for reading and perform poorly for writing data [39].
With many MSR tools generating a large number of
intermediate files, the overhead of using HDFS is sub-
stantial. For example, if J-REX were to use HDFS
when analyzing Eclipse, J-REX would require almost
190,000 writes to HDFS (a major slowdown). There-
fore, we avoided the use of HDFS whenever possible,
opting instead for the local file system. In the spe-
cial case where no source code is available for an MSR
tool, it might not even be possible to use HDFS, as
accessing HDFS data requires using special APIs.

2. Local file system. In our experiments, we find that
using every machine’s local file system provides the
most optimal solution of storing intermediate and out-
put data. For example, CC-Finder and the log ana-

lyzer both output results to files, which we store in
local file system. Since the output files are spread on
different machines, we have to retrieve the results after
the MapReduce run is completed. However, we have to
take the risk of losing output data and re-performing
the analysis when a machine crashes.

Notable Findings.
HDFS is the default data storage of Hadoop for the web

analyses, but was not designed for fast data writing, which
is necessary in saving MSR analyses result data. From our
experience, we recommend: 1) the use of the local file system
if the result data consists of a large amount of files; and 2)
the use of HDFS if the result data is small in size.
Challenge 5: Error recovery

Our experiments evaluated the error recovery of Hadoop.
1. Environment failure. To examine the error recovery

of Hadoop, we performed an experiment with J-REX
and the Datatools CVS repository on 10 machines.
First, we killed MapReduce processes and restarted
them after 1 minute. We gradually increased the num-
ber of killed processes starting from 1 until the whole
MapReduce job failed. Second, we did the same thing
as the first step, but without restarting the processes.
Our experimental results show that MapReduce jobs
process well with up to 4 out of 10 machines killed.
However, the running time increases from 12 min to 22
min. If we restore the working processes, the Hadoop
job can finish successfully with up to half of the ma-
chines down at the same time.

2. Tool error. The strategy of addressing MSR tool
errors depends on the implementation of the “Map”
and “Reduce” procedures. If the MapReduce platform
catches an exception, the platform will automatically
re-start the Mapper or Reducer. According to our ex-
perience, if a program wrapper is used in the MapRe-
duce algorithm, the wrapper needs to take the output
of the MSR study tool, determine the running status,
and throw an exception to the MapReduce platform
to exploit MapReduce’s tool error recovery. Alterna-
tively, the wrapper can restart the analysis without
throwing the exception to the MapReduce platform.
In both cases, tool error can be caught and recovered.

Notable Findings.
We found that Hadoop’s error recovery mechanism en-

abled us to have agile clusters with machines joining and
leaving the cluster based on need. In particular, in our re-
search lab students can join and leave a cluster based on
their location and their current needs for the machine.

Because of Hadoop, an MSR tool might be executed mil-
lions of times. Hence, better reporting is needed by MSR
tools such that any failure can be spotted easily within the
millions of executions. We are currently exploring the use of
techniques to detect anomalies in load tests (e.g., [24]) for
detecting possible failures of the execution of an MSR tool.

6. APPLICABILITY
This section discusses the applicability of MapReduce to

all the eight types of MSR analyses presented in Section 4.
For each type, we present possible migration strategies. These
strategies basically all depend on whether or not an analysis
is local. We summarize in Table 6 the main challenges of
migration, ease of migration and existence of prior research
about scaling the analysis.



Table 6: Applicability of performing MSR analysis
using the MapReduce platform.
Name Main

Challenge
Ease of
migrating

Prior re-
search

Metadata analysis Challenge 3 easy no
Static source code
analysis

Challenge 1
& 3

easy or
medium

no

Source code differenc-
ing and analysis

Challenge 3 easy no

Software metrics Challenge 3 easy or
medium

no

Visualization Challenge 1 hard no
Clone-detection meth-
ods

Challenge 1 hard yes, [28]

Data Mining Challenge 1 hard yes, [5]
Social network analysis Challenge 1 medium yes, [9]

Metadata analysis. In metadata analysis, data can just
be broken down by the type of the metadata. For example,
bug repository analysis can be broken down to analyzing
individual bug reports.

Static source code analysis. Local static analyses can
be migrated by breaking down the source code into several
local parts and using a program wrapper to invoke the ex-
isting tools. If the static analysis process is non-local, the
process of every source code file will consist of two steps: 1)
collecting the required data in the other source code files; 2)
performing analysis on the file and its collected data.

Source code differencing and analysis. The process
can be broken down by files or by consecutive revisions. J-
REX performs source code differencing.

Software metrics. The MapReduce strategies can be
designed based on the types of software metrics. Our exam-
ple of studying the evolution of #LOC of a software project
in Section 3 is an example of a software metric.

Visualization. The visualization techniques that we con-
sider consist of a regular MSR technique, followed by the
generation of a visualization.

Clone-detection methods. Clone-detection techniques
are non-local. This is the reason why they are hard to
migrate to MapReduce. Livieri et al. [28] proposes an ap-
proach to map clone-detection to divide-and-conquer, which
we adopted in our case study as MapReduce strategy.

Data Mining. Many Data Mining techniques require the
entire data to build a model or to retrieve information, which
makes Data Mining techniques hard to migrate to MapRe-
duce. However, research has been performed to address the
challenges of Data Mining algorithms to MapReduce. As
such, some open source libraries are available for running
Data Mining algorithms on Hadoop [5].

Social network analysis. Social networks can be ana-
lyzed as a graph with nodes and edges. Some of the analyses
of the entire graph can be broken down to analyses of indi-
vidual nodes or edges. X-RIME [9] is a Hadoop library for
social network analysis.

Based on the examination of the 8 types of MSR analyses,
most analyses are able to migrate to MapReduce, despite
some challenges. Moreover, previous research (e.g., [5,9,28])
has addressed migrating some of the challenging analyses.

7. THREATS TO VALIDITY
We discuss the threats to validity for our findings.

Generalizability. We chose to scale three MSR tools. Al-
though we chose tools across different types of MSR stud-

ies and using different subject systems to avoid potential
bias of our studies to any special MSR study, our results
may not generalize to other MSR studies. However, our
case studies provide promising findings and we encourage
other researchers to explore MapReducing their tools. Sec-
tion 6 provides a brief discussion of generalization across
other MSR studies.
Shared hardware environment. The scientific comput-
ing environment we used is a shared cluster. The usage of
other users on the cluster may have impacted our case study
results, which would threaten our findings. To counter this
threat, we tried to use the cluster when it was idle, we re-
peated each experiment three times, and we reported the
median value of the results.
Subjectivity bias. Some findings in our research can in-
clude subjectivity bias. For example, one of the MSR tools
in our experiment was developed by the author of this pa-
per, while the other two are not. Using our own tools for
experimentation may cause subjectivity bias. However, in
practice one will typically only alter the source code of tools
that they know well. More case studies on other MSR tools
are needed to verify our findings.

8. CONCLUSION
Automated software engineering tools continue to play

an important role in the analysis of large data sets using
sophisticated algorithms. In an effort to scale such tools,
developers often opt for ad hoc, one-off solutions that are
costly to develop and maintain. In this paper, we demon-
strate that standard large-scale data processing platforms,
like MapReduce, could be used to effectively and efficiently
scale MSR tools, despite several challenges. We document
our experiences such that others would benefit from them.
We find that while MapReduce provides an efficient plat-
form, we must follow different guidelines when configuring
MapReduce runs instead of following the standard web field
guidelines. In particular, software engineering analyses are
often not local and software engineering analyses require dif-
ferent configuration than to web analyses to achieve optimal
performance. We hope that our experiences will help others
exploring the use of large-scale data analysis platforms to
scale automated software engineering tools, instead of de-
veloping their own solutions.
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