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I. Introduction

ATPRESENT, a large number of engineers have assorted to fault-
tolerant control (FTC) to enhance the system reliability and to

guarantee the control performance (see, e.g., [1–4] and references
therein), and several investigations on the application of FTC to
spacecraft attitude maneuvers have also been considered. For
instance, based on the dynamics inversion and time-delay control, a
passive fault-tolerant controller was developed in [5] to achieve
attitude tracking of a rigid satellite. Cai et al. [6] proposed an indirect
adaptive fault scheme for spacecraft attitude tracking problem under
thruster faults. In [7], a control augmentation method, similar to
adaptive fault-tolerant control, was adopted for the flexible space-
craft attitude tracking. However, all the preceding FTC results can
only tolerate limited predetermined faults and have great conser-
vativeness due to its implementing a fixed controller only.

In this work, the attitude stabilization of rigid spacecraft in the
presence of partial loss of actuator effectiveness is investigated.
Based on adaptive backstepping technique, a nominal attitude
controller is derived first for the normal spacecraft system in the face
of external disturbances. Then the case of the partial loss of reaction-
wheel-effectiveness fault is considered, and the faulty attitude system
with time-varying gain is ultimately decoupled into three auxiliary
systems by appropriate transformation. Moreover, for each auxiliary
system, an implicit estimation filter is proposed to estimate the
actuator fault correspondingly, and in the meantime, a new adaptive
fault-tolerant controller is synthesized according to the estimated
fault to guarantee that outputs of the auxiliary system can follow the
normal attitude control command signals. By viewing the tracking
error as another disturbance entering the system dynamics, with the
robustness of the nominal controller to external disturbances, the
online fault tolerance can be achieved. In contrast to preceding FTC
results, the main contributions of this study include the following:

1) The proposed strategy can react to the fault online and in real
time, and thus the conservativeness of the controller can be reduced
largely.

2) Although three implicit estimation filters are developed in the
fault-tolerant-controller design, it does not require the precise
reconstruction of the faults. Thus, large computation power can be
saved and also the response time can be reduced effectively.

This Note is organized as follows: Sec. II briefly presents the
spacecraft attitude model and control problems. In Secs. III and IV,
adaptive backstepping attitude controllers are derived, respectively,
with and without partial loss of actuator effectiveness fault. Simu-
lation results of a rigid spacecraft are given in Sec. V, followed by
conclusions in Sec. VI.

II. Dynamical Model and Problem Formulation

In this Note, the unit quaternion to designate the attitude of the
rigid spacecraft is adopted, and then the kinematic differential
equations can be summarized as [6]

_q� 1
2
�q� � q0I3�! (1)

_q 0 ��1
2
qT! (2)

where ! is the angular velocity of the spacecraft with respect to an
inertial frame I and expressed in body frame B, Q� �q0;qT�
denotes the unit quaternion representing the attitude orientation of
the spacecraft in B with respect to the inertial frame I ; I3 2 R3�3 is
the identity matrix, and the notation q� denotes the cross-product
operator.

As far as the attitude dynamics concerned, the rotational motion
of a rigid spacecraft is described by the well-known Euler’s
equation [5]:

J _!��!�J!� E�t�u� d (3)

This equation includes provisions for the partial loss-of-effectiveness
fault of actuators modeled by a multiplicative factor E�t�, which is
given by

E �t� � diag�e1�t�; e2�t�; e3�t�� (4)

where ei�t� � 1 means that the ith actuator works normally and for
0< ei�t�< 1 corresponding to the case in which the ith actuator
loses its effectiveness partially, but still works all the time.Moreover,
J is the spacecraft inertia matrix; u and d denote the control torque
generated by reaction wheels and the external disturbances,
respectively.

Assumption 1. For the effectiveness factor ei�t� of the ith actuator,
its first derivative exists, and there exist an unknown bounded
positive constant � such that j _ei�t�j � �. Further, � is inside a
compact interval ��min; �max	.

Assumption 2. Examining the environmental disturbances due to
solar radiation, magnetic forces and aerodynamic drags, it is
reasonable to assume that external disturbances d considered in
Eq. (3) is bounded by a constant Td such that

kdk � Td (5)

To this end, the control objective is to develop a fault-tolerant
control law, for the faulty attitude control systemgiven in Eqs. (1) and
(3) in the presence of external disturbances, to stabilize the attitude
equilibrium point �q0 �
1;qT � 0;!� 0� or guarantee the
attitude and angular velocity converge to an arbitrary small set
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containing the equilibrium point; that is, kq�t�k � "1 and
k!�t�k � "2.

Remark 1. Note that there exist two equilibrium points: namely,
Q� �
1 0T 	T in the closed-loop attitude system. Hence, it is
impossible to claim any global property for the equilibrium stability.
However, since both equilibrium points correspond to the same
physical orientation [8], it is important to make a choice of the
equilibrium point to be stabilized. In this Note, aiming for the
minimizing the path length for the desired rotation, the equilibrium
point is chosen depending on the sign of q0�0�; that is, we chose
Q� � 1 0T 	T if q0�0�> 0, and Q� ��1 0T 	T otherwise.

III. Normal Attitude Controller Design

For the normal attitude control system equation (3) without
actuator faults, introduce the following state variable transformation:

z 1 � q (6a)

z 2 �!� �1 (6b)

where �1 ��c1z1 is a virtual control law with c1 > 0. Then in the
following theorem, we summarize our control scheme to the normal
attitude stabilization problem.

Theorem 1. Consider the normal attitude control system given in
Eqs. (1) and (3) without any actuator fault. If the control law is
designed as

u�t� � �z2 � �1��J�z2 � �1� � J _�1 �
1� c2

2
z2

� z2T
2
d

kz2kTd � "e��t
(7)

where c2, " and � are positive scalar control gains. Then the closed-
loop system is practically stable in the sense that the attitude q and
angular velocity ! will ultimately converge to an arbitrary set.

Proof. With the second error dynamic Eq. (6b), one obtains

J _z2 � J _! � J _�1 ���z2 � �1��J�z2 � �1� � J _�1 � u� d (8)

and _�1 ��c1 _z1 ��0:5c1�z�1 � q0I3��z2 � �1� is calculated.
Now, choose a Lyapunov function candidate as V � 0:5zT1z1�
�1 � q0�2 � 0:5zT2Jz2. With Eq. (8) and the proposed control-law
equation (7), the time derivative of V yields

_V � � c1
2
kz1k2 �

c2
2
kz2k2 � "e��t � �c0�kz1k2 � kz2k2� � "

(9)

where c0 �minf0:5c1; 0:5c2g. Clearly, if kz1�t�k>
����������
"=c0

p
and

kz2�t�k>
����������
"=c0

p
, then _V < 0, which implies that V�t� decreases

monotonically. Therefore, the state signals are bounded ultimately as

lim
t!1
�z1�t�z2�t�	��kz1k �

����������
"=c0

p
; kz2k �

����������
"=c0

p
� (10)

which is a small set containing the origin �qT ! 	 � 0; Eq. (10)
further implies that larger c0 and smaller " lead to better control
accuracy. Consequently, according to the definition of practically
stability in [9], the conclusion stated in Theorem 1 can be sum-
marized. This completes the proof. □

Remark 2. From the designed controller equation (7), it can be seen
that if Td is appropriately selected, then the inequality (9) can always
be guaranteed, and hence great robustness to the external disturbance
can be achieved with Eq. (7).

IV. Adaptive Fault-Tolerant Controller Design

In this section, partial loss of actuator effectiveness is considered.
To treat with such fault, for the ith actuator, the following auxiliary
system is added:

_u iact � vi (11a)

_v i � ei�t�uicom (11b)

yi � uiact (11c)

where xi � �uiact vi 	T 2 R2, uicom 2 R, and yi 2 R are the auxiliary
system state, input, and output. Here, yi is viewed as the actual output
of the ith actuator and the normal controller equation (7) is denoted as
unor, respectively. Note that our control objective can be restated as:
designing control input uicom for auxiliary system equation (11) such
that the output yi can follow the specified desired signal uinor, which
represents the ith element of unor.

Definition [10]. A function N��� is called a Nussbaum-type
function if the following two properties are satisfied:

lim
s!�1

sup
1

s

Z
s

0

N��� d���1 (12a)

lim
s!�1

inf
1

s

Z
s

0

N��� d���1 (12b)

For clarity, the evenNussbaum functionN��� � exp��2� cos��
2
��

is used throughout this Note.
Lemma [10]. Let V�t� and ��t� be smooth functions defined on
�0; tf� with V�t� � 0 for 8 t 2 �0; tf� and N��� be an even smooth
Nussbaum-type function. If the following inequality holds,

V�t� � f0 � e�f1t
Z
t

0

g���N��� _�e�f1� d� � e�f1t
Z
t

0

_�e�f1� d�

(13)

where f0 and f1 are some positive constants, and g��� is a time-
varying parameter, which takes value in the unknown closed
intervals I1 � �g�; g�	 with 0 =2 I1, then V�t�, ��t�, andR
t
0 g���N��� _� d� will be bounded on �0; tf�.

A. State Estimation Filters Design

To derive the fault-tolerant controller, the following two filters are
employed [11]:

_� i �Ai�i � kiyi (14a)

_� i �Ai�i �
0

uicom

� �
(14b)

where �i � � �i;1 �i;2 	T , �i � ��i;1 �i;2 	T , ki � � ki;1 ki;2 	T ,
and the matrix

A i �
�ki;1 1
�ki;2 0

� �

is strictly stable.
Define an estimation error ~xi as ~xi � xi � x̂i, where x̂i is given by

x̂ i � �i � ei�t��i (15)

From Eqs. (11b) and (15), it follows that

vi � xi;2 � x̂i;2 � ~xi;2 � �i;2 � ei�t��i;2 � ~xi;2 (16)

where xi;2, x̂i;2, and ~xi;2 are the second elements ofxi, x̂i, and ~xi. Then
the auxiliary subsystem equation (11) can be rewritten as

_y i � _uiact � vi � �i;2 � ei�t��i;2 � ~xi;2 (17a)

_� i;2 ��ki;2�i;1 � uicom (17b)
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With Eqs. (11) and (15), the estimation error ~xi satisfies

_~x i � _xi � _̂xi �Ai ~xi � _ei�t��i (18)

Nowwe divide the error ~xi into two parts, subject to, ~xi � ~xa
i � ~xb

i

satisfying _~x
a
i �Ai ~x

a
i , ~xb

i �
R
t
0 e

Ai�t����� _ei�t��i� d� with ~xa
i �0��

~xi�0�; then it follows that

k ~xb
i k �

Z
t

0

keAi�t���kk _ei�t�kk�ik d� � �
Z
t

0

�2e
��1�t���k�ik d�

(19)

where �1 and �2 are chosen positive constants such that

keAi�t���k � �2e
��1�t��� (20)

Based on Eq. (19), we haveZ
t

0

�2e
��1�t���k�ik d� � �2e

��1t
Z
t

0

�2e
�1�

�
k�ik2 �

1

4

�
d�

(21)

Thus, it generates

k ~xb
i k � ���t� (22)

where ��t� is the solution of the following equation:

_��t� � ��1��t� � �2�k�ik2 � 1
4
� (23)

B. Fault-Tolerant Controller Design

It can be seen clearly that Eq. (11) is written into a class of
triangular nonlinear formEq. (17). Hence, the standard backstepping
procedure can be employed to design the control law. Take the state
transformation as

zi;1 � yi � uinor (24a)

zi;2 ��i;2 � �i (24b)

where �i � N��� ��ie�	it is a virtual control law [11], and 	i is a

positive constant, � satisfies _�� zi;1 ��i, and ��i is designed as

�� i � �mi;1 � li;1 � êi�t�	zi;1 � �i;2 � zi;1�2�t��̂ � _uinor (25)

where mi;1 and li;1 are two positive constants, êi�t� and �̂ are the
estimation of ei�t� and �, respectively.

Theorem 2. Consider the auxiliary system equation (11) under
Assumption 1, with the application of the following controller,

uicom ���14�mi;2�zi;2 � ki;2�i;i � _�i (26)

and the update laws

_̂e i � proj�0;1	�li;3zi;1zi;2� (27)

_̂
�� proj��min ;�max 	�li;2z2i;1�2�t�� (28)

where li;2 and li;3 are positive design parameters, the projection
operator [13] proj��� is used to keep the estimate êi of the fault to the

ith actuator within [0,1], and �̂ restricted in ��min; �max	, then the
system equation (11) is bounded input and bounded output stable,
and the output yi can follow the specified signal uinor as close as
possible by appropriately choosing the design parameters.

Proof: The following standard backstepping procedures are
involved:

In step 1, with Eqs. (24a) and (17a), it follows that

_z i;1 � _yi � _uinor � �i;2 � ei�t��i;2 � ~xi;2 � _uinor (29)

Choose a Lyapunov function as

Vi;1 �
1

2
z2i;1 �

1

4li;1
� ~xai �TPi ~xai �

1

2li;2
~�
2 � 1

2li;3
~e2i (30)

where ~ei�t� � ei � êi�t�, �̂� �� �̂, and Pi 2 R2�2 is a positive
definite matrix such that PiAi �AT

i Pi � �2I2.
With Young’s inequality êi�t�zi;1zi;2 � ê2i �t�z2i;1 � 1

4
z2i;2 and

zi;1 ~x
a
i;2 � li;1z2i;1 �

1

4li;1
j ~xai;2j2 � li;1z2i;1 �

1

4li;1
k ~xa

i k2

then the time derivative of Vi;1 can be calculated as

_Vi;1 � �mi;1z
2
i;1 �

1

li;3
~ei�li;3zi;1zi;2 � _̂ei�t� � _ei	 �

1

4li;1
k ~xa

i k2

� zi;1 ~xbi;2 � �eiN��� exp��	it� � 1	 _�

� 1

4
z2i;2 �

1

li;2
~�
_̂
��z2i;1�2�t��̂ (31)

On the other hand, from Eq. (22), one has

zi;1 ~x
b
i;2 � z2i;1�2�t��̂ � �

�
�2�t�z2i;1 �

1

4

�
� z2i;1�2�t��̂

� z2i;1�2�t� ~��
�

4
(32)

With the projection operator property [13]

� ~�proj�li;2z2i;1�2�t�� � � ~�li;2z
2
i;1�

2�t�

and

� ~ei�t�proj�li;3zi;1zi;2� � �li;3zi;1zi;2 ~ei�t�

then we have

_Vi;1 � �mi;1z
2
i;1 �

1

li;3
~ei _ei � �eiN��� exp��	it� � 1	 _�

� �
4
� 1

4li;1
k ~xa

i k2 �
1

4
z2i;2 (33)

In step 2, differentiating Eq. (24b) along with Eq. (17b), one has

_z i;2 � _�i;2 � _�i ��k2�i;1 � _�i � uicom (34)

Define another Lyapunov function as Vi;2 � Vi;1 � 0:5z2i;2; with
the updating-law equations (26–28), we have

_Vi;2 � �mi;1z
2
i;1 �mi;2z

2
i;2 �

1

li;3
~ei _ei �

�

4
� 1

4li;1
k ~xa

i k2

� �eiN��� exp��	it� � 1	 _� (35)

Moreover, it can be observed that

Vi;2 �
1

2
z2i;1 �

1

2
z2i;2 �

1

4li;1
kPikk ~xa

i k2 �
1

2li;2
~�
2 � 1

2li;3
~e2i (36)
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Then integrating both sides of Eq. (36) from zero to t, we haveZ
t

0

_Vi;2e
	i� d� � �

Z
t

0

�mi;1z
2
i;1 �mi;2z

2
i;2�e	i� d�

�
Z
t

0

_�e	i� d� �
Z
t

0

eiN��� _� d� �
Z
t

0

�
1

li;3
~ei _ei �

�

4

�
e	i� d�

� 1

4li;1

Z
t

0

k ~xa
i k2e	i� d� (37)

To this end, it yields

0 � Vi;2�t� � Vi;2�0�

�
e	i�

Z
t

0

eiN��� _� d� �
Z
t

0

_�e�	i�t��� d�|��������������������������������{z��������������������������������}

1

�

	i
2

Z
t

0

� ~e2i � ~�
2�e�	i�t��� d� �

Z
t

0

� 1
li;3

~ei _ei �
�

4
�e�	i�t��� d�

|��������������������������������������������������{z��������������������������������������������������}

2

(38)

where 	i �minf2mi;1; 2mi;2;
1
kPik2
g. Because of the utilization of

projection operator for êi�t� and �̂, the boundedness of ~ei�t� and ~�
can be obtained, and then 
2 is also bounded. Thus, according to the
Lemma, we know that Vi;2�t�, _�, and

R
t
0 eiN��� _� d� are all bounded

on �0; tf�. Therefore, zi;1, zi;2, ei, �, and ~xai are bounded on �0; tf� for
all tf > 0; in view of Eqs. (11) and (24), it can be known that all the
signals in the closed-loop system are bounded on �0; tf� for all tf > 0.
Thus, according to [10], all the signals in the closed-loop system are
bounded for tf ��1. Moreover, according to Eq. (38), one has

jzi;1j � jyi � uinorj � �i (39)

where �i � Vi;2�0� � 
1 � 
2. To this end, the bound input and
bound stability of system equation (11) can be concluded. □

Remark 3. Note that �i is dependent on Vi;2�0�. Thus, by setting
zi;j�0� � 0 (j� 1, 2), the following can be obtained based on the
definition Vi;2,

�i �
1

4li;1
� ~xa

i �0��TPi ~xa
i �0� �

1

2li;2
~�
2�0� � 1

2li;3
~e2i �0� � 
1 � 
2

(40)

implying that we can decrease the effects of the initial error estimates
on the transient performance by increasing the adaptation gains

li;j�j� 1; 2; 3�. Further, the closer the initial estimates errors ~��0�,
~ei�0�, and ~xa

i �0� are to the true values �, ei, and xa
i , the better the

transient performance.

C. Fault-Tolerance Analysis

Equation (11) yields

uiact�t� �
Z
t

0

Z
s

0

ei���uicom d� ds (41)

According to Theorem 2 and Eq. (39), it is reasonable to suppose
that

uiact � uinor ��ui (42)

where �ui satisfies j�uij � jyi � uinorj � �i. Then under the effect
of actual output uiact of the ith actuator, the faulty Eq. (3) can be
rewritten as

J _!��!�J!� uact � d��!�J!� unor ��u� d (43)

where unor � � u1nor u2nor u3nor 	T and�u� ��u1 �u2 �u3 	T
and satisfies

k�uk �

��������������X3
i�1

�2
i

vuut

In Eq. (43), the item �u� d can be viewed as the lumped
disturbances. Therefore, if the constant Td is chosen large enough
such that

k�uk � kdk �

��������������X3
i�1

�2
i

vuut � kdk � Td (44)

Then with the designed normal controller equations (7) and (26),
Eq. (9) can be guaranteed. Hence, based on Theorem 1, the following
theorem can be obtained.

Theorem 3. Consider the control-law equation (26), if the design
parameter Td is appropriately chosen to satisfy Eq. (44). Then the
system equations (1–3) in the closed loopwith partial loss of actuator
effectiveness fault are practically stable, and the attitude q and the
angular velocity ! will ultimately converge to an arbitrary set
equilibrium point; that is, the objectives as stated in Sec. II can be
achieved.

V. Simulation and Comparison Results

To study and verify the effectiveness and performance of our
proposed control scheme, the detailed response is numerically
simulated for an orbital microsatellite. For this, themodel parameters
for the rigid spacecraft are chosen [6] as

J �
20 0 0:9
0 17 0

0:9 0 15

2
4

3
5 kgm2

and the external disturbances such as gravity gradient, solar
radiation, magnetic field, and aerodynamic disturbances [12] are also
incorporated. Moreover, this spacecraft is actuated by three reaction
wheels equipped in each axis with the saturation control torque of
0:2 N �m.

In the reaction-wheel fault scenario during attitude stabilization
maneuver, each actuator undergoes the following partial loss-of-
effectiveness faults:

8<
:
e1�t� � 0:25; t > 5 s

e2�t� � 0:35; t > 8 s

e3�t� � 0:20; t > 10 s

(45)

To validate the superior performance of the proposed fault-
tolerant-controller equation (26), the following simulations are
achieved with fault-scenario equation (45) by comparing with the
conventional proportional–derivative (PD) control. To implement
the controller, the control parameters for the normal controller
equation (7) are chosen as c1 � 5, c2 � 20, Td � 1, "� 0:5, and
�� 2, and the following choices are made for the various design
parameters in the fault-tolerant-controller equation (26): mi;1�
mi;2 � 5, ki;1 � 4, ki;2 � 2:5, li;1 � 1, li;2 � 4, and li;3 � 2.
Furthermore, in the context of simulation, the initial attitude
orientation is set to be q�0� � ��0:1 0:15 �0:2 	T with angular
velocity !�0� � � 0 0 0 	T rad=s.

Figure 1 shows the simulation results when the PD controller was
applied during the attitude stabilization maneuver. We can seen
clearly that although the PD control scheme can perform the attitude
stabilization maneuver with fault-free or partial loss of reaction-
wheel-effectiveness fault equation (45), it takes much longer than
100 s to stabilize the attitude and the low control accuracy of 1:5e � 3
is obtained when fault equation (45) occurs, as we can see in Fig. 1b.
Indeed, due to the fault equation (45), the control powers that needed
to stabilize the attitudewere largely lost; therefore, more time is taken
to stabilize the attitude.
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We now report the results due to the proposed fault-tolerant-
controller equation (26). As expected, we see clearly in Fig. 2 that
the control law can achieve the attitude stabilization even under the
severe reaction-wheel fault equation (45). Actually, with the
designed-estimation-filter equation (14), the outputs of reaction
wheel can always follow the signals of nominal control-law
equation (7), and hence the attitude stabilization maneuver can be
finished almost in the same time, as shown in Fig. 1a. Also, the
practical stability and great attitude control accuracy of 2e � 6 are
observed in Fig. 2b. Moreover, after the occurrence of the fault, the
designed-filter equation (14) and the update-law equation (27) can
accurately estimate the fault value E�t�, as shown in Fig. 3.

Summarizing all the cases (normal and fault cases), it is noted that
the proposed controllers design method can significantly decrease
the attitude stabilization maneuver time and improve the attitude
control accuracy over the PDmethod in both theory and simulations.
Also, in the fault case, the proposed methods have better results than
those of conventional cases.

VI. Conclusions

An adaptive backstepping control scheme was developed for the
spacecraft attitude stabilization system, in which the external distur-
bances and partial loss of actuator effectiveness fault are considered.
More specifically, a normal control law isfirst proposed to the normal
attitude system, and then three auxiliary systems are added. Based on
thesemanipulations, three implicitfilters are proposed to estimate the
actuator faults, and three new adaptive controllers are designed based
on the estimation of fault to let the output of auxiliary system follow
the normal control signals. Hence, fault tolerance, robustness against
the actuator fault, and high accuracy of attitude stabilization can be
achieved. The control designs are evaluated using numerical
simulation comparisons between the developed approach and PD
control scheme for the normal and faulty actuator scenarios.
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Fig. 1 Time response of qT with PD control: without fault (solid line)

and with fault (dashed line).

0 50 100
-0.1

-0.05

0

Time(s)

q
1

0 50 100
0

0.05

0.1

Time(s)

q
2

0 50 100
-0.2

-0.1

0

Time(s)

Time(s) Time(s) Time(s)

q
3

q
1

q
2 q

3

a) Initial response 

1000 2500 4000
-4

-2

0

x 10
-6

1000 2500 4000

-2

0

2

x 10
-6

1000 2500 4000

-2

0

2
x 10

-6

b) Steady-state behavior 

Fig. 2 Time response of qT with proposed controller: without fault

(solid line) and with fault (dashed line).
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