
CA684		Jia Yuan Yu
	1: Intro	
DCU		February 13, 2014

1 What is ML?

- A branch of AI.
- A combination of statistics (guarantees on error), control (prediction, estimation, filtering), optimization, etc.
- A precise science.

1.1 Wikipedia definition

Tom M. Mitchell provided a widely quoted, more formal definition: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E".

Example: Learning the mean of a random variable from observations.

Theorem 1.1 (Hoeffding). Let X_1, X_2, \ldots be *i.i.d.* random variables that take values in the interval [a, b], and have mean μ . Let

$$\hat{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

Then, for every n and $\varepsilon > 0$:

$$\mathbb{P}\left(\left|\hat{X}_n - \mu\right| \ge \varepsilon\right) \le 2\exp\left(-\frac{2n\varepsilon^2}{b - a^2}\right).$$

1.2 What is it good for?

- Pattern recognition, classification.
- Decision-making.
- Getting a job.

2 What are we going to learn?

- Supervised learning: ability to generalize from training data to unseen data.
 - Linear discrimination, nearest-neighbor rules, SVM
 - Consistency, VC theory
 - Maximum likelihood,
 - Regression, Regularization
 - Neural networks, feature extraction
 - Computer vision
 - Deep learning
- Online learning: sequential decision-making
 - Stochastic setting
 - Adversarial setting
 - Full-information (Combining expert-advice)

- Partial-information (Bandit problem)
- Markov decision problems
 - Reinforcement learning
 - Stochastic approximation

3 What won't be covered?

- Unsupervised learning: clustering.
 - However, you can take CA683!
- Ensemble methods (boosting).
- Dimension reduction: PCA, dictionary learning.
- Natural language processing (you can read about it).
- Graphical models, Bayesian networks.
- Learning in games, against opponents (think poker).
- Robotics.
- Cognitive science.
- Logic.
- Anomaly detection.

4 What are the rules?

- Final exam: 75%
- Homeworks, projects: 25%

Project options:

- Read about a topic in ML and present the class,
- Programming: apply techniques from class on real data sets.

Project evaluation: Peer-review on last two lectures.

5 Reading material

Books:

- A Probabilistic Theory of Pattern Recognition
- Prediction, Learning, and Games
- Markov Decision Processes: Approximate dynamic programming, adaptive control, models, theory and computation

If hungry for more:

- The Elements of Statistical Learning.
- Machine Learning: a Probabilistic Perspective