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These notes are based on the book “A Probabilistic Theory of Pattern Recognition.”
The order of presentation of these sections in class may be different. First, we

present more classification rules, then we consider the problem of selecting classifier
functions from a deterministic class of functions.

1 Partitioning rules

Partition Rd into sets A = {A1, A2, . . .} Partition rules classify according to majority
voting in each set:

gn(x) =

{
1, if

∑n
i=1 1[Yi=1]1Xi∈A(x) >

∑n
i=1 1[Yi=0]1Xi∈A(x),

0, otherwise,

where A(x) denotes the set containing x. A good partition has sets small enough
to detect local changes in the label, but large enough to contain enough observation
points.

For example, a cubic histogram rule partitions Rd into cubes of the same size. More
generally, the partition can even depend on the observations {Xi} and the number of
training samples n. In particular, if gn uses a partition of Rd into cubes of edges with
length hn, then the cubic histogram rule is strongly consistent if hn → 0 and nhdn →∞
as n→∞.

2 Kernel rules

A kernel function is a function K : Rd → R that is usually non-negative and with a
single peak at the origin. Given a fixed parameter h > 0, a kernel classification rule is
defined as:

gn(x) =

{
1, if

∑n
i=1 1[Yi=1]K(x−Xi

h
) >

∑n
i=1 1[Yi=0]K(x−Xi

h
),

0, otherwise,

Kernel rules are similar to, but different from cubic histogram rules and nearest-
neighbour rules.

Under some conditions (K being regular, h → 0 and nhd → ∞ as n → ∞), the
kernel rule is strongly consistent.
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3 Maximum likelihood rules

Let p = P(Yj = 1). Let f0 and f1 denote the corresponding conditional densi-
ties of Xj conditioned on Yj = 0 and Yj = 1. The likelihood function of the data
(X1, Y1), . . . , (Xn, Yn) is

`n(p, f0, f1) =
n∏
i=1

[pf1(Xi)]
Yi [(1− p)f0(Xi)]

1−Yi ,

and the log-likelihood function is log(`n).
The maximum likelihood classification rule is

gn(x) =

{
1, if p∗f ∗1 (x) > (1− p∗)f ∗0 (x),
0, otherwise,

where

(p∗, f ∗0 , f
∗
1 ) ∈ arg max

p̄,f̄0,f̄1
log `n(p̄, f̄0, f̄1).

4 Neural networks

Neural nets are all the rage today, partly because of their simplicity, the large amount
of training data available, and the availability of powerful computers.

A neural network with no hidden layer is the linear classifier

φ(x) =

{
1, if

∑d
i=1 cix

i + c0 > 1/2,
0, otherwise,

where {ci} are fixed and given or trained from data.
A σ-neural network with one hidden layer of k hidden neurons is

φ(x) =

{
1, if ψ(x) > 1/2,
0, otherwise,

where

ψ(x) =
k∑
i=1

ciσ(ψi(x)) + c0,

ψi(x) =
d∑
j=1

ai,jx
i + ai,0, for all i = 1, . . . , k,

where {ai,j, ci} are coefficients given or learned and σ is called a sigmoid function.
Examples of sigmoid functions include the logistic sigmoid:

σ(z) =
1− e−z

1 + e−z
,

and the threshold sigmoid:

σ(z) =

{
1, if z > 0,
−1, otherwise.
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Figure 1: Logistic sigmoid.

4.1 Connection to partition rules

Consider the first (input) layer of the neural net. Let ψ1, . . . , ψk denote the linear
functions of the neurons of the first layer. Each ψj defines a hyperplane that partitions
the observations space Rd. Let xRd denote the input. Suppose that we put a threshold
sigmoid at the output of each neuron in the first layer. Then, the vector z ∈ {+1,−1}k
of outputs of these sigmoids give you the index of the cell of the partition to which the
input belongs. The following layers of the neural net assigns a decision to each cell,
which replaces the majority vote of partition classifiers.

It is straightforward to define neural networks with many hidden layers and many
hidden neurons per layer. To give performance guarantees to neural networks, we need
VC theory. To understand VC theory, we first need some concentration inequalities.

5 Concentration inequalities

Concentration inequalities describe the phenomenon of sequences of random variables
taking values near the mean, especially in the limit. For sums of i.i.d. Bernoulli random
variables, we can consider the binomial distribution, which can be approximated by
a normal distribution. The tail of the normal distribution is very “light” and can be
evaluated accurately (cf. the Q- or erfc-functions), e.g., for N(0, 1), we habe

Q(x) =
1√
2π

∫ ∞
x

e−u
2/2du.

However, integrals are pesky, so it’s nice to use closed-form bounds instead.
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Figure 2: Source: Wikipedia.

Concentration inequalities give upper-bounds on the weight in the tail of sums of
i.i.d. and not-necessarily Bernoulli random variables. One of the most useful concen-
tration inequalities is Hoeffding’s Inequality.

Theorem 5.1 (Hoeffding). Let X1, X2, . . . be independent random variables, where
each Xi takes values in the interval [ai, bi], and have mean µ. Let

X̂n =
1

n

n∑
i=1

Xi.

Then, for every n and ε > 0:

P
(∣∣∣X̂n − EX̂n

∣∣∣ ≥ ε
)
≤ 2 exp

(
− 2n2ε2∑n

i=1(bi − ai)2

)
.

Proof. The proof uses a number of steps. First step: we show that if EX = 0, a ≤
X ≤ b, and s > 0, then

EesX ≤ exp(s2(b− a)2/8). (1)

By convexity, for x ∈ [a, b]:

esx ≤ b− x
b− a

esa +
x− a
b− a

esb

Since EX = 0,

EesX ≤ b

b− a
esa − a

b− a
esb

(let p = −a/(b− a)) = (1− p+ pes(b−a))e−ps(b−a)

(let u = s(b− a), φ(u) = −pu+ log(1− p+ peu)) = eφ(u).
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The function φ is twice differentiable. By Taylor’s Theorem with Lagrange form re-
mainder, there exists θ ∈ [0, u] such that

φ(u) = φ(0) + uφ′(0) +
u2

2
φ′′(θ) ≤ u2/8,

where the last inequality uses:

φ′(z) = −p+
p

p+ (1− p)e−z
,

φ′′(z) =
p(1− p)e−z

(p+ (1− p)e−z)2
≤ 1/4,

where the last inequality holds for all possible values of z and p. The claim follows.
Second step: by Markov’s Inequality (for non-negative random variables), we have

P(X ≥ ε) = P(esX ≥ esε) ≤ EesX

esε

for all s > 0. Let Sn =
∑n

i=1Xi, we have

P(Sn − ESn ≥ ε) ≤ E exp

(
s
∑
i

(Xi − EXi)

)
/esε

(by indep.) = e−sε
∏
i

Ees(Xi−EXi)

(by (1)) ≤ e−sε
∏
i

Ees2(bi−ai)2/8

= e−2ε2/
∑

i(bi−ai)2 ,

by choosing s = 4ε/
∑

i(bi− ai)2. Next, we apply the same argument to P(Sn−ESn ≤
−ε) to obtain the same bound.

Finally, we use the union bound:

P(|Sn − ESn| ≥ ε) ≤ P(Sn − ESn ≥ ε) + P(Sn − ESn ≤ −ε)
= 2e−2ε2/

∑
i(bi−ai)2 .

By simple algebra, we obtain the claim.

6 What are concentration inequalities good for?

Concentration inequalities are useful in giving guarantees when selecting classifiers
from a deterministic class of classifiers.

Let C = {φk : Rd → {0, 1}, k = 1, . . . , K} denote a class of K classifiers that are
given and fixed. When we write φ ∈ C, we mean one of the classifiers φ ∈ {φ1, . . . , φK}.
Let

L̂n(φ) =
1

n

n∑
i=1

1[φ(Xi)6=Yi]
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denote the empirical error frequency of φ ∈ C. This random variable L̂n(φ) is an
estimator for the error probability

L(φ) = P(φ(Xj) 6= Yj).

Observe that

P
(

sup
φ∈C

∣∣∣L̂n(φ)− L(φ)
∣∣∣ > ε

)
≤
∑
φ∈C

P
(∣∣∣L̂n(φ)− L(φ)

∣∣∣ > ε
)

by the union bound. Observe that L̂n(φ) is a (normalized) sum of Bernoulli random
variables, each with mean L(φ). Hence, we can apply Hoeffding’s Inequality and obtain
the following.

Theorem 6.1. For every ε > 0, we have

P
(

sup
φ∈C

∣∣∣L̂n(φ)− L(φ)
∣∣∣ > ε

)
≤ 2Ke−2nε2 .

7 Preview of VC theory

We define:

φ∗ ∈ arg min
φ∈C

L̂n(φ) = arg min
k=1,...,K

L̂n(φk).

Define also:

Ln(φ∗) = P(φ∗(Xj) 6= Yj | X1, Y1, . . . , Xn, Yn).

Let infφ∈C L(φ) denote the lowest probability of error among classifiers in C—think of
this as a poor man’s Bayes error L∗, which is equal to L∗ if the Bayes classifier g∗

happens to be in C.
Lemma 7.1. We have

Ln(φ∗)− inf
φ∈C

L(φ) ≤ 2 sup
φ∈C

∣∣∣L̂n(φ)− L(φ)
∣∣∣ .

By the above lemma, the event

Ln(φ∗)− inf
φ∈C

L(φ) > 2ε

implies the event

sup
φ∈C

∣∣∣L̂n(φ)− L(φ)
∣∣∣ > ε.

Hence,

P
(
Ln(φ∗)− inf

φ∈C
L(φ) > 2ε

)
≤ P

(
sup
φ∈C

∣∣∣L̂n(φ)− L(φ)
∣∣∣ > ε

)
.

Finally, by Theorem 6.1, we have

P
(
Ln(φ∗)− inf

φ∈C
L(φ) > 2ε

)
≤ 2Ke−2nε2 .

This is a preview of VC theory.
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8 Estimating error probability

We can extend the previous result from deterministic class C to a class Cn of classifiers
learned from data (X1, Y1), . . . , (Xn, Yn):

Cn = {g1
n, . . . , g

K
n }.

However, we have to be careful to compute a different set of empirical error frequencies
L̂m(gkn) on a distinct sequence of samples, such as

(Xn+1, Yn+1), . . . , (Xn+m, Yn+m).

9 Homework

Pick your favorite machine learning software package and a big data set. Pick two
of your favorite classification rules, and study empirically the relation between the
empirical error frequency L̂n(gn) and the sample size n. Do this by counting errors
on the training data L̂n(gn), and on a separate set of n testing data points L̂n,n(gn).
Repeat this over K simulation runs. You should end up with:

L̂1
n(gn), . . . , L̂Kn (gn),

L̂1
n,n(gn), . . . , L̂1

n,n(gn).

Repeat this again for other values of n, such as 2n, 3n, . . .
Make a plot of the average (over the K simulations) error frequency versus n, along

with error bars for one-standard deviation (over these simulations).
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