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These notes are based on the book “A Probabilistic Theory of Pattern Recognition.”

Last week, we say a preview of VC theory. Recall:

P
(
Ln(φ∗)− inf

φ∈C
L(φ) > 2ε

)
≤ 2Ke−2nε

2

.

What does this tell us?

• Something obvious: Picking the classifier with fewest empirical errors is the way
to go.

• Something less obvious and more important: it gives guarantees.

• Given the number of samples that we have, what guarantees can we give in terms
of discrepancy and confidence?

• Sample complexity: Given an discrepancy threshold and a confidence threshold,
how many samples do we need to find a classifier satisfying these thresholds?

1 Four notions of error

We introduce four notions of error: empirical error frequency, error probability, esti-
mation error, and approximation error.

Our training data is {X1, Y1, . . . , Xn, Yn}. Let φ : Rd → {0, 1}. Let C denote a
subset of all possible classifiers. We define the empirical error frequency (or empirical
error probability, or empirical risk)

L̂n(φ) =
1

n

n∑
i=1

1[φ(Xi)6=Yi].

Let

φ∗n ∈ arg min L̂n(φ).

This approach was developed by Vapnik and Chervonenkis theory in the 1970s.
Given X1, Y1, . . . , Xn, Yn, we can evaluate L̂n(φ∗n). However, the true error proba-

bility is what we are interested in:

Ln(φ∗n) = P(φ∗n(X) 6= Y | X1, Y1, . . . , Xn, Yn),
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because we want to minimize the estimation error:

Ln(φ∗n)− inf
φ∈C

L(φ),

where L(φ) = P(φ(X) 6= Y ). This quantity is also related to the Bayes error:

Ln(φ∗n)− L∗ =

(
Ln(φ∗n)− inf

φ∈C
L(φ)

)
+

(
inf
φ∈C

L(φ)− L∗
)
,

where (infφ∈C L(φ)− L∗) is called the approximation error. Observe that the large we
makeC is, the smaller the approximation error, but the large becomes the estimation
error.

2 Shatter coefficient, VC dimension

Let A denote a collection of measureable sets. For a fixed vector (z1, . . . , zn) ∈ Rd×n

of n points in Rd, let NA(z1, . . . , zn) denote the number of different sets in{
{z1, . . . , zn} ∩ A | A ∈ C

}
.

The n-th shatter coefficient of A is

s(A, n) = max
(z1,...,zn)∈Rd×n

NA(z1, . . . , zn),

which is the maximal number of different subsets of n points that can be picked out
by the collection of sets A.

Clearly s(A, n) ≤ 2n. If

NA(z1, . . . , zn) = 2n,

then we say that A shatters the points z1, . . . , zn. Also, if there exists k such that
s(A, k) < 2k, then s(A, n) < 2n for all n > k (homework exercise).

Let A be a collection of at least |A| ≥ 2 sets. The VC dimension VA of A is the
largest integer k ≥ 1 such that s(A, k) = 2k, i.e.,

VA = max{k ∈ N+ | s(A, k) = 2k}.

It measures the complexity, size, or expressive power, of the collection A.

Example 2.1. If A is the collection of all halflines of the form (−∞, x] for x ∈ R,
then

s(A, 2) = 3 < 22,

since if z1 < z2, then there is no set (−∞, x] that contains z2, but not z1. Hence,
VA = 1.
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Example 2.2. If A is the collection of all intervals [x, y] in R1, then

s(A, n) =

(
n

0

)
+

(
n

1

)
+

(
n

2

)
=
n(n+ 1)

2
+ 1,

since every interval containing two points z1 and z3 contains a third point z2 ∈ [z1, z3].
Hence, VA = 2.

Example 2.3. If A is the collection of halfspaces in Rd of the form {x : ax ≥ b, a ∈
Rd, b ∈ R}. We have

S(A, n) ≤ 2
d∑
i=0

(
n− 1

i

)
,

(cf. Corollary 13.1 of PTPR). Hence, VA = d+ 1.

2.1 From A to a collection of classifiers C
Let C denote a collection of classifiers. Define a collection of sets

AC = {V (φ) ∪W (φ) | φ ∈ C} ⊆ Rd × {0, 1},
V (φ) = {x : φ(x) = 1} × {0} ⊆ Rd × {0, 1},
W (φ) = {x : φ(x) = 0} × {1}.

The n-th shatter coefficient of C is

S(C, n) = s(AC, n).

The VC dimension of C is

VC = VAC

We can now introduce the VC Theorem for classifier selection.

Theorem 2.1 (VC Theorem). For every distribution of the data and for all n, we
have

P
(
Ln(φ∗n)− inf

φ∈C
L(φ) > ε

)
≤ 8 S(C, n) e−nε

2/128.

The VC Theorem bounds the estimation error of the classifier that minimizes the
empirical error frequency among a collection of classifiers.

We are not done yet. The VC theorem is useful only when S(C, n) is relatively
small (i.e., sub-exponential). It turns out that if C has a finite VC dimension VC > 2,
we have S(C, n) ≤ nVC .

Theorem 2.2 (Shatter coefficient).

S(A, n) ≤
VA∑
i=0

(
n

i

)
.
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It follows by the binomial theorem that

S(A, n) ≤ (1 + n)VA .

Hence, we have for all n:

• either s(A, n) = 2n if VA is infinite,

• or S(A, n) ≤ (1 + n)VA if VA is finite.

3 VC theory applied to neural networks

Let Ck denote the collection of neural network classifiers with one hidden layer of k
hidden nodes, and an arbitrary sigmoid function σ.

First, the approximation error can be bounded by standard approximation argu-
ments (cf. Theorem 30.4 of PTPR).

Theorem 3.1. For every distribution of the data, we have

lim
k→∞

inf
φ∈Ck

L(φ)− L∗ = 0.

An intuition for why neural nets have small approximation error comes from the fact
that any multivariate continuous function can be represented as a sum of univariate
functions.

Theorem 3.2 (Kolmogorov-Lorentz). Let f : [0, 1]d → R be continuous. Let x =
(x1, . . . , xd). There exist continuous univariate functions Φ : R → R and {ψj,` : R →
R} such that

f(x1, . . . , xd) =
2d∑
j=0

Φ

(
d∑
`=1

ψj,`(x
`)

)
. (1)

Moreover, the functions {ψj,`} do not depend on f .

The estimation error is bounded by the VC Theorem along with the following
shatter coefficient bound.

Theorem 3.3 (Lower bound, cf. Theorem 30.6 of PTPR).

S(Ck, n) ≤ (en)kd+2k+1.
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