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These notes are based on the book “A Probabilistic Theory of Pattern Recognition.”
Last week, we say a preview of VC theory. Recall:

P (Ln(gb*) - ;ng L(¢) > 25> < 2Ke 2,
S
What does this tell us?

e Something obvious: Picking the classifier with fewest empirical errors is the way
to go.

e Something less obvious and more important: it gives guarantees.

e Given the number of samples that we have, what guarantees can we give in terms
of discrepancy and confidence?

e Sample complexity: Given an discrepancy threshold and a confidence threshold,
how many samples do we need to find a classifier satisfying these thresholds?

1 Four notions of error

We introduce four notions of error: empirical error frequency, error probability, esti-
mation error, and approximation error.

Our training data is {X1,Y1,..., X, Y, }. Let ¢ : R — {0,1}. Let C denote a
subset of all possible classifiers. We define the empirical error frequency (or empirical
error probability, or empirical risk)

Let
¢! € argmin L, ().

This approach was developed by Vapnik and Chervonenkis theory in the 1970s.
Given Xi,Y7,..., X, Y,, we can evaluate L,(¢}). However, the true error proba-
bility is what we are interested in:

Ln(¢*) = P(¢;(X) % Y ’ Xl,Yl, s an7YR)7

n



because we want to minimize the estimation error:

Ln(¢y,) — inf L(¢),

peC

where L(¢) = P(¢(X) # Y). This quantity is also related to the Bayes error:

L6 - 2 = (L6 - 1 20)) + (inf 2(0) - 1),

peC oeC

where (infgeec L(¢) — L*) is called the approximation error. Observe that the large we
makeC is, the smaller the approximation error, but the large becomes the estimation
error.

2 Shatter coefficient, VC dimension

Let A denote a collection of measureable sets. For a fixed vector (z1,...,2,) € R&>"
of n points in RY, let N4(z1, ..., 2,) denote the number of different sets in

{{21,...,zn}ﬂA | AGC}.
The n-th shatter coefficient of A is

s(A,n) = max  Ny(z,...,2),

which is the maximal number of different subsets of n points that can be picked out
by the collection of sets A.
Clearly s(A,n) < 2" If

Na(z1,. ..y 2n) =27,

then we say that A shatters the points zi,...,z2,. Also, if there exists k£ such that
s(A, k) < 2% then s(A,n) < 2" for all n > k (homework exercise).

Let A be a collection of at least |A| > 2 sets. The VC dimension V4 of A is the
largest integer k& > 1 such that s(A, k) = 2%, i.e.,

Vi =max{k € N, | s(A, k) = 2F}.
It measures the complexity, size, or expressive power, of the collection A.

Example 2.1. If A is the collection of all halflines of the form (—oo,z| for z € R,
then

s(A,2) =3 < 2%

since if 27 < 29, then there is no set (—oo,z] that contains 23, but not z;. Hence,
Vyi=1



Example 2.2. If A is the collection of all intervals [z,y] in R!, then

= () () ()22

since every interval containing two points z; and z3 contains a third point zo € [21, 23].
Hence, V4 = 2.

Example 2.3. If A is the collection of halfspaces in R? of the form {z : ax > b,a €
R? b € R}. We have

S(A,n) ggg (”;1)

(cf. Corollary 13.1 of PTPR). Hence, V4 = d + 1.

2.1 From A to a collection of classifiers C
Let C denote a collection of classifiers. Define a collection of sets
Ac ={V(¢p)uW () | ¢ € C} SR’ x {0,1},
V(6) = {o: 6(x) = 1} x {0} € R x {0,1},
W(¢) ={z:o(x) =0} x {1}.
The n-th shatter coefficient of C is
S(C,n) = s(Ac,n).
The VC dimension of C is
Ve ="V
We can now introduce the VC Theorem for classifier selection.

Theorem 2.1 (VC Theorem). For every distribution of the data and for all n, we
have

P (a(6h) ~ L Ho) > € ) <8 S(Cm) e
The VC Theorem bounds the estimation error of the classifier that minimizes the
empirical error frequency among a collection of classifiers.
We are not done yet. The VC theorem is useful only when S(C,n) is relatively
small (i.e., sub-exponential). It turns out that if C has a finite VC dimension V¢ > 2,
we have S(C,n) < n'c.

Theorem 2.2 (Shatter coefficient).



It follows by the binomial theorem that
S(A,n) < (1+n)"™.
Hence, we have for all n:
e cither s(A,n) = 2" if V is infinite,

o or S(A,n) < (1+n)" if V, is finite.

3 VC theory applied to neural networks

Let Cy denote the collection of neural network classifiers with one hidden layer of k
hidden nodes, and an arbitrary sigmoid function o.

First, the approximation error can be bounded by standard approximation argu-
ments (cf. Theorem 30.4 of PTPR).

Theorem 3.1. For every distribution of the data, we have

lim inf L(¢) — L* = 0.

k—o00 ¢€Ck

An intuition for why neural nets have small approximation error comes from the fact
that any multivariate continuous function can be represented as a sum of univariate
functions.

Theorem 3.2 (Kolmogorov-Lorentz). Let f : [0,1]% — R be continuous. Let x =
(zt,...,2%). There exist continuous univariate functions ® : R — R and {¢;, : R —
R} such that

flat,. et = Zcp (Z wj,g(xf)) (1)

Moreover, the functions {1;,} do not depend on f.

The estimation error is bounded by the VC Theorem along with the following
shatter coefficient bound.

Theorem 3.3 (Lower bound, cf. Theorem 30.6 of PTPR).

S(Ck, n) < (en)kd+2k+1'
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