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These notes are based on the notes “Statistique appliquée” by Biau and Tsybakov
and the notes “Linear dynamical model, Kalman filtering and statistic” by Bolviken,
Christophersen, and Storvik.

Supervised learning is not all about classification: another (harder) problem is
regression. In classification, we have Xj ∈ Rd and Yj ∈ {0, 1}, and the variable Yj
is a label. In regression, we have Yj ∈ R: the variable Yj is a quantity. We first
present the regression problem and then a generalization of it: the estimation problem
in state-space representation, which is the bread and butter of control engineering.

1 Regression function

Let (X, Y ) ∈ Rd × R be a pair of random variables such that E ‖X‖2 < ∞ and
EY 2 <∞. The function g : Rd → R such that

g∗(z) = E(Y | X = z)

is called the regression function of Y . This function has the property of minimizing
the mean-squared error, i.e.,

E(Y − g∗(X))2 = min
h

E(Y − h(X))2,

for all distributions.

2 Linear regression

Suppose that for all j = 1, . . . , n:

Yj = g(Xj) + νj,

where {νi} are noise random variables that are independent and have zero mean. The
function g is unknown. The regression problem is to find a function gn based on
X1, Y1, . . . , Xn, Yn that estimates g.

The linear regression problem is a special case, where we assume additionally that
there exists an (unknown) θ ∈ Rd such that g(z) = θT z1. In this case, the assumption
on Yj becomes:

Yj = θTXj + νj, j = 1, . . . , n, (1)

so that the problem becomes estimating θ by θ̂n.

1This denotes an inner product.

1



Example 2.1 (Polynomial regression). Let Z ∈ R, and define X = (1, Z, . . . , Zd−1) ∈
Rd. Then, we have

θTX = θ1 + θ2Z + . . .+ θdZd−1,

so that polynomial regression on R1 can be formulated as multivariate linear regression.

3 Least squares

The least squares estimate of the parameter θ is

θ̂n = arg min
ω∈Rd

n∑
j=1

(Yj −XT
j ω)2,

where

h(ω) =
n∑

j=1

(Yj −XT
j ω)2

is convex and non-negative.
For θ̂n to be a minimum, we must have

dh

dθi
(θ̂n) = 0, for all i = 1, . . . , d,

or, by taking the derivative:

2
n∑

j=1

Xj(Yj −XT
j ω) = 0. (2)

Letting

B ,
n∑

j=1

XjX
T
j ,

the above (2) becomes

n∑
j=1

XjYj = Bθ̂n.

Hence, if B is an invertible matrix, then we have

θ̂n = B−1
n∑

j=1

XjYj. (3)
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3.1 Matrix notation

You will often see linear regression equations of (1) presented by a single matrix equa-
tion:

~Y = Xθ + ~ν,

where

~Y = (Y1, . . . , Yn)T ,

X = (X1, . . . , Xn)T ,

are the data, and ~ν = (ν1, . . . , νd) is the vector of noise terms. In this case, we can
write (3) as

θ̂n = (XTX)−1XT ~Y .

3.2 Properties of least squares estimate θ̂n

Theorem 3.1. Suppose that X1, . . . , Xn are deterministic, and that the matrix B is
invertible. Furthermore, ~ν is a random vector such that E~ν = 0 and there exists an
unknown σ > 0 such that V (~ν) = E~ν~νT = σ2I. Then, we have

Eθ̂n = θ,

V (θ̂n) = E[(θ̂n − Eθ̂n)(θ̂n − Eθ̂n)T ] = σ2B−1.

The first equation says that the estimator θ̂n is unbiased.

Proof. Observe that

θ̂n = B−1XT ~Y

(assumption) = B−1XT (Xθ + ~ν)

= θ +B−1XT~ν.

The first claim follows by taking the expectation. Next, observe that

V (θ̂n) = E[(θ̂n − θ)(θ̂n − θ)T ]

= E(B−1XT~ν)(~νTXB−1)

= B−1XT [E~ν~νT ]XB−1

(assumption) = σ2B−1XTXB−1 = σ2B−1.

If ~ν is normally distributed, then we also have that θ̂n is distributed asN (θ, σ2B−1).
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4 State-space estimation problems

In this section, we generalize what was done in the previous section. The state-space
estimation problem in control theory is similar to the regression problem. The (time-
invariant) state-space model is

Xk = Φk−1Xk−1 + wk−1, k = 1, 2, . . . ,

Yk = HkXk + vk, k = 1, 2, . . . ,

where the vector Xk ∈ Rn is the state vector, and Yk ∈ Rm is the observation vector,
and the initial state X0 is deterministic and known. The matrices {Φk} and {Hk}
are deterministic matrices that are known. The sequences {wk} and {vk} are noise
processes that are independent and have zero mean and covariance matrices Ewkw

T
k =

Qk and EvkvTk = Rk.

Example 4.1 (Linear regression in state-space form). The state-space representation
of the linear regression assumption (1) is

θk = Iθk−1 +~0,

Yk = XT
k θk + ~νk,

where θk is the state process and Xk is known.

4.1 State estimation problem

Assuming that the initial state X(0) and the observations Y1, . . . , Yk are known at time
k, the state-estimation problem at time k is to construct an estimator X̂k for Xk. Of
particular interest are linear estimator of the form

X̂k = akkYk + ak−1k Yk−1 + . . .+ a1kY1,

where the coefficients {ak = (a1k, . . . , a
k
k)} are learned from the data X0, Y1, . . . , Yk.

4.2 Kalman filter

For integers k and `, let ~Y` = (Y1, . . . , Y`)
T , and we define

X̂(k | `) = E(Xk | ~Y`).

It is well-known (Gauss-Markov Theorem) that this X̂(k | `) is optimal2 in the mean
square error sense:

E
[
(X̂(k | `)−Xk)T (X̂(k | `)−Xk)

]
≤ inf

h:R`×n→Rn
E
[
(h(~Y`)−Xk)T (h(~Y`)−Xk)

]
.

2Think of X̂(k | `) is the analogue of the regression function g∗ and the Bayes classifier g∗: it is
our baseline, but may be hard to compute.
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Of particular interest is X̂(k | k) = E(Xk | ~Yk), which is the estimator constructed with
all the data seen at time k3. The question is: Can we compute X̂(k | k) efficiently? It
turns out that yes, provided that the noise processes wk and vk are Gaussian, X̂(k | k)
can be computed in a recursive and linear fashion. This is the so-called Kalman filter.

We need two more definitions first: the estimation error and error covariance matrix:

e(k | `) = X̂(k | `)−Xk,

P (k | `) = Ee(k | `)e(k | `)T .

We are now ready to present the Kalman filter. The Kalman filter is the recursive
sequence of linear estimators: for k = 1, 2, . . .,

X̂(k | k − 1) = Φk−1X̂(k − 1 | k − 1),

X̂(k | k) = X̂(k | k − 1) +Mk[Yk −HkX̂(k | k − 1)],

where Mk is computed:

P (k | k − 1) = Φk−1P (k − 1 | k − 1)ΦT
k−1 +Qk−1,

Sk = HkP (k | k − 1)HT
k +Rk,

Mk = P (k | k − 1)HT
k S
−1
k ,

P (k | k) = (I −MkHk)P (k | k − 1).

The proof can be found in standard textbooks. The fact that the Kalman filter is
linear and recursive makes it very efficient.

4.3 Kalman filter for linear regression

Recall the state-space representation of linear regression

θk = Iθk−1 +~0,

Yk = XT
k θk + ~νk,

where θk is the state process and Xk is known.
Using the Kalman filter, we obtain θ̂(n | n), which coincides with the least-square

estimate θ̂n of (3) The distinction of the Kalman filter is that is it recursive: we can
recycle the computation until the previous time step for the current time step.

3Think of Yk as the analogue of Yn and X̂(k | k) as the analogue of X̂n(X0, Y1, . . . , Yn).
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