INSE6320

Jia Yuan Yu

1: Probabilities

Concordia

```
January 14, 2020
```

Risk comes from uncertainty. Uncertainty is quantified using probability theory.

1 Review of probabilities

Probability theory and statistics is the most widely used set of mathematical tools for modeling uncertainty.

- Probability space,
 - Set of outcomes Ω ,
 - Set of events \mathcal{F} containing subsets of Ω ,
 - A function (probability measure) $P : \mathcal{F} \to \mathbb{R}$.
- Random variables, distribution functions,
 - Real-value random variable is a (measurable) function $X : \Omega \to \mathbb{R}$.
 - Probability distribution function or cumulative distribution function: $F(x) = P(X \le x)$ for all x.
 - Probability density function, if it exists: $F(x) = \int_{-\infty}^{x} f(z) dz$.
- Examples (Bernoulli, Normal, Uniform, Exponential etc.),
 - Bernoulli with parameter p: P(X = 1) = p, P(X = 0) = 1 p.
 - Exponential with rate λ : $F(x) = (1 e^{-x}) \mathbb{1}_{[x \ge 0]}$ for all $x \in (-\infty, \infty)$.
 - Normal N(0,1): $f(x) = (2\pi)^{-1/2} e^{-x^2/2}$ for all $x \in (-\infty,\infty)$.
- Expectation,
 - Bernoulli: $\mathbb{E}X = p * 1 + (1 p) * 0$

Statistics is the study of data using probability theory: we have access to random variables X_1, X_2, \ldots , but we don't know their distributions. We want to use X_1, X_2, \ldots to infer their distributions.

- Classical: Let P denote the joint distribution of X_1, X_2, \ldots, X_n . We assume that P belongs to a known set $\{P_{\theta} : \theta \in \Theta\}$. The goal is to find the true value θ^* or a subset containing it.
- Bayesian: Assume that θ^* is a random variable from a known distribution.

Example 1.1. Consider X_1, X_2, \ldots, X_n corresponding to the measured lifespans of n light bulbs (no decisions involved). Assume that they are independent and identically distributed according to a normal distribution P. Estimate the mean of P.

1.1 Probabilistic guarantees

Suppose that for a given decision a, we observe the following sequence of performance measurements: $X_1^a, X_2^a, \ldots, X_n^a$. Suppose that these measurements are i.i.d. with distribution F. Given δ , we would like to find an λ give guarantees of the form:

$$\mathbb{P}(X_{n+1}^a > \lambda) \ge 1 - \delta. \tag{1}$$

Observe that the above guarantee is equivalent to $1 - F(\lambda) \ge 1 - \delta$ or $\lambda \le F^{-1}(\delta)$.

One approach is to find an estimate \hat{F}_n of the distribution F using the data $X_1^a, X_2^a, \ldots, X_n^a$. If \hat{F} is a very good estimate of F, then we can say that

$$\mathbb{P}(X_{n+1}^a > \hat{F}_n^{-1}(\delta)) \ge 1 - \delta.$$

Remark 1 (Relation to Newsboy problem). Recall that F^{-1} appears also in the solution to the Newsboy problem. There, the distribution F is assumed to be known, whereas in this course, we need to estimate F from data.

1.2 Estimating distributions

Figure 1: From http://candywow.weebly.com/

Estimation with candies. Suppose that your supply chain produces candies and that the color of each candy corresponds to a quality value:

- Green = 1
- Yellow = 2
- Orange = 3
- Red = 3
- Purple = 5

Students observe X_1, X_2, \ldots The (unknown) true distribution F is

- $\mathbb{P}(X_i \le 1) = 21/95$
- $\mathbb{P}(X_i \le 2) = (21 + 15)/95$
- $\mathbb{P}(X_i \le 3) = (21 + 15 + 49)/95$
- $\mathbb{P}(X_i \le 5) = (21 + 15 + 49 + 10)/95$

We can estimate the distribution F for a sequence of i.i.d. random variables as follows. Let X_1, X_2, \ldots, X_n denote the samples. Construct the following empirical distribution function, for every x:

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{[X_i \le x]}.$$

How well does \hat{F}_n estimate F? Good news: exceptionally well!

Theorem 1.1 (Dvoretzky–Kiefer–Wolfowitz Inequality¹). For every $\varepsilon > 0$, we have

$$\mathbb{P}\left(\sup_{x\in\mathbb{R}}|\hat{F}_n(x)-F(x)|>\varepsilon\right)\leq 2e^{-2n\varepsilon^2}$$

Remark 2. The ε above is analogous to the notion of "margin of error," whereas $1 - \delta$ is analogous to "confidence."

Homework: Combine DKW Inequality with (1).

1.3 Estimating normal distributions

Normal random variables are entirely characterized by the mean μ and variance σ^2 . The following sample-mean is an unbiased mean estimator:

$$\hat{\mu}_n = \frac{1}{n} \sum_{k=1}^n X_k.$$

The following is an unbiased variance estimator:

$$\hat{\sigma}_n^2 = \frac{1}{n-1} \sum_{k=1}^n (X_k - \hat{\mu}_n)^2.$$

How well do $\hat{\mu}_n$ and $\hat{\sigma}_n^2$ estimate μ and σ^2 ? Very well, thank you!

¹Dvoretzky, A.; Kiefer, J.; Wolfowitz, J. (1956), "Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator", Annals of Mathematical Statistics 27 (3): 642–669.

Theorem 1.2 (Hoeffding). Let X_1, X_2, \ldots be i.i.d. random variables that take values in the interval [a, b], and have mean μ . Let

$$\hat{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

Then, for every n and $\varepsilon > 0$:

$$\mathbb{P}\left(\left|\hat{X}_n - \mu\right| \ge \varepsilon\right) \le 2\exp\left(-\frac{2n\varepsilon^2}{(b-a)^2}\right).$$