INSE6320

Jia Yuan Yu

4: Managing Risk

Concordia

March 11, 2020

We see two examples of managing risk by mixing-in certainty.

1 Managing risk by adding certainty

Let $X : \Omega \to \mathbb{R}$ denote a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$ with a probability distribution F and a density function f. Suppose that X is bounded from below by a. What is the optimal mix $\lambda \in [0, 1]$ for a random payoff X and a fixed amount c? The payoff of a mix λ is

$$X_{\lambda} = (1 - \lambda)X + \lambda c. \tag{1}$$

Let f_{λ} denote the probability density function of X_{λ} .

Example 1.1. What decision are of the form of a mixture? What decisions are not? Immigration, unit-demand goods, indivisible.

Suppose that the preference relation admits a vNM representation, then the representation of the lottery f_{λ} is

$$U(f_{\lambda}) = \mathbb{E}u(X_{\lambda}) = \int u(z)f_{\lambda}(z)dz.$$
 (2)

We can maximize the value of $U(f_{\lambda})$ over λ if u is given. If u is a utility function, then the above integral is concave, and has an unique maximum.

Example 1.2. Consider a decision maker with $u(z) = \sqrt{z}$, c = 0.45, X uniform on [0, 1]. For $\lambda = 0$, we have $X_0 = X$, then

$$U(f_0) = \int_0^1 z^{1/2} dz = 1/(3/2) = 2/3.$$
(3)

For a general value of λ :

$$F_{\lambda}(z) = \mathbb{P}((1-\lambda)X + \lambda c \le z)$$
(4)

$$=\mathbb{P}(X \le \frac{z - \lambda c}{1 - \lambda}) \tag{5}$$

$$=\frac{z-\lambda c}{1-\lambda} \text{ for } \frac{z-\lambda c}{1-\lambda} \in [0,1]$$
(6)

$$=\frac{z-\lambda c}{1-\lambda} \text{ for } z \in [\lambda c, (1-\lambda) + \lambda c]$$
(7)

$$f_{\lambda}(z) = \frac{1}{1-\lambda} \mathbb{1}_{[z \in [\lambda c, (1-\lambda) + \lambda c]]}$$
(8)

$$U(f_{\lambda}) = \int z^{1/2} f_{\lambda}(z) dz \tag{9}$$

$$= \int_{\lambda c}^{(1-\lambda)+\lambda c} z^{1/2} \frac{1}{1-\lambda} dz \tag{10}$$

$$= \frac{2}{3(1-\lambda)} \left[(1-\lambda+\lambda c)^{3/2} - (\lambda c)^{3/2} \right],$$
 (11)

which is plotted in Figure 1 for different values of c. What if $u(z) = \log(1+z)^{1}$? What if X follows a normal distribution with mean 0.5?

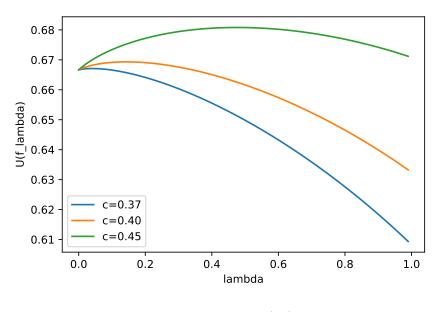


Figure 1: $U(f_{\lambda})$

The following is a useful tool to analyze the mixture λ .

¹Use integration by parts.

Proposition 1.1. Let λ^* denote the value of λ that maximizes $U(f_{\lambda})$. If u is differentiable utility function, then $\lambda^* = 1$ if and only if $\mathbb{E}X \leq c$. Moreover, $\lambda^* = 0$ if and only if

$$c \le \frac{\mathbb{E}Xu'(X)}{\mathbb{E}u'(X)}.$$
(12)

1.1 Investment

Example 1.3 (Investing in risky asset (Example 2.43 of Textbook)). Consider one risky asset with unit-price π and random payoff S. There is also a risk-free bond with interest rate r. You have w dollars, and your preference is represented by an utility function u. If you invest $(1 - \lambda)w$ in the asset and λw in the bond, the payoff (profit) is:

$$X_{\lambda} = \frac{(1-\lambda)w}{\pi}S - (1-\lambda)w + \lambda wr$$
(13)

$$=\frac{(1-\lambda)w}{\pi}(S-\pi) + \lambda wr \tag{14}$$

(15)

Under what condition, should you invest in the asset?

By Proposition 1.1, we have $\lambda^* = 1$ if and only if

$$\mathbb{E}\frac{w(S-\pi)}{\pi} \le wr \quad \iff \mathbb{E}(S-\pi) \le \pi r \quad \iff \mathbb{E}\frac{S}{1+r} \le \pi.$$
(16)

In other words, to attract a risk averse investor, the price of the risky asset must be strictly less than the expected discounted payoff.

1.2 Insurance

Example 1.4 (Optimal amount of insurance (Example 2.44 of Textbook)). Suppose that you have utility function u. You start with w dollars. Let Y denote the random loss that you will incur in the next year. You are offered an insurance policy that costs $\lambda \pi$ dollars pays you λY dollars next year, where π is the maximum amount you can buy and you can choose the amount $\lambda \in [0, 1]$. How much insurance λ should you buy?

The random payoff next year is

$$X_{\lambda} = w - Y + \lambda Y - \lambda \pi \tag{17}$$

$$= (1 - \lambda)(w - Y) + \lambda(w - Y + Y - \pi) = (1 - \lambda)(w - Y) + \lambda(w - \pi).$$
(18)

By Proposition 1.1, we have $\lambda^* = 1$ if and only if

$$\mathbb{E}(w-Y) \le w - \pi \quad \Longleftrightarrow \quad \mathbb{E}Y \ge \pi.$$
⁽¹⁹⁾

You should buy full insurance if and only if $\mathbb{E}Y \ge \pi$. However, if $\mathbb{E}Y < \pi$, then you should buy partial insurance. By Proposition 1.1 again, we have $\lambda^* \in (0, 1)$ when

$$\pi > \mathbb{E}Y,\tag{20}$$

and
$$w - \pi > \frac{\mathbb{E}(w - Y)u'(w - Y)}{\mathbb{E}u'(w - Y)}$$
 (21)

$$\iff w - \pi > w - \frac{\mathbb{E}Yu'(w - Y)}{\mathbb{E}u'(w - Y)}$$
(22)

$$\iff \pi < \frac{\mathbb{E}Yu'(w-Y)}{\mathbb{E}u'(w-Y)} \tag{23}$$

(24)

This explains why people only buy partial insurance, even when the insurance premium is higher than the fair premium $\mathbb{E}Y$. When do we have $\lambda^* = 0$?

2 References

• Chapter 2.3 of textbook.