INSE6300 Jia Yuan Yu 4: Dynamic programming Concordia February 16, 2016 First, a visual shortest path example: http://web.mit.edu/15.053/www/AMP-Chapter-11.pdf. # 1 Examples of backward induction The backward induction algorithm for MDPs proceeds as follows. - 1. Set j = N, and $V_N(s) = \max_{a \in A} r_N(s, a) = g(s)$ for all $s \in S$; - 2. For $j = N 1, N 2, \dots, 1$: - (a) For $s \in S$: - i. Compute $$V_{j}(s) = \max_{a \in A} \left\{ r_{j}(s, a) + \sum_{s' \in S} P(s' \mid s, a) V_{j+1}(s) \right\};$$ ii. Output $\sigma_j(s) \in \arg\max_{a \in A} \{r_j(s, a) + \sum_{s' \in S} P(s' \mid s, a) V_{j+1}(s)\}.$ The output of this algorithm is a sequence of policies $\sigma_1, \ldots, \sigma_N$ that are optimal (cf. Puterman, Section 4.3). #### 1.1 Intuition We need to make inventory decision $a_1, a_2, \ldots, a_{N-1}$ for time steps $1, \ldots, N-1$. Why does backward induction work? Consider the time step N-1: you observe the value of the inventory level (state) s_{N-1} , which takes possible values $\{0, 1, \ldots, C\}$, and you take the last decision a_{N-1} according to the actual value of s_{N-1} : $$a_{N-1}(0) \in \arg \max_{a=0,\dots,C} \underbrace{r(0,a)}_{\text{immediate reward at time } N-1} + \sum_{j=0}^{C} \mathbb{P}(s_N = j \mid s_{N-1} = 0, a_N = a) \underbrace{g(j)}_{\text{salvage at time } N},$$... $a_{N-1}(C) \in \arg\max_{a=0,\dots,C} \underbrace{r(C,a)}_{\text{immediate reward at time } N-1} + \underbrace{\sum_{j=0}^{C} \mathbb{P}(s_N=j \mid s_{N-1}=C, a_N=a)g(j)}_{\text{immediate reward at time } N-1}.$ Expected salvage $\mathbb{E}g(s_N)$ Consider time step N-2: you observe s_{N-2} , and take decision a_{N-2} , then observe s_{N-1} at time step N-1 and take action a_{N-1} . The total future reward is $$r(s_{N-2}, a_{N-2}) + r(s_{N-1}, a_{N-1}) + g(s_N).$$ Recall that - we can optimize the expected value of $r(s_{N-1}, a_{N-1}) + g(s_N)$ by selecting a_{N-1} as a function of s_{N-1} ; - having observed $s_{N-2} = i$, we known the distribution of s_{N-1} , and s_N ; - having observed $s_{N-2} = i$, we can optimize the expected future reward through the function a_{N-1} above and: $$a_{N-2}(i) \in \arg\max_{a=0,\dots,C} \quad r(i,a) + \underbrace{\mathbb{E}\Big[r(s_{N-1},a_{N-1}(s_{N-1})) + g(s_N)\Big]}_{\sum_{j=0}^{C} \mathbb{P}(s_{N-1}=j|s_{N-2}=i,a_{N-2}=a)V_{N-1}(j)},$$ so that a_{N-2} is only a function of i and \mathbb{P} and r and g. ### 1.2 Yield management example Airline with a single flight. The time horizon is $1, \ldots, T$. The state represents the number of seats remaining on the flight. At each time step t, a customer appears with probability λ . The decision of the airline is the price a_t , which takes values v_1, \ldots, v_n . The probability that the customer t purchases a ticket is a function of a_t . What is the expected revenue at each time step? What are the state transition probabilities? What would happen if customers are allowed to cancel their purchases? # 1.3 Portfolio management Two types of assets: a liquid asset with a fixed interest rate, which may be sold at every time step, and a non-liquid asset that may only be sold after a maturity of N time steps. The state is a vector in R^{N+1} , the fraction of investment in the liquid asset, and in non-liquid assets with maturity $1, \ldots, N$ steps away. The decision maker can choose to move a fixed fraction α of liquid asset into non-liquid assets. ## 2 References • Pricing Substitutable Flights in Airline Revenue Management, D. Zhang and W. L. Cooper, 2006.