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Abstract—Runtime cloud security auditing plays a vital role in
mitigating security concerns in a cloud. However, there currently
does not exist a comprehensive solution that can protect a
cloud tenant against the threats rendered from the multiple
levels (e.g., user, virtual, and physical) of the cloud design.
Furthermore, most of the existing solutions suffer from slow
response time and require significant manual efforts. Therefore,
a simple integration of the existing solutions for different levels
is not a practical solution. In this paper, we propose a multi-
level proactive security auditing system, which overcomes all the
above-mentioned limitations. To this end, our main idea is to
automatically build a predictive model based on the dependency
relationships between cloud events, proactively verify the security
policies related to different levels of a cloud by leveraging this
model, and finally enforce those policies on the cloud based on
the verification results. Our experiments using both synthetic and
real data show the practicality and effectiveness of this solution
(e.g., responding in a few milliseconds to verify each level of the
cloud).

Index Terms—cloud security, security auditing, proactive au-
diting, multi-level security

I. INTRODUCTION

A wide-range of recent attacks (e.g., [1]–[6]) targeting

different abstraction levels (e.g., user, virtual, and physical

level) of a cloud infrastructure demonstrate severe security

concerns in today’s cloud platforms. These attacks may be

launched by various actors, such as hostile tenants, care-

less cloud providers, and malicious insiders, and may have

serious consequences such as threatening the cross-tenant

isolation. For instance, stealing secrets through cross-tenant

side-channels (e.g., [2], [3]), stealing computing resources [7]

and bypassing security group rules [5] violate tenant isolation

boundaries.

To mitigate such security threats in a cloud, one of the

promising solutions is to verify the cloud against given

security policies using formal verification techniques (a.k.a.

security auditing). To this end, there exist several potential

solutions (e.g., [8]–[16]), which can be divided into three

major categories. First, the retroactive approach (e.g., [8]–

[11]) verifies the security policies and catches violations after

the fact. Second, the intercept-and-check approach (e.g., [13],

[16]) intercepts each change request to the cloud and verifies

the desired security policies while holding up the intercepted

request. Third, the proactive approach (e.g., [12]–[15]) audits

the cloud in advance before the request actually arrives.

However, none of the existing approaches protects a cloud

from the threats rendering from its multiple levels (user,

virtual, and physical). Furthermore, a simple integration of the

existing solutions for different levels would be insufficient, as

it would suffer from various practical issues. For instance, the

retroactive approach cannot prevent irreversible damages (e.g.,

DoS and confidentiality breach). The current intercept-and-

check solutions (e.g., [12], [13], [16]) cause prohibitive delay

due to the sheer size of the cloud, and the existing proactive

approaches (e.g., [12]–[15]) require significant manual efforts

from the users. Therefore, there is a need for a practical

auditing solution which can address the above-mentioned

limitations and protect a cloud against the threats from its

multiple levels.

In this paper, we propose an automated and efficient

proactive auditing system for protecting multiple levels of

a cloud. For this purpose, we first propose an automated

approach to build predictive models to capture the dependency

relationships among cloud events. Thus, we overcome the

limitations of the existing methods that manually captures

the dependency relationships. Then, we utilize this model

to predict future events so that our tool can automatically

verify these predicted events; which addresses the limitation

of the works requiring manual input of future plans from

admins. Finally, at runtime, we simply check the pre-computed

verification results so that our solution can respond with a

fairly small delay; that overcomes the inefficiencies of other

solutions. We integrate our tool into OpenStack [17], one of

the major cloud platforms, and evaluate the effectiveness and

efficiency of our tool using both synthetic and real data.

The main contributions of this work are as follows.

• As per our knowledge, this is the first to propose a multi-

level proactive security auditing solution, which protects a

cloud against a wide-range of security threats directed at

the different levels (i.e., user, virtual, and physical) of the

cloud.

• We propose the first learning-based approach that can

both automatically build the structure, and populate the

parameters of the predictive model, with minimum need

for manual inputs.



• We integrate our solution to OpenStack, a major cloud

platform, and our experimental results show negligible

delay (e.g., a few milliseconds) in responding each request

which demonstrates the efficiency of our solution.

The paper is organized as follows. Section II discusses pre-

liminaries for our solution. Section III presents our proactive

multi-level security auditing systems for clouds. Sections IV

and V provide the implementation details and experimental

results, respectively. Section VI summarizes related works.

Section VII concludes the paper with future research direc-

tions.

II. PRELIMINARIES

This section provides a background on system and depen-

dency models, and defines our threat model.

A. Multi-Level System Model

Figure 1 shows a multi-level (e.g., user, virtual, and physi-

cal) system model of a cloud. We elaborate on each level as

follows.

Virtual Level

(VMs, virtual switches, and 

virtual networks)

User Level 

(tenants, admins, and users)

Physical Level

(switches, compute nodes, 

and middleboxes)

Multi-Level 

Cloud Systems

Fig. 1. A multi-level system model for clouds

User Level. The user level includes the administrative com-

ponents of a cloud. More specifically, admins and users of a

tenant including their interactions with the cloud platform are

considered within this level. Additionally, the authentication

and authorization mechanisms adopted in the cloud system

are included in this level.

Virtual Level. The virtual level refers to the virtual compo-

nents of a cloud. More specifically, virtual machines (VMs),

virtual network components and other virtual resources are

considered in this level. Additionally, the protocols involved

to manage these virtual resources and their interactions with

other levels are included in this level.

Physical Level. The physical level includes the physical ele-

ments of a cloud. More specifically, this level covers network-

ing devices (e.g., switches, routers), computing nodes (e.g.,

servers) and middleboxes. Additionally, the protocols involved

to manage these physical resources and their interactions with

the virtual level are included in this level.

B. Background on Dependency Model

In this section, we discuss the existing dependency models,

and highlight the drawbacks of these models. In the following,

we elaborate on each of these dependencies.

Structural Dependencies. The structural dependency is the

relationships among cloud events, which are imposed by

the cloud management platform (e.g., OpenStack [17]). For

instance, a structural dependency for the critical event (which

may potentially breach a security property) update port, whose

occurrence is possible only after the create tenant, create net-

work and create port events in OpenStack. These dependencies

are captured by studying the API specification of the cloud

management platform, and provide an estimation about the

distance (in terms of number of steps) to a critical event from

any event.

Probabilistic Dependencies. The probabilistic dependency

represents the behavioral pattern of cloud management op-

erations including temporal order between event occurrences

(as transitions). For instance, the probability of the critical

event add security group rule occurrence is 0.625, given that

the create VM event has already occurred. Such probabilistic

information may provide an insight on the nature of these

transitions, and help to predict the future transitions. These

dependencies are learned using historical data (e.g., logs) by

leveraging Bayesian network [15].

Temporal Dependencies. The temporal dependency is derived

from the time intervals between occurrences of different cloud

operations, and captures the patterns of this relationship. For

example, the average time intervals to two different critical

events (i.e., add routing rule and create VM) from the create

router are significantly different (15s vs. 30m). Such varia-

tions in temporal distance can become critical in scheduling

verification for these critical events in our approach (as will

be discussed in Section III-A).

Limitations in Current Dependency Models. The current

approaches (e.g., [14], [15]) to capture dependency models

have the following limitations.

• The existing approaches build the structure (i.e., nodes and

edges) of the model manually and automating this process

may require heavy log pre-processing and mining.

• The current models do not include the temporal dependen-

cies. Even though there exist other works (e.g., [18], [19])

capturing temporal dependencies, they are in a non-cloud

environment.

• None of the existing models integrates diverse dependency

relationships (e.g., structural, probabilistic and temporal)

in a meaningful way. For instance, Figure 2 shows a

case, where the probabilistic and temporal aspects provide

the opposite directions of dependencies. The conditional

probability for the occurrence of the critical event E5 is

higher than that for the critical event E6 given that the

event E1 has already happened. However, the event E6

requires less steps, or a smaller number of steps and less

time to occur after the event E1.
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Fig. 2. An excerpt of the dependency model, where the probabilistic and
temporal aspects show opposite dependencies

C. Threat Model

We assume that the cloud infrastructure management sys-

tems: a) may be trusted for the integrity of the API calls,

event notifications, and database records (existing techniques

on trusted computing and remote attestation may be applied to

establish a chain of trust from TPM chips embedded inside the

cloud hardware, e.g., [20]–[22]), and b) may have implemen-

tation flaws, misconfigurations and vulnerabilities that can be

potentially exploited by malicious entities to violate security

policies specified by cloud tenants. The cloud users including

cloud operators and agents (on behalf of a human) may be

malicious. This work focuses on attacks directed through

the cloud management interfaces and more specifically, cloud

management operations (e.g., create/delete/update tenant, user,

VM, etc.). Any violation bypassing the cloud management

interface is beyond the scope of this work.

III. MULTI-LEVEL PROACTIVE AUDITING SYSTEM

This section presents our proactive multi-level security

auditing solution.

A. Overview

Figure 3 shows an overview of our approach. This approach

mainly performs two major steps. The first step is to build

the predictive models of cloud events. The second step is to

proactively conduct security auditing for the predicted events

in different levels of a cloud and apply the security compliance

decision to the cloud. In the following, we elaborate on each

step.
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Fig. 3. A high-level overview of our approach

1) Prediction: To build a predictive model for cloud events,

we first collect historical data (e.g., logs) from the cloud,

then pre-process these logs to prepare them for the learning

tools, afterwards capture the structure of the dependencies,

and also measure different parameters (e.g., probabilities

and time durations) from the processed cloud logs, and

finally obtain the predictive model based on these learned

structure and parameters.

2) Multi-Level Proactive Verification: To pre-compute security

auditing results, we first intercept cloud events, then predict

future events from the currently requested event using the

obtained predictive model, afterwards proactively conduct

the verification process for those predicted events by utiliz-

ing the existing verification tools for different levels, and

finally apply the the verification decision (e.g., allow or

deny) to the clouds.

B. Prediction

This section details our predictive model learning approach.

To this end, we first discuss the steps of pre-processing of the

logged data, then present our structure learning mechanism,

and finally, describe how we derive the predictive model with

its parameters.

Pre-Processing Bayesian Network Dataset. The pre-

processing of logs is mainly to prepare the data for the learning

tools. In the following, we discuss our pre-processing step.

(i) Parsing Logs: To parse the logs, we use Logstash [23],

a popular data processing tool, and feed it with sets of pre-

defined rules, which, in turn, parses log entries and labels the

extracted fields. (ii) Grouping Log Entries of Each Tenant:

To provide a more accurate view of tenant-initiated activities,

we group parsed log entries based on their corresponding

tenant ID field. (iii) Identifying Types of Events: To learn

the dependencies between events, we identify the event types

corresponding to logged requests. (iv) Aggregating Logs of

Multiple Services: To provide a comprehensive view of the

probable temporal order between event occurrences, we ag-

gregate the identified event types that are logged by different

services and sort them based on their corresponding times-

tamp. (v) Providing Input Dataset to Learning Tool: Finally,

to prepare the inputs for the learning tool (e.g., Bayesian

network), we build the whole sequences of identified events,

where each sequence represents dependencies between a group

of events. The output of this step is forwarded to learn the

structure and parameters of the model.

Learning the Model Structure. This section elaborates the

main steps of structure learning. We encode the dependencies

between logged events to the Bayesian network structure,

where each directed edge represents the immediate consecutive

occurrences of two event types corresponding to its end-

vertices. For example, a directed edge between start VM

and stop VM nodes (Figure 4) represents the order and their

immediate appearances in the logged data.

However, considering the nature of our data, which reflects

tenants’ activities, this method introduces cycles to our graph.

For example, it is likely that after stopping a VM, a user

creates a security group, which forms a cycle in their corre-

sponding graph (Figure 4). As a Bayesian network is an acyclic



graph by definition, we may need to remove the edges causing

a cycle. However, removing edges comes with the cost of dis-

torting probability distributions, and consequently decreasing

the accuracy of our model. Likewise, ignoring the direction of

cycle forming edges undermines the representativeness of the

temporal order of events in our model.

Create 

Security 

Group

(B)

Delete VM

(F)

Start VM

(C)

Stop VM

(G)

Delete 

Security 

Group Rule

(E)

Add

Security 

Group Rule

(D)
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(A)

Event Type

Critical Event

Legend

Fig. 4. An example of the model structure with cycles. Each node is an event
and each edge is their transition.

To address this problem, we consider two objectives: i) min-

imizing the total number of removed edges, and ii) minimizing

the dependency strength that is represented by a deleted edge.

In the following, we elaborate on the importance of these

factors to render the directed acyclic graph that corresponds

to our logged identified events.

1) Total Number of Removed Edges: In most cases, our

dependency graph includes multiple cycles that overlap in

one or several edges. For example, in Figure 4, the edge

between node B to C is involved in two cycles. By knowing

the number of cycles an edge is involved in, we can grade

the benefit of removing it. For instance, eliminating the

edge from node B to C, removes two cycles in the above-

mentioned case. However, by eliminating the edge from

node G to B, we still need to eliminate another edge to

remove the cycle between node B and C. Therefore, our

goal is to prioritize the deletions of edges that maximize

the number of removed cycles.

2) The Dependency Strength Represented by a Deleted Edge:

The larger number of immediate occurrences of two iden-

tified events (e.g., the number of times an instance of

the stop VM event type is observed immediately after an

instance of the start VM event type in our processed logs)

associates with a higher probable dependency between

them. Therefore, removing edges that correspond to a

larger number of occurred ordered pairs of events has a

greater distortion effect on the probability distribution that

is modeled by our Bayesian Network.

Therefore, we assign a grade to all cycle forming edges

based on the number of cycles they are involved in and

the frequency of the immediate occurrences of their cor-

responding ordered pair of events. As the semantic of the

two aforementioned factors implies, we consider an inverse

correlation between them in our grading. Furthermore, we

apply the same weights to both factors in our current

grading method. We use these grades to remove cycles

from Bayesian Network structure while minimizing the

loss of accuracy. The algorithm of cycle removal is further

discussed in Section IV. This obtained structure is then

forwarded for learning the parameters and deriving the

predictive model.

Building the Predictive Model. We first partition our training

data into groups of events occurred during predetermined

time periods. Next, for each time period, we find the con-

ditional probability between all ordered pairs of events, called

transitions, using the Bayesian Network module. Finally, all

periodically learned probabilities of each transition are fed

into the time-series predictor module. The time-series predictor

takes inputs (Bayesian network module outputs for a certain

period), and provides the predictive model of the probabilities.

This model at each step is updated, and used to predict

the future values of probabilities as we will require for our

proactive verification in Section III-C. In this work, we use

ARMAX as the predictor, which is a widely used method in

prediction of stochastic processes in various fields.

C. Multi-Level Proactive Verification

This section details the multi-level proactive verification

step of our solution. We elaborate on this step through two case

studies, where we redesign and integrate existing verification

tools to our auditing system to support proactive multi-level

auditing.

User-Level Security Verification. The user-level security

auditing is mainly conducted by protecting authorization and

authentication mechanisms of the cloud. To this end, we

leverage Patron [16], which enforces access control policies,

and LeaPS [15], which enforces security properties related to

authentication. In the following, we first provide a brief back-

ground on Patron, and then elaborate our adaption mechanism

for it. LeaPS requires a similar adaption mechanism.

Background. Luo et al. [16] propose Patron, a runtime

access control policy verification solution for clouds. To this

end, they intercept each cloud management operation, fetch

its related data, verify the event data against security policies,

and apply the verification decision to the cloud. These steps

are mainly performed by two modules: AEM and Patron.

AEM is responsible for interpreting the events, filtering the

events, managing the cache and interacting with the policy

verifier (namely, Patron). Patron verifies each query (contain-

ing mainly intercepted event type and data) against a set of

policies, and sends back the decision to AEM. For further

description of Patron, the readers are referred to [16]. The main

limitation of Patron is its slow response time, as it verifies the

current intercepted event.

Adapting Mechanism. To address the above-mentioned lim-

itation of Patron and to offer runtime user-level access control

enforcement on the cloud, our main idea is to verify the

predicted future events (instead of current event) and store

these verification results in a cache. To this end, we mainly

make three changes (steps 3-5 in the following algorithm) in



Patron as follows. First, we predict a list of future events by

leveraging our predictive model (discussed in Section III-B).

Second, instead of verifying the current intercepted event, we

render Patron to verify the predicted list of events. Third, the

verification results of predicted future events are stored in the

cache. In the following, we describe the re-designed algorithm

of Patron incorporating the aforementioned changes.

1) Each cloud management operation is intercepted at runtime.

2) The parameters of the intercepted operation are retrieved.

3) The distances to the critical events (i.e., the events that may

violate a policy) are measured using the predictive model

and a buffer of potential future events is initiated.

4) The buffer is continuously updated based on the current

event and the predictive model.

5) The events in the buffer are sequentially verified prior to

their occurrences against corresponding security policies.

6) These verification results are stored in a cache.

7) Upon the occurrence of a critical event, the decision is

fetched from the cache (if possible). Otherwise, verification

of the current event is conducted.

8) Based on the verification decision, the security policy is

applied to the cloud.
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Fig. 5. The modified design of Patron to support runtime enforcement of
user-level access control policies

Figure 5 depicts the modified design of Patron, which

contains two major modules: AEM* and Patron. AEM* is the

altered version of the original AEM module. The original Pa-

tron module is considered as a black box, and no modification

is required to this module. AEM* further contains five different

sub-modules. First, the request handler is to intercept each

event, fetch the event parameters and apply the verification

decision to the cloud. Second, the distance evaluator measures

the distances from the intercepted event to different critical

events. Third, the predicted event buffer maintains the queue

of potential future events. Note that this list gets up-to-date

after almost each operation. Fourth, the Patron client fetches

the top of the event queue, and sends the query for that event

to the Patron. Fifth, the caching manager stores and fetches

verification decisions.

Virtual-Infrastructure-Level Security Verification. The vir-

tual infrastructure layer security enforcement is mainly con-

ducted by verifying a list of security properties (e.g., cross-

tenant isolation, virtual network isolation, etc.) covering both

cloud tenant and service provider levels. To this end, our can-

didate verifiers are Congress [12] and Weatherman [13], which

verify a wide range of security properties at these levels. In

the following, we detail the adaption mechanism of Congress

starting with its background. Our adaption mechanism for

Weatherman is the same, because of their similarity in the

verification mechanism.

Background. Congress [12] is an OpenStack project to

verify security policies to ensure governance and compliance

for virtual infrastructures. Congress mainly operates in three

modes. Among them, the proactive mode is to prevent any

breach before they occur. This mode requires admins provide

their future change plan in advance so that Congress can verify

the legitimacy of the changes on its simulated environment.

This requirement becomes impractical specially for a dynamic

environment like cloud.

Adapting Mechanism. To overcome the aforementioned is-

sue and to offer runtime security policy enforcement on the

virtual infrastructure level of the cloud, our key idea is to verify

a list of predicted future events instead of future change plan

provided by the admins, and to store the verification results so

that at runtime simply by checking these results, enforcement

of policies can be performed. To this end, we mainly make

three changes to the Congress verification process. First, based

on the intercepted event, we predict future events using the

predictive model. Second, Congress is invoked to verify the

predicted future events. Third, we store these pre-computed

verification results, based on which runtime security enforce-

ment is conducted at the occurrence of any critical event.

In the following, we describe the steps of re-designed

algorithms of Congress verification for runtime enforcement.

1) An initial list of critical events is provided as input.

2) Each cloud management operation is intercepted at runtime.

3) The parameters of the intercepted operation are retrieved.

4) The distances of the initial list of critical events from

the intercepted event utilizing the predictive models is

measured, and critical events are sorted based on this

distance in the ascending order.

5) An allowed parameter list is prepared for each critical event

based on the corresponding security policy.

6) To confirm the allowed parameters, Congress is invoked in

its proactive mode to verify the sorted list of events with

each of the allowed parameters.

7) If Congress finds no violation, then the parameter is stored.

8) At the interception of any of the critical events, the stored

results are consulted for the decision (e.g., allow or deny).

9) The decision is applied to the cloud to preserve the policy.

The following example further illustrates the aforementioned

steps.

Figure 6 shows the modified design of Congress. To this

end, the distance evaluator prepares a sorted list of critical

events based on the distances in the predictive model (similarly

as in the user level). The context identifier retrieves the con-

text of the intercepted event. The Congress (or Weatherman)

verifier is considered as a black box, and no changes has been

made. We maintain a buffer to store these pre-computed results

for runtime enforcement.
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IV. IMPLEMENTATION

This section presents the implementation details.

A. Architecture

There are five major components in our solution (Figure 7).

The data collector continuously collects logs and configura-

tions from the cloud platform. The predictive model builder

pre-processes the raw logs, derives the probabilistic depen-

dencies (using Bayesian network), and builds the predictive

model using time-series. The interceptor intercepts cloud man-

agement operations, and applies the decision (e.g., allow/deny)

from the cache to the cloud. The policy enforcement module

pre-computes the heavy part of the verification in advance

consulting the predictive model, and stores the verification

results in the cache. Several security verifiers which are

plugged to our system verify various levels of the cloud.
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Fig. 7. A high-level architecture of our solution

B. Implementation Details

The implementation details of each module is discussed as

follows. To parse unstructured logs, we first use Logstash [23],

a data processing engine. In the next step, we investigate

the requested event types corresponding to each log entry by

providing mapping rules (i.e., the conjunction of METHOD

and PATH INFO for each REST API of OpenStack services).

For the event types that cannot be uniquely identified through

the conjunction of aforementioned attributes, we rely on the

request content that is logged by PERMON [24], which is a

pluggable interface in OpenStack compute and networking ser-

vices. Next, we aggregate the processed logs of these services,

and sort them based on their corresponding timestamps.

The resulted set of sequences is the input dataset to a

Python Bayesian Network toolbox1. Then, we partition the

whole chain of events using a customized algorithm (see

Section III-B), through which we preserve all pairs of events.

We build a primary structure events as nodes and all their

logged immediate occurrences as edges. Next, we detect

all exiting cycles using Python implementation of Johnson’s

algorithm 2. We grade all the edges that are involved in a

cycle, and their frequencies in our log data. To remove cycles

from our initial structure, we use an iterative algorithm, where

at each iteration, we delete the edge with the highest value of

the aforementioned grade. After each iteration, we recalculate

the grade of the edges belonging to the remaining cycles. The

algorithm stops when there is no cycle left in the graph. The

resulted Bayesian network is then provided to the ARMAX

function of MATLAB and Statistics Toolbox Release 2017a

to obtain the prediction model.

The interceptor is implemented as a middleware so

that it intercepts each request that are made to Nova

service (similarly as in [16], [24]). The body of requests,

contained in the wsgi.input attribute of the intercepted

requests, is scrutinized to identify the event type. We

implement a cache (to accelerate the decision mechanisms)

as memory-mapped file system (mmap) in Python (similarly

as in [16]). Our cache structure is as follows: (event

type, caller_tenant_id::caller_user_id,

target_tenant_id::target_id) -> decision.

We also maintain a MySQL database to store the intermediary

pre-computed verification results. The interface to different

security applications is implemented to customize part of

their design to interact with the policy enforcement module.

V. EXPERIMENTS

This section present our experimental results.

A. Experimental Settings

Our testbed cloud is based on OpenStack version Mitaka.

There are one controller node and up to 80 compute nodes,

each having Intel i7 dual core CPU and 2GB memory with

the Ubuntu 16.04 server. Based on a recent survey [25] on

OpenStack, we simulate an environment with maximum 1,000

tenants and 100,000 VMs. The synthetic dataset includes

over 4.5 millions records. We further utilize data collected

from a real community cloud hosted at one of the largest

telecommunications vendors. To this end, we analyze the

management logs (sized more than 1.6 GB text-based logs)

and extract 128,264 relevant log entries for the period of more

than 500 days. We repeat each experiment at least 100 times.

B. Experimental Results

We present our obtained experimental results as follows.

Efficiency of Multi-Level Security Auditing. The objective

of our first set of experiments is to demonstrate the efficiency

1https://pypi.org/project/pgmpy/
2https://github.com/qpwo/python-simple-cycles



of our proposed multi-level proactive security auditing solu-

tion. Figure 8 illustrates the response time (in milliseconds)

for both user and virtual levels using the modified Patron and

Congress (or Weatherman), respectively. In Figure 8(a), for

different sizes of cache, we observe a quasi constant response

time (i.e., less than one millisecond) through cache. This figure

also shows that the pre-computation effort is around four mil-

liseconds. Figure 8(b) shows the results of a similar experiment

on virtual infrastructure verification (e.g., modified Congress).

The response time remains within 6 milliseconds for 85.5%

of of the time on average, and the prediction error may cost

the pre-computation effort of up to 137 milliseconds (and the

verification time of Congress in the proactive mode). Overall

the results show the response time in several milliseconds in

best cases and several hundred of milliseconds in worst cases.
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Fig. 8. Time required for both runtime verification and additional pre-
computation for (a) user-level (using re-designed Patron) and (b) virtual
infrastructure (using re-designed Congress) while varying the size of the cache
and number of VMs, respectively

Accuracy of our Predictive Model. The second set of

experiments is to show the accuracy improvements by our

proposed predictive model. The prediction match rate refers

to the percentage of time our prediction is correct. Therefore,

higher prediction match rate ensures better response time. On

the other hand, the prediction error rate refers to the situation

where our prediction causes an inaccurate pre-computation.

Therefore, the lower error rate ensures minimal wastage of

computations. Figure 9 shows a quantitative comparison (in

terms of prediction match and error) between our predictive

model and the dependency model proposed in LeaPS [15].

More specifically, Figures 9 (a) and (b) show the percentages

of prediction match and prediction error for three distant pairs

of events in Figure 4, respectively. Figure 9(c) depicts the

overall percentages of prediction match and prediction error.

In all cases, our predictive model shows significant improve-

ments. Specifically, the prediction match rate is increased up

to two times and the prediction error rate is decreased up to

12 times. Figure 9(c) reports that our prediction results on

average 10.1% false pre-computation. However, our system

ensures the best response time (when results are in the cache)

on average 85.5% of the time. With a selective choice of the

threshold may provide up to 93% of prediction match. The

price of a false prediction is measured in our previous work,

Proactivizer [26].

In addition, we conduct similar experiments on real data.

Despite the fact that the number of observations is relatively

small (only around 400 records), the ARMAX model still

depicts its superiority over the LeaPS model (e.g., up to 65%

improvement in prediction match rate as shown in Table I).
Probability Threshold 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

ARMAX Prediction Match (%) 97.36 96.5 96.5 88.6 82.45 82.4 73.7 68.4 66.6

LeaPS Prediction Match (%) 65 65.8 65.8 65.8 65.78 65.8 65.8 65.8 65.8

Improvement Ratio (%) 48 46.6 46.6 65.8 34.6 25.3 12 4 1.3

ARMAX Prediction Error (%) 80.6 77.41 64.5 54.8 42 42 32.2 25.8 25.8

LeaPS Prediction Error (%) 74.2 74.2 74.2 74.2 74.2 74.2 74.2 74.2 74.2

Improvement Ratio (%) -8.7 -4.3 13 26 43.5 56.5 65.2 65.2 78.2

TABLE I
EFFECTIVENESS OF ARMAX VS. LEAPS [15] FOR REAL DATA WITH THE

SIZE OF 400 RECORDS

VI. RELATED WORK

In this section, we discuss different categories of related

works. Retroactive auditing approach (e.g., [10], [11], [27],

[28]) in the cloud is a traditional way of conducting auditing.

Unlike our proposal, those approaches can detect violations

only after they occur, which may expose the system to

high risks. Existing intercept-and-check approaches (e.g., [12],

[13]) perform major verification tasks while holding the event

instances blocked. This approach usually causes significant

delay (e.g., four minutes to verify mid-sized cloud [13]) to

a user request. In contrast, our solution applies a proactive

approach to overcome this limitation.

Proactive auditing approaches perform a part of the ver-

ification in advance. To this end, there exist several works

(e.g., [12]–[15], [29]). Weatherman [13] and verify security

policies on a future change plan in a virtualized infrastruc-

ture. PVSC [14] proactively verifies security compliance by

utilizing the static patterns in dependency models. Both in

Weatherman and PVSC, models are captured manually by

expert knowledge. LeaPS [15] partially addresses this limi-

tation by automating the parameter learning process of the

model. However, LeaPS still relies on manual identification of

the structure of the model and does not include the temporal

dependencies in the model. More importantly, unlike our work,

none of those works provides a comprehensive solution for

multiple levels of clouds.

Additionally, many studies have been focusing on mining

dependency relations from the ordering of log messages. Var-

ious definitions of temporal dependency have been proposed,

such as, forwarding conditional probabilities [18], transition

invariants (e.g., A always follow B) [30], and transition

significance [31]. These studies mainly focus only on mining

reliable pattern relations from the data and do not consider

the overall quality of the structural events. Unlike ours, none

of these works consider the dependencies among cloud events

and time intervals between their transitions.

VII. CONCLUSIONS

In this paper, we proposed a multi-level proactive security

auditing solution for clouds. More specifically, first, we pro-

posed an automated approach to learn the structure of the

dependencies in the cloud. Second, we derived a predictive

model, which utilizes structural, probabilistic and temporal de-

pendencies to predict the future events. Third, we re-designed

and integrated four security solutions (e.g., Congress [12],
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Fig. 9. Comparison between our predictive model using ARMAX and dependency model proposed in LeaPS [15] in terms of (a) percentage of prediction
match for each pair of event (b) percentage of prediction error for each pair of event and (c) overall percentage of prediction match/error

Weatherman [13] Patron [16] and LeaPS [15]) to our system

to offer multi-level proactive security aduiting. Finally, using

both synthetic and real data, we conducted experiments to

show the efficiency (e.g., responding in a few milliseconds)

of our proposed solution. However, our solution comprises the

following limitations, which we identify as potential future

works. First, our system currently does not integrate any

solution for virtual network layer 2 or SDN. Second, we

currently rely on a specific time series model for prediction.
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