
LeaPS: Learning-Based Proactive Security Auditing for

Clouds

Suryadipta Majumdar1, Yosr Jarraya2, Momen Oqaily1, Amir Alimohammadifar1,

Makan Pourzandi2, Lingyu Wang1, and Mourad Debbabi1

1 CIISE, Concordia University, Montreal, QC, Canada

{su_majum,m_oqaily,ami_alim,wang,debbabi}@encs.concordia.ca
2 Ericsson Security Research, Ericsson Canada, Montreal, QC, Canada

{yosr.jarraya,makan.pourzandi}@ericsson.com

Abstract. Cloud security auditing assures the transparency and accountability

of a cloud provider to its tenants. However, the high operational complexity im-

plied by the multi-tenancy and self-service nature, coupled with the sheer size of

a cloud, imply that security auditing in the cloud can become quite expensive and

non-scalable. Therefore, a proactive auditing approach, which starts the auditing

ahead of critical events, has recently been proposed as a promising solution for

delivering practical response time. However, a key limitation of such approaches

is their reliance on manual efforts to extract the dependency relationships among

events, which greatly restricts their practicality and adoptability. In this paper, we

propose a fully automated approach, namely LeaPS, leveraging learning-based

techniques to extract dependency models from runtime events in order to facil-

itate the proactive security auditing of cloud operations. We integrate LeaPS to

OpenStack, a popular cloud platform, and perform extensive experiments in both

simulated and real cloud environments that show a practical response time (e.g.,

6ms to audit a cloud of 100,000 VMs) and a significant improvement (e.g., about

50% faster) over existing proactive approaches.

Keywords: Proactive auditing, security auditing, cloud security, OpenStack.

1 Introduction

Multi-tenancy in cloud has proved to be a double-edged sword leading to both resource

optimization capability and inherent security concerns [37]. Moreover, the self-service

nature of clouds usually implies significant operational complexity, which may prepare

the floor for misconfigurations and vulnerabilities leading to violations of security com-

pliance. Such complexities, coupled with the sheer size of the cloud (e.g., 1,000 tenants

and 100,000 users in a decent-sized cloud [35]), can usually render security auditing

in cloud expensive and non-scalable. In fact, verifying every user event at runtime can

cause considerable delays even in a mid-sized cloud (e.g., over four minutes [6]). Since

the number of critical events (i.e., events that may potentially breach security prop-

erties) to verify usually grows with the number of security properties supported by a

auditing system, auditing larger clouds could incur prohibitive costs.

To this end, a promising solution for reducing the response time of security auditing

in clouds to a practical level is the proactive approach (e.g., [6, 25]). Such an approach

prepares for critical events in advance based on the so-called dependency models that

indicate which events lead to the critical events [44, 25]. However, a key limitation

2

of existing proactive approaches is that their dependency models are typically estab-

lished through manual efforts based on expert knowledge or user experiences, which

can be error-prone and tedious especially for large clouds. Moreover, existing depen-

dency models are typically static in nature in the sense that the captured dependencies

do not reflect runtime patterns. The manual and static nature of existing proactive audit-

ing approaches prevents them from realizing their full potential, which will be further

illustrated through a motivating example in the following.

Motivating Example. The upper part of Figure 1 depicts several sequences of events in

a cloud (from Session N to Session N +M). The critical events, which can potentially

breach some security properties, are shown shaded (e.g., E2, E5 and E7). The lower

part of the figure illustrates two different approaches to auditing such events. We discuss

their limitations below to motivate our solution.

– With a traditional runtime verification approach, most of the verification effort (de-

picted as boxes filled with vertical patterns) is performed after the occurrence of

the critical events, while holding the related operations blocked until a decision is

made; consequently, such solutions may cause significant delays to operations.
– In contrast, a proactive solution will pre-compute most of the expensive verification

tasks well ahead of the critical events in order to minimize the response time. How-

ever, this means such a solution would need to first identify patterns of event de-

pendencies, e.g., E1 may lead to a critical event (E2), such that it may pre-compute

as soon as E1 happens.
– Manually identifying patterns of event dependencies for a large cloud is likely ex-

pensive and non-scalable. Indeed, a typical cloud platform allows more than 400

types of operations [33], which implies 160,000 potential dependency relationship

pairs may need to be examined by human experts.
– Furthermore, this only covers the static dependency relationships implied by the

cloud design, whereas runtime patterns, e.g., those caused by business routines and

user habits, cannot be captured in this way.
– Another critical limitation is that existing dependency models are deterministic in

the sense that every event can only lead to a unique subsequent event. Therefore,

the case demonstrated in the last two sessions (N+2, N+M) where the same event

(E3) may lead to several others (E4 or E6) will not be captured by such models.

To address those limitations, our key idea is to design a probabilistic (instead of

deterministic) dependency model, and automatically extract such a model from runtime

events through learning techniques. Specifically, we first design a novel probabilistic

model for capturing the dependency relationships between event types while taking

into consideration the inherent uncertainty in such relationships. Second, we provide

detailed methodology and algorithms for our learning-based proactive security auditing

system, namely, LeaPS. We describe our implementation of the proposed system based

on OpenStack [33], and demonstrate how the system may be easily ported to other

cloud platforms (e.g., Amazon EC2 [1] and Google GCP [13]). Finally, we evaluate our

solution through extensive experiments with both synthetic and real data. The results

confirm our solution can achieve practical response time (e.g., 6ms to audit a cloud of

100,000 VMs) and significant improvement over existing proactive approaches (e.g.,

about 50% faster).

3

P1E1 E2Session N

Session N+1

Session N+2

…
..

Session N+M

Runtime VerificationCritical Events

Background

Pre-computation

Proactive Solutions:

Foreground

Proactive Verification

Traditional Runtime Verification:

Ses

Existing Solutions

Manually identifying static

patterns based on cloud design

Sessions Events
Security

Properties

E1 E2 P2

P3

P4

E3 E4 E5

E3 E6 E7

LeaPS

Automatically learning the dynamic

patterns from event sequences

aPS

Fig. 1: Identifying the main limitations of both traditional runtime verification and

proactive verification solutions and positioning our solution.

In summary, our main contributions are threefold.

– To the best of our knowledge, this is the first learning-based, probabilistic ap-

proach to proactive security auditing in clouds. First, our probabilistic dependency

model allows handling the uncertainty that is inherent to runtime events. Second,

our learning-based methodology eliminates the need for impractical manual efforts

required by other proactive solutions.

– Unlike most learning-based security solutions, since we are not relying on learning

techniques to detect abnormal behaviors, we avoid the well-known limitations of

high false positives rates; any inaccuracy in the learning results would only affect

the efficiency, as will be demonstrated through experiments later in the paper. We

believe this idea of leveraging learning for efficiency, instead of security, may be

adapted to benefit other security solutions.

– As demonstrated by our implementation and experimental results, the proposed

system, LeaPS, provides an automated, efficient, and scalable solution for different

cloud platforms to increase their transparency and accountability to tenants.

The remainder of the paper is organized as follows. Section 2 describes the threat

model and the dependency models. Section 3 details our methodology. Section 4 pro-

vides the implementation details and experimental results. Section 5 discusses several

aspects of our approach. Section 6 reviews related works. Section 7 concludes the paper.

2 Models

In this section, we describe the threat model and define our dependency model.

2.1 Threat Model

We assume that the cloud infrastructure management systems i) may have implemen-

tation flaws, misconfigurations and vulnerabilities that can be potentially exploited to

4

violate security properties specified by the cloud tenants, and ii) may be trusted for the

integrity of the API calls, event notifications, logs and database records (existing tech-

niques on trusted computing may be applied to establish a chain of trust from TPM chips

embedded inside the cloud hardware, e.g., [3, 21]). Though our framework may assist

to avoid any violation of specified security properties due to either misconfigurations or

exploits of vulnerabilities, our focus is not to detect specific attacks or intrusions. We

focus on attacks directed through the cloud management interfaces (e.g., CLI, GUI),

and any violation bypassing such interfaces is beyond the scope of this work. We as-

sume a comprehensive list of critical events are provided upon which the accuracy of

our auditing solution depends (we provide a guideline on identifying critical events in

Appendix A). Our proactive solution mainly targets certain security properties which

would require a sequence of operations. To make our discussions more concrete, the

following shows an example of in-scope threats based on a real vulnerability.

VMA1 VMA2 VMA3 VMA3 VMB1 VMB2 VMB3 VMB3

VMB1: 1.10.0.7 Tenant BVMA1: 1.10.1.117 Tenant A

SGA1 SGA2 SGA3 SGA4 SGB1 SGB2 SGB3 SGB4

Virtual SwitchVirtual Switch

Security Group A1
Allow src 1.10.0.7

(requested to be deleted)

Allow src 10.0.0.12

 …..

Security Group B1

Allow src 1.10.1.117

Allow src 19.0.0.30

 …..

Virtual network 101
Virtual network 103
Virtual network 207
Virtual network 205

Fig. 2: An exploit of a vulnerability in OpenStack [31], leading to bypassing the security

group mechanism.

Running Example. A real world vulnerability in OpenStack1, CVE-2015-7713 [31],

can be exploited to bypass security group rules (which are fine-grained, distributed se-

curity mechanisms in several cloud platforms including Amazon EC2, Microsoft Azure

and OpenStack to ensure isolation between instances). Figure 2 shows a potential attack

scenario exploiting this vulnerability. The pre-requisite steps of this scenario are to cre-

ate VMA1 and VMB1 (step 1), create security groups A1 and B1 with two rules (i.e.,

allow 1.10.0.7 and allow 1.10.1.117) (step 2), and start those VMs (step 3). Next, when

Tenant A tries to delete one of the security rules (e.g., allow 1.10.0.7) (step 4), the rule

is not removed from the security group of the active VMA1 due to the vulnerability. As

a result, VMB1 is still able to reach VMA1 even though Tenant A intends to filter out

that traffic. According to the vulnerability description, the security group bypass viola-

tion occurs only if this specific sequence of events (steps 1-4) happens in the mentioned

order (namely, event sequence). In the next section, we present our dependency model

and how it allows capturing rich and dynamic patterns of event sequences in the cloud.

2.2 The Dependency Model

In this section, we first demonstrate our dependency model through an example and then

formally define the model. The model will be the foundation of our proactive auditing

solution (detailed in Section 3).

1 OpenStack [33] is a popular open-source cloud infrastructure management platform.

5

Example 1. Figure 3 shows an example of a dependency model, where nodes represent

different event types in cloud and edges represent transitions between event types. For

example, nodes create VM and create security group represent the corresponding event

types, and the edge from create VM to create security group indicates the likely order of

occurrence of those event types. The label of this edge, 0.625, means 62.5% of the times

an instance of the create VM event type will be immediately followed by an instance of

the create security group event type.

Create

Security

Group

Delete VM Start VM

Stop VM

Delete

Security

Group Rule

Add

Security

Group Rule

Create VM

1.0

0.5

0.125 0.625 0.25

0.667

0.333

0.125

0.125 0.25

Critical Event

P

Dependency

Relationship

Event Type

Legend

The probability of

the transition

P

Fig. 3: An example dependency model represented as a Bayesian network.

Our objective is to automatically construct such a model from logs in clouds. As

an example, the following shows an excerpt of the event types event-type and historical

event sequences hist for four days related to the running example of Section 2.1.

– event-type = {create VM (CV), create security group (CSG), start VM (SV), delete

security group rule (DSG)}; and

– hist = {day 1 : CV , CSG, SV ; day 2 : CSG, SV ; day 3 : CSG, DSG; day 4 : CV ,

DSG}, where the order of event instances in a sequence indicates the actual order

of occurrences.

The dependency model shown in Figure 3 may be extracted from such data (note

above we only show an excerpt of the data needed to construct the complete model,

due to space limitations). For instance, in hist, CV has three immediate successors

(i.e., CSG, SV , DSG), and their probabilities can be calculated as P(CSG|CV) = 0.5,

P(SV |CV) = 0.5 and P(DSG|CV) = 0.5.

As demonstrated in the above example, Bayesian network [36] suits our needs for

capturing probabilistic patterns of dependencies between events types. A Bayesian net-

work is a probabilistic graphical model that represents a set of random variables as

nodes and their conditional dependencies in the form of a directed acyclic graph. We

choose Bayesian network to represent our dependency model for the following rea-

sons. Firstly, the event types in cloud and their precedence dependencies can naturally

be represented as nodes (random variables) and edges (conditional dependencies) of a

Bayesian network. Secondly, the need of our approach for learning the conditional de-

pendencies can be easily implemented as parameter learning in Bayesian network. For

6

instance, in Figure 3, using the Bayes’ theorem we can calculate the probability for an

instance of add security group rule to occur after observing an instance of create VM

to be 0.52. More formally, the following defines our dependency model.

Definition 1. Given a list of event types Event-type and the log of historical events

hist, the dependency model is defined as a Bayesian network B = (G,θ), where G is a

DAG in which each node corresponds to an event type in event-type, and each directed

edge between two nodes indicates the first node would immediately precede the other

in some event sequences in hist whose probability is part of the list of parameters θ .

We say a dependency exists between any two event types if their corresponding

nodes are connected by an edge in the dependency model, and we say they are not

dependent, otherwise. We assume a subset of the leaf nodes in the dependency model

are given as critical events that might breach some given security properties.

3 LeaPS Auditing System

This section presents our learning-based proactive security auditing system (LeaPS).

3.1 Overview

We briefly describe the auditing process of LeaPS as follows. First, it builds offline a

dependency model capturing the probabilistic patterns of event type sequences in the

form of a Bayesian network by learning from the runtime event instances captured in

cloud event logs. Then, once the model is constructed, it is used by the online mod-

ules in order to decide, based on the current observed event instances, the most likely

next critical event to occur. This would trigger the proactive modules of our auditing

system to pre-compute the required conditions that should be verified, when the critical

event actually occurs. We iterate on these tasks to incrementally pre-compute for other

likely critical events based on the decreasing order of their conditional probabilities

in the model. Once one of these critical events actually occurs, we simply verify the

parameters of the events with respect to the pre-computed conditions of that event.

Tenant Inputs
(e.g., securtiy

properties, critical
events)

Verification
Tool

Verification
Requests

Results
LeaPS

Inputs & Results
Repository Pre-Computing

Module

Feedback
Module

Learning
Module

Likelihood
Evaluator

Decision
Cloud

Logs

Event -
Instances

Fig. 4: An overview of LeaPS auditing approach.

Figure 4 shows an overview of LeaPS. LeaPS contains four major modules: learn-

ing, pre-computing, likelihood evaluator and feedback. The learning module is mainly

responsible for conducting the learning of the probabilistic dependency model. The

likelihood evaluator basically triggers the pre-computation based on the model. The

pre-computing module prepares the ground for the runtime verification. At runtime, a

light-weight verification tool [25], which basically executes queries in the pre-computed

7

results, is leveraged for the verification purpose. Based on the verification result, LeaPS

provides a decision on the intercepted critical event instance to the tenant. The feedback

module provides feedbacks to different modules (e.g., learning module) to improve the

performance of proactive auditing. In LeaPS, the data transfer between modules is per-

formed through a repository. In the following, we detail each module in LeaPS.

3.2 Learning Module

The major steps of this module are: processing logs and learning dependency models.

Log Processor. The event logs in the cloud are used to learn the dependencies between

different event types. However, log files generated by the existing cloud platforms are

not suitable to be directly fed into the learning engine, as user events are generally

mixed up with many other system-initiated events. Furthermore, logs usually contain

many implementation specific details (e.g., platform-specific APIs). Therefore, the log

processor is responsible for eliminating such system-initiated events and to map the

relevant events into implementation-independent event types (more details will be pro-

vided in Section 5). Also, the log processor groups event sequences based on their dates

(i.e., each group of event sequences for each day), and generates inputs (in a specific

format) to the learning engine. Table 1 shows examples of OpenStack log entries and

the output format of processed logs in LeaPS.

OpenStack Log Entry Output Format of LeaPS

[01/Apr/2017:10:55:41 -0400] "POST /v2/servers HTTP/1.1" Create VM

[01/Apr/2017:11:00:45 -0400] "POST /v2/os-security-groups HTTP/1.1" Create security group

[01/Apr/2017:11:01:15 -0400] "GET /v2/os-security-groups HTTP/1.1" Eliminated

Table 1: Examples of OpenStack logs and output format of processed logs in LeaPS.

Learning Engine. The next step is to learn the probabilistic dependency model from the

sequences of event instances in the processed logs. To this end, we choose the parameter

learning technique in Bayesian network [30, 15, 36] (this choice has been justified in

Section 2.2). We now first demonstrate the learning steps through an example, and then

provide further details.

Example 2. Figure 5 shows the dependency model of Figure 3 with the outcomes of dif-

ferent learning steps as the labels of edges. The first learning step is to define the priori,

where the nodes represent the set of event types received as input, and the edges repre-

sent possible transitions from an event type, e.g., from create VM to delete VM, start VM

and create security group. Then, P(DV |CV), P(CSG|CV), P(SV |CV) and other condi-

tional probabilities (between immediate adjacent nodes in the model) are the parame-

ters; all parameters are initialized with equal probabilities. For instance, we use 0.33 to

label each of the three outgoing edges from the create VM node. The second learning

step is to use the historical data to train the model. For instance, the second values in

the labels of the edges of Figure 5 are learned from the processed logs obtained from

the log processor. The third values in the labels of Figure 5 represent an incremental

update of the learned model using the feedback from a sequence of runtime events.

This learning mechanism mainly takes two inputs: the structure of the model with

its parameters, and the historical data. The structure of the model, meaning the nodes

8

Create

Security

Group

Delete VM Start VM

Stop VM

Delete

Security

Group

Rule

Add

Security

Group

Rule

0.33 → 0.125 →0.111

Create VM

0.33 → 0.625 →0.667 0.33 → 0.25 →0.222

0.5 → 0.667 →0.75

0.5 → 0.333 →0.25

0.25 → 0.125 →0.111

0.25 → 0.125 →0.111

0.25 → 05 →0.5550.25 → 0.25 →0.222

1.0

Event Type

Critical Event

P1 (Priori) → P2 (After Initial Learning)

→ P3 (After Continuous Learning)

Dependency

Relationship

Legend

Pi

Fig. 5: The outcomes of three learning steps for the dependency model.

and edges in a Bayesian network, is first derived from the set of event types received

as input. To this end, we provide a guideline on identifying such a set of event types

in Section 5. Initially, the system considers every possible edge between nodes (and

eventually delete the edges with probability 0), and conditional probabilities between

immediate adjacent nodes (measured as the conditional probability) are chosen as the

parameters of the model. We further sparse the structure into smaller groups based on

different security properties (the structure in Figure 5 is one of the examples). The

processed logs containing sequences of event instances serve as the input data to the

learning engine for learning the parameters. Finally, the parameter learning in Bayesian

network is performed as follows: i) defining a priori (with the structure and initialized

parameters of the model), ii) training the initial model based on the historical data, and

iii) continuously updating the learned model based on incremental feedbacks.

3.3 Likelihood Evaluator

The likelihood evaluator is mainly responsible for triggering the pre-computation. To

this end, the evaluator first takes the learned dependency model as input, and derives

offline all indirect dependency relationships for each node. Based on these depen-

dency relationships, the evaluator identifies the event types for which an immediate pre-

computation is required. Additionally, at runtime the evaluator matches the intercepted

event instance with the event type, and decides whether to trigger a pre-computation

or verification request.2 The data manipulated by the likelihood evaluator based on the

dependency model will be described using the following example.

Example 3. Figure 6 shows an excerpt of the steps and their outputs in the likelihood

evaluator module. In this figure, the Property-CE-Threshold table maps the no bypass

of security group property [8] with its critical events (i.e., add security group rule and

delete security group rule) and corresponding thresholds (i.e., 0.5 and 0.6). Then, from

the conditional probability in the model, the evaluator infers conditional probabilities

of all possible successors (both direct and indirect), and stores in the Conditional-

Probability table. The conditional probability for ASG having CV (P(ASG/CV)) is 0.52

2 This is not to respond to the event as in incident response, but to prepare for the auditing, and

the incident response following an auditing result is out of scope of this paper.

9

Pre-compute_Event Properties

 Create VM (CV) No bypass

 Start VM (SV) No bypass

 ……….

Property-PEDependency model

O2

O3 O6

O8 O5 O4

0.125

O1

0.625

0.25

1.0

0.250.5

0.125

0.125

0.333

 Property Critical Event Threshold

No bypass add SG rule (ASG) 0.5

No bypass delete SG rule (DSG) 0.6

Property-CE-Threshold

 ASG=1 DSG=1 SV=1 CSG=1

CV=1 0.52 0.12 0.68 0.667

Conditional Probability Table

Fig. 6: An excerpt of the likelihood evaluator steps and their outputs.

in the Conditional-Probability table in Figure 6. Next, this value is compared with the

thresholds of the no bypass property in the Property-CE-thresholds table. As the re-

ported probability is higher, the CV event type is stored in the Property-PE table so that

for the next CV event instance, the evaluator triggers a pre-computation.

3.4 Pre-Computing Module

The purpose of the pre-computing module is to prepare the ground for the runtime ver-

ification. In this paper, we mainly discuss watchlist-based pre-computation [25]; where

watchlist is a list containing all allowed parameters for different critical events. The

specification of contents in a watchlist is defined by the cloud tenant, and is stored in

the Property-WL table. We assume that at the time LeaPS is launched, we initialize sev-

eral tables based on the cloud context and tenant inputs. For instance, inputs including

the list of security properties, their corresponding critical events, and the specification

of contents in watchlists are first stored in the Property-WL and Property-CE-Threshold

tables. The watchlists are also populated from the current cloud context. We maintain

a watchlist for each security property. Afterwards, each time the pre-computation is

triggered by the likelihood evaluator, this module incrementally updates the watchlist

based on the changes applied to the cloud in the mean time. The main functionality of

the pre-computing module is described using the following example.

Updated Watchlist

Pre-Compute_Event Properties

 Create VM (CV) No bypass

 Start VM (SV) No bypass

Property-PE

 Property Watchlist content

No bypass Instances allow SG update

Property-WL

Event sequences

1 Create VM (1733)

2 Add security group rule (…, 1733)

3 Start VM (1733)

4 Delete security group rule (…, 1733)

No bypass of security group

1

3

Instance-ID

1788

2537

1733

 …

1733

Fig. 7: Showing steps of the updating watchlist for a sample event sequences.

Example 4. Left side of Figure 7 shows two inputs (Property-WL and Property-PE ta-

bles) to the pre-computing module. We now simulate a sequence of intercepted events

(shown in the middle box of the figure) and depict the evolution of a watchlist for the

no bypass property (right side box of the figure). (1) We intercept the create VM 1733

event instance, identify the event in the Property-PE table, and add VM 1733 to the

watchlist without blocking it. (2) After intercepting the add security group rule (...,

1733) event instance, we identify that this is a critical event. Therefore, we verify with

the watchlist keeping the operation blocked, find that VM 1733 is in the watchlist, and

10

hence we recommend to allow this operation. (3) We intercept start VM 1733 operation

and identify the event in the Property-PE. VM 1733 is then removed from the watch-

list, as the VM is active. (4) After intercepting the delete security group rule (..., 1733)

event instance, we identify that this is a critical event. Therefore, we verify with the

watchlist keeping the event instance blocked, find that VM 1733 is not in the watchlist,

and hence, identify the current situation as a violation of the no bypass property.

3.5 Feedback Module

The main purposes of the feedback module are: i) to provide feedback to the learning

engine, and ii) to provide feedback to the tenant on thresholds for different properties.

These purposes are achieved by three steps: storing verification results in the repository,

analyzing the results, and providing the necessary feedback to corresponding modules.

Firstly, the feedback module stores the verification results in the repository. Addi-

tionally, this module stores the verification result as hit or miss after each critical event,

where the hit means the requested parameter is present in the watchlist (meaning no

violation), and the miss means the requested parameter is not found in the watchlist

(meaning a violation). Additionally, we store the sequence of events for a particular

time period (e.g., one day) in a similar format as the processed log described in the

learning module. In the next step, we analyze these results along with the models to

prepare a feedback for different modules. From the sequence of events, the analyzer

identifies whether the pattern is already observed or is a new trend, and accordingly

updater prepares a feedback for the learning engine either to fine-tune the parameter

or to capture a new trend. From the verification results, the analyzer counts the num-

ber of miss for different properties to provide a feedback to the user on their choice

of thresholds (stored in the Property-CE-Threshold table) for different properties. For

more frequently violated properties, the threshold might be set to a lower probability to

trigger the pre-computation earlier.

4 Application to OpenStack

This section describes LeaPS implementation, and presents our experimental results.

4.1 Implementation

In this section, we detail the LeaPS implementation and its integration into OpenStack

along with the architecture of LeaPS (Figure 8) and a detailed algorithm (Algorithm 1).

Background. OpenStack [33] is an open-source cloud management platform in which

Neutron is its network component, Nova is its compute component, and Ceilometer is its

telemetry for receiving event histories from other components. In this work, we collect

Ceilometer logs to later use for learning the dependencies. For learning, we leverage

SMILE & GeNIe [2], which is a popular tool for modeling and learning with Bayesian

network. SMILE & GeNIe uses the EM algorithm [9, 20] for parameter learning.

11
DecisionNova

Neutron

Keystone

Ceilometer

Tenant Inputs

Watchlist Contents

Admin
Critical Events and Thresholds

Security Properties

Learning

Engine

(e.g., GeNIe)

Feedback Module

Result Analyzer

Updater

Pre-Computing Module

LeaPS

Learning Module

Security

Properties

Critical

Events

OpenStack

Logs

Verification

Results

&
Sequence of

Operations

Learned

Model

Cloud

Verification Tool

(e.g., PVSC [25])

Result

Repository

Conditional Probability Table Property-PE Table

Initializer & Updater

Watchlists

Log Processor

Processed Logs

Input Files to Learning Engine Property-PE Table*

Feedbacks

Verification Requests Update Requests

Likelihood Evaluator
Model

Feedback

Trigger

Pre-

Computation

Results

Fig. 8: A high-level architecture of LeaPS auditing system.

Integration to OpenStack. Figure 8 shows a high-level architecture of LeaPS. The

learning module is responsible for processing OpenStack logs, preparing inputs for Ge-

NIe, and conducting the learning process using GeNIe. LeaPS first automatically col-

lects logs from different OpenStack components, e.g., Nova, Neutron, Ceilometer, etc.

Then, these logs are converted to the input format (in .dat) of GeNIe. Additionally, the

structure of the network and its parameters are provided to GeNIe. We intercept events

based on the audit middleware [34] in Keystone, which was previously supported by Py-

CADF [7], to intercept Neutron and Nova events by enabling the audit middleware and

configuring filters. The pre-computing module stores its results into a MySQL database,

and the feedback module is implemented in Python. Those modules work together to

support the methodology described in Section 3, as detailed in Algorithm 1.

Algorithm 1: LeaPS Auditing (CloudOS, Properties, critical-events, WL)

1: procedure LEARN(CloudOS, Proeprty-CE-T hreshold)

2: for each component ci ∈ CloudOS do

3: processedLogs = processLog(ci.logs)

4: for each property pi ∈ Properties do

5: structure = buildStructure(pi, critical-events)

6: learnedModels = learnModel(structure, processedLogs)

7: procedure EVALUATE-LIKELIHOOD(CloudOS, WL, Property-PE, Event-Operation)

8: for each event type ei ∈ CloudOS.event do

9: Conditional-Probability-Table = inferLikelihood(ei , learnedModels)

10: if checkThreshold(Conditional-Probability-Table,Property-CE-T hreshold) then

11: insertProperty-PE(ei,Property-CE-T hreshold.property)

12: interceptedEvent = intercept-and-match(CloudOS, Event-Operation)

13: if interceptedEvent ∈ critical −events then

14: decision = verifyWL(WL, interceptedEvent.params)

15: return decision

16: else if interceptedEvent ∈ Property-PE then

12

17: Pre-compute-update(W L, property, interceptedEvent.params)

18: procedure PRE-COMPUTE-INITIALIZE(CloudOS, Property-W L)

19: for each property pi ∈ Properties do

20: W Li= initializeWatchlist(pi, Property-W L, CloudOS)

21: procedure PRE-COMPUTE-UPDATE(WL, property, parameters)

22: updateWatchlist(W L, property, parameters)

23: procedure FEEDBACK(Result, learnedModels)

24: storeResults(Result, learnedModels)

25: if analyzeSequence(Result.seq) = “new-trend” then

26: updateModel(Result.seq,‘new’)

27: else

28: updateModel(Result.seq,‘old’)

29: for each property pi ∈ Properties do

30: change-in-threshold[i] = analyzeDecision(Result.decision, pi)

LeaPS interacts with three external entities (i.e., tenant, cloud platform and the veri-

fication tool). Cloud tenants provide security properties, and their thresholds, specifica-

tion of watchlist contents and critical events to LeaPS. Then, OpenStack is responsible

for providing the logs from its different components. We also leverage a verification

tool [25], which verifies parameters of an intercepted critical event with the watchlists.

4.2 Experimental Results

In this section, we first describe the experiment settings, and then present LeaPS exper-

imental results with both synthetic and real data.

Experimental Settings. Our test cloud is based on OpenStack version Mitaka. There

are one controller node and up to 80 compute nodes, each having Intel i7 dual core

CPU and 2GB memory with the Ubuntu 16.04 server. Based on a recent survey [35]

on OpenStack, we simulated an environment with maximum 1,000 tenants and 100,000

VMs. We conduct the experiment for 10 different datasets varying the number of tenants

from 100 to 1,000 while keeping the number of VMs fixed to 1,000 per tenant. For

learning, we use GeNIe academic version 2.1. We repeat each experiment 100 times.

Results. The objective of the first set of experiments is to demonstrate the time ef-

ficiency of LeaPS. Figure 9(a) shows the time in milliseconds required by LeaPS to

verify the no bypass of security group [8] and no cross-tenant port [18] properties. Our

experiment shows the time for both properties remains almost the same for different

datasets, because most operations during this step are database queries; SQL queries

for our different datasets almost take the same time. Figure 9(b) shows the time (in sec-

onds) required by GeNIe to learn the model while we vary the number of events from

2,000 to 10,000. In Figure 10(a), we measure the time required for different steps of the

offline pre-computing for the no bypass property. The total time (including the time of

incrementally updating WL and updating PE) required for the largest dataset is about

eight seconds which justifies performing the pre-computation proactively. A one-time

13

0 20,000 40,000 60,000 80,000 100,000
0

2

4

6

of VMs

T
im

e
(m

s)

0 2,000 4,000 6,000 8,000 10,000
0

2

4

6

8

of Events

T
im

e
(s

)

no bypass of security group property no cross−tenant property

(a) Online Verification Time (b) Offline Learning Time

Fig. 9: Showing time required for the (a) online runtime verification by varying the num-

ber of VMs and (b) offline learning process by varying the number of event instances in

the logs for the no bypass and no cross-tenant properties. The verification time includes

the time to perform interception, matching of event type and checking in the watchlist.

initialization of pre-computation is performed in 50 seconds for the largest dataset. Fig-

ure 10(b) shows the time in seconds required to update the model and to update the list

of pre-compute events. In total, LeaPS requires less than 3.5 seconds for this step.

0 20,000 40,000 60,000 80,000 100,000
0

2

4

6

8

of VMs

T
im

e
(s

)

updating CPT updating PE updating WL total

0 20,000 40,000 60,000 80,000 100,000
0

2

4

6

8

of VMs

T
im

e
(s

)

(a) Offline Pre−Computation Time (b) Offline Feedback Time

CPT: Conditional Probability Table
PE: Pre−Compute Event
WL: Watchlist

Fig. 10: Showing time required in seconds for the (a) pre-computation and (b) feedback

modules considering the no bypass property by varying the number of instances.

In the second set of experiments, we demonstrate that how much LeaPS may be

affected from a wrong prediction resulted from inaccurate learning. For this experiment,

we simulate different prediction error rates (PER) of a learning engine ranging from 0 to

0.4 on the likelihood evaluator procedure in Algorithm 1. Figure 11(a) shows in seconds

the additional delay in the pre-computation caused by the different PER of a learning

engine for three different number of VMs. Note that, the pre-computation in LeaPS is

an offline step. The delay caused by 40% PER for up to 100k VMs remains under two

seconds, which is still acceptable for most applications.

In the final set of experiments, we compare LeaPS with a baseline approach (similar

to [25]), where all possible paths are considered with equal weight, and number of

steps in the model is the deciding factor for the pre-computation. Figure 11(b) shows

the pre-computation time for both approaches in the average case, and LeaPS performs

about 50% faster than the baseline approach (the main reason is that, in contrast to the

baseline, LeaPS avoids the pre-computation for half of the critical events on average

14

by leveraging the probabilistic dependency model). For this experiment, we choose the

threshold, N-th (an input to the baseline), as two, and the number of security properties

as four. Increasing both the value of N-th and the number of properties increase the

pre-computation overhead for the baseline. Note that a longer pre-computation time

eventually affects the response time of a proactive auditing.

0 20,000 40,000 60,000 80,000 100,000
0

10

20

30

40

of VMs

T
im

e
(s

)

Baseline LeaPS

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2

Simulated PER

A
d

d
it

io
n

al
 D

el
ay

 (
s)

100k VMs 60k VMs 20k VMs

(a) (b)

Fig. 11: (a) The additional delay (in seconds) in LeaPS pre-computation time caused by

different simulated prediction error rates (PER) of a learning tool, (b) the comparison

(in seconds) between LeaPS and a baseline approach.

Experiment with Real Cloud. We further test LeaPS using data collected from a real

community cloud hosted at one of the largest telecommunications vendors. The main

objective is to evaluate the applicability of our approach in a real cloud environment. To

this end, we analyze the management logs (sized more than 1.6 GB text-based logs) and

extract 128,264 relevant log entries for the period of more than 500 days. As Ceilometer

was not configured in this cloud, we utilize Nova and Neutron logs which increases the

log processing efforts significantly. Table 2 summarizes the obtained results. We first

measure the time efficiency of LeaPS. Note that the results obtained are shorter due

to the smaller size of the community cloud compared to our much larger simulated

environment. Furthermore, we measure the prediction error rate (PER) of the learning

tool using another dataset (for 5 days) of this cloud. For the 3.4% of PER, LeaPS affects

maximum 9.62ms additional delay in its pre-computation for the measured properties.

Properties Learning Pre-Compute Feedback Verification PER Delay*

No bypass 7.2s 424ms 327ms 5.2ms 0.034 9.62ms

No cross-tenant 5.97s 419ms 315ms 5ms 0.034 9.513ms

Table 2: Summary of the experimental results with real data. The reported delay is in

the pre-computation of LeaPS due to the prediction error (PER) of the learning engine.

5 Discussions

Adapting to Other Cloud Platforms. LeaPS is designed to work with most popular

cloud platforms (e.g., OpenStack [33], Amazon EC2 [1], Google GCP [13], Microsoft

Azure [28]) with a minimal one-time effort. Once a mapping of the APIs from these

15

platforms to the LeaPS event types are provided, rest of the steps in LeaPS are platform-

agnostic. Table 3 enlists some examples of such mappings.

LeaPS Event Type OpenStack [33] Amazon EC2-VPC [1] Google GCP [13] Microsoft Azure [28]

create VM POST /servers aws opsworks –region

create-instance

gcloud compute in-

stances create

az vm create l

delete VM DELETE /servers aws opsworks –region

delete-instance –instance-id

gcloud compute in-

stances delete

az vm delete

update VM PUT /servers aws opsworks –region

update-instance –instance-id

gcloud compute in-

stances add-tags

az vm update

create security group POST /v2.0/security-groups aws ec2 create-security-

group

N/A az network nsg create

delete security group DELETE /v2.0/security-

groups/{security_group_id}

aws ec2 delete-security-

group –group-name {name}

N/A az network nsg delete

Table 3: Mapping event APIs of different cloud platforms to LeaPS event types.

Possibility of a DoS Attack against LeaPS. To exploit the fact that a wrong prediction

may result a delay in the LeaPS pre-computation, an attacker may conduct a DoS attack

to bias the learning model step by generating fake events and hence to exhaust LeaPS

pre-computation. However, Figure 11(a) shows that an attacker requires to inject sig-

nificantly large amount (e.g., 40% error rate) of biased event instances to even cause a

delay of two seconds. Moreover, biasing the model is non-trivial unless the attacker has

prior knowledge on patterns of legitimate event sequences. Our future work will further

investigate this possibility and its countermeasures.

Granularity of Learning. The above-mentioned learning can be performed for differ-

ent levels (e.g., cloud level, tenant level and user level). The cloud level learning cap-

tures business nature only for companies using a private cloud. The tenant level learning

depicts better profile of each business or tenant. This level of learning is mainly suit-

able for companies following process management strictly where users mainly follow

the steps of processes. In contrast, the user level learning is suitable for smaller organi-

zations (where no process management is followed) with less users (e.g., admins) who

perform cloud events. Conversely, if a company follows process management, user level

learning will be an overkill, as different users would exhibit very similar patterns.

6 Related Work

Table 4 summarizes the comparison between existing works and LeaPS. The first and

second columns enlist existing works and their verification methods. The next two

columns compare the coverage such as supported environment (cloud or non-cloud)

and main objectives (auditing or anomaly detection). The next columns compare these

works according to different features, i.e., proactiveness, automated and dynamic de-

pendency capturing, cloud-platform-agnostic and probabilistic dependency.

In summary, LeaPS mainly differs from the state-of-the-art works as follows. Firstly,

LeaPS is the first proactive auditing approach which captures the dependency automat-

ically from the patterns of event sequences. Secondly, LeaPS is the only learning-based

work which aims at improving proactive auditing and not (directly) at anomaly detec-

tion. Thirdly, the dynamic dependency model allows LeaPS to evolve over time to adapt

with new trends. Finally, the LeaPS methodology is cloud-platform agnostic.

16

Proposals Methods
Coverage Features

Environment Objective Proactive Automatic Dynamic Agnostic Probabilistic

Doelitzscher et al. [10] Custom Algorithm Cloud Auditing - N/A • • N/A

Ullah et al. [40] Custom Algorithm Cloud Auditing - N/A - - N/A

Majumdar et al. [26] CSP Solver Cloud Auditing - N/A - - N/A

Madi et al. [24] CSP Solver Cloud Auditing - N/A - - N/A

Jiang et al. [19] Regression Technique Non-cloud Anomaly Det. • • - N/A •
Solanas et al. [39] Classifiers Cloud Anomaly Det. - • - - •
Ligatti et al. [23] Model Checking Non-Cloud Auditing • N/A • N/A -

PVSC [25] Custom Algorithm Cloud Auditing • - - - -

Weatherman [6] Graph-theoretic Cloud Auditing • - • - -

Congress [32] Datalog Cloud Auditing • - - - -

LeaPS Custom + Bayesian Cloud Auditing • • • • •

Table 4: Comparing existing solutions with LeaPS. The symbols (•), (-) and N/A mean

supported, not supported and not applicable respectively.

Retroactive and Intercept-and-Check Auditing. Retroactive auditing approach (e.g.,

[24, 26, 41, 42, 40, 10] in the cloud is a traditional way to verify the compliance of differ-

ent components of a cloud. Unlike our proposal, those approaches can detect violations

only after they occur, which may expose the system to high risks. Existing intercept-

and-check approaches (e.g., [6, 32]) perform major verification tasks while holding the

event instances blocked, and usually cause significant delay to a user request. Unlike

those works, LeaPS provides a proactive auditing approach.

Proactive Auditing. Proactive security analysis in the cloud is comparatively a new

domain with fewer works (e.g., [6, 25, 43]). Weatherman [6] verifies security policies

on a future change plan in a virtualized infrastructure using the graph-based model

proposed in [5, 4]. PVSC [25] proactively verifies security compliance by utilizing the

static patterns in dependency models. Both in Weatherman and PVSC, models are cap-

tured manually by expert knowledge. In contrast, this work adopts a learning-based ap-

proach to automatically derive the dependency model. Congress [32] is an OpenStack

project offering similar features as Weatherman. Foley et al. [12] proposes an alge-

bra for anomaly-free firewall policies for OpenStack. Many state-based formal models

(e.g., [38, 22, 23, 11] are proposed for program monitoring. Our work further expands

the proactive monitoring approach into cloud differing in scope and methodology.

Learning-based Detections. There are many learning-based security solutions

(e.g., [39, 14, 16, 19, 29, 17, 27]), which offer anomaly detection. Unlike above-

mentioned works, this paper proposes a totally different learning-based techniques to

facilitate the proactive auditing.

7 Conclusion

In this paper, we proposed LeaPS, a fully automated system leveraging the learning-

based techniques to accelerate the performance of a proactive auditing approach. We

integrated LeaPS to OpenStack, and evaluated the performance of LeaPS extensively

(using both synthetic and real data) which show LeaPS keeps the response time to a

practical level (e.g., about 6ms to verify 100,000 VMs), and improves the speed up sig-

nificantly (e.g., about 50%) over existing proactive approaches. As future work, we will

investigate the possibility of applying other learning techniques to further improve the

efficiency; we will also apply supervised learning to automate the process of identifying

critical events and security properties from logs.

17

References

1. Amazon. Amazon virtual private cloud. Available at: https://aws.amazon.com/vpc.

2. BayesFusion. GeNIe and SMILE. Available at: https://www.bayesfusion.com.

3. M. Bellare and B. Yee. Forward integrity for secure audit logs. Technical report, Citeseer,

1997.

4. S. Bleikertz, T. Groß, M. Schunter, and K. Eriksson. Automated information flow analysis

of virtualized infrastructures. In ESORICS, 2011.

5. S. Bleikertz, C. Vogel, and T. Groß. Cloud Radar: Near real-time detection of security failures

in dynamic virtualized infrastructures. In ACSAC, 2014.

6. S. Bleikertz, C. Vogel, T. Groß, and S. Mödersheim. Proactive security analysis of changes

in virtualized infrastructure. In ACSAC, 2015.

7. Cloud auditing data federation. PyCADF: A Python-based CADF library, 2015. Available

at: https://pypi.python.org/pypi/pycadf.

8. Cloud Security Alliance. Cloud control matrix CCM v3.0.1, 2014. Available at: https:

//cloudsecurityalliance.org/research/ccm/.

9. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data

via the em algorithm. Journal of the royal statistical society, 1977.

10. F. Doelitzscher, C. Fischer, D. Moskal, C. Reich, M. Knahl, and N. Clarke. Validating cloud

infrastructure changes by cloud audits. In IEEE SERVICES, 2012.

11. E. Dolzhenko, J. Ligatti, and S. Reddy. Modeling runtime enforcement with mandatory

results automata. International Journal of Information Security, 2014.

12. S. N. Foley and U. Neville. A firewall algebra for OpenStack. In IEEE CNS, 2015.

13. Google. Google cloud platform. Available at: https://cloud.google.com.

14. S. Guha. Attack Detection for Cyber Systems and Probabilistic State Estimation in Partially

Observable Cyber Environments. PhD thesis, Arizona State University, 2016.

15. D. Heckerman. A tutorial on learning with Bayesian networks. In Learning in graphical

models. 1998.

16. R. A. Hemmat and A. Hafid. SLA violation prediction in cloud computing: A machine

learning perspective. Technical report, 2016.

17. H. Holm, K. Shahzad, M. Buschle, and M. Ekstedt. P2 CySeMoL: Predictive, probabilistic

cyber security modeling language. IEEE TDSC, 2015.

18. ISO Std IEC. ISO 27017. Information technology- Security techniques- Code of practice for

information security controls based on ISO/IEC 27002 for cloud services (DRAFT), http:

// www. iso27001security. com/ html/ 27017. html , 2012.

19. Y. Jiang, E. Z. Zhang, K. Tian, F. Mao, M. Gethers, X. Shen, and Y. Gao. Exploiting statistical

correlations for proactive prediction of program behaviors. In Proceedings of the 8th annual

IEEE/ACM international symposium on Code generation and optimization. ACM, 2010.

20. S. L. Lauritzen. The EM algorithm for graphical association models with missing data.

Computational Statistics & Data Analysis, 19(2):191–201, 1995.

21. M. Li, W. Zang, K. Bai, M. Yu, and P. Liu. MyCloud: supporting user-configured privacy

protection in cloud computing. In ACSAC, 2013.

22. J. Ligatti, L. Bauer, and D. Walker. Run-time enforcement of nonsafety policies. ACM

TISSEC, 2009.

23. J. Ligatti and S. Reddy. A theory of runtime enforcement, with results. In ESORICS, 2010.

24. T. Madi, S. Majumdar, Y. Wang, Y. Jarraya, M. Pourzandi, and L. Wang. Auditing security

compliance of the virtualized infrastructure in the cloud: Application to OpenStack. In ACM

CODASPY, 2016.

25. S. Majumdar, Y. Jarraya, T. Madi, A. Alimohammadifar, M. Pourzandi, L. Wang, and

M. Debbabi. Proactive verification of security compliance for clouds through pre-

computation: Application to OpenStack. In ESORICS, 2016.

18

26. S. Majumdar, T. Madi, Y. Wang, Y. Jarraya, M. Pourzandi, L. Wang, and M. Debbabi. Se-

curity compliance auditing of identity and access management in the cloud: Application to

OpenStack. In IEEE CloudCom, 2015.

27. S. Mehnaz and E. Bertino. Ghostbuster: A fine-grained approach for anomaly detection in

file system accesses. In ACM CODASPY, 2017.

28. Microsoft. Microsoft Azure virtual network. Available at: https://azure.microsoft.

com.

29. R. Mitchell and R. Chen. Behavior rule specification-based intrusion detection for safety

critical medical cyber physical systems. IEEE TDSC, 2015.

30. K. Murphy. A brief introduction to graphical models and bayesian networks. 1998.

31. OpenStack. Nova network security group changes are not applied to running instances, 2015.

Available at: https://security.openstack.org/ossa/OSSA-2015-021.html.

32. OpenStack. OpenStack Congress, 2015. Available at: https://wiki.openstack.org/

wiki/Congress.

33. OpenStack. OpenStack open source cloud computing software, 2015. Available at: http:

//www.openstack.org.

34. OpenStack. OpenStack audit middleware, 2016. Available at: http://docs.openstack.

org/developer/keystonemiddleware/audit.html.

35. OpenStack. OpenStack user survey, 2016. Available at: https://www.openstack.org/

assets/survey/October2016SurveyReport.pdf.

36. J. Pearl. Causality: Models, reasoning and inference, 2000.

37. K. Ren, C. Wang, and Q. Wang. Security challenges for the public cloud. IEEE Internet

Computing, (1):69–73, 2012.

38. F. B. Schneider. Enforceable security policies. ACM TISSEC, 2000.

39. M. Solanas, J. Hernandez-Castro, and D. Dutta. Detecting fraudulent activity in a cloud

using privacy-friendly data aggregates. Technical report, arXiv preprint, 2014.

40. K. Ullah, A. Ahmed, and J. Ylitalo. Towards building an automated security compliance tool

for the cloud. In IEEE TrustCom’13.

41. C. Wang, S. S. Chow, Q. Wang, K. Ren, and W. Lou. Privacy-preserving public auditing for

secure cloud storage. IEEE TC, 2013.

42. Y. Wang, Q. Wu, B. Qin, W. Shi, R. H. Deng, and J. Hu. Identity-based data outsourcing

with comprehensive auditing in clouds. IEEE TIFS, 2017.

43. S. S. Yau, A. B. Buduru, and V. Nagaraja. Protecting critical cloud infrastructures with

predictive capability. In IEEE CLOUD, 2015.

44. X. Zhu, S. Song, J. Wang, S. Y. Philip, and J. Sun. Matching heterogeneous events with

patterns. In IEEE ICDE, 2014.

A A Guideline to Choose LeaPS Inputs

We provide a guideline on identifying different inputs of LeaPS. Identifying sets of

event types as the input to the learning engine are described as follows: i) from the

property definition, we identify involved cloud components; ii) we enlist all event types

in a cloud platform involving those components; and iii) we identify the critical events

(which is already provided by the tenant) from the list, and further shortlist the event

types based on the attack scenario. The specification of watchlist is a LeaPS input from

the tenant. The specification of watchlist can be decided as follows: i) from the property

definition, the asset to keep safe is identified; ii) the objectives of a security property is

to be highlighted; and iii) from the attack scenario, the parameters for the watchlist for

each critical event is finalized.

