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Abstract. Since a key advantage of Software Defined Networks (SDN) is pro-

viding a logically centralized view of the network topology, the correctness of

such a view becomes critical for SDN applications to make the right management

decisions. However, recently discovered vulnerabilities in OpenFlow Discovery

Protocol (OFDP) show that malicious hosts and switches can poison the network

view of the SDN controller and consequently lead to more severe security at-

tacks, such as man-in-the-middle or denial of service. Existing solutions mostly

rely on passive techniques, which only work for known attacking methods. In this

paper, we propose a novel stealthy probing-based verification approach, namely,

SPV, to detect fake links regardless of the attacking methods used to fabricate

them. Specifically, SPV incrementally verifies legitimate links and detects fake

links by sending stealthy probing packets designed to be indistinguishable from

normal traffic. To illustrate the feasibility of our approach, we implement SPV

in an emulated SDN environment using Mininet and OpenDaylight. We further

evaluate the applicability and the performance of SPV based on a real SDN/cloud

topology. The experimental results show that SPV can respond in near real-time

(e.g., less than 120 milliseconds) in both real and emulated environments, which

makes SPV a scalable solution for large SDN networks.
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1 Introduction

The Software Defined Networks (SDN) paradigm is gaining momentum as a promising

solution with various benefits, such as increasing network resource utilization, simplify-

ing network management, and reducing operating cost [17, 21, 35]. As the central idea

of SDN, i.e., separating the network’s control and data planes, brings most of those ben-

efits, it also unavoidably empowers the SDN controllers and increases the dependence

of SDN applications on those controllers [21, 35]. Specifically, as the operating system

of an SDN network, the SDN controller is responsible for maintaining a logically cen-

tralized view of the network, which serves as the basis for many SDN applications to

make important network management decisions, such as routing, load balancing, fire-

walling, and monitoring [15]. The validity of such a view is thus critical for the proper

functionalities of the SDN applications, and SDN in general.



However, as the SDN controller discovers changes to its network view by sending

out special Link Layer Discovery Protocol (LLDP) packets, malicious switches or hosts

can easily poison such a view by either manipulating legitimate LLDP packets or in-

jecting fake LLDP packets. As evidenced by recently discovered vulnerabilities in the

OpenFlow Discovery Protocol (OFDP) [19], such attacks may take various forms de-

pending on the capabilities of attackers [4, 8, 10, 16, 33]. To make our discussions more

concrete, we first illustrate such attacks through an example.
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Fig. 1. Topology poisoning attacks in SDN

Motivating Example. Fig. 1 illustrates a simple SDN topology which includes two

malicious hosts H1 and H2, and a malicious switch S22. We first describe how the SDN

controller may discover its network view (i.e., the switches and their links illustrated as

solid lines in the figure) and how such a view may be poisoned through attacks.

– Legitimate topology discovery protocol. We show how a legitimate run of the

topology discovery protocol works to discover a newly added link between switches

S12 and S13. First, the controller sends an LLDP packet to all the switches. Each

switch is supposed to broadcast this packet to all its ports (except the port connected

to the controller). Therefore, switches S12 and S13 receive a copy of this packet

from each other, upon which they add their identity information to the packets and

return the packets to the controller. Based on those packets, the controller concludes

that there is a new link between the two switches S12 and S13.
– Attack 1: Relaying LLDP packets using hosts. According to the topology dis-

covery protocol, a host is supposed to ignore any LLDP packets broadcasted by the

switches. However, upon receiving every such packet from switch S13, a malicious

host H1 immediately sends it to an accomplice, host H2, through an out-of-band

channel. Host H2 then forwards the packet to switch S14, which, unaware of such

an ongoing attack, adds its identity information and returns the packet to the SDN

controller. Receiving such a packet from S14 tricks the SDN controller into adding

the fake (non-existent) link between S13 and S14 into its network view.
– Attack 2: Injecting fake LLDP packets. In this attack, upon receiving every

LLDP packet from switch S13, a malicious host H1 forges the packet to mas-

querade itself as switch S13, and sends the forged packet (using an out-of-band

channel) to switch S14. The SDN controller is again tricked into believing there

exists a link between S13 and S14.

2



– Attack 3: Relaying LLDP packets using switches. This attack involves a com-

promised switch 3, i.e., S22, to create a fake link between switches S23 and S24.

Instead of sending back to the controller, switch S22 forwards the LLDP packet

received from S23 to S24. Switch S24 returns this packet to the SDN controller,

which results in a fake link between S23 and S24 to be added.

By poisoning an SDN controller’s network view, those attacks may open doors to

more severe threats, such as man-in-the-middle and DoS attacks [15, 16, 19]. Most ex-

isting works [3, 5, 10, 16] rely on a passive approach that only works for known attack-

ing methods. For example, TopoGuard [16] is a powerful tool that can detect a wide

range of attacks on both hosts and links, and it detects the first two attacks above by

identifying compromised hosts for unexpectedly sending LLDP packets, and by au-

thenticating the LLDP packets, respectively. However, if the attacker changes his/her

methods, e.g., relaying legitimate LLDP packets for the first attack or sending forged

LLDP packets for the second from a host, whose connection with a switch is unknown

to TopoGuard, then he/she may easily evade the detection. Our key observation is that,

such a passive approach can be complemented with an active approach that detects a

fake link simply based on its non-existence, regardless of how such a link is fabricated.

In this paper, we propose the first active approach of sending probing packets in a

stealthy manner to incrementally verify legitimate links and identify fake links indepen-

dent of how a fake link is fabricated. Specifically, the probing packets are designed to

be stealthy in the sense that they are indistinguishable from normal traffic. We provide

detailed methodology and algorithms for both link verification and packet generation.

As a proof of concept, we implement and test our approach based on both emulated

(using Mininet [27] network emulator) and real SDN environments using the Open-

Daylight [1] SDN controller. Finally, we evaluate both the efficiency and effectiveness

of our solution against reactive adversaries using both synthetic and real data.

Our main contributions are as follows.

– To the best of our knowledge, SPV is the first active probing-based solution to

SDN topology poisoning attacks, and the first comprehensive solution that works

regardless of the attacking methods.

– Our implementation using OpenFlow-based SDN environment demonstrates the

practicality of our approach. Moreover, we have designed SPV to be separated

from the SDN controller implementation, such that it can be easily adapted to other

controller implementations.

– As demonstrated through experiments using both synthetic data and the topology

of a real SDN/cloud hosted at one of the largest telecommunication vendors, SPV

responds in near real-time (e.g., less than 120 milliseconds) for each new link,

which confirms its scalability for large SDN networks.

The rest of the paper is organized as follows. Section 2 introduces SDN and our

threat model. Section 3 details our methodology. Section 4 discusses security analysis

of SPV. Sections 5 and 6 describe the implementation details and experimental results,

respectively. Section 7 gives more discussions. Section 8 discusses the related work,

and Section 9 concludes the paper.

3 Note those are software-based switches in SDN/cloud environments which can easily be com-

promised by malware infections or remote attacks.
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2 Preliminaries

This section provides a brief overview of SDN, and discusses our threat model.

2.1 Background

SDN Overview. As demonstrated in Fig. 1, SDN adopts a three-layered architec-

ture [14, 17]: i) the application layer (the upper layer in the figure), which consists

of different applications that manage the data plane, ii) the control plane (i.e., SDN

controller), and iii) the data plane, which consists of the forwarding devices and their

connecting links. The SDN controller communicates with the application layer and the

data plane layer through the northbound and the southbound APIs, respectively. The

OpenFlow protocol [13, 25] is the most widely used southbound API for SDN [14, 17].

SDN Topology Management. Most SDN controller implementations follow the OFDP

protocol to send LLDP packets for topology management [16]. To facilitate further

discussions, the upper figure in Fig. 2 demonstrates the three basic steps of the OFDP

protocol as follows. Step (1): the SDN controller encapsulates an LLDP packet (the

format of an LLDP packet is shown in the lower figure in Fig. 2) into a message, and

sends it to switch S12. Step (2): the received message instructs switch S12 to advertise

the enclosed LLDP packet in all its ports except the port it receives the packet from. Step

(3): switches S11 and S13 send back the LLDP packet in an encapsulated message

along with their specifications to the SDN controller. Based on the received packets, the

SDN controller discovers the link between switches S11 and S12 and the link between

switches S12 and S13.
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Fig. 2. The OFDP protocol and LLDP packet format

2.2 Threat Model

Similar to existing works [3, 5, 6, 8, 16, 19], we assume that an adversary may compro-

mise one or more host(s) and/or switch(es) in the network. S/he can send information

through the compromised hosts using the out-of-band links, and modify the flows of the

compromised switches. Furthermore, s/he is able to distinguish between host-generated

packets and SDN control packets. S/he can sniff packets, modify them, and inject them

into the network. Consequently, the in-scope threats in our work include all the three

types of poisoning attacks mentioned in Section 1.

On the other hand, we assume the SDN controller is not compromised and the estab-

lished control channels between the SDN controller and OpenFlow switches are trusted.
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Consequently, the attackers can only attempt to distinguish probing packets based on

their contents. we also assume the confidentiality and integrity of public-private key

pairs that are installed on switches are preserved, and the implementation or specifica-

tion of switch software remains unmodified.

3 Methodology

This section details our methodology including how to verify a newly added link using

probing packets and how to generate the probing packets in a stealthy manner.

3.1 Link Verification

Before SPV can verify a newly added link, it must keep track of updates made to the

network view. For this purpose, SPV communicates with the SDN controller via the

northbound API in order to be notified about any updates to the network view including

link creation (a detailed discussion of the SPV architecture and how it interacts with

SDN can be found in the Appendix due to page limitations). Once a new link is cre-

ated, SPV collects relevant information for generating the probing packet, and prepares

necessary flows for sending the packet. Finally, SPV sends the probing packet and, de-

pending on the outcome, it marks the link as either legitimate or fake. In the following,

we first build intuitions through an example, and then describe the details of our link

verification algorithm.

Example 1. Fig. 3 shows a simplified SDN topology with three switches and one SDN

controller. We assume switch S12 is malicious and it has created a fake link between

switches S11 and S13 (shown by dashed line in Fig. 3) through the aforementioned

attack. The following explains how SPV can detect this fake link.

SPV

Port 2 Port 1Port 3

S12

S13 Flow Table

Match
Match Action

... ...

Flow1
Flow2

...
Action

SDN
Controller

Port 2

Port 3

S11

Match Action
SPV Port 2

... ...

Flow1
Flow2

...

S11 Flow Table

Port 2

Port 3

S13
S12 Flow Table

Match
Match Action

... ...

Flow1
Flow2

...
Action

PKT_IN
[Probing Packet]

Fig. 3. An example of how SPV verifies a link

– First, since SPV continuously monitors updates to the network topology view, it

obtains information about the new link between switches S11 and S13 (noted as

S11:Port2-S13:Port2) as soon as it is created.

– Second, SPV generates a probing packet based on the flow tables of switches S11

and S13 (the packet generation will be further elaborated in the next section).

– Third, SPV installs a new flow in the flow table of S11 (shown as a shaded row

in the table) stating that the packets matching this flow must be forwarded to

S11:Port2, as the link to be verified is S11:Port2-S13:Port2.
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– Fourth, SPV sends the probing packet to switch S11, which forwards the packet on

its port S11:Port2 due to the matching flow. At this point, if there were indeed

a legitimate link, the probing packet would be forwarded to switch S13. However,

as the link is fake and S11:Port2 is in fact connected to S12:Port2, switch

S12 receives the probing packet instead and it returns the packet to the controller.

Clearly, no matter how the fake link is fabricated, SPV can always detect it, as

long it is non-existent in the sense that not all packets will pass through it (we will

discuss the effect of dropping packets in Section 4) and attackers cannot identify

our probing packets (we will explain why S12 cannot identify this probing packet

in the next section).

– Finally, once the probing packet is received, SPV discovers that it is sent to the

controller from switch S12 instead of switch S13. Therefore, SPV reports link

S11:Port2-S13:Port2 to be fake and switch S12 to be compromised.

The ideas illustrated in Example 1 are more formally described in Algorithm 1 and

explained below.

Algorithm 1 Link Verification Algorithm

1: Input: links: Network view of the SDN controller

2: procedure UPDATECHECK(network view)

3: while true do
4: newLink=checkUpdtae(network view)

5: if newLink == “NOT NULL” then
6: links = links+newLink
7: VerificationPreparation(links)

8: Input: links: List of links to be verified

9: procedure VERIFICATIONPREPARATION(links)

10: for each l ∈ links do
11: srcSwStat = getStat(l.srcSwID) ⊲ collecting flows for the source switch

12: dstSwStat = getStat(l.dstSwID) ⊲ collecting flows for the destination switch

13: ProbingPacket =generatePacket(srcSwStat, dstSwStat, l)

14: SPV Flow = generateFlow(ProbingPacket.header,l.srcSwID, l.srcSwPort)

15: installFlow(SPV Flow, l.srcSwID) ⊲ installing a flow on the source switch

16: while true do
17: if sendPacket(ProbingPacket, l.srcSwID, l.srcSwPort) == “Successful” then

18: l.ProbingPacket = ProbingPacket ⊲ storing the latest ProbingPacket

19: break
20: while true do
21: receivedPacket = receivePacket()

22: if time ≤ threshold then

23: LinkValidation(receivedPacket, receivedPacket.SwID)

24: break
25: else if time > threshold then
26: sendPacket(ProbingPacket, l.srcSwID, l.srcSwPort)

27: Input: RET PKT: the returned probing packet to SPV via controller

28: Input: SwID: the switch ID of the probing packet sender to the controller

29: procedure LINKVALIDATION(RET PKT, SwID)

30: for each l ∈ links do
31: if SwID == l.dstSwID then
32: l.Status = “Legitimate”

33: else if SwID 6= l.dstSwID then

34: l.Status = “Malicious”
35: maliciousSwList.add(SwID)

Lines 2-6: Tracking Network View Updates. The first step of SPV is to capture every

change in the network topology and to maintain a local view of the network state to

facilitate efficient processing. As soon as an update is reported, SPV stores the link

information and initiates the verification preparation.
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Lines 11-13: Generating a Probing Packet. Based on information about the newly

added link obtained from the previous step, SPV identifies the source and destination

switches of the new link. Then, SPV collects flows and other relevant statistics of these

two switches (lines 11-12). Afterwards, it generates a probing packet based on these

flows and statistics (the packet generation step is further detailed in Section 3.2).

Lines 14-15: Installing Flow to Forward Probing Packet. Utilizing the link informa-

tion, i.e., link switches and their connecting ports, and the generated probing packet,

SPV creates a flow and installs it on the source switch so that this switch can forward

the received probing packet on its outgoing port towards the destination switch. Note

that the flow is deleted from the switch after a successful round of verification of the

given link (omitted from the algorithm).

Lines 16-19: Sending Probing Packets. Once the flow is successfully installed, SPV

sends the probing packet to the source switch. SPV keeps sending the packet till the

transmission is successful, and then stores the latest probing packet for verification and

future packet generation.

Lines 20-26: Receiving Probing Packets. After transmission, SPV waits until it re-

ceives the probing packet within a given time threshold. Alternatively, if the packet is

dropped for any reason (e.g., an active adversary dropping probing packets purposely),

after a certain timeout, SPV re-sends the probing packet to the same switch with ran-

domly chosen time intervals so that an active adversary cannot later predict the probing

packets (this defense mechanism of SPV is further discussed in Section 4). Upon a suc-

cessful return of a probing packet, SPV triggers the link validation procedure to verify

the returned packet.

Lines 30-35: Validating a Specific Link. Finally, SPV verifies the validity of a link. To

this end, SPV first checks the switch ID of the sender switch of the returned packet. If

the ID is the same as that of the destination switch of the link to be verified, then the link

is a legitimate link. Otherwise, the link is considered fake and the sender switch of the

returned packet is considered compromised. There is another possibility (omitted from

the algorithm), where the probing packet is not returned to SPV for certain reason, e.g.,

dropped due to network congestion or an active adversary. In such a case, SPV marks

the link as “Not-Validated” and conducts further rounds of verification with randomly

chosen time intervals to prevent an active adversary (discussed more in Section 4).

3.2 Probing Packet Generation

The link verification method introduced in the previous section critically depends on

the fact that attackers cannot effectively distinguish the probing packets from normal

traffic. This section details the generation of such stealthy probing packets. Again, we

first build intuitions through an example and then present the formal packet generation

algorithm with the detailed description.

Example 2. Following Example 1, a stealthy probing packet is generated to validate the

link between switches S11 and S13. SPV generates this probing packet as follows.

– First, SPV builds a packet pool by collecting the OFTP PACKET IN messages sent

from switches towards the SDN controller, which contain a host generated packet
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inside them (as shown in Table 1 with PKT TYPE equal to HOST). Each entry of

this pool contains different attributes to store useful information about the collected

packets (details of such attributes are discussed later in this section).

– Second, upon detecting a new link between switches S11 and S13, SPV prepares

a list of candidate packets from the pool in a manner such that none of the packets

in the list have traversed through S11 and S13.

– Third, SPV randomly chooses a packet from the list of candidates, forges its header

information, and assigns a unique ID to the chosen packet.

– Fourth, SPV calculates a hash value over the unique ID and the timestamp at the

moment of packet generation, i.e., Hash(PKT ID||Timestamp) and uses it as the

packet’s data field. This generated probing packet is then sent to verify the link

between S11 and S13 as explained in Example 1. The packet is also added to the

pool, shown as the shaded row in Table 1.

# PKT ID PKT TYPE Switch DPID PKT IN hdr Data hdr Data size Link ID Timestamp

1 - HOST S 12 ip:mac ip:mac 1024 - -

2 - HOST S 13 ip:mac ip:mac 74 - -

4 adr341...w34 SPV - - ip:mac 256 Link 1 1522643791

5 - HOST S 11 ip:mac ip:mac 74 - -

6 dgw213...a78 SPV - - ip:mac 256 Link 3 1522644976

Table 1. An example packet pool

The ideas illustrated in Example 2 are more formally described in Algorithm 2 and

explained below.

Lines 4-7: Building the Packet Pool. To build the packet pool, SPV first identifies the

attributes shown in Table 1, which are needed for probing packet generation. Second,

SPV collects all incoming packets sent to the controller. Third, SPV extracts the header

information of each packet and other metadata (e.g., size). Finally, SPV stores the ex-

tracted attributes for each packet into the packet pool. Specifically, for each entry in

the packet pool, the PKT ID attribute specifies a unique identifier, which is randomly

generated for each probing packet in the pool. The PKT ID attribute serves as the se-

cret information used for authentication purposes in SPV. The PKT TYPE attribute can

be either “Host” or “SPV”, since we collect only these two types of packets. SPV ob-

tains the Switch DPID attribute of the switch that has sent the packet from the MAC

address of the packet sender’s switch. The PKT IN hdr and Data hdr attributes con-

tain the headers of the OFTP PACKET IN and the host generated packets, respectively.

The Link ID attribute contains the ID of the link that the probing packet has been

sent to verify its validity. Finally, the Timestamp attribute shows the timestamp of the

probing packet generation.

Lines 12-20: Generating Probing Packets. From the packet pool, SPV first chooses

a list of packets which have not traversed through the two switches between which the

link to be verified situates to avoid a possible mapping between the probing packet and

these reference packets (discussed more in Section 4). If there does not exist any previ-

ously stored probing packet for this link (meaning that this is the first round of verifica-

tion for this link), then SPV randomly chooses a packet from the above-mentioned list,

and forges the source and destination IP and/or MAC addresses and ports of the packet
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header. Thus, SPV prevents a compromised switch from identifying probing packets

(discussed further in Section 4). At this point, a unique ID, i.e., PKT ID, is assigned to

the packet. SPV also calculates the hash value Hash(PKT ID||Timestamp) and stores it

as part of the probing packet’s payload to prevent adversaries from forging or replaying

probing packets as will be discussed in Section 4. This concludes the packet generation.

However, if this is not the first round of verification for this link, then SPV fetches the

related probing packet from the pool. Afterwards, SPV utilizes the line sweep algo-

rithm [20] (in a similar way as in [24]) to produce the next probing packet for verifying

this link so that the header information remains less different (e.g., same subnet) than

the previous one(s).

Lines 25-28: Sending Probing Packets. This step is to transmit probing packets to-

wards a given switch at the specific port for the purpose of link verification.

Algorithm 2 Probing Packet Generation Algorithm

1: Input: PKT IN: the exchanged packets between switches and the SDN controller

2: Input: SwID: the switch ID of the packet sender

3: procedure PKTCOLLECTOR(PKT IN, SwID)

4: if PKT IN.payload 6= controlMsg then

5: pktPool.add(PKT IN , SwID)

6: if PKT IN.payload == ProbingPacket then

7: LinkV erfication.LinkV alidation(PKTIN SPV , SwID)

8: Input: srcSwStat: flows and status of source switch of the link

9: Input: dstSwStat: flows and status of destination switch of the link

10: Input: link: the link information

11: procedure PKTGEN(srcSwStat, dstSwStat, link)

12: pkts = getPktsFromPool(srcSwID, dstSwID)

13: if link.ProbingPacket == null then ⊲ first round of verification

14: pkt = selectPkt(pkts) ⊲ select and forge the header of a random packet

15: pkt ID = generateID(pkt)

16: pkt.payload = hash(pkt ID||Timestamp)

17: else ⊲ further rounds of verification
18: l.ProbingPacket = fetchPacket(pool, link)

19: pkt = lineSweepPktGen(l.ProbingPacket)
20: return pkt

21: Input: PKT: a packet to be sent

22: Input: SwID: the switch ID to send the packet to

23: Input: SwPort: the port number of the switch to send the packet on

24: procedure PACKETSENDER(PKT, SwID, SwPort)

25: if NorthBoundAPI.SendPacket(PKT , SwID, SwPort) == “Successful” then

26: return “Successful”

27: else
28: return “Unsuccessful”

4 Security Analysis

This section discusses how attackers may attempt to evade SPV and how such attempts

are addressed in SPV.

Stealthiness Feature of SPV. The security of SPV relies on the so-called stealthiness

feature of a probing packet, meaning the packet cannot be distinguished from other nor-

mal host-generated packets traveling through the network. To achieve this, SPV forges

its probing packets based on normal host-generated packets (discussed in Section 3.2)
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in a special way. Specifically, a probing packet is designed to have some fields matching

those of normal host-generated packets, whereas other fields must not match. For ex-

ample, when a probing packet is generated based on a reference packet chosen from the

candidate pool (detailed in Section 3.2), the Eth Type field and the packet’s payload

size would both match those of the reference packet, whereas the Src IP, Dst IP,

Src MAC, Dst MAC, Src Port and Dst Port fields must not match those of the

reference packet. The former ensures that the probing packet would look exactly like

a legitimate packet, and the latter prevents a compromised switch from correlating the

probing and reference packets based on common source and destinations.

Relaying or Dropping Packets. A malicious switch may be able to identify probing

packets, if SPV always sends them immediately after a new link creation. To address

this concern, SPV keeps sending probing packets to the same switch with randomly

chosen time intervals so that an active adversary cannot predict the probing packets

during its further rounds. Alternatively, a malicious switch may evolve by forwarding

traffic including SPV packets passing through it hoping that the fake link remains unde-

tected. However, since the probing packets are indistinguishable, the malicious switch

may need to forward every single packet traversing the fake link in order to completely

evade detection. However, by forwarding all the traffic, the fake link essentially serves

the purpose of a true link, which is against the original objective of the attacker. Hence,

a more practical adversary might partially forward the traffic within certain time inter-

vals after the link creation, hoping that the probing packet is among those forwarded.

We measure the effect of such attacks on SPV in Section 6. Moreover, to detect such

attacks, one potential solution is to employ the timing channel (i.e., comparing time dif-

ferences between packets traversing on different links), which is considered as a future

work. Finally, a malicious switch may choose to only relay the LLDP packets and drop

all other packets including SPV packets. However, such DoS attacks can be more easily

detected and such detection is beyond the scope of this work.

Compromising Multiple Adjacent Switches. An attacker may compromise multiple

switches adjacent to each other, which, however, may not provide any advantage due

to the following. i) If the compromised switches relay packets independently, then the

chance they all happen to relay a probing packet becomes even lower. ii) Alternatively, if

the compromised switches act in coordination, then they essentially become one switch

so the chance of relaying a probing packet is the same as with one compromised switch.

Forging or Replaying Probing Packets. A strong adversary may employ malicious

switches to mimic the link verification mechanism of SPV by either forging or replaying

probing packets, and having them sent back to the SDN controller as if those packets

are returned from the other end of the fake link. However, as discussed in Section 3.2,

SPV addresses this issue by authenticating each received probing packet using a unique

hash value over the secret PKT ID and timestamp, i.e., Hash(PKT ID||timestamp).
Since SPV keeps track of the secret PKT ID values of all its probing packets, it will

not accept any probing packets forged by the adversary. Moreover, the freshness proof

(i.e., timestamp) also prevents the adversary from replaying previous probing packets.

Learning Probing Packets. Even though OpenFlow switches by design are not meant

to process packet payloads, the presence of soft switches in the network allows an at-
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tacker to learn patterns of probing packets by processing the network traffic. For exam-

ple, if we were to use only the aforementioned hash value as the payload of probing

packets, then a compromised switch may process the host-generated packets to mea-

sure their payload size in order to distinguish the probing packets. To address this issue,

we ensure the payload size of each probing packet is the same as its reference packet

by padding dummy data to the aforementioned hash value. Moreover, a strong adver-

sary might keep a history of packets, and leverage learning methods to classify probing

packets based on their header information (e.g., source/destination addresses). There-

fore, through the line sweeping algorithm, SPV ensures that the header information of

probing packets for the same switch remain very close (e.g., in the same subnet).

Injecting Packets by a Malicious Host. A malicious host may inject packets into the

network hoping to influence the probing packet generation. However, this attack only

works when the following conditions are satisfied: i) the injected packet is used as the

reference packet to generate a probing packet. Since SPV chooses reference packets

randomly, this can only be achieved with a considerable amount of injected packets,

which may be detected by other security solutions such as IDS, ii) the owner of the

malicious host also has a compromised switch, which is not connected to the same

host (since probing packets are never chosen to verify the same switch from where

the original packet has been collected), and iii) the probing packet is sent to verify

the connecting links of the same compromised switch, which involves a considerable

amount of uncertainty.

5 Implementation

This section describes the implementation details of SPV.

Background. We use OpenDaylight (ODL) [1], which is an open platform for automat-

ing large-scale networks[26], as the SDN controller, and implement the data plane using

Mininet network emulator [22, 27], which is a network emulator that can be used to de-

ploy OpenFlow switches and virtual hosts.

SDN Setup. In this paper, we mainly focus on the SDN controller functionality of

ODL by making use of the REST northbound API and OpenFlow southbound API. In

our work, we utilize some of ODL’s features such as a) odl-restconf, b) odl-l2switch,

c) odl-mdsal, d) odl-dlux, e) network-topology and f) packet-processing. In our setup,

we install ODL Carbon release on a virtual machine running a Linux Ubuntu server

16.04 with two Intel(R) Xeon(R) E3-1271 v3 CPUs and 6GB of RAM. We configure

ODL to instruct data-plane switches that join the network to install reactive flows and

to forward the newly received packets to the ODL for further instructions. Moreover,

proactive flows for LLDP packets (Ether type 0x88cc) is installed upon joining a switch

to the network for discovering the network topology. To set up data plane devices, we

utilize Mininet 2.2.1 on a separate Linux virtual machine running Ubuntu server 16.04

with two Intel(R) Xeon(R) E3-1271 v3 CPUs and 4GB of RAM. We utilize OpenFlow

version 1.3, since it is the latest supported version by Mininet 2.2.1. The OpenFlow

switches in the data plane are chosen to be software based Open vSwitch [34] switches.

SPV’s Implementation Details. SPV is mostly implemented in Java. We leverage

Scapy [31], a packet manipulation tool, for the purposes of probing packet genera-
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tion and encoding. We implement the SPV in both single-threading and multi-threading

modes to enhance the response time of link verification while verifying multiple links

simultaneously. We provide further implementation details of SPV in the following.

SPV communicates with ODL’s northbound API for querying the changes in net-

work topology, storing the topology locally, installing flows on data plane switches and

performing link verification. More specifically, SPV interacts with ODL’s opendaylight-

topology module to keep track of changes in the data plane network. SPV stores the

topology in a tree data structure which consists of links, nodes (e.g., switches and

hosts) and their connections along with other useful information, e.g., switch statis-

tics or links’ status. SPV verification results are also stored in this tree. To send, sniff,

dissect and forge network packets, SPV utilizes Scapy. Also, Scapy is used to gener-

ate probing packets, encode them in the Base64 format and send them towards specific

links using ODL’s northbound API.

6 Experiments

This section first discusses the network topology used in our experiments, and then

presents different experimental results.

Network Topology. We consider a fat-tree topology [2], which is one of the mostly

used network topologies in nowadays large data centers [36], for our data plane. We

vary the switches from five to 40 where the largest topology has eight core switches,

16 aggregate switches and 16 edge switches, which comply with the size of a medium-

sized data center to accommodate tens of thousands of servers [2, 36]. To further stress

the SPV and evaluate its accuracy, we conduct further set of experiments to measure

SPV’s performance up to for 5,000 link verifications in the network.
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Fig. 4. Time required by SPV to verify (a) a new link and (b) all existing links while varying both

the number of switches and number of links in both single and multi-threading modes

The Efficiency of SPV. In the first set of our experiments, we measure the time require-

ment of SPV. The reported verification time includes the time for performing all steps

mentioned in Section 3.1. Fig. 4(a) depicts the time in milliseconds to incrementally

verify a newly added link in both single threading and multi-threading modes while

varying the size of the network by increasing the number of switches from five to 40

with a maximum of 96 data-plane links. In this case, the average verification time is 102

milliseconds, which shows the near-real-time nature of SPV to verify a newly added

link. Also, the verification time is independent of the size of the network (e.g., number

of switches and their connected links). Fig. 4(b) shows the time required by SPV to

12



verify a group of links in both single threading and multi-threading modes while vary-

ing the size of the network by increasing the number switches from five to 40 with a

maximum 96 data-plane links. The verification time for the largest dataset in the single

threading mode is 26.1 seconds. We further improve the verification time by leveraging

the multi-threading mode, which reduces the verification time to 10.6 seconds. Even

though the increase in the number of switches in the network results in the increase

of verification time for both modes, the increase of the verification time remains al-

most linear in the multi-threading mode. These results show the practicality of SPV in

medium-sized data centers to verify their topology.

Resource Consumption by SPV. The second set of the experiments is to measure the

resource consumption (i.e., CPU and memory usage) by SPV. Fig. 5 depicts the average

CPU and memory usage to verify all existing links in the network by varying the number

of switches for single threading mode. More specifically, Fig. 5(a) shows that SPV on

average requires about 20% of the CPU, which is a reasonable amount. Fig. 5(b) depicts

the memory consumption by SPV to verify all existing links for different network sizes.

Even though we observe an increase in the memory consumption for larger datasets, it

still remains below 2%. Note that, the CPU and memory consumption for verifying a

single link is negligible and hence not reported in this paper.
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Fig. 5. Average (a) CPU usage and (b) memory usage by SPV to verify all existing links while

varying the number of switches up to 40 and the number of links accordingly

Evaluating SPV Against Different Attacks. The objective of the third set of exper-

iments is to investigate the effect of packet loss, network traffic and the packet relay

attack on SPV. Fig. 6(a) and 6(b) show the percentage of unverified links in the first

round of SPV for 5,000 links in the network while varying the packet loss rate and

increasing traffic throughput, respectively. More specifically, Fig. 6(a) depicts that the

increase of the packet loss rate, the percentage of the unverified links linearly increases

due to the fact that the probing packets may be also lost; however, since the distribu-

tion of packet loss rate is among all links in the network, and SPV only deals with one

link at a time, the percentage of unverified links are always less than packet loss rate in

the network which concludes that our approach is resilient to high packet loss rates in

the network. In Fig. 6(b) by increasing the traffic throughput to the maximum allowed

bandwidth while keeping the loss rate to 5%, the percentage of unverified links stays

almost constant. The reason is that the flow installed by SPV to forward the probing

packet, has a higher priority than other flows on a given switch and this fact makes SPV

be independent of network congestion and only be dependent on network packet loss

rate. To further alleviate this effect, SPV periodically sends probing packets until a link

is verified and hence, all of the network links are eventually verified.
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Fig. 6. Evaluating SPV with the presence of attackers in the network that tend to increase packet

loss or congest the network by showing percentage of unverified links while varying the (a) packet

loss rate (%) and (b) traffic throughput (Mbps), and (c) measuring the percentage of relayed

probing packets while varying the percentage of the time that the attacker may relay all the traffic

In this part of the experiments, we measure the percentage of probing packets being

affected in the presence of one or multiple malicious switch(es) that forward(s) 10%

to 50% of the traffic at different time intervals. The effect of tampering probing pack-

ets by an attacker will depict quite similar results, as an attacker cannot distinguish a

probing packet from host-generated packets. Fig. 6(c) shows that the amount of for-

warded probing packets remains less than 30% for the case a malicious switch forwards

all the packets in 50% of the time, however, in this experiments we consider the worst

case where the malicious switch is not detected until the last round of verification. The

resilience of SPV to this attack can be further improved by using different probabilis-

tic functions with different distributions in choosing the time intervals for sending the

probing packets.

Applicability of SPV in a Real SDN/Cloud Topology. The objective of our last set of

experiments is to validate the applicability of SPV in a real SDN/cloud topology. To this

end, we utilize an accessible part of the topology of a real SDN/cloud hosted at one of

the largest telecommunication vendors that comprises of OpenStack [28] cloud with 22

compute nodes, each having a software-based OpenFlow switch, to reside thousands of

VMs. All 22 OVS switches are connected to each other in a mesh architecture having

231 bi-directional links. Table 2 reports the results obtained based on this real topol-

ogy and compares them with the results for our largest fat-tree topology. The results

illustrate that the verification time for an incremental link verification in the network

remains almost constant (i.e., around 100ms) independent of network topology and its

size, and the verification time for all links in the multi-threading mode can rise up to 13

seconds. Other results presented in Table 2 also indicate a reasonable performance and

demonstrate the practicality of our approach in a real-world SDN/cloud.

Results SDN/Cloud Mesh Mininet Fat-Tree

All link Verification Time (MT) 13.2052 s 10.6406 s

All link Verification Time (ST) 134.147 s 26.1725 s

Single Link Verification Time (ST) 100.306 ms 94.8919 ms

CPU Consumption (ST) 8.50294 % 18.79099 %

Memory Consumption (ST) 1.81817 % 1.81003 %

Table 2. Summary of the experimental results with real SDN/cloud topology

7 Discussion

This section discusses different concerns on SPV.

Exhausting Flow Table Capacity of SDN Switches. There exist several attacks (as

described in [23, 32]) to exhaust the flow table capacity of SDN switches which may
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affect the availability by adding new flow rules on those switches. Consequently, these

attacks may affect the verification process of SPV by preventing the installation of flow

rules related to forwarding the SPV PKT packets. Even though such flow table overflow

attacks are beyond the scope of this paper, existing solutions (e.g., [37]) to address them

could be leveraged to avoid any effect on SPV.

Effect of Encrypted Communication Between Control and Data Planes. In

case TLS is enabled for secure communications, administrators require to share

en/decryption keys of control messages with SPV; which might be a practical assump-

tion for an administrator intending to protect his/her network topology from poisoning

attacks. However, if SPV would be implemented within the SDN controller, this explicit

sharing of keys is unnecessary.

Implementing SPV within SDN Controller. The rationale behind placing SPV outside

of SDN controller is to make it applicable to different implementations (e.g., [12, 11,

30]) of SDN controller with minimal effort. However, placing SPV within the SDN

controller may help to further improve SPV’s performance. For example, retrieving

control messages or network topology would be much faster in the latter case. However,

such design may decrease the overall security of SPV, since with the current design,

SPV can be a hardened box/software which is easier to secure.

8 Related Work

This section discusses different categories of related works.

SDN Topology Poisoning Attack Detection Mechanisms. There exist several works

(e.g., [16, 33, 10, 3]) targeting SDN topology poisoning attacks. TopoGuard [16, 33]

proposes an OpenFlow-based SDN controller extension, which checks the legitimacy

of switch ports and host migration to prevent host-based topology poisoning attacks. In

contrast to SPV, TopoGuard can detect a wider range of attacks on both hosts and links.

However, it still adopts a passive approach which means the detection relies on knowl-

edge about the attacking methods used to fabricate the fake links. We consider SPV and

TopoGuard complementary solutions due to their different advantages. SPHINX [10]

proposes a more generic solution on detecting both known and potentially unknown

attacks on network topology. In contrast to our work, SPHINX cannot detect the cre-

ation of fake links in the topology, which would falsify the generated flow graphs based

on which the data plane verification is performed. In [3], the authors propose an LLDP

packets authentication approach based on adding the HMAC of a switch ID and the cor-

responding port ID to the LLDP packet. Unlike SPV, it cannot handle fake link creation

caused by relayed LLDP packets by malicious hosts or switches since it solely depends

on HMAC authenticated LLDP packets.

OFDP Security Enhancement Mechanisms. Several works propose variations of the

OFDP protocol for SDN security enhancement. Pakzad et al. [29] propose a modieifed

version of OFDP, namely, OFDPv2, which requires the SDN controller to send only

one OFTP PAKCKET OUT message containing an LLDP packet to a switch and in-

structs the switch to advertise the LLDP packet in all its ports, instead of sending an

OFTP PAKCKET OUT message for every port of each switch. sOFTDP [5] also pro-

poses a variation of the OFDP protocol. The main idea is to transfer the burden of
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topology discovery from the SDN controller to the data-plane switches. Unlike SPV,

both OFDPv2[29] and sOFTDP[5] do not verify fake link creation.

Active Probing Techniques. Probing techniques are typically used to maliciously in-

fer network specifications (e.g., firewall rules, OpenFlow rules, bandwidth estimation,

flow tables usage and capacity, etc.). For instance, in [32], the authors utilize the delay

required for flow installation on SDN switches to detect whether a network is an SDN.

INSPIRE [24] relies on some senders located inside the network, a receiver deployed

outside the network and a line sweep algorithm to select forged probing packets to be

sent to the network in order to infer OpenFlow rules. INSPIRE can infer the flow rules

installation mode (i.e., proactive or reactive), by measuring the delay between a packet

sending time and its reception, then an apriori algorithm is used to discover the rules.

In [7], the authors use active probing techniques based on crafted packets to trigger

switch-controller communications, then they use round trip time (RTT) and packet-pair

dispersion features to infer information about flow rules. The authors in [23] also use

probing and RTT measurement to infer the OpenFlow switches’ tables capacity and

usage along with the flow rules’ hard and idle timeouts. They also trigger controller-

switch interactions by sending probing packets to infer the processing time of a specific

rule. Unlike these works, SPV utilizes network probing as a defensive mechanism to

deceive malicious hosts and SDN switches. Similarly to our work, in [9], network prob-

ing is used as a defensive technique. Therein, a periodic sampling-based approach is

proposed to detect malicious OpenFlow switches in an SDN. Our effort can be seen

as complementary to this work since the latter checks the legitimacy of switches but

cannot verify the links between them.

9 Conclusion

The correctness of SDN controller view on network topology is known to be critical for

making the right management decisions. However, recently discovered vulnerabilities

in OFDP protocol show that poisoning network view of the SDN controller may lead

to severe security attacks, such as man-in-the-middle or denial of service. In this paper,

we proposed SPV, a novel stealthy probing-based approach, to significantly extend the

scope of existing solutions, by generating and sending stealthy packets to incremen-

tally verify legitimate links and detect fake links as well as the responsible malicious

switches. As a proof of concept of our approach, we implemented SPV in an emulated

SDN environment using Mininet and OpenDaylight. Through extensive experiments,

we showed that SPV can respond in near real-time (e.g., less than 120 milliseconds),

which makes SPV a scalable solution for large SDN networks. We also measured the

performance of SPV in a real SDN/cloud hosted at one of the largest telecommunication

vendors to validate the applicability of SPV in a real environment. To further improve

the accuracy and performance of SPV, considering traversal time of stealthy packets in

the link verification procedure and integrating SPV within the SDN controller (for faster

processing of control messages or being independent of public/private key sharing) can

be considered as potential future work. Also, to enhance the security of SPV against

certain attacks such as flow table exhaustion, adapting methods such as [23] could be

beneficial. Moreover, the robustness of our packet generation mechanism can be further

improved by leveraging machine learning techniques in analyzing network traffic.
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Appendix

The SPV Architecture. Fig. 7 depicts the architecture of SPV including its interactions

with SDN. SPV has two major modules: Link Verification and Stealthy Packet Handler.

In the following, we describe each module in details.
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Fig. 7. SDN and stealthy probing-based verification (SPV) architecture

The Link Verification module is responsible for tracking and verifying the data plane

changes, by making use of stealthy probing packets, which comprises the following

modules.

1. Link Update Checker. As the very first step of SPV, the Link Update Checker

module is to identify updates in the network through communications with the SDN

controller4 and inform the Link Verification module of any changes made to the

network. This module is installed from the initialization of the network to verify

the network topology incrementally.

2. Topology Mapper. This module maintains a tree data structure to locally store

the up-to-date topology information provided by Link Update Checker. The tree

stores the information of data plane devices, i.e., if it is a host or a switch or a

link, along with their specifications, e.g., their status that is up/down, and other

useful information such as Device IDs, Port IDs and so on. Also, the tree stores the

received updates after verification procedure to maintain the validity status of every

switch and their connecting links.

3. Flow Manager. This module works as an application to the SDN controller to

communicate through the northbound API for querying the flows and statistics of

a given switch and installing a given flow on a given switch. This module interacts

with the Link Verifier module to perform the above-mentioned functionalities and

provide the results.

4. Link Verifier. The Link Verifier module interacts with Topology Mapper, Flow

Manager Application and Stealthy Packet Handler modules. Based on the input data

from the Link Update Checker, the Link Verifier communicates with the Topology

Mapper to get the link endpoints, and to query the flows and the statistics of them

via the Flow Manager Application module. Also, this module relies on the Stealthy

Packet Handler module, more specifically Packet Collector and Packet Generator

modules, which are to generate the stealthy probing packets, and Packet Sender,

which is responsible to transmit the packets to be traversed through the links to be

verified.

4 The communication is conducted via northbound API
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The Stealthy Packet Handler is responsible for generating, sending and collecting

stealthy probing packets to/from data plane. Details of corresponding modules are dis-

cussed below.

1. Packet Generator. This module is responsible to generate stealthy probing pack-

ets, namely, SPV PKT packets, with the help of the Packet Collector module upon

receiving a request from the Link Verifier module. The generation of stealthy prob-

ing packets is performed using two different algorithms (discussed in Section 3.2)

depending on two possible situations. (i) A link is being verified for the first time,

and (ii) a certain link is being verified again, i.e., further rounds of verification for

a certain link which is not yet verified, due to the reasons such as loss of SPV PKT

packets.

2. Packet Collector. This module collects two types of packets. First, it collects and

stores OFTP PACKET IN messages, that contain host generated packets in their

content, in its local database, namely, PKT DB, which are later used by Packet

Generator. Second, it collects and stores OFTP PACKET IN messages that contain

SPV PKT, and reports them to the Link Verifier.

3. Packet Sender. This module is to send stealthy probing packets towards the source

endpoint switches of the links to be verified. More specifically, the first responsi-

bility of this module is to receive a stealthy probing packet and information of the

link to be verified from the Link Verifier module. The second responsibility is to

send the received packet to be traversed through the link to be verified by utilizing

the SDN controller’s northbound API.
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