
39

ISOTOP: Auditing Virtual Networks Isolation Across Cloud

Layers in OpenStack

TAOUS MADI, CIISE, Concordia University, Canada

YOSR JARRAYA, Ericsson Security Research, Canada

AMIR ALIMOHAMMADIFAR, SURYADIPTA MAJUMDAR, and YUSHUN WANG, CIISE,

Concordia University, Canada

MAKAN POURZANDI, Ericsson Security Research, Canada

LINGYU WANG and MOURAD DEBBABI, CIISE, Concordia University, Canada

Multi-tenancy in the cloud is a double-edged sword. While it enables cost-e�ective resource sharing, it in-
creases security risks for the hosted applications. Indeed, multiplexing virtual resources belonging to dif-
ferent tenants on the same physical substrate may lead to critical security concerns such as cross-tenants
data leakage and denial of service. Particularly, virtual networks isolation failures are among the foremost
security concerns in the cloud. To remedy these, automated tools are needed to verify security mechanisms
compliance with relevant security policies and standards. However, auditing virtual networks isolation is
challenging due to the dynamic and layered nature of the cloud. Particularly, inconsistencies in network iso-
lation mechanisms across cloud stack layers, namely the infrastructure management and the implementation
layers, may lead to virtual networks isolation breaches that are undetectable at a single layer. In this paper,
we propose an o�-line automated framework for auditing consistent isolation between virtual networks in
OpenStack-managed cloud spanning over overlay and layer 2 by considering both cloud layers’ views. To
capture the semantics of the audited data and its relation to consistent isolation requirement, we devise a
multi-layered model for data related to each cloud-stack layer’s view. Furthermore, we integrate our audit-
ing system into OpenStack, and present our experimental results on assessing several properties related to
virtual network isolation and consistency. Our results show that our approach can be successfully used to
detect virtual network isolation breaches for large OpenStack-based data centers in reasonable time.

CCS Concepts: • Security and privacy→ Distributed systems security;

Additional Key Words and Phrases: Cloud, security, compliance veri�cation, network isolation, consistency,

openStack, virtual infrastructure

ACM Reference Format:

Taous Madi, Yosr Jarraya, Amir Alimohammadifar, Suryadipta Majumdar, Yushun Wang, Makan Pourzandi,
Lingyu Wang, and Mourad Debbabi. 2018. ISOTOP: Auditing Virtual Networks Isolation Across Cloud Layers
in OpenStack. ACM Trans. Web 21, 4, Article 39 (August 2018), 33 pages. https://doi.org/0000001.0000001

Authors’ addresses: Taous Madi, CIISE, Concordia University, Montreal, QC, Canada, t_madi@concordia.encs.ca; Yosr Jar-
raya, Ericsson Security Research, Montreal, QC, Canada, yosr.jarraya@ericsson.com; Amir Alimohammadifar; Suryadipta
Majumdar; Yushun Wang, CIISE, Concordia University, Montreal, QC, Canada, {ami_alim,su_majum,yus_wang}@encs.
concordia.ca; Makan Pourzandi, Ericsson Security Research, Montreal, QC, Canada, makan.pourzandi@ericsson.com;
Lingyu Wang; Mourad Debbabi, CIISE, Concordia University, Montreal, QC, Canada, {wang,debbabi}@encs.concordia.ca.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.

© 2009 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1559-1131/2018/8-ART39 $15.00
https://doi.org/0000001.0000001

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001


39:2 T. Madi et al.

1 INTRODUCTION

Despite the abundant bene�ts of the cloud, security and privacy concerns are still holding back its
widespread adoption [50]. Particularly, multi-tenancy in cloud environments, supported by virtu-
alization, allows optimal and cost-e�ective resource sharing among tenants that do not necessarily
trust each other. Furthermore, the highly dynamic, elastic, and self-service nature of the cloud, in-
troduces additional operational complexity that may prepare the �oor for miscon�gurations and
vulnerabilities, leading to violations of baseline security and non-compliance with security stan-
dards (e.g., ISO 27002/27017 [26, 27] and CCM 3.0.1 [13]). Particularly, network isolation failures
are among the foremost security concerns in the cloud [14, 18]. For instance, virtual machines
(VMs) belonging to di�erent corporations and trust levels may share the same set of resources,
which opens up opportunities for inter-tenant isolation breaches [51]. Consequently, cloud tenants
may raise questions like: “How to make sure that all my virtual resources and private networks
are properly isolated from other tenants’ networks, especially my competitors? Are my vertical
Network Segments (e.g., for �nance, human resources, etc.) properly segregated from each other?”.
Security auditing aims at verifying that the implemented mechanisms are actually providing

the expected security features. However, auditing security without suitable automated tools could
be practically infeasible due to the design complexity and the sheer size of the cloud as motivated
in the following example. Note that domain-speci�c terms used in the paper are summarized in
the glossary.

VM_11 VM_12

Virtual Switch

VLAN_100

VM_13 VM_22VM_21

VLAN_101 VLAN _201VLAN_200

Physical Server_1 Physical Server_2

VM_Adb VM_AwebVM_Aapp VM_Bapp2VM_Bapp1

vNet_A vNet_B

Tenant_Alpha Tenant_Beta Ownership

Connection

vNet_A

vNet_B

Virtual link

´ 

Infrastructure 

Management Layer

Virtual Switch

Implementation 

Layer

Mapping 

Attack scenario

Fig. 1. A Two-Layer View of a Multi-Tenant Virtualized Infrastructure in Cloud: The Infrastructure Manage-

ment Layer and the Implementation Layer

Motivating Example. Figure 1 illustrates a simpli�ed view of an OpenStack [45] con�guration ex-
ample for virtualized multi-tenant cloud environments. Following a layered architecture [48], the
cloud stack includes an infrastructuremanagement layer responsible of provisioning, interconnect-
ing, and decommissioning a set of virtual resources belonging to di�erent tenants, at the implemen-
tation layer, across distributed physical resources. For instance, at the infrastructure management
layer, virtual machines VM_Adb and VM_Bapp1, are de�ned in separate Virtual Networks, vNet_A
and vNet_B belonging to Tenant_Alpha and Tenant_Beta, respectively. At the implementation
layer, these VMs are instantiated on Physical Server_1 as VM_11 and VM_21 and are intercon-
nected to form those virtual networks. As the latter networks share the same physical substrate,

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.



ISOTOP: Auditing Virtual Networks Isolation Across Cloud Layers in OpenStack 39:3

network isolation mechanisms are de�ned at the management layer and con�gured at the imple-
mentation layer through network virtualization mechanisms to ensure their logical segregation.
For instance, Virtual Local Area Network (VLAN) is used to isolate di�erent virtual networks at
the host level (more details are provided in Section 2.1). To audit isolation as de�ned in applicable
standards, there exist several challenges.

• The gap between the high-level description of the requirements in the standards and the
actual security properties hinders auditing automation. For instance, the requirement on
segregation in networks in ISO 27017 [27] recommends “separation of multi-tenant cloud
service customer environments”. Stated as such, these requirements do not detail exactly what
data to be checked or how it should be veri�ed.

• The layered nature of the cloud stack and the dependencies between layers make existing
approaches that separately verify each single layer ine�ective. Those layers maintain dif-
ferent but complementary views of the virtual infrastructure and current isolation mecha-
nisms con�gurations. For instance, assume Tenant_Beta compromises the hypervisor on
Physical Server_1 (e.g., by exploiting some vulnerabilities [46]) and succeeds to directly
modify VLAN_200 associated with VM_21 to become VLAN_100 that is currently associated
with VM_11 and VM_12 on Physical Server_1. This leads to a topology isolation breach as
both VMs will become part of the same Layer 2 virtual network de�ned for vNet_A, opening
the door for further attacks [52]. The veri�cation of the management layer view cannot de-
tect such a breach as VLAN tags are managed locally at the implementation layer. Addition-
ally, verifying the implementation layer only without mapping the virtual resources to their
owners (maintained only at the management layer), would not allow a per-tenant identi�ca-
tion of the breached resource. For example, the association between VM_Bapp1, vNet_B and
their owner (Tenant_Beta) in the management layer view should be consistently mapped
into the association between VM_21 in Physical Server_1with VLAN_200 at the implemen-
tation level. This should be done for all tenants. Considering the implementation layer after
the attack in Figure 1, VM_11, VM_12 and VM_21 in Physical Server_1 can be identi�ed to be
on the same VLAN, namely, VLAN_100. However, without considering that the correspond-
ing VMs at the management layer are in di�erent virtual networks and belong to di�erent
tenants, the breach cannot be properly detected.

• Correctly identifying the relevant data and their sources in the cloud for each security re-
quirement increases the complexity of auditing. This can be ampli�ed with the diversity and
plurality of data sources located at di�erent cloud stack layers. Furthermore, the data should
not be collected only from di�erent layers but also from di�erent physical servers. In addi-
tion, their underlying semantics and relationships should be properly understood to be able
to process it. The relation of this data and its semantics to the veri�ed property constitutes
a real challenge in automating cloud auditing.

In summary, taking into account the complexity factor andmulti-layered nature of the cloud, the
majority of existing approaches (e.g., [31, 55]) are not designed to handle cross-layer consistent
isolation veri�cation. Thus, in this paper, we propose an automated cross-layer approach that
tackles the above issues for auditing isolation requirements between virtual networks in a multi-
tenant cloud. We focus on isolation at Layer 2 Virtual Networks and Overlay Networks, namely
topology isolation, which is the basic building block for networks communication and segregation
for upper network layers1. To the best of our knowledge, this is the �rst e�ort on auditing cloud
infrastructure isolation at layer 2 virtual networks and overlay taking into account cross-layer
consistency in the cloud stack. The following summarizes our main contributions:

1We refer to the network layers de�ned in the Open Systems Interconnection (OSI) model

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.



39:4 T. Madi et al.

• To �ll the gap between standards and isolation veri�cation, we devise a set of concrete secu-
rity properties based on the literature and common knowledge on layer 2 virtual networks
isolation and relate them to relevant requirements in security standards.

• To identify the relevant data for auditing network isolation and capture its underlying se-
mantics across multiple layers, we elaborate a model capturing the cloud-stack layers and
the veri�ed network layers along with their inter-dependencies and isolation mechanisms.
To the best of our knowledge, we are the �rst to propose such a model.

• We propose an o�-line veri�cation approach that spans the OpenStack implementation and
management layers, which allows to evaluate the consistency of layer 2 virtual network
isolation. We rely on the model de�ned above as input to our approach and a Constraint
Satisfaction Problem (CSP) solver, namely, Sugar [53], as a back-end veri�cation tool.

• We report real-life experience and challenges faced when integrating our auditing and com-
pliance validation solution into OpenStack. We further conduct experiments to demonstrate
the applicability of our approach.

The preliminary version of this paper appears in [31].While the latter focuses on the veri�cation
of only the infrastructure management layer, we propose in this paper a di�erent approach that
tackles the need of considering complementarity between cloud layers, namely implementation
and infrastructure management layers. Thus, we derive a new model capturing network-related
entities at each layer, their inter-relationships annotated with cardinality constraints, and cross-
layer mapping (Section 2). We propose a new methodology (Section 3) addressing challenges of
cross-layer veri�cation and demonstrate how our solution can detect layer 2 virtual network isola-
tion breaches with per-tenant evidences. We also propose a new set of security properties (Section
3.2) related to cross-layer network topology isolation and consistency requirements. Furthermore,
we discuss new experimental results.

The remainder of this paper is organized as follows. Section 2 presents a background on network
isolation mechanisms, the threat model and our cloud virtualized infrastructure model. Section 3
describes our methodology and the related security properties. Section4 details the integration of
our auditing framework into OpenStack. Section 5 experimentally evaluates the performance of
our approach. Section 6 discusses the adaptability of our solution to other platforms and possible
improvements. Section 7 reviews the related work. Finally, we conclude our paper and provide
future directions in Section 8.

2 MODELS

In this section, we provide a background on the network isolation mechanisms considered in this
paper, and we present the threat model followed by our model that captures tenants’ virtual net-
works at the infrastructure management and implementation layers.

2.1 Preliminaries

In this work, we focus on layer 2 virtual networks deployed in cloud environments managed by
OpenStack.We furthermore consider Open vSwitch (OVS) 2 for providing layer 2 network function
to guest VMs at the host level [47].
In large scale OpenStack-based cloud infrastructures, layer 2 virtual networks are implemented

on the same server using Virtual LANs (VLAN), and across the physical network through Virtual
Extended LAN (VXLAN) as an overlay technology. TheVXLAN technology is used to overcome the
scale limitation of VLANs, which only allows for a maximum of 4,096 tags [18]. More speci�cally,

2Open vSwitch OVS is one of the mostly used OpenFlow-enabled Virtual Switches in more than 30% deployments, and is
compatible with most hypervisors including Xen, KVM and VMware.

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.



ISOTOP: Auditing Virtual Networks Isolation Across Cloud Layers in OpenStack 39:5

on each physical server, disjoint VLAN tags are assigned to ports connecting VMs that are part
of di�erent isolated virtual networks. Furthermore, a unique VXLAN identi�er is assigned per
isolated virtual network in order to extend layer 2 virtual networks between di�erent physical
servers, thus forming an overlay network. When the tra�c leaves a VM (or a physical server),
the appropriate VLAN tag (or VXLAN identi�er) is inserted into the tra�c by con�gurable OVS
forwarding rules to maintain proper layer 2 tra�c isolation. The mapping between VLAN tags
and VXLAN identi�ers performed by the OVS rules ensures that the tra�c is smoothly steered
between sources and destinations deployed over di�erent physical servers.

Example 2.1. Figure 2 illustrates amore detailed view of layer 2 virtual networks implementation
for the con�guration showed in Figure 1. According to the latter �gure, VM_11, VM_12 and VM_13

belong to Tenant_Alphaand are connected to vNet_A.VLAN_100 is de�ned at Physical Server_1

to enable isolated layer 2 communication between VM_11 and VM_12, whereas VLAN_200 is de�ned
to isolate VM_21 at the same physical server since the latter VM is connected to another virtual
network (vNet_B). Similarly, at Physical Server_2, di�erent VLAN tags, namely, VLAN_101 and
VLAN_201, are de�ned to isolate VM_13 and VM_22 respectively since they are connected to di�erent
networks. Since VM_11, VM_12 and VM_13 are all connected to the same virtual network (see Figure
1) but deployed over two di�erent physical servers, VXLAN is used as an overlay protocol to
logically connect VMs across physical servers while ensuring isolation. To this end, two distinct
VXLAN identi�ers, namely, VXLAN_0×100and VXLAN_0×200, are associated to vNet_A and vNet_B,
respectively. Then, to achieve end to end isolation, VXLAN_0× 100 is attached to VLAN_100 on
Physical Server_1 and to VLAN_101 on Physical Server_2, while VXLAN_0×200 is attached
to VLAN_200 on Physical Server_1 and to VLAN_201 on Physical Server_2. This would allow
to isolate the virtual networks both at the host level (through di�erent VLAN tags) and at the
physical network level (through di�erent VXLAN identi�ers).

VM_11 VM_12

port11 port12

VLAN_100

VM_13 VM_22VM_21

port21 port13 port22

VLAN_101 VLAN _201VLAN_200

Physical Server_1 Physical Server_2

OVS_1 OVS_2

Overlay 

Layer 2 Virtual 

Networks

VXLAN_0x100 VXLAN_0x100VXLAN_0x200 VXLAN_0x200

Physical Eth Physical Eth

Cloud Physical network
VXLAN_0x100

VXLAN_0x200

vNet_A layer 2 

virtual network

vNet_B layer 2 

virtual network

Fig. 2. A Detailed View of the Implementation Layer of Figure 1

2.2 Threat Model

We assume that the cloud infrastructure management system has implementation �aws and vul-
nerabilities, which can be potentially exploited by malicious entities leading to tenants’ virtual in-
frastructures isolation failures. For instance, a reported vulnerability in OpenStack Neutron OSSA-
2014-008 [42] allows a tenant to create a virtual port on another tenant’s virtual router without
checking his identity. Exploiting such vulnerabilities leads to serious isolation breaches opening
doors to more harmful attacks such as network sni�ng. As another example, a malicious tenant

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.



39:6 T. Madi et al.

can take advantage from the known cloud data centers con�guration strategies to locate his vic-
tim inside the cloud [51]. In addition, he can compromise some host hypervisors to deliberately
change network con�gurations at the implementation layer.
Our auditing approach focuses on verifying security compliance of OpenStack-managed cloud

infrastructures with respect to prede�ned security properties related to virtual infrastructure iso-
lation de�ned in relevant security standards or tenant speci�c requirements. Thus, our solution is
not designed to replace intrusion detection systems or vulnerability analysis tools (e.g., vulnerabil-
ity scanners). However, by verifying security properties, our solution may detect the e�ects and
consequences of certain vulnerabilities exploit or threats on the con�guration of the cloud under
the following conditions: a) the vulnerability exploit or threat violates at least one of the security
properties being audited, b) the violations generate logged events and con�guration data, c) the
corresponding traces of those violations in logs and con�guration data are intact and not erased or
tampered with, as the correctness of our audit results depends on the correct input data extracted
from logs, databases, and devices.
The out of scope threats include attacks that do not violate the speci�ed security properties,

attacks not captured in the logs or databases, and attacks through which the attackers may remove
or tamper with logged events. Existing techniques on trusted auditing may be applied to establish
a chain of trust from TPM chips to auditing components, e.g., [4]).
We focus on layer 2 virtual network in this paper, and our work is complementary to existing

solutions at other network layers. We assume that not all tenants trust each other. In certain cloud
o�erings (e.g., private clouds), a tenant can either require not to share any physical resource with
all other tenants, or provide a white (or black) list of trusted (or distrusted) tenants that he is (or
not) willing to share resources with. Finally, we assume the veri�cation results do not disclose
sensitive information about other tenants and regard potential privacy issues as a future work.
Finally, we focus on auditing structural properties such as the assignment of instances to phys-

ical hosts, the proper con�guration of virtualization mechanisms, and consistency of the con�g-
urations in di�erent layers of the cloud. Those properties mainly involve static con�guration in-
formation that are already stored by the cloud system at the cloud management layer and the
implementation layer. The veri�cation of operational properties, which are related to the network
forwarding functionality, are out of the scope of the paper.

2.3 Virtualized Cloud Infrastructure Model

In this section, we present the two-layered model that we derive to capture information related to
isolated virtual networks at both the infrastructure management and the implementation layers.
This model was derived based on common knowledge and studied literature on implementation
and management of isolated virtual networks [16]. For instance, to elaborate and validate the
infrastructuremanagement layermodel, we analyzed the abstractions exposed by themost popular
cloud platforms providing tenants the capability to build virtual private networks (e.g., AWS EC2-
Virtual Private Cloud (VPC) [3], Google Cloud Platform (GCP) [23], Microsoft Azure [36], VMware
virtual Cloud Director (vCD) [54] and OpenStack [45]). More details will be provided in Table 7
(Section 6). For the implementation model, we relied on performing intensive tests on OpenStack
compute and network nodes, then we supported our understanding by exploring the literature
[18, 38]. Finally, we validated our two-layer model with subject matter experts.
The model allows capturing the data to be audited at each layer, its underlying semantics and

relation with isolation requirements. It also de�nes cross-layer mappings of data in di�erent layers
to capture consistency requirements. We �rst present an example that provides intuitions on the
proposed model.

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.



ISOTOP: Auditing Virtual Networks Isolation Across Cloud Layers in OpenStack 39:7

Tenant_Alpha

BelongsTo

VM_Bapp1

HasRunningVM
HasRunningVM

IsConnectedTovNet

CN_1

Tenant_Beta

VLAN_101

VM_Aweb VM_AdbHasRunningVM

vPort_11
vPort_13

IsMappedToSeg

IsMappedToSeg

IsRunningOnIsRunningOn

IsAssignedSeg

BelongsTo

IsConnectedTovNet

IsRunningOn

vPort_21

seg_256

VXLAN_0×100

Server _1

VM_13 VM_11

OVS_1

Port_11Port_13

SWRunningOn

VMRunningOn

IsAssignedVLAN

IsMappedTo

VXLANOnOVS

VM_21

Port_21

IsConnected

OnPort

IsConnected

OnPort

VXLAN_0×200

IsMappedToSeg

seg_512

IsAssignedVLANIsAssignedVLAN

VMRunningOn

IsConnected

OnPort

vNet_A

IsAssignedSeg

vNet_B

IsConnectedTovNet

CN_2

OVS_2

VLAN_100

Server _2 SWRunningOn

VMRunningOn

IsMappedTo

VXLANOnOVS

Infrastructure 

Management Layer

Implementation 

Layer

Fig. 3. Subsets of Data and its Relations at the Could Infrastructure Implementation and Management Lay-

ers Showing Isolation Violation. At the Implementation Level, VM_21 is Connected on Port_21, that is As-

signed VLAN_100 as a Consequence of the A�ack. Since VLAN_100 is Mapped to VXLAN 0×100, which is

Mapped to seg_256 at the Infrastructure Management Layer and the La�er Segment is Assigned to vNet_A

of Tenant_Alpha, VM_21 Belonging to Tenant_Beta is Now on the Same Network Segment as VMs in vNet_A

Example 2.2. Figure 3 captures a subset of the data, at di�erent layers, that is relevant to virtual
networks vNet_A and vNet_B corresponding to the deployment illustrated in Figure 1 and Figure 2.
The upper part of the �gure shows a subset of the data managed by the infrastructure management
layer and on the lower part, the subset of data managed by the implementation layer. Nodes rep-
resent data instances, while the directed arrows represent relations between these data instances.
For example, at the infrastructure management layer, the relationship IsConnectedTovNet re-
lates three instances of data VM_Adb, vNet_A, and vPort_11, and means that VM_Adb is connected
to vNet_A on virtual port vPort_11. A cross-layer mapping, shown as small dotted undirected ar-
rows, between some of the data instances at di�erent layers is used to relate management-de�ned
data to its implementation counterpart. For instance, VM_Adb and vPort_11 have each a one-to-
one cross-layer mapping to VM_11 and Port_11, respectively, while no data entity at the imple-
mentation layer could be directly mapped to vNet_A at the management layer. The latter can be
indirectly mapped to VXLAN_0x100 at the implementation layer via the segment seg_256. More
precisely, vNet_A is implemented using VXLAN_0x100 and a set of corresponding VLANs, namely,
VLAN_100 and VLAN_101 (via IsMappedToVXLANonOVS), which are assigned to Port_11, Port_13,
and Port_21 (via IsAssignedVLAN).
This instance of the layered-model allows capturing topology isolation breaches and identifying

which networks, VMs, and tenants are in this situation. Indeed VM_21 is found to be on the same
virtual layer 2 segment as VM_11 and VM_13. There are two types of isolation breaches and they
are illustrated as follows:

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.



39:8 T. Madi et al.

• Intra-server topology isolation breach. At the implementation layer, VM_21 is connected on
port Port_21 (via relationship IsConnectedonPort), which is assigned VLAN_100 (via rela-
tionship IsAssignedVLAN) in the open vSwitch OVS_1. Additionally, since Port_11 connect-
ing VM_11 is also assigned VLAN_100 on the same switch, both VM_11 and VM_21 connected
via these ports are located on the same virtual network segment VLAN_100 (which corre-
sponds to vNet_A at the infrastructure management level) leading to an isolation breach.
Since both VMs are in the same server, namely, Server_1, it is said to be an intra-server topol-
ogy isolation at virtual layer 2. Noteworthy, without the correctmapping between VM_11 and
VM_21 at the implementation layer to their respective counterparts VM_Adb and VM_Bapp1 as
well as the ownership information (i.e., these VMs belong to di�erent tenants and are con-
nected on di�erent virtual networks) at the management layer, we cannot conclude on the
existence of this breach by only considering data from the implementation layer.

• Inter-server topology isolation breach. At the implementation layer, VLAN_100 that is
assigned to ports Port_21 and Port_11 is mapped to VXLAN_0x100 via relationship
IsMAppedToVXLANonOVS (which corresponds again to vNet_A at the infrastructure manage-
ment level). However, this VXLAN identi�er is also related to another VLAN_tag, namely,
VLAN_101,which is assigned to port Port_13 connecting VM_13on Server_2.This is an inter-
server topology isolation breach, since VM_13 and VM_21 are running on di�erent servers
(Physical Server_2 and Physical Server_1).

The two-layered model shown in Figure 3 is actually a sub-instance of the model we derived
for the cloud infrastructure management and implementation layers that is illustrated in Figure 4.
Therein, entities are illustrated using rectangles and arrows represent relationships between those
entities. Entities represent data types that are managed by one of the layers. We use cardinality
constraints to capture allowed number of data instances for each entity in the context of each
relationship.

Infrastructure Management Model. The upper model in Figure 4 captures the view from the
cloud infrastructure management system perspective. This layer manages virtual resources such
VMs, routers, and virtual networks (represented as entities) as well as their ownership relation
(represented as relationships) with respect to tenants. Once connected together, these resources
form the tenants’ virtual infrastructures. Some entities, for instance Tenant, are only maintained
at the management layer and have no counterpart at the lower layer. Other entities exist across
layers (e.g., VMs and ports), however, one-to-onemappings should bemaintained. Thesemappings
allow inferring missing relationships between layers and help checking consistency between the
cloud stack layers. Isolation between di�erent virtual networks at this layer is de�ned using a
segmentationmechanism,modeled as entity Segment. A segment should be unique for all elements
of the same virtual infrastructure.

Example 2.3. Ownership is modeled using the BelongsTo relationship in Figure 4 between
Tenant and vResource. The related cardinality constraint (M:1), expresses that, following the
directed edge, a given vResource can only belong to a single (i.e., 1) Tenant, but, a Tenant can
own multiple (i.e., M) virtual resources. The isAssignedSeg relationship and its cardinality con-
straint (1:1) relating Segment to vNet allows having a unique segment per network. Relationships
isConnectToVnet and HasRunningVM are of special interest to us and thus they are depicted in
the model even though they can be inferred from other relationships.

Implementation Model. The lower model in Figure 4 captures a typical OpenStack implemen-
tation of the infrastructure management view using well-known layer 2 isolation technologies,
VXLAN and VLAN. The model can capture other layer 2 isolation mechanisms such as Generic

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.



ISOTOP: Auditing Virtual Networks Isolation Across Cloud Layers in OpenStack 39:9

vSubnet

(M:1) IsPartOf

Segment

Compute/ 

Network Node

Server

vRouter

VM

 vPort

(1:M) Isconnected

OnvPort
(M:1) IsAssociatedwith

vNet

(1:1) IsAssigned

Seg

Tenant

Relationship Extention Mappings 

(1:1) DoesNot

Trust
(M:1) BelongsTo

Aggregation

vResource

(M:1) IsRunningOn

(M:1) IsDefinedOn

(1:M) Interfacewith

(M:1) IsLocatedAt

VM

(M:M:1) IsAssignedVLAN

VXLAN

VLAN
Router

NameSpace

(M:1) IsLocatedOn (M:1) SWRunningOn

(1:M) IsConnectedOnvPort

Remote

VTEP

OVS

(M:M:1) HasMapping
(M:1) VMRunningOn

(1:1) RelatedTo

(1:M) Interfacewith

(M:M:1) IsMappedTo

VXLANOnOVS

(M:M:1) IsAssociatedWith

(1:M) Hasport

N-arity  Relationship N>2

Port

(M:1) IsMappedTo

Seg

(1:M) HasRunningVMIsConnectedTovNet

Inferred Relationship

Inf. Management 

Layer

Implementation 

Layer

Fig. 4. Two-layered Model for Isolated Multi-Tenant Virtualized Infrastructures in the Cloud: Generic Model

for the Infrastructure Management Layer (Upper Model) Mapped into an Implementation-specific Model of

the Infrastructure Layer (Lower Model)

Routing Encapsulation (GRE) by replacing the entity VXLAN with entity GRE. Some entities and
relationships in this model represent the implementation of their counterparts at the management
model. For instance, VXLAN combined with VLAN are implementation of entity Segment. Other
entities such as virtual networking devices Open vSwitch (OVS) and Virtual Tunneling End Point
(VTEP) are speci�c to the implementation layer as they do not exist at the infrastructure manage-
ment model. They play the vital role in connecting VM instances to their hosting machines and to
their virtual networks across di�erent servers. Indeed, VTEPs are overlay-aware interfaces respon-
sible for the encapsulation of packets with the right tunnel header depending on the destination
VM and its current hosting server.

Example 2.4. At the lower model in Figure 4, the ternary relationship isAssignedVLAN with
cardinality (M:M:1)means that each single port in a given OVS can be assigned at most one VLAN

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.



39:10 T. Madi et al.

but multiple ports can be assigned the same VLAN. To capture isolation at overlay networks span-
ning over di�erent servers, the ternary relationship isMappedtoVXLAN states that each VLAN in
each OVS is mapped to a unique VXLAN. The unicity between a speci�c port and a VLAN in an
OVS as well as the unicity of the mapping of a VLAN to a VXLAN in a given OVS, are inherited
from the unicity of the mapping of a segment to a virtual network. The two ternary relationships
hasMapping and isAssociatedWith are used to model VTEPs information existing over di�erent
physical servers. Several relations have similar semantics in both models, however, we use dif-
ferent names for clarity. For instance, VMRunningOn at the implementation layer corresponds to
isRunningOn at the management layer.

Entities and relationships de�ned in these models will be used in our approach to automate the
veri�cation of isolation between tenants’ virtual infrastructures. They will be essentially used to
express system data and the relations among them in the form of instances of these models. Also,
they will be used to express properties related to isolation as will be presented in next section.

3 METHODOLOGY

In this section, we detail our approach for auditing compliance of virtual layer 2 networks with
respect to a multi-tenant cloud.

3.1 Overview

Figure 5 presents an overview of our approach. Our main idea is to use the derived two-layered
model (Section 2) to capture the implementation of the multi-tenant virtual infrastructure along
with its speci�cation. We then verify the implementation against its speci�cation to detect viola-
tion of the properties.

Infrastructure Management and 

Implementation models

Isolation and 

Consistency rules

Translator

Instances of Models

(Implementation)

Properties in First Order Logic 

(Specification)
CSP

 Code

CSP 

Solver

Verification

Results
Infrastructure Implementation

(Switches, physical servers,...)

Cloud Infrastructure 

Management System

(e.g., OpenStack)

Fig. 5. An Overview of our Verification Approach

To be able to automatically process the model as the speci�cation support for the virtual infras-
tructure, we �rst express it in First Order Logic (FOL) [5]. We encode entities and relationships
in both models into a set of FOL expressions, namely, variables and relations. We also express
isolation and consistency rules as FOL predicates based on the FOL expressions derived from the
model. This process is performed o�ine and only once.
To obtain the implementation of the system, we collect real data from di�erent layers (cloud

management and cloud infrastructure) and use the model entities and relationships de�nitions to
build an instance of the model representing the current state of the system. As we aim at detecting
violations, we represent relationships between real data as instances of FOL n-ary relations without
restricting instances to meet cardinality constraints. This will be detailed later on in this section.
As a back-end veri�cation mechanism, we rely on the o�-the-shelf CSP solver Sugar. The latter
allows formulation of many complex problems in terms of variables de�ned over �nite domains

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.



ISOTOP: Auditing Virtual Networks Isolation Across Cloud Layers in OpenStack 39:11

and constraints. Its generic goal is to �nd a vector of values (a.k.a. assignment) that satis�es all
constraints expressed over the variables. If all constraints are satis�ed, the solver returns SAT,
otherwise, it returns UNSAT. In the case of a SAT result, a solution to the problem, which is a
speci�c assignment of values to the variables that satis�es the constraints, is provided. One of
the key advantages of using constraint solving is to enable uniformly specifying systems data and
properties in a clean formalism and covering a wide range of properties [58]. Furthermore, the
latter allows to identify the data violating the veri�ed properties as it will be explained in Section
3.3.

3.2 Cloud Auditing Properties

Among the goals of this work is to establish a bridge between high-level security standards and
low-level implementation as well as to enable veri�cation automation. Therefore, this section de-
scribes a set of concrete security properties related to layer 2 virtual network and overlay network
isolation in a multi-tenant environment. In this paper, we focus on the veri�cation of structural
properties gathered from the literature and the subject matter. To have a more concrete example
of layer 2 virtual network isolation mechanisms, we refer to VLAN and VXLAN as examples of
well-established technologies.

Table 1 presents an excerpt of the security properties mapped to relevant domains and con-
trol classes in security standards, namely CCM [13] (Infrastructure and virtualization security
segmentation domain), ISO27017 [27] (Segregation in networks section) and NIST800 [41] (Sys-
tem and communications protection, System and information integrity security controls). These
properties are either checked on individual cloud layers (i.e., infrastructure management level or
implementation level), or based on information gathered from both layers at the same time. In
the following, we provide a brief description for the security properties of interest and discuss
examples illustrating how those properties are related to isolation, and how they can be violated.

Physical Isolation (No VM co-residence). Physical isolation [24] aims at preventing side and
covert channel attacks, and reducing the risk of attacks staged based on hypervisor and software
switches vulnerabilities by hosting VMs in di�erent physical servers. Such attacks might lead to
performance degradation, sensitive information leakage, and denial of service.

Example 3.1. (NoVM co-residence) Figure 6 consists of two subsets of instances of the infrastruc-
ture management model presented in Section 2 focusing on entities Tenant, VM and CN (compute
node). At the left side of the �gure, we have two virtual machines VM_A1 and VM_A2 belonging
to Tenant_Alpha and running at compute node CN_1, and VM_B1 owned by Tenant_Beta while
running at compute node CN_2. Because of lack of trust, Tenant_Alphamay require physical iso-
lation of its VMs from those of Tenant_Beta. However, as illustrated at the right side of Figure 6,
VM_A2 can be migrated from CN_1 to CN_2 for load balancing. This new instance of the model after
migration illustrates the violation of physical isolation.

Virtual Resource Isolation (No common ownership). The no common ownership property
[31] aims at verifying that no virtual resource is co-owned by multiple tenants. Tenants are gen-
erally allowed to interconnect their own virtual resources to build their cloud virtual networks by
modifying their con�gurations. However, if a virtual resource (e.g., a router or a port) is co-owned
by multiple tenants, it can be part of several virtual networks belonging to di�erent tenants, which
can potentially create a breach of isolation.

Example 3.2. (No common ownership) This property has been violated in a real-life OpenStack
deployment by exploiting a vulnerability OSSA-2014-008 [43], reported in the OpenStack Neutron
networking service, which allows a tenant to create a virtual port on another tenant’s router. An

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.



39:12 T. Madi et al.

 

Tenant_ 

Alpha  

Tenant_

Beta

 

VM_A1

 

VM_A2

 

VM_B1

 

CN_1

 

CN_2

HasRunningVM HasRunningVM HasRunningVM

IsLocatedAt IsLocatedAt IsLocatedAt

DoesNot

Trust

 

Tenant_

Alpha  

Tenant_

Beta

 

VM_A1

 

VM_A2

 

VM_B1

 

CN_1

 

CN_2

HasRunningVM HasRunningVM

IsLocatedAt IsLocatedAt IsLocatedAt

DoesNot

Trust

Migration 

of VM_A2

Before After

HasRunningVM

Fig. 6. Subsets of the Infrastructure Management Model Instances Before and A�er Violation of No VM

Co-residence Property Illustrating an Example of Data on VM Locations. A�er Migration, VM_A2 Becomes

Co-resident with VM_B1 at Compute Node CN_2.

instance of our infrastructure managementmodel can capture this violation as illustrated in Figure
7. Themodel instance on the left side illustrates the initial entities and their relationships before ex-
ploiting the vulnerability. Assume that Tenant_Beta, by exploiting the said vulnerability, created
vPort_21, and plugged it into Router_A1, which belongs to Tenant_Alpha. This would modify
the model instance as illustrated on the right side showing the violation of no common ownership.
Indeed, Tenant_Beta is the owner vPort_21 as it is the initiator of the port creation. But since the
port is connected to Router_A1, the created port would be considered as a common resource for
both tenants.

 vPort_10  vPort_20

HasInterface HasInterface

 vRouter_B1 vRouter_A1

BelongsTo

BelongsTo

 

Tenant_

Alpha

 vPort_10  vPort_21  vPort_20

HasInterface HasInterface

 vRouter_B1 vRouter_A1

BelongsTo BelongsTo
BelongsTo BelongsTo

BelongsTo

HasInterface

Creation 

of vPort_21

Before After

BelongsTo
BelongsTo

 

Tenant_

Alpha  

Tenant_

Beta

BelongsTo
 

Tenant_

Beta

Fig. 7. Subsets of the Infrastructure ManagementModel Instances Before and A�er Violation ofNoCommon

Ownership Property Illustrating an Example of Data on Ports and Routers Ownership. A�er Creating Port

vPort_21, the La�er Becomes Owned by Two Tenants.

Topology Isolation. This property ensures that virtualization mechanisms are properly con�g-
ured and provide adequate logical isolation between virtual networks. By using isolated virtual
topologies, tra�c belonging to di�erent virtual networkswould travel on logically separated paths,
thus ensuring tra�c isolation. Example 2.2 provided in Section 2 illustrates a topology isolation
violation using an instance of our model.

Topology Consistency. Topology consistency consists of checking whether the topology view in
the cloud infrastructure management system, consistently matches the actual implemented topol-
ogy, and the other way around, while considering di�erent tenants’ boundaries.

Example 3.3. (Port consistency) Assume that a malicious insider deliberately created a port
Port_40 directly on OVS_1 without passing by the cloud infrastructure management system and
tagged it with VLAN_100, which is already assigned to Tenant_Alpha. This allows the malicious
insider to sni� tenant’s Alpha tra�c on VLAN_100 via Port_40, which clearly leads to the violation
of network isolation property.

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.



ISOTOP: Auditing Virtual Networks Isolation Across Cloud Layers in OpenStack 39:13

Category
Standard Property Level

C
C
M

IS
O
27
01
7

N
IS
T
80
0

Name Description Mgmt. Impl.

Physical isola-
tion

• • • No VM co-residence (P1) VMs of a tenant should not be placed on
the same compute node as VMs of a non
trusted tenant

×

Virtual re-
sources isola-
tion

• • • No common ownership (P2) All tenant-speci�c resources should be-
long to a unique tenant

×

Topology
isolation

• • •

Mappings unicity
Virtual Networks-
Segments (P3)

Virtual networks and segments should be
mapped one-to-one

×

Mappings unicity
Ports-Segments (P4)

vPorts should be mapped to unique seg-
ments

×

Correct association
Ports-Virtual
Networks (P5)

VMs should be attached tot he virtual net-
works they are connected to through the
right vPorts

×

Mapping unicity
Ports-VLANs (P6)

Ports should bemapped tounique VLANs ×

Mapping unicity
VLANs-VXLANs (P7)

VLANs and VXLANs should be mapped
one-to-one on a given server

×

Overlay tunnels isolation
(P8)

In each VTEP end, VMs are associated to
their physical location and to the VXLAN
assigned to the networks they are at-
tached to

×

Topology
consistency

• • • VM location consistency
(P9)

Consistency between VMs locations at
the implementation level and at the man-
agement level

× ×

Ports consistency (P10) Consistency between vPorts in the imple-
mentation level and their counterparts in
the management level

× ×

Virtual links consistency
(P11)

VMs should be connected to the VLANs
and VXLANs in the implementation level
that correspond to the virtual networks
they are attached to at the management
level

× ×

Table 1. Excerpt of Security Properties

3.3 Verification Approach

In order to systematically verify isolation and consistency properties over the model, we need to
transform the model and its instances as well as the requirements into FOL expressions that can
be automatically processed. In the following, we present how we express the model, the data, and
the properties in FOL.

3.3.1 Model and Data Representation. Entities in the model are encoded into FOL variables where
their domainswould encompass all instances de�ned by the system data. Each n-ary relationship is
encoded into a FOL n-ary relation over the related variables, where the instance of a given relation
is the set of tuples corresponding entities-instances as de�ned by the relationship.
For instance, in themodel instance of Figure 3, the relationship IsMappedToVXLANOnOVS is trans-

lated into the following FOL relation instances capturing the actual implementation setup showing
the mapping of a VLAN into a VXLAN on a given OVS instance.

• IsMapedToVXLANOnOVS(OVS_2, VLAN_101, VXLAN_0×100)

• IsMapedToVXLANOnOVS(OVS_1, VLAN_100, VXLAN_0×100)

Table 2 shows the main FOL relations de�ned in our model. These relations are required for
expressing properties, which are formed as predicates as it will be presented next.

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.



39:14 T. Madi et al.

Relations Def. at Evaluate to T rue if
BelonдsTo(r , t ) Mgmt. The resource r is owned by tenant t
HasRunninдVM(t, vm) Mgmt. The tenant t has a running virtual machine vm
DoesNotT rust (t1, t2) Mgmt. Tenant t2 is not trusted by tenant t1 which means that t1’resources should

not share the same hardware with t2’ instances
I sRunninдOn(vm, cn) Mgmt. The instance vm is located at the compute node cn
IsMappedToSeд(vp, seд) Mgmt. The virtual port vp is mapped to the segment seд
IsAssiдnedSeд(vNet, seд) Mgmt. The virtual network vNet is assigned the segment seд
IsConnectedTovNet (vm, vNet, vp) Mgmt. vm is connect to vNet on the virtual portvp
HasPor t (sw, p) Impl. The virtual switch sw has a portp
IsAssiдnedV LAN (sw, p, vlan) Impl. The portp on switch sw is assigned the VLAN vlan
IsMappedToVXLANOnOVS (sw,

vlan, vxlan)
Impl. vlan is mapped to vxlan on the virtual switch sw

SwRunninдOn(sw, s) Impl. The switch sw is running on the server s
VMRunninдOn(vm, s) Impl. The VM vm is running on the server s
IsConnectedOnPor t (vm, sw, p) Impl. The VM vm is connected on port p belonging to the switch sw
HasMappinд(ovs, vm, vxlan) Impl. The VM vm is associated to vxlan on a remote switch ovs
IsAssociatedW ith(ovs, vm, vtep) Impl. The VM vm is associated to the remote VTEP vtep on ovs
IsRelatedTo(vtep, s) Impl. the VTEP vtep is de�ned on the server s

Table 2. Relations in the Implementation and Infrastructure Management Models Encoded in FOL

Properties FOL Expressions

No VM co-residence
(P1)

∀t1, t2 ∈ T ENANT , ∀vm1, vm2 ∈ VM, ∀cn1, cn2 ∈ COMPUT EN : HasRunninдVM(t1, vm1)∧
HasRunninдVM(t2, vm2) ∧ DoesNotT rust (t1, t2) ∧ I sRunninдOn(vm1, cn1)

∧I sRunninдOn(vm2, cn2) → ¬(cn1 = cn2)
No common ownership
(P2)

∀r ∈ vResource, ∀t1, t2 ∈ T ENANT : BelonдsTo(r , t1) ∧ BelonдsTo(r , t2) → (t1 = t2)

Mappings unicity Virtual
Networks and Segments
(P3)

∀vNet1, vNet2 ∈ vNET , ∀seд1, seд2 ∈ Seдment : [I sAssiдnedSeд(vNet1, seд1)∧
I sAssiдnedSeд(vNet2, seд2) ∧ ¬(vNet1 = vNet2) → ¬(seд1 = seд2)]∧

[I sAssiдnedSeд(vNet1, seд1) ∧ I sAssiдnedSeд(vNet2, seд2)∧
¬(seд1 = seд2) → ¬(vNet1 = vNet2)]

Mappings unicity Ports-
Segments (P4)

∀seд1, seд2 ∈ Seдment, ∀vp ∈ vPORT : I sMappedToSeд(vp, seд1)∧
I sMappedToSeд(vp, seд2) → (seд1 = seд2)

Correct associationPorts-
Virtual Networks (P5)

∀vm ∈ VM, ∀vNet ∈ vNET , ∀seд1, seд2 ∈ Seдment, ∀vp ∈ vPor t :
I sConnectedTovNet (vm, vNet, vp) ∧ I sAssiдnedSeд(vNet, seд1)

∧I sMappedToSeд(vp, seд2) → (seд1 = seд2)

Table 3. Isolation Properties at the Infrastructure Management Level in FOL

Properties FOL Expressions

Mapping unicity Ports-
VLANs (P6)

∀sw ∈ OVS, ∀p ∈ Por t, ∀vlan1, vlan2 ∈ V LAN : HasPor t (sw, p)∧
I sAssiдnedV LAN (sw, p, vlan1) ∧ I sAssiдnedV LAN (sw, p, vlan2) →

(vlan1 = vlan2)

Mapping unicity VLANs-
VXLANs (P7)

∀vxlan1, vxlan2 ∈ VXLAN , ∀vlan ∈ vlan, ∀sw ∈ OVS,
∀p ∈ PORT : (I sAssiдnedV LAN (sw, p, vlan) ∧ I sMappedToVXLANOnOVS (sw, vlan, vxlan1)

∧I sMappedToVXLANOnOVS (sw, vlan, vxlan2) → (vxlan1 = vxlan2)

Overlay tunnels isolation
(P8)

∀vm ∈ VM, ∀sw1, sw2 ∈ OVS, ∀p ∈ PORT , ∀vxlan1, vxlan2 ∈ VXLAN , ∀s1, s2 ∈ Server ,
∀vtep ∈ RemoteVT EP, ∀vlan ∈ V LAN : HasPor t (sw1, p) ∧ SW RunninдOn(sw1, s1)∧

I sConnectedOnPor t (VM, sw1, p) ∧ I sAssiдnedV LAN (sw1, p, vlan)∧
I sMappedToVXLANOnOVS (sw1, vlan, vxlan1) ∧ I sAssociatedW ith(sw2, vm, vtep)

∧HasMappinд(sw2, vm, vxlan2) ∧ I sRelatedTo(vtep, s2) → (s1 = s2) ∧ (vxlan1 = vxlan2)

Table 4. Isolation Properties at the Implementation Level in FOL

3.3.2 Properties Expressions. Security properties presented in Table 1 can be expressed as FOL
predicates over FOL relations de�ned in Table 2.
Table 3 shows FOL predicates for the isolation properties at the infrastructure management

model. Table 4 presents FOL predicates for the isolation properties at the implementation model.
Table 5 summarizes the expressions of consistency-related properties.

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.



ISOTOP: Auditing Virtual Networks Isolation Across Cloud Layers in OpenStack 39:15

Properties FOL Expressions

VM location consistency
(P9)

∀vm1 ∈ VM, ∀cn ∈ COMPUT EN : I sRunninдOn((vm1, cn) →
∃vm2 ∈ iVM, ∃s ∈ SERV ER : VMRunninдOn(vm2, s) ∧ (vm1 = vm2) ∧ (cn = s)

Ports consistency (P10)

∀vNet ∈ vNET , ∀seд ∈ Seдment, ∀vp ∈ vPORT : I sAssiдnedSeд(vNet, seд)
∧I sMappedToSeд(vp, seд) →

[∃sw ∈ OVS, ∃vxlan ∈ VXLAN , ∃vlan ∈ V LAN , ∃p ∈ PORT : I sAssiдnedV LAN (sw, p, vlan)
∧I sMappedToVXLANOnOVS (sw, vlan, vxlan) ∧ (seд = vxlan)(vp = p)]

Virtual links consistency
(P11)

∀vm1 ∈ iVM, ∀vxlan ∈ VXLAN , ∀sw ∈ OVS, ∀vlan ∈ V LAN , ∀p ∈ PORT :
I sConnectedOnPor t (vm1, sw, p)∧

I sAssiдnedV LAN (sw, p, vlan) ∧ I sMappedToVXLANOnOVS (sw, vlan, vxlan) →
[∃vm2 ∈ vVM, ∃vNet ∈ vNET , ∃seд ∈ Seдment, ∃vp ∈ vPORT :

I sConnectedTovNet (vm2, vNet, vp) ∧ (vm1 = vm2)∧
I sAssiдnedSeд(vNet, seд) ∧ (seд = vxlan)]

Table 5. Topology Consistency Properties in FOL

3.3.3 Isolation Verification. As discussed before (Section 3.3.1), model instances are built based
on the collected data and they are encoded as tuples of data representing relations’ instances. On
another hand, properties are encoded as predicates to specify the conditions that these relations’
instances should meet.
To verify the security properties, we use both properties’ predicates and relations’ instances to

formulate the CSP constraints to be fed into the CSP solver. Since CSP solvers provide solutions
only in case the constraint is satis�ed (SAT), we de�ne constraints using the negative form of the
FOL predicates presented in Tables 3, 4 and 5. Hence, the solution provided by the CSP solver gives
the relations’ instances for which the negative form of the property is satis�ed, meaning that a
violation has occurred.

To better explain how the CSP solver allows to obtain the violation evidence, we provide here-
after an example of the veri�cation of the inter-server isolation property provided in Example 2.2.

Example 3.4. We assume that VM location consistency and port consistency properties were
veri�ed to be met by the con�guration. From the infrastructure management level, we recover the
virtual networks connecting each VM and their corresponding segment. This is captured through
the following relation instances:

• IsConnectedTovNet((VM_Bapp1, vNet_B, vPort_21), (VM_Adb, vNet_A, vPort_11),

(VM_Aweb, vNet_A, vPort_13))

• IsAssignedSeg((vNet_B, seg_512),(vNet_A, seg_256)))

From the implementation level, we recover the OVS and the ports connecting VMs in addition
to their assigned VLAN tags and VXLAN identi�ers captured through the following relation in-
stances:

• IsConnectedOnPort((VM_21, OVS_1, Port_21),(VM_11, OVS_1, Port_11), (VM_13,

OVS_2, Port_13))

• IsAssignedVLAN((OVS_1, Port_21, vlan_100),(OVS_1, Port_11, vlan_100),

(OVS_2, Port_13, vlan_101))

• IsMappedToVXLANOnOVS((OVS_1, vlan_100, vxlan_0×100),(OVS_2, vlan_101,

vxlan_0×100))

We would like to verify that the VXLAN identi�er assigned to a virtual network at the imple-
mentation level is equal to the segment assigned to this same network at the infrastructure man-
agement level (after conversion to decimal), which is expressed by virtual link consistency property
(P11). To �nd whether there exist relations’ tuples that falsify this property (¬P11), we �rst formu-
late the CSP instance using the negative form of the corresponding predicate, which corresponds
to the following predicate:

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.



39:16 T. Madi et al.

¬P11 = ∃vm1 ∈ iVM,∃vxlan ∈ VXLAN,∃sw ∈ OVS,∃vlan ∈ VLAN,∃p ∈ PORT, (1)

∀vm2 ∈ vVM,∀vNet ∈ vNET,∀seg ∈ Segment,∀vp ∈ vPORT :

IsConnectedOnPort(vm1, sw, p) ∧ IsAssignedVLAN(sw, p, vlan)∧

IsMappedToVXLANOnOVS(sw, vlan, vxlan)∧

¬IsConnectedTovNet(vm2, vNet, vp) ∨ ¬(vm1 = vm2)∨

¬IsAssignedSeg(vNet, seg) ∨ ¬(seg = vxlan)

By verifying predicate 1 over all the aforementioned relations’ instances, the solver �nds an
assignment such that the above predicate becomes true, which means that the property P11 is
violated. The predicate instance that caused the violation can be written as follows:

IsConnectedOnPort(VM_21, OVS_1, Port_21)∧ (2)

IsAssignedVLAN(OVS_1, Port_21, vlan_100)∧

IsMappedToVXLANOnOVS(OVS_1, vlan_100, vxlan_0 × 100)∧

¬IsConnectedTovNet(VM_Bapp1, vNet_B, vPort_21) ∨ ¬(VM_21 = VM_Bapp1)∨

¬IsAssignedSeg(vNet_B, seg_512) ∨ ¬(seg_512 = vxlan_0 × 100)

Since seg is equal to 512 and the decimal value of VXLAN0_×100, namely vxlan, is 256, then
the equality seg=vxlan will be evaluated to false and ¬(seg=vxlan) will be evaluated to true,
which makes the assignment in predicate 2 satisfying the constraint. This set of tuples provides
the evidence about what values breached the security property P11. Note that as VM consistency
and port consistency properties were assumed to be veri�ed, the equality between VM_Bapp1 and
VM_21 holds (based on their identi�ers that could be their MAC addresses for instance).

In the following section, we present our auditing solution integrated into OpenStack and show
details on how we use the CSP solver Sugar as a back-end veri�cation engine.

4 IMPLEMENTATION

In this section, we �rst provide a high-level architecture of our system. We then brie�y review
the most relevant OpenStack services and OVS. Finally, we detail our implementation and its in-
tegration into OpenStack and Congress [44], an open-source framework implementing policy as
a service for OpenStack.

4.1 Architecture

Figure 8 illustrates a high-level architecture of our auditing system. It has three main components:
data collection and processing module, compliance veri�cation module and the dashboard and
reportingmodule. Our solution interacts mainly with the cloud infrastructure management system
(e.g., OpenStack) and elements in the data center infrastructure to collect various types of audit
data. It also interacts with the cloud tenant to obtain the tenant requirements and to provide the
tenant with the audit results. The properties extractor intercepts tenants’ requirements (expressed
as high level properties) and identi�es the corresponding low level and concrete properties that
can be directly checked on the collected and processed data. As expressing and processing tenants’
policies is out of the scope of this paper, we assume that they are parsable XML �les.
The data collection and processing module is composed of the collection engine and the process-

ing engine. The collection engine is responsible for collecting the required audit data in a batch

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.



ISOTOP: Auditing Virtual Networks Isolation Across Cloud Layers in OpenStack 39:17

Infrastructure Management and 

Implementation Models

Cloud Inf. Management System

(e.g., OpenStack)

Data Center Inf. (Switches, physical 

servers, middleboxes, ...)

Data Collection Engine

Data Processing  Engine

Compliance Verification

Engine 

Dashboard

Data Collection and 

Processing Module

Result Processing

Engine 

Compliance 

Verification Module

A
u

d
it

 

re
p

o
si

to
ry

Dashboard and Reporting Module

Reporting Engine

Audit 

reports

Requirements (General/ tenant-specific security 

policies) and Audit queries

Properties Extractor

Fig. 8. A High-Level Architecture of our Cloud Auditing Solution

mode. The role of the processing engine is to �lter, format, aggregate, and correlate this data. The
required audit data may be distributed throughout the cloud and in di�erent formats. The pro-
cessing engine pre-processes the data in order to provide speci�c information needed to verify
given properties. Furthermore, the processing engine recovers the formalized form of the concrete
properties that need to be audited. The last processing step is to generate the code for compli-
ance veri�cation using both the processed data and the formalized properties. The generated code
depends on the selected back-end veri�cation engine.
The compliance veri�cation module is responsible for performing the actual veri�cation of the

audited properties and the detection of violations, if any. Triggered by an audit request, the com-
pliance veri�cation module invokes the back-end veri�cation engine. In case of violation, the ver-
i�cation engine provides details on the breach, which are then intercepted and interpreted by the
result processing engine.
If a security audit property fails, evidence can be obtained from the output of the veri�cation

back-end. Once the outcome of the compliance veri�cation is ready, audit results and evidences are
stored in the audit repository database and made accessible to the audit reporting engine. Several
potential formal veri�cation engines can serve our needs, and the actual choice may depend on
the property being veri�ed.

4.2 Background

As we are interested in auditing the infrastructure virtualization and network segregation, we
�rst investigated OpenStack documentation to learn which services are involved in the creation
and maintenance of the virtual infrastructure and networking. We found that Nova and Neutron
services in OpenStack are responsible in managing virtual infrastructure and networking at the
management layer. We also investigated the implementation-level, and found that OVS instances
running in di�erent compute nodes are the main components that implements the virtual infras-
tructure. Following is a brief description of Nova, Neutron and OVS:
Nova [45] This is the OpenStack project designed to provide massively scalable, on demand, self-
service access to compute resources. It is considered as the main part of an Infrastructure as a
Service (IaaS) model.
Neutron [45] ThisOpenStack project provides tenants with capabilities to build networking topolo-
gies through the exposed API, relying on three object abstractions, namely, networks, subnets and

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.



39:18 T. Madi et al.

Neutron DB Nova DB
Open_vSwitch

DB

(Tenant_ID, VM_ID)

(VM_ID, Compute_Node)

…..

(Port_ID, VXLAN_ID )
(Tenant_ID, VM_ID)
(VM_ID, Src_compute, Dest_compute)
(vPort_ ID, VLAN_ID)
…

IsMappedToVXLANOnOVS (Sw, VLAN_ID, VXLAN_ID)

IsRunningOn(VM_ID, Compute_ID)

…..

( Port_ ID, VLAN_ID)

(VLAN_ ID, VXLAN_ID)

…..
( Port_ ID, VLAN_ID)

(VLAN_ID, VXLAN_ID)

…..

Open_vSwitch_35

Open_vSwitch_56

(IsRunningOn H2 VM2) (=H1 H2)  ))

(predicate (portConsistency P V T)

(and (HasPortVLAN VS P V) (not(IsAssignedPoprtVLAN P V T) )))

(or (NoCommonOwnership T1 R1 T2 R2) (NocoResidence T1 T2 VM1 VM2 H1 

H2) (portConsistency P V T) ) ……………..

Requirements

-Physical isolation 

requirement: Alone

…..

Tenant Beta

Tenant Alpha

Data Filtering

Data Correlation and Aggregation

Verification and Validation Engine  Code

Network

Topology

Properties Definition

Model Building 

Properties Formalization

Formal Verification

(Sugar)

Data Processing

(Python and Bash scripts)

Data Collectionand 

(Python and Bash scripts)

Initialization

(Manual)

Nova  table: Instances

(Tenant_ID, vNet_ID)

(Tenant_ID, Subnet_ID)

…..

Neutron  table:s Networks, subnets

Neutron table: ml2_network-segments

(vNet_ID, Segment_ID)

…..

Fig. 9. Our OpenStack-based auditing solution with the example of data collection, forma�ing, correlation

building and Sugar source generation

routers. When leveraged with the Modular Layer 2 plug-in (ML2), Neutron enables supporting var-
ious layer 2 networking technologies. In many existing deployments, OVS is used with OpenStack
to manage the network connectivity between tenants’ VMs.
In our settings, an OVS de�nes two interconnected bridges, the integration bridge (br-int) and

the tunneling bridge (br-tun). VMs are connected via a virtual interface (tap device)3 to br-int.
The latter acts as a normal layer 2 learning switch. It connects VMs attached to a given network
to ports tagged with the corresponding VLAN, which ensures tra�c segregation inside the same
compute node.
Each tenant’s network is assigned a unique VXLAN identi�er over the whole infrastructure. The

br-tun is endowed with OpenFlow rules [22] that map each internal VLAN-tag to the correspond-
ing VXLAN identi�er and vice versa. For egress tra�c, the OpenFlow rules strip the VLAN-tag and
set the corresponding VXLAN identi�er in order to transmit packets over the physical network.
Conversely, for ingress tra�c, OpenFlow rules strip the VXLAN identi�er from the received tra�c
and set the corresponding VLAN-tag.

4.3 Integration Into OpenStack

We mainly focus on four components in our implementation: the data collection engine, the data
processing engine, the compliance veri�cation engine and the dashboard and reporting engine.
Figure 9 illustrates the steps of our auditing process. In the following, we describe our implemen-
tation details.

3This direct connection is an abstraction of a chain of one-to-one connections from the virtual interface to the br-int. In
fact, the tap device is connected to the Linux bridge qbr, which is in turn connected to the br-int.

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.



ISOTOP: Auditing Virtual Networks Isolation Across Cloud Layers in OpenStack 39:19

Relations Sources of Data
BelonдsTo Table Instances in Nova database and Routers, Subnets, Ports and networks in Neutron data-

base
HasRunninдVM Table Instances in Nova database
I sRunninдOn Table Instances in Nova database
I sAssiдnedSeд Table ml2_network_segments in Neutron database
I sMappedToSeд Table neworkconnections in Neutron database
I sConnectedTovNet Table Instances in Nova database
HasPor t OVS instances located at various compute nodes, br_int con�guration
I sAssiдnedV LAN OVS instances located at various compute nodes, br_int con�guration
I sMappedToVXLANOnOVS OVS instances located at various compute nodes, br_tun OpenFlow tables
VMRunninдOn OVS instances located at various compute nodes, br_int con�guration
SW RunninдOn The infrastructure deployment
I sConnectedOnPor t OVS instances located at various compute nodes, br_int con�guration
HasMappinд OVS instances located at various compute nodes
I sAssociatedW ith OVS instances located at various compute nodes
I sRelatedTo OVS instances located at various compute nodes
DoesnotT rust The tenant physical isolation requirement input

Table 6. Sample Data Sources in OpenStack, Open vSwitch and Tenants’ Requirements

Data collection engine. The data collection engine involves several components of OpenStack
e.g., Nova and Neutron for collecting audit data from databases and log �les, di�erent policy �les
and con�guration �les from the OpenStack ecosystem, and con�gurations from various virtual
networking components such as OVS instances in all physical servers to fully capture the con�g-
uration and virtual networks state. We present hereafter di�erent sources of data along with the
current support for auditing o�ered by OpenStack and the virtual networking components. Table 6
shows some sample data sources. We use di�erent sources including OpenFlow tables extracted
from OVS instances in every compute node, and Nova and Neutron databases:

• OpenStack. We rely on a collection of OpenStack databases, that can be read using
component-speci�c APIs. For instance, in Nova database, table Instance contains informa-
tion about the project (tenant) and the hosting machine, tableMigration contains migration
events’ related information such as the source-compute and the destination-compute. The
Neutron database includes various information such as port mappings for di�erent virtual-
ization mechanisms.

• OVS. OpenFlow tables and internal OVS databases in di�erent compute nodes constitute
another important source of audit data for checking whether there exists any discrepancy
between the actual distributed con�guration at the implementation layer and the OpenStack
view.

For the sake of comprehensiveness in the data collection process, we �rstly check �elds of a
variety of log �les available in OpenStack, di�erent con�guration �les and all Nova and Neutron
database tables. We also debug con�gurations of all OVS instances distributed over the compute
nodes using various OVS’s utilities. Mainly, we recovered ports’ con�gurations (e.g., ports and
their corresponding VLAN tags) from the integration bridges using the utility ovs-vsctl show,
and we extracted VLAN-VXLAN mappings form the tunneling bridges’ OpenFlow tables using
ovs-ofctl dump-flows. The tunneling bridge maintains a chain of OpenFlow tables for handling
ingress and egress tra�c. In order to recover the appropriate data, we identify the pertinent tables
where to collect the VLAN-VXLAN mappings from. Through this process, we identify all possible
types of data, their sources and their relevance to the audited properties.

Data processing engine. The data processing engine, which is implemented in Python and Bash
scripts, mainly retrieves necessary information from the collected data according to the targeted
properties, recovers correlation from various sources, eliminates redundancies, converts it into
appropriate formats, and �nally generates the source code for Sugar.

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.



39:20 T. Madi et al.

• Firstly, based on the properties, our plug-in identi�es the involved relations. The relations’ in-
stances are either fetched directly from the collected data such as the support of the relation
BelongsTo, or recovered after correlation, as in the case of the relation IsConnectedTovNet.

• Secondly, our processing plug-in formats each group of data as an n-tuple, i.e., (resource,
tenant), (ovs, port, vlan), etc.

• Finally, our plug-in uses the n-tuples to generate the portions of Sugar’s source code, and
append the codewith the variable declarations, relationships and predicates for each security
property.

Checking consistent topology isolation in virtualized environments requires considering con�g-
urations generated by virtualization technologies at various levels, and checking that mappings are
properlymaintained over di�erent layers. OpenStackmaintains tenants’ provisioned resources but
does not maintain overlay details of the actual implementation. Conversely, current virtualization
technologies do not allow mapping VMs, networks and tra�c details to their owners. Therefore,
wemap virtual topology details at the implementation level to the corresponding tenant’s network
to check whether isolation is achieved at this level. Here are examples of mappings to provide per-
tenant evidences for resources and layer 2 virtual network isolation. Figure 10 relates relations of
property P11 along with some of their data support to their respective data sources.

• At the OpenStack level, tenants’ VMs are connected to networks through subnets and virtual
ports. Therefore, we correlate data collected from Insatances Nova table to recover a direct
connection between VMs and their connecting networks at the centralized view through the
relation IsConnectTovNet. We also keep track of their owners.

• At the virtualization layer, networks are identi�ed only through their VXLAN identi�ers. We
map each network’s segment identi�er recovered fromOpenStack (Neutron Database) to the
VXLAN identi�er collected from OVS instances (br_tunOpenFlow tables) to be able to map
each established �ow to the corresponding networks and tenants. Furthermore, for each
physical server, we assign VMs to the ports that they are connected to through the relation
IsConnectOnPort, and we assign ports to their respective VLAN-tags through the relation
IsAssignedVLAN from the con�gurations details recovered from br-int con�guration in
OVS.

• At the OpenStack level, ports are directly mapped to segment identi�ers, whereas at the OVS
level, ports are mapped to VLAN-tags and mappings between the VLAN-tags and VXLAN
identi�ers are maintained in OpenFlow tables distributed over multiple OVS instances. To
overcome this limit, we devised a script that recovers mappings between VLAN-tags and the
VXLAN identi�ers from the �ow tables in br-tun using the ovs-ofctl command line tool.
Then, it recovers mappings between ports and VLAN-tags from the Open-vSwitch database
using the ovs-vsctl command line utility.

Depending on the properties to be checked, our data processing engine encodes the involved
instances of the virtualized infrastructure model as CSP variables with their domains de�nitions,
where instances are values within the corresponding domain. The CSP code mainly consists of
four parts:

• Variable and domain declaration. We de�ne di�erent entities and their respective domains.
For example, TENANT is de�ned as a �nite domain ranging over integer such that (domain
TENANT 0 max_tenant is a declaration of a domain of tenants, where the values are between
0 and max_tenant.

• Relation declaration. We de�ne relations over variables and provide their supports (instances)
from the audit data. Relations between entities and their instances are encoded as relation
constraints and their supports, respectively. For example, HasRunningVM is encoded as a

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.



ISOTOP: Auditing Virtual Networks Isolation Across Cloud Layers in OpenStack 39:21

Neutron

Database

Nova

Database

VM_21

Br_int

Nova ServiceNeutron Service

IsConnectedTovNet(VM_Bapp1,

vNet_B, vp_21)
IsAssignedSeg(vNet_B, seg_512)

P_21

Br_tun

OVS_1

IsAssignedVLAN(ovs_1,p_21,vlan_100)

IsMappedToVXLANOnOVS(ovs_1,

vlan_100,VXLAN_0×100)

IsConnectedOnPort(vm_21,ovs_1,p_21)

Nova Compute

OpenStack

Implementation Physical Server_1

Fig. 10. Mapping of Relations Involved in Property P11 to their Data Sources

relation, with a support as follows:(relation HasRunningVM 2 (supports (vm1,t1)

(vm2,t2))), where the support of this relation (e.g., (vm1, t1)) will be fetched and pre-
processed in the data processing step.

• Constraint declaration. We de�ne the negation of each property in terms of predicates over
the involved relations to obtain a counter-example in case of a violation.

• Body. We combine di�erent predicates based on the properties to verify using Boolean op-
erators.

Compliance Veri�cation. The compliance veri�cation engine performs the veri�cation of the
properties by feeding the generated code to Sugar. Finally, Sugar provides the results on whether
the properties hold or not. It also provides evidence in case of non-compliance.

Example 4.1. In this example, we discuss how our auditing framework can detect the violation
of the virtual links inconsistency caused by the inter-compute node isolation breach described in
Example 2.2.
Firstly, our program collects data from di�erent sources. Then, the processing engine correlates

and converts the collected data and represents it as tuples; for an example: (18045 6100 21)

(6100 512) re�ect the current con�guration at the infrastructure management level, and (18045
1 21) (1 21 100) (1 100 256) correspond to a given network’s con�guration at the implemen-
tation level, where VM_Bapp1: 18045, VM_21: 18045, vNet_B: 6100, seg_512: 512, vPort_21:
21, OVS_1: 1, Port_21: 21, VLAN_100: 100, vxlan_1×100: 256. Additionally, the processing
engine interprets each property and generates the associated Sugar source code (see Listing 1 for
an excerpt of the code) using processed data and translated properties. Finally, Sugar is used to
verify the security properties.

The predicate P11 for verifying virtual link consistency evaluates to true if there exists a discrep-
ancy between the network VM_Bapp1 is connected to according to the infrastructure management
view, and the layer 2 virtual network VM_Bapp1 is e�ectively connected to at the implementation
level. In our case, the predicate evaluates to true since vxlan0×100,seg_512 (as detailed in Ex-
ample 3.4), meaning that VM_Bapp1 is connected on the wrong layer 2 virtual network.

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.



39:22 T. Madi et al.

Listing 1. Sugar Source Code

// Declaration
(domain iVM 0 100000)(domain OVS 0 400)(domain PORT 0 100000)
(domain VLAN 0 10000) (domain VXLAN 0 10000)(doamin vVM 0 100000)
(domain VNET 0 10000) (domain SEGMENT 0 10000)(domain VPORT 0 100000)
( int vm1 iVM) (int vm2 vVM)(int sw OVS) (int p PORT)(int vlan VLAN)
( int vxlan VXLAN)(int vnet VNET) (int seg SEGMENT) (int vp VPORT)
// Relations Declarations and Audit data as their support from the infrastructure manangement level
( relation IsConnectedTovNet 3 ( supports (18045 6100 21) (18037 6150 7895)(18038 6120 2566) ( 18039 6230 554)(18040 6230

4771) (966) ) )
( relation IsAssignedSeg 2 (supports (6150 356)(6120 485)(6230 265) (6100 512) (6285 584)(6284 257) ) )
// Relations Declarations and Audit data as their support from the implementation level
( relation IsConnectedOnPort 3 (supports (((18045 1 21)(18037 96 23)(18046 65 32)(18040 68 8569)(18047 78954) )
( relation IsAssignedVLAN 3 (supports(92 13 41) (92 14 42) (85 38 11) ) )
( relation IsMAppedToVXLANOnOVS 3 (supports (1 100 256)(92 6018 9)(92 6019 10)) )
// Security properties expressed in terms of predicates over relation constraints
( predicate (P vm1 vm2 vnet seg vxlan sw p vp)
(and
(IsConnectedOnPort vm1 sw p)
(IsAssignedVLAN sw p vlan)
(IsMappedToVXLANOnOVS sw vlan vxlan)
(IsConnectedTovNet vm2 vnet vp)
(IsAssignedSeg vnet seg)
(eq vm1 vm2)
(not(eq seg vxlan) )
) )
// The body
(P vm1 vm2 vnet seg vxlan sw p vp)

Understanding Violations Through Evidences. As explained in Section 3.3.3, we de�ne con-
straints using the negative form of properties’ predicates. Thus, if a solution satisfying the con-
straint is provided by the CSP solver, then the latter solution is a set of variable values that make
the negation of the predicates evaluate to true. Those values indicate the relation instances (system
data) that are at the origin of the violation, however, they might be unintelligible to the end users.
Therefore, we replace the variables’ numerical values by their high-level identi�ers, which would
help admins identify the root cause of the violation and �x it eventually.

Example 4.2. From Example 4.1, the CSP solver concludes that the negative form of the property
is satis�ed, which indicates the existence of a violation. Furthermore, the CSP solver outputs the
following variable values as an evidence: vm1=18045,vm2=18045,vnet=6100,seg=512,vxlan=100,
sw=1, p=21, vp=21. To make the evidence easier to interpret, we replace the value 6100 of the
variable vnet by vNet_B, the value 18045 of the variable vm2 by VM_Bapp1 and the value 21 of the
variable vp by vp_21. Using this information, the admin will conclude that VM_Bapp1 is connected
to another Tenant_Alpha’s layer 2 virtual network at the implementation level identi�ed through
VXLAN_0×100.

Dashboard and Reporting Engine.We further implement the web interface (i.e., dashboard) in
PHP to place veri�cation requests and display veri�cation reports. In the dashboard, tenant admins
are initially allowed to select di�erent standards (e.g., ISO 27017, CCM V3.0.1, NIST 800-53, etc.).
Afterwards, security properties under the selected standards can be chosen. Once the veri�cation
request is placed, the summarized veri�cation results are shown in the veri�cation report page.
The details of any violation with a list of evidences are also provided.

4.4 Integration Into OpenStack Congress

Todemonstrate the service agnostic nature of our framework, we further integrate our systemwith
the OpenStack Congress service [44]. Congress implements policy as a service in OpenStack in
order to provide governance and compliance for dynamic infrastructures. Congress can integrate

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.



ISOTOP: Auditing Virtual Networks Isolation Across Cloud Layers in OpenStack 39:23

third party veri�cation tools using a data source driver mechanism [44]. Using Congress policy
language that is based on Datalog, we de�ne several tenant speci�c security policies. Then, we
use our processed data to detect those security properties for multiple tenants. The outputs of the
data processing engine is provided as input for Congress to be asserted by the policy engine. This
allows integrating compliance status for some policies whose veri�cation is not yet supported by
Congress.

5 EXPERIMENTS

In this section, we evaluate scalability of our approach by measuring the response time of the
veri�cation task as well as the CPU and memory consumption for di�erent sizes of cloud and in
di�erent scenarios (a breach violates some properties or no breach).

5.1 Experimental Se�ing

We set up a real environment including 5 tenants, 10 virtual networks each having 2 subnets, 10
routers and 100 VMs. We utilize OpenStack Mitaka with one controller and three compute nodes
running Ubuntu 14.04 LTS. The controller is empowered with two Intel Xeon E3-1271 CPU and
4GB of memory. Each compute node bene�ts from one CPU and 2GB of memory. To further stress
the veri�cation engine and assess the scalability of our solution, we generated a simulated envi-
ronment including up to 6k virtual networks and 60K VMs with the ratio of 10 VMs per virtual
network. As a back-end veri�cation tool, we use the CSP solver Sugar V2.2.1 [53]. All the veri�ca-
tion experiments are run on an Amazon EC2 C4.Large Ubuntu 16.04 machine (2 vCPU and 3.75GB
of memory).

5.2 Results

Experimental results for physical isolation, virtual resources isolation and port consistency properties
are reported in the preliminary version of this paper [31]. In addition, we consider three additional
properties from table 1, where each is selected from one of the three categories de�ned therein.
Thus, we consider for the experiments the following three properties, one from each category:

• Mapping unicity virtual networks-segments (P3),which is a topology isolation property checked
at the infrastructure management level.

• Mapping unicity VLANs-VXLANs (P7), which is a topology isolation property checked at the
implementation level.

• Virtual links consistency (P11), which checks that a VM is connected to the right VXLAN at
the implementation level.

In the �rst set of experiments, we design two con�guration scenarios to study di�erent response
times in two possible cases: presence of violations and absence of violations. This is because the
veri�cation of these two scenarios is expected to have di�erent response times due to the time
required to �nd the evidence of the violation.
In the �rst scenario, we implement in our environment a con�guration of the virtual infrastruc-

ture where none of the studied properties are violated. In the second scenario, we implement the
topology isolation attack described in Example 2.2. For the latter scenario, as generally, a fast yes
or no answer on the compliance status of the system is required by the auditor, we only consider
the response time to report evidence for the �rst breach. Note that we do not report the average
response time to �nd all compliance breaches as this depends on the number of breaches, their
percentage to the total input size and their distribution in the audit information. Meanwhile, as
the real life scenarios can dramatically vary from one environment to another, we cannot use any
average number, percentage or distribution of compliance breaches applying to all possible use

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.



39:24 T. Madi et al.

0 10K 20K 30K 40K 50K 60K

# of VMs

0

100

200

300

400

500

600

T
im

e 
(s

)

0 10k 20k 30k 40k 50k 60k

# of VMs

0

1

2

3

4

5

6

T
im

e 
(s

)

Mappings unicity virtual networks-segments (P3)
Mapping unicity VLANs-VXLANs (P7)
Virtual links consistency (P11)

Fig. 11. Verification time as a function of number of VMs for properties P3, P7, and P11: (le� side) time

to report no breach of compliance, and (right side) time to find the first breach and build evidence of non-

compliance

cases. Therefore, we present in Figure 11, the veri�cation time for no security breach detected
(left side chart) and the veri�cation time to report non-compliance and provide evidence for the
�rst security breach (right side chart) for di�erent datasets varying from 5K up to 60K VMs. Note
that, we implement the attack scenario of topology isolation described in Example 2.2 by randomly
modifying some VLAN ports and VLAN to VXLAN mappings.
As indicated in the left chart of Figure 11, the time required for verifying P3 and P7, where there

is no breach, is 0.6s and 4.5s, respectively, for the largest dataset of 60K VMs. The veri�cation
time for those properties increases linearly and smoothly when the size of the cloud infrastructure
increases and there is no breach. However, the veri�cation time for property P11 is 102s for 30k
VMs and 581s for 60k VMs. The di�erence in response time for P11 is justi�ed as the latter is more
complex than other properties and involves more relations and thus larger input data. Later in this
section, we will show how one can decrease the response time for the veri�cation of P11 to get
more acceptable boundaries.
According to Figure 11 (right side chart), the time required to �nd the �rst breach and build the

supporting evidence for each one of the three properties remains under 5s for the largest dataset,
which is two orders of magnitude smaller than the time required to assert compliance for the entire
system. The time required to �nd the �rst breach, depends on several factors such as the predicates
a�ected by the breach and the location of the breach in the input �le. However, the latter response
time is always shorter than the time required for asserting the compliance of the system.
The left side chart of Figure12 reports CPU consumption percentage as a function of the datasets’

size, up to 60k VMs. For the largest dataset, the peak CPU usage reaches 50% for P11 and does
not exceed 25% for P3. Also, the highest memory usage observed does not exceed 8% for P11
veri�cation (see the right chart of Figure 12), and 3.3% for the largest dataset for P7. It is worthy to
note that these amounts of CPU/memory usage are not monopolized during the whole veri�cation
time and they represent the peek usage. We therefore remark the low cost on CPU and memory
for our approach.
In our second set of experiments, since Sugar supports several SAT solvers, we run Sugar with

di�erent SAT solvers to investigate which option provides a better response time, particularly
for property P11. According to Figure 13, Treengling solver provides the longest response time

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.



ISOTOP: Auditing Virtual Networks Isolation Across Cloud Layers in OpenStack 39:25

0 10K 20K 30K 40K 50K 60K

# of VMs

0

10

20

30

40

50

60

70

80

C
P

U
 (

%
)

Mappings unicity virtual networks-segments (P3)

Mapping unicity VLANs-VXLANs (P7)

Virtual links consistency (P11)

0 10K 20K 30K 40K 50K 60K

# of VMs

0

1

2

3

4

5

6

7

8

9

M
em

or
y 

(%
)

Fig. 12. CPU (le� side) and memory (right side) usage to verify no-compliance breach for properties P3, P7

and P11

5k 10k 20k 30k

# of VMs

0

200

400

600

800

1000

T
im

e 
(s

)

5k 10k 20k 30k

# of VMs

0

50

100

150

200

T
im

e 
(s

)

Minisat Riss Plingeling Lingeling Treengling

Fig. 13. Verification time using di�erent SAT solvers for P11 as a function of the number of VMs: (le� side)

time to report no breach of compliance, and (right side) time to find the first breach and build evidence of

non-compliance

with 900s for a 30k VMs dataset, whereas Minisat provides the best response time with 102s. All
previously reported veri�cation results in the other experiments were obtained using Minisat.
In our third set of experiments, we investigate the parameters that a�ect the response time,

particularly in the case of complex security properties such as P11. To this end, we consistently
split the data supports for the relations IsConnectedToVnet and IsAssignedSegof P11 over mul-
tiple CSP �les (up to 16 �les), and repeated the supports for the relations IsConnectedOnPort,
IsAssignedVLAN and IsMappedToVXLANOnOVS to maintain data interdependency. Figure 14 re-
ports the response times for the parallel veri�cation of di�erent CSP sub-instances of P11 using
multiple processing nodes for the largest dataset (60K VMs). By splitting the data support into two
CSP �les, the veri�cation time already decreases from 581s to 168s (i.e., a factor of improvement
of 71%), whereas it decreases up to 4.6s when splitting the data over 16 CSP sub-instance �les.

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.



39:26 T. Madi et al.

1 2 4 6 8 10 12 14 16

# of Processing Nodes

0

100

200

300

400

500

600

T
im

e 
(s

)

Fig. 14. Verification time as function of the number of processing nodes for P11 for a dataset of 60k VMs,

where each processing node verifies a separate CSP sub-instance of P11

Based on this last experiment, we can conclude that splitting the input data for the same property
to be veri�ed using parallel instances of CSP solvers can improve the response time. However,
this should be performed while considering the dependency between di�erent relations and their
supports in the predicate to be solved.
Based on those results, we conclude that our solution provides acceptable response time for

auditing security isolation in the cloud, particularly, in the case of o�-line auditing. While the ver-
i�cation of simple properties is scalable for large cloud virtual infrastructures, response time for
complex properties involving large input data can induce more delays that can be still acceptable
for auditing after the fact. However, response time for those properties can be considerably im-
proved by splitting their CSP instance into sub-instances involving smaller amounts of data to be
checked in parallel. Note that our analysis holds for the speci�c scenario where security properties
are expressed as constraints de�ned as logical operations over relations, which is only a subset of
possible constraints that can be o�ered by the CSP solver Sugar (the complete set of constraints
supported by Sugar can be found in [40]). Expressing new security properties with other kinds of
constraints may require performance to be reassessed through new experiments.

6 DISCUSSION

The experimental results presented in the previous section show that CSP solvers can be used
for o�-line auditing veri�cation with acceptable response time and scalability in case of moderate
size of data. Our results also show that for properties handling larger datasets, we need to decom-
pose the veri�cation of the properties over smaller chunks of data to improve the response time.
Additionally, we explore a parallel processing approach to improve the response time for very
large datasets. Note that the response time can be further improved to achieve on-line auditing by
improving the performance of the CSP-solving phase [35], which is an interesting future direction.
The abstract views o�ered by di�erent cloud platforms to tenants are quite similar to what we

propose at the cloud infrastructure management view of our model. For instance, both Amazon
AWS EC2-VPC (Virtual Private Cloud) [3], Google Cloud Platform (GCP) [23], Microsoft Azure
[36] and VMware virtual Cloud Director (vCD) [54] provide tenants with the capability to cre-
ate virtual network components as software abstractions, enabling to provision virtual networks.

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.



ISOTOP: Auditing Virtual Networks Isolation Across Cloud Layers in OpenStack 39:27

Therefore, our model can capture the main virtual components that are common to most of the
IaaS management systems with minor changes. Table 7 maps the entities of our infrastructure
management view model to their counterparts in the cloud platforms cited above.
Eucalyptus [21] is an open source IaaS management system. The Eucalyptus virtual private

cloud (VPC) is implementedwithMidoNet [37], an open-source network virtualization platform. In
the same fashion as OpenStack Neutron, Eucalyptus MidoNet supports virtualization mechanisms
such as VLAN and VXLAN to implement large scale layer 2 virtual networks spanning over the
cloud infrastructure. Therefore, our implementation layer model can be applied to Eucalyptus
implementations with minor changes.
However, implementation details may signi�cantly vary between di�erent platforms. Further-

more, cloud providers typically do not disclose their implementation details to their customers.
Therefore, the implementation layer of our model along with the extracted properties might need
to be revised according to the implementation details of each cloud deployment if those are pro-
vided. However, this needs to be done only once before initializing the compliance auditing pro-
cess.
Our current solution is designed for the speci�c OpenStack virtual layer 2 implementation

mainly relying on VLAN and VXLAN as well-established network virtualization technologies, and
OVS as a widely used virtual switch implementation. However, as we use high-level abstractions
to represent virtual layer 2 connectivity and tunneling technologies, we believe that our approach
remains applicable in case of other overlay technologies such as GRE. In small to medium clouds,
where VLAN tags are su�cient to implement all layer 2 virtual networks on top of the physical net-
work, our implementation model is simpli�ed and the security properties related to the mapping
between VLAN and VXLAN can be skipped.
Among the main advantages of using a CSP solver for the veri�cation is that it allows to inte-

grate new audit properties with a minor e�ort. In our case, including a new property consists of
expressing it in FOL and identifying the audit data it should be checked against. These properties
can be modi�ed at any stage of the cloud life cycle and their veri�cation or not can be decided
depending on the cloud deployment o�ering (e.g., public or private cloud).
In this work, we extracted a set of security properties from speci�c domains in relevant cloud

security standards that are mainly related to infrastructure virtualization and tenants’ networks
isolation (e.g., Infrastructure Virtualization Systems domain from CCM, and Segregation in Net-
works section from ISO27017). Thus, our list of implemented security properties is not meant to
exhaustively cover the entire security standards. Covering other security control classes for the
standards requires extracting new sets of security properties to be modeled and formalized. How-
ever, as we handle general concepts for modeling di�erent virtual resources, we believe that our
approach can be generalized to other security properties to support the entire security standards.
Finally, through this work, we show the applicability and the bene�t of our formal approach in

verifying security properties while providing evidences to assist admins �nding the root causes
of violations. As discussed in this section, we believe our high-level abstractions-based model can
be easily mapped to di�erent cloud platforms. However, the model needs to be adapted to support
those di�erent cloud platforms’ implementation details, and augmented to support new security
properties.

7 RELATED WORK

Table 8 summarizes the qualitative comparison between existing works on compliance veri�cation
in the cloud and this work. We compare the proposals based on the types of veri�ed properties,
structural or operational, the coverage of multiple cloud stack layers and cross-layer consistency,
and �nally the approach, which is either retroactive (o�-line) or intercept-and-check (on-line) [33].

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.



39:28 T. Madi et al.

Model
Entities

OpenStack AWS-EC2-VPC GCP Microsoft Azure VMware vCD

VM Instance EC2 instance VM instance Azure VM VM

vNet Network Virtual private
cloud

Auto mode vpc
Custom mode vpc

Virtual Network Network

vSubnet Subnet Subnet Subnet Subnet Subnet

vRouter Router Routing tables Routes
BGP and user-de�ned
routes

Distributed logical
routers

vPort Port - - NIC Port/port-group
Segment Network ID VPC ID VPC ID Virtual network ID Network ID

Table 7. Mapping virtual infrastructure model entities into di�erent cloud platforms

Proposal
Properties Coverage Approach

Struct-
ural

Operat-
ional

One/Multiple
layers

Cross-
layer

Retro-
active

Intercept-
and-check

Anteater [32] • One •

Hassel [29] • One •

VeriFlow [30] • One •

NetPlumber [28] • One •
Save [7] • One •

CloudRadar [10] • One •

Xu et al. [55] • • •
Congress [44] • One • •

Majumdar et al. [34] • One •

Madi et al. [31] • One • •

This work • Multiple • •

Table 8. Comparing Features of Existing SolutionsWith ourWork. The Symbol (•) Indicates that the Proposal

O�ers the Corresponding Feature

To the best of our knowledge, no work has been tackling auditing topology isolation and con-
sistency between cloud-stack layers’ views of the virtual layer 2 and overlay networks.
Several works target the veri�cation of forwarding and routing rules, particularly in OpenFlow

networks (e.g., [19, 57]). For instance, Anteater [32] veri�es network invariants by translating them
into instances of SAT problems and translating data plane information into boolean expressions.
Then, it uses a SAT solver to check the resulting SAT formulas to detect violations of key network
invariants such as absence of loops and black-holes.
Hassel [29] is a protocol agnostic tool for checking network invariants and reachability-related

policies. It is built on a geometricmodel where packet headers aremodeled as points in a geometric
space and network devices are modeled as invertible transfer functions de�ned on the same space.
Then, custom algorithms are used to check network invariants and reachability-related policies.

VeriFlow [30], NetPlumber [28] (extension of [29]), and AP veri�er [56] propose a near real-
time veri�cation, where network events are monitored for con�guration changes, and veri�cation
is performed only on the impacted part of the network. Libra [57] uses a divide and conquer
technique to verify forwarding tables in large networks. It encompasses a technique to capture
stable and consistent snapshots of the network state and a veri�cation approach based on graph
search techniques that detects loops, black-holes and other reachability failures.
Sphinx [19] enables incremental real-time network updates and constraints validation. It allows

detecting both known and potentially unknown security attacks on network topology and for-
warding plane. These works are complementary to our work as they aim at verifying operational
properties of networks including reachability, isolation and absence of layer 3 network miscon-
�guration (e.g., loops, black-holes, etc.). However, they target mainly SDN environments and not
necessarily the cloud, whereas our focus is more oriented towards auditing the structural proper-
ties of cloud virtualized infrastructures.

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.



ISOTOP: Auditing Virtual Networks Isolation Across Cloud Layers in OpenStack 39:29

Some otherworks focus on security as a service to provide needed security. For instance, Mundada
et al. [39] propose SilverLine, a collection of techniques that enables cloud providers to enforce
data and network isolation for a cloud tenant’s service. It uses a transparent operating system-level
information-�ow tracking layer assisted by an enforcement layer in the virtual machine monitor
to provide data isolation. Our work aims at auditing compliance of security controls, which is
considered as security assurance, and thus can be applied to such proposed security enforcement
services.
In the context of cloud auditing, several works (e.g., [6, 49]) focus on �rewalls and security

groups. Probst et al. [49] present an approach for the veri�cation of network access controls im-
plemented by stateful �rewalls in cloud computing infrastructures. Their approach combines static
and dynamic veri�cation with a discrepancy analysis of the obtained results against the clients’
policies. Bleikertz [6] analyzes Amazon EC2 cloud infrastructures using reachability graphs and
vulnerability discovery and builds attack graphs to �nd the shortest paths, which represent the
critical attack scenarios against the cloud. The proposed approaches tackle layer 3 isolation mech-
anisms, but do not address challenges related to network virtualization mechanisms con�guration
issues and their impact on layer 2 virtual networks isolation, which are addressed by our work.
Other works focus on virtualization aspects (e.g., [7–9]). Bleikertz et al. [7, 9] propose SAVE,

a static information �ow analysis system for virtualized infrastructures based on graph traversal
towards verifying information �ow isolation. The con�guration information is captured from the
virtualization infrastructure via a set of probes created for di�erent virtualization technologies.
Then, the approach transforms the discovered con�guration input into a graph, where vertices are
resources such as virtual machines, hypervisors, physicalmachines, storage and network resources
and edges represent information �ows. The graph is traversed based on explicitly speci�ed trust
rules and information �ow rules..
Bleikertz et al. [10] extend the previous work to tackle near-real time security analysis of the

virtualized infrastructure in the cloud. Their objective is mainly the detection of con�guration
changes that impact the security. A di�erential analysis based on computing graph deltas (e.g.,
added or removed nodes and edges) is proposed based on change events. The graph model is
maintained synchronized with the actual con�guration changes through probes that are deployed
over the infrastructure and intercept events that may have a security impact. Contrarily to our
approach, this works do not involve properties veri�cation at multiple layers and cross-layer con-
sistency veri�cation, which reduces the scope of violations that can be detected compared to our
approach. In our case, we correlate audit data collected form di�erent sources and at di�erent lay-
ers in order to detect violations that would de�nitely go unnoticed if relying only on one cloud
layer at a time.
In [20], an autonomous agent-based incident detection system is proposed. The system detects

abnormal infrastructure changes based on the underlying business process model. The framework
is able to detect cloud resource and account misuse, distributed denial of service attacks and VM
breakout. This related work is more oriented towards monitoring changes in cloud instances and
infrastructures and evaluating the security status with respect to security business �ow-aware
rules.
Xu et al. [55] investigate network inconsistencies between network states extracted from Open-

Stack and the con�guration of network devices. They use Binary Decision Diagrams (BDDs) to
represent and verify these states. Similarly to our work, they tackle inconsistency veri�cation.
However, they do not check isolation properties across di�erent layers as suggested by our work.
Furthermore, we are interested in auditing, thus our approach supports a wider view than simple
veri�cation, where log �les are as important source of information as con�guration.

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.



39:30 T. Madi et al.

There exist other works (e.g., [44], [11], [33]) o�ering runtime security policy checking and
enforcement in the cloud. Our previous work in [33] proactively veri�es security compliance e�-
ciently through pre-computation by utilizing dependency models. Weatherman [11] aims at miti-
gating miscon�gurations and enforcing security policies in a virtualized infrastructure.
Congress [44] is an open project for OpenStack platforms. It enforces policies expressed by

tenants and then monitors the state of the cloud to check its compliance. Furthermore, Congress
attempts to correct policy violationswhen they occur.Our work shares the policy inspection aspect
with Congress. Therefore, we integrated our solution in Congress as part of the contributions (See
Section 4 for details).
In the same fashion as the current work, formal veri�cation approaches in [2, 15, 34] are pro-

posed for checking security compliance in other security domains, mainly Identity and Access
Control. Majumdar et al. [34] propose auditing the multi-domain cloud at the user level with Open-
Stack as an application, which is a complementary e�ort to our work. Cotrini et al. [15] use FOL
to express Role-based Access Control (RBAC) policies and rely on an o�-the-shelf SMT solver to
analyze them. In [2], authors apply model checking techniques to verify that access control poli-
cies implemented locally at the VM and hypervisor levels actually satisfy the global access control
policies.

8 CONCLUSION

Auditing compliance of the cloudwith respect to security standards faces several challenges. In this
paper, we proposed an automated o�-line auditing approach while focusing on verifying network
isolation between tenants’ virtual networks in OpenStack-managed cloud at layer 2 and overlay.
As it was shown in this paper, the layered nature of the cloud stack and the dependencies between
layers make existing approaches that separately verify each single layer ine�ective. To this end, we
devised a model that captures for each cloud-stack layer, namely the infrastructure management
and the implementation layers, the virtual network entities along with their inter-dependencies
and their isolation mechanisms. The model helped in identifying the relevant data for auditing
network isolation and capturing its underlying semantics across multiple layers. Furthermore, we
devised a set of concrete security properties related to consistent network isolation on virtual layer
2 and overlay networks to �ll the gap between the standards and the low level data. To provide
a reliable and evidence-based auditing, we encoded properties and data as a set of constraints
satisfaction problems and used an o�-the-shelf CSP solver to identify compliance breaches. Our
approach furthermore pinpoints the roots of breaches enabling remediation. Additionally, we re-
ported real-life experience and challenges faced when trying to integrate auditing and compliance
veri�cation into OpenStack. We further conducted experiments to demonstrate the applicability
of our approach. Our evaluation results show that formal methods can be successfully applied
for large data centers with a reasonable overhead. As future directions, we intend to leverage our
auditing framework for continuous compliance checking. This will be achieved by monitoring
various events, and triggering the veri�cation process whenever a security property is a�ected
by the changes. A second area of investigation is to extend the list of security properties with
the operational properties. This would allow to check the compliance of the forwarding network
functionality.

Acknowledgment.We thank the anonymous reviewers for their insightful comments and sugges-
tions. This work is partially supported by the Natural Sciences and Engineering Research Council
of Canada and Ericsson Canada under CRD Grant N01823 and by PROMPT Quebec.

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.



ISOTOP: Auditing Virtual Networks Isolation Across Cloud Layers in OpenStack 39:31

GLOSSARY

GRE A tunneling protocol developed by Cisco. It encapsulates a variety of protocol packet types
inside IP tunnels to create a virtual point-to-point link over an IP network. 9

Layer 2 It is the second layer (Layer 2) of the well-known and standardized Open Systems In-
terconnection (OSI) model of computer networking. MAC addresses are used to identify
networking devices that are at the same layer 2, which can reach each other by tra�c broad-
casting. 3

Network Segments Isolated broadcast domains within a network. 2

Open vSwitch Open-source software switch implementation designed to be used in hypervisors
to provide connectivity to guest VMs. 4

OpenStack It is an open-source cloud infrastructure management platform that is being used
almost in half of private clouds and signi�cant portions of the public clouds (see [17] for
detailed statistics). 2, 4

Overlay Networks Virtual networks that create a virtual topology on top of the physical network
[12]. In our context, it is the cloud provider’s physical network. They use overlay protocols
such as VXLAN and GRE to provide scalable network isolation. 3

TPM Stands for Tursted Platform Module. It is a standard [1] for dedicated microcontrollers en-
dowed with cryptographic keys to secure the hardware. 6

Virtual Networks Dedicated communication networks providing connectivity to a set of VMs
possibly distributed over multiple hosts. Virtual networks share the same physical substrate
and are logically segregated through network virtualization mechanisms. 2, 3

Virtual Switches Software-based switches running at the hypervisor-level and provide connec-
tivity to virtual machines (VMs). 4

VLAN A standardized [25] implementation of a logically separated Local Area Network (LAN)
that shares a single broadcast domain. Each VLAN has an associated numerical ID, also
called VLAN tag, allocated between 1 and 4,095. We say VLAN_100 to refer to the VLAN
with numerical ID 100. 3, 4

VTEP Virtual bridges responsible for encapsulating and de-encapsulating packets in overlay net-
works. 9

VXLAN A layer 2 in layer 3 tunneling protocol. It allows an overlay layer 2 network to spread
across multiple underlay layer 3 network domains. It enables de�ning about 16 million vir-
tual networks by encapsulating Ethernet frames into IP packets with a 24-bit tunneling
header. 4

REFERENCES

[1] ISO. org. 2013. ISO/IEC 11889-1:2009.
[2] Perry Alexander, Lee Pike, Peter Loscocco, and George Coker. 2015. Model Checking Distributed Mandatory Access

Control Policies. ACM Trans. Inf. Syst. Secur. 18, 2, Article 6 (July 2015), 25 pages. https://doi.org/10.1145/2785966
[3] Amazon. 2017. Amazon Virtual Private Cloud. Available at: https://aws.amazon.com/vpc.
[4] Mihir Bellare and Bennet Yee. 1997. Forward integrity for secure audit logs. Technical Report. Citeseer.
[5] Mordechai Ben-Ari. 2012. Mathematical logic for computer science. Springer Science & Business Media, London.
[6] Sören Bleikertz. 2010. Automated Security Analysis of Infrastructure Clouds. Master’s thesis. Technical University of

Denmark and Norwegian University of Science and Technology.
[7] Sören Bleikertz, Thomas GroSS, Matthias Schunter, and Konrad Eriksson. 2011. Automated Information FlowAnalysis

of Virtualized Infrastructures. In ESORICS (Lecture Notes in Computer Science), Vijay Atluri and Claudia Díaz (Eds.),
Vol. 6879. Springer, Berlin, Heidelberg, 392–415.

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.

https://doi.org/10.1145/2785966
https://aws.amazon.com/vpc


39:32 T. Madi et al.

[8] Sören Bleikertz, Thomas Groß, and Sebastian Mödersheim. 2011. Automated Veri�cation of Virtualized Infrastruc-
tures. In Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop (CCSW ’11). ACM, New York,
NY, USA, 47–58. https://doi.org/10.1145/2046660.2046672

[9] Sören Bleikertz, Thomas Gross, M. Schunter, and K. Eriksson. 2010. Automating Security Audits of Heterogeneous

Virtual Infrastructures. Technical Report RZ3786. IBM.
[10] Sören Bleikertz, Carsten Vogel, and Thomas Groß. 2014. Cloud Radar: Near Real-time Detection of Security Failures

in Dynamic Virtualized Infrastructures. In Proceedings of the 30th Annual Computer Security Applications Conference

(ACSAC ’14). ACM, New York, NY, USA, 26–35. https://doi.org/10.1145/2664243.2664274
[11] Sören Bleikertz, Carsten Vogel, Thomas Groß, and Sebastian Mödersheim. 2015. Proactive Security Analysis of

Changes in Virtualized Infrastructures. In Proceedings of the 31st Annual Computer Security Applications Conference

(ACSAC 2015). ACM, New York, NY, USA, 51–60. http://doi.acm.org/10.1145/2818000.2818034
[12] N.M. Mosharaf Kabir Chowdhury and Raouf Boutaba. 2010. A survey of network virtualization. Computer Networks

54, 5 (2010), 862 – 876.
[13] Cloud Security Alliance. 2014. Cloud control matrix CCM v3.0.1. https://cloudsecurityalliance.org/research/ccm/
[14] Cloud Security Alliance. 2016. Cloud Computing Top Threats in 2016.
[15] Carlos Cotrini, Thilo Weghorn, David Basin, and Manuel Clavel. 2015. Analyzing First-Order Role Based Access

Control. In 2015 IEEE 28th Computer Security Foundations Symposium. IEEE, Verona, Italy, 3–17.
[16] Crandall et al. 2012. Virtual Networking Management White Paper. Technical Report. DMTF. DMTF Draft White

Paper.
[17] datacenterknowledge. 2015. Survey: One-Third of Cloud Users’ Clouds are Private, Heavily OpenStack. Available at:

http://www.datacenterknowledge.com.
[18] Valentin Del Piccolo, Ahmed Amamou, Kamel Haddadou, and Guy Pujolle. 2016. A Survey of network isolation

solutions for multi-tenant data centers. IEEE Communications Surveys Tutorials PP, 99 (2016), 1–1.
[19] Mohan Dhawan, Rishabh Poddar, Kshiteej Mahajan, and Vijay Mann. 2015. SPHINX: Detecting security attacks in

software-de�ned networks. In NDSS Symposium. Internet Society, San Diego, California.
[20] Frank Doelitzscher, Christoph Reich, Martin Knahl, Alexander Passfall, and Nathan Clarke. 2012. An agent based

business aware incident detection system for cloud environments. Journal of Cloud Computing 1, 1, Article 9 (2012),
9 pages.

[21] Hewlett Packard Enterprise. 2017. HPE Helion Eucalyptus. Available at:
http://www8.hp.com/us/en/cloud/helion-eucalyptus.html.

[22] Open Networking Foundation. 2013. OpenFlow Switch Speci�cation. Available
at:http://www.gesetze-im-internet.de/englisch_bdsg.

[23] Google. 2017. Google Compute Engine subnetworks beta. Available at: https://cloud.google.com.
[24] Stephen Gutz, Alec Story, Cole Schlesinger, and Nate Foster. 2012. Splendid Isolation: A Slice Abstraction for Software-

de�ned Networks. In Proceedings of the First Workshop on Hot Topics in Software De�ned Networks (HotSDN ’12). ACM,
New York, NY, USA, 79–84. http://doi.acm.org/10.1145/2342441.2342458

[25] Institute of Electrical and Electronics Engineers. 2005. Ieee 802.1q- 2005. 802.1q - Virtual Bridged Local Area Net-
works.

[26] ISO Std IEC. 2005. ISO 27002:2005.
[27] ISO Std IEC. 2012. ISO 27017.
[28] Peyman Kazemian, Michael Chan, Hongyi Zeng, George Varghese, Nick McKeown, and Scott Whyte. 2013. Real Time

Network Policy Checking Using Header Space Analysis. In NSDI. USENIX, Lombard, IL, 99–111.
[29] Peyman Kazemian, George Varghese, and NickMcKeown. 2012. Header Space Analysis: Static Checking for Networks.

In Presented as part of the 9th USENIX Symposium onNetworked Systems Design and Implementation (NSDI 12). USENIX,
San Jose, CA, 113–126. https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/kazemian

[30] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P. Brighten Godfrey. 2013. Veri-
Flow: Verifying Network-Wide Invariants in Real Time. In Presented as part of the 10th USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI 13). USENIX, Lombard, IL, 15–27.
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/khurshid

[31] Taous Madi, Suryadipta Majumdar, Yushun Wang, Yosr Jarraya, Makan Pourzandi, and Lingyu Wang. 2016. Auditing
Security Compliance of the Virtualized Infrastructure in the Cloud: Application to OpenStack. In Proceedings of the

Sixth ACM Conference on Data and Application Security and Privacy (CODASPY ’16). ACM, New York, NY, USA, 195–
206. http://doi.acm.org/10.1145/2857705.2857721

[32] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P Godfrey, and Samuel Talmadge King. 2011. De-
bugging the data plane with anteater. ACM SIGCOMM Computer Communication Review 41, 4 (2011), 290–301.

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.

https://doi.org/10.1145/2046660.2046672
https://doi.org/10.1145/2664243.2664274
http://doi.acm.org/10.1145/2818000.2818034
https://cloudsecurityalliance.org/research/ccm/
http://www.datacenterknowledge.com
 http://www8.hp.com/us/en/cloud/helion-eucalyptus.html
http://www.gesetze-im-internet.de/englisch_bdsg
https://cloud.google.com
http://doi.acm.org/10.1145/2342441.2342458
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/kazemian
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/khurshid
http://doi.acm.org/10.1145/2857705.2857721


ISOTOP: Auditing Virtual Networks Isolation Across Cloud Layers in OpenStack 39:33

[33] Suryadipta Majumdar, Yosr Jarraya, Taous Madi, Amir Alimohammadifar, Makan Pourzandi, Lingyu Wang, and
Mourad Debbabi. 2016. Proactive Veri�cation of Security Compliance for Clouds Through Pre-computation: Applica-

tion to OpenStack. Springer International Publishing, Cham, 47–66.
[34] Suryadipta Majumdar, TaousMadi, YushunWang, Yosr Jarraya, Makan Pourzandi, LingyuWang, andMouradDebbabi.

2015. Security Compliance Auditing of Identity and Access Management in the Cloud: Application to OpenStack. In
IEEE CloudCom. IEEE, Vancouver, Canada, 58–65.

[35] Ruben Martins, Vasco Manquinho, and Inês Lynce. 2012. An overview of parallel SAT solving. Constraints 17, 3 (01
Jul 2012), 304–347.

[36] Microsoft. 2016. Microsoft Azure Virtual Network. Available at: https://azure.microsoft.com.
[37] Midokura. 2017. Run MidoNet at Scale. Available at: http://www.midokura.com/midonet/.
[38] H. Moraes, M. A. M. Vieira, Í. Cunha, and D. Guedes. 2016. E�cient virtual network isolation in multi-tenant data

centers on commodity ethernet switches. In 2016 IFIP Networking Conference (IFIP Networking) and Workshops. IEEE,
Vienna, Austria, 100–108.

[39] Yogesh Mundada, Anirudh Ramachandran, and Nick Feamster. 2011. Silverline: Data and Network Isolation for Cloud
Services. In Proceedings of the 3rd USENIX Conference on Hot Topics in Cloud Computing (HotCloud’11). USENIX Asso-
ciation, Berkeley, CA, USA, 13–13. http://dl.acm.org/citation.cfm?id=2170444.2170457

[40] Naoyuki Tamura. 2010. Syntax of Sugar CSP description. Available at:
http://bach.istc.kobe-u.ac.jp/sugar/current/docs/syntax.html.

[41] NIST, SP. 2003. NIST SP 800-53. , 800–53 pages.
[42] OpenStack. 2014. Ossa-2014-008: Routers can be cross plugged by other tenants. Available at:

https://security.openstack.org/ossa/OSSA-2014-008.html.
[43] OpenStack. 2014. OSSA-2014-008: Routers can be cross plugged by other tenants. Available at:

https://security.openstack.org/ossa/OSSA-2014-008.html.
[44] OpenStack. 2014. Policy as a Service ("Congress"). Available at:http://wiki.openstack.org/wiki/Congress.
[45] OpenStack. 2015. OpenStack open source cloud computing software. Available at: http://www.openstack.org.
[46] Diego Perez-Botero, Jakub Szefer, and Ruby B. Lee. 2013. Characterizing Hypervisor Vulnerabilities in Cloud Com-

puting Servers. In Proceedings of the 2013 International Workshop on Security in Cloud Computing (Cloud Computing

’13). ACM, New York, NY, USA, 3–10.
[47] Ben Pfa�, Justin Pettit, Teemu Koponen, Keith Amidon, Martin Casado, and Scott Shenker. 2009. Extending Network-

ing into the Virtualization Layer. In HotNets. ACM, YorkCity,NY.
[48] Penny Pritzker and Patrick D. Gallagher. 2013. NIST Cloud Computing Standards Roadmap. Technical Report. NIST,

Gaithersburg, MD, United States. 108 pages. NIST Special Publication 500-291.
[49] Thibaut Probst, Eric Alata, Mohamed Kaâniche, and Vincent Nicomette. 2014. An Approach for the Automated Analy-

sis of Network Access Controls in Cloud Computing Infrastructures. In Network and System Security. Springer, Xi?an,
China, 1–14.

[50] Kui Ren, Cong Wang, and Qian Wang. 2012. Security Challenges for the Public Cloud. IEEE Internet Computing 16, 1
(Jan 2012), 69–73.

[51] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009. Hey, You, Get o� of My Cloud: Exploring
Information Leakage in Third-party Compute Clouds. In Proceedings of the 16th ACM Conference on Computer and

Communications Security (CCS ’09). ACM, New York, NY, USA, 199–212.
[52] Cisco Systems Sean Convery. 2002. Hacking Layer 2: Fun with Ethernet switches. BlackHat Brie�ngs.
[53] Naoyuki Tamura and Mutsunori Banbara. 2008. Sugar: A CSP to SAT translator based on order encoding. Proceedings

of the Second International CSP Solver Competition (2008), 65–69.
[54] VMware. 2017. vCloud Director. Available at: https://www.vmware.com/fr/products/vcloud-director.html.
[55] Yang Xu, Yong Liu, Rahul Singh, and Shu Tao. 2015. Identifying SDN State Inconsistency in OpenStack. In Proceedings

of the 1st ACM SIGCOMM Symposium on Software De�ned Networking Research (SOSR ’15). ACM, New York, NY, USA,
11:1–11:7.

[56] Hongkun Yang and Simon S Lam. 2013. Real-time veri�cation of network properties using Atomic Predicates. In ICNP.
IEEE, Goettingen, Germany, 1–11.

[57] Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar Jeyakumar, Mickey Ju, Junda Liu, NickMcKeown, andAmin Vahdat.
2014. Libra: Divide and conquer to verify forwarding tables in huge networks. In (NSDI 14). Seattle, WA: USENIX

Association. USENIX Association, Seattle, WA, 87–99.
[58] Shuyuan Zhang and Sharad Malik. 2013. SAT Based Veri�cation of Network Data Planes. InAutomated Technology for

Veri�cation and Analysis, Dang Van Hung and Mizuhito Ogawa (Eds.). Lecture Notes in Computer Science, Vol. 8172.
Springer International Publishing, Cham, 496–505.

Received March 2017; revised November 2017; accepted August 2018

ACM Trans. Web, Vol. 21, No. 4, Article 39. Publication date: August 2018.

 https://azure.microsoft.com
 http://www.midokura.com/midonet/
http://dl.acm.org/citation.cfm?id=2170444.2170457
http://bach.istc.kobe-u.ac.jp/sugar/current/docs/syntax.html
http://wiki.openstack.org/wiki/Congress
http://www.openstack.org
 https://www.vmware.com/fr/products/vcloud-director.html

	Abstract
	1 Introduction
	2 Models
	2.1 Preliminaries
	2.2 Threat Model
	2.3 Virtualized Cloud Infrastructure Model

	3 Methodology
	3.1 Overview
	3.2 Cloud Auditing Properties
	3.3 Verification Approach

	4 Implementation
	4.1 Architecture
	4.2 Background
	4.3 Integration Into OpenStack
	4.4 Integration Into OpenStack Congress

	5 Experiments
	5.1 Experimental Setting
	5.2 Results

	6 Discussion
	7 Related work
	8 Conclusion
	References

