Did We Miss Something Important? Studying and
Exploring Variable-Aware Log Abstraction

Zhenhao Li*, Chuan Luof, Tse-Hsun (Peter) Chen*, Weiyi Shang*, Shilin Hef, Qingwei Linf, and Dongmei ZhangT
*Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada
{1_zhenha, peterc, shang} @encs.concordia.ca
TMicrosoft Research, China
{chuan.luo, shilin.he, glin, dongmeiz} @microsoft.com

Abstract—Due to the sheer size of software logs, developers rely
on automated techniques for log analysis. One of the first and
most important steps of automated log analysis is log abstraction,
which parses the raw logs into a structured format. Prior log ab-
straction techniques aim to identify and abstract all the dynamic
variables in logs and output a static log template for automated
log analysis. However, these abstracted dynamic variables may
also contain important information that is useful to different tasks
in log analysis. In this paper, we investigate the characteristics of
dynamic variables and their importance in practice, and explore
the potential of a variable-aware log abstraction technique.
Through manual investigations and surveys with practitioners,
we find that different categories of dynamic variables record
various information that can be important depending on the given
tasks, the distinction of dynamic variables in log abstraction can
further assist in log analysis. We then propose a deep learning
based log abstraction approach, named VALB, which can identify
different categories of dynamic variables and preserve the value
of specified categories of dynamic variables along with the log
templates (i.e., variable-aware log abstraction). Through the
evaluation on a widely used log abstraction benchmark, we find
that VALB outperforms other state-of-the-art log abstraction
techniques on general log abstraction (i.e., when abstracting all
the dynamic variables) and also achieves a high variable-aware
log abstraction accuracy that further identifies the category of
the dynamic variables. Our study highlights the potential of
leveraging the important information recorded in the dynamic
variables to further improve the process of log analysis.

Index Terms—software logs, log abstraction, deep learning

I. INTRODUCTION

Logs play an important role in software systems to record
system execution behaviors. Practitioners leverage logs to
assist in various tasks in the process of software development
and maintenance, such as failure diagnosis [1], [2], [3], [4], [5],
[6], program comprehension [7], [8], [9], [10], [11], [12], [13],
and anomaly detection [14], [15], [16], [17]. Although logs
contain rich system run-time information, there are challenges
associated with log analysis [18]. For example, modern soft-
ware systems generate a large number of logs on a daily basis,
resulting in tens of gigabytes or even terabytes of data [19],
[20], [21]. Therefore, developers usually rely on automated
techniques for log analysis.

Chuan Luo and Qingwei Lin are the corresponding authors of this paper.
This study was conducted while Zhenhao Li was a research intern at Mircosoft
Research.

2015-10-18 18:01:53,713 INFO [main]
org.apache.hadoop.mapreduce.v2.app.launcher.ContainerLauncherimpl:
Upper limit on the thread pool size is 500

Abstracted Log

Timestamp: 2015-10-18 18:01:53,713

INFO

[main] org.apache.hadoop.mapreduce.v2.app.launcher.
ContainerLauncherlmpl
Upper limit on the thread pool size is <*>

Dynamic Variable(s): 500

Verbosity Level:

Logger:

Log template:

Fig. 1. An example of the log abstraction process.

To effectively facilitate automated log analysis, log abstrac-
tion (also called log parsing) techniques [14], [19], [20], [22],
[23] are used to process the raw logs into a more structured
format. Figure 1 shows an example of the log abstraction
process. The raw log in the example is composed of a message
header (e.g., timestamp) that can be configured via the logging
library, the static words that remain constant, and the dynamic
variables that may vary depending on the run-time behaviors.
The goal of log abstraction techniques is to identify the static
log templates and abstract the dynamic variables from the
raw logs and output the log templates. The sequence of log
templates can then be leveraged for further log analysis (e.g.,
anomaly detection [24], [17]).

Prior studies propose various log abstraction techniques us-
ing different algorithms [19], such as frequent pattern mining
(e.g., Logram [20] and LFA [25]), clustering algorithms (e.g.,
SHISO [26] and Lenma [27]), heuristics (e.g., Drain [22],
AEL [23], and IPLoM [28]), and combined approaches (e.g.,
ULP [29]). Their common goal is to abstract all dynamic parts
of logs and output the remaining static words. However, the
recorded dynamic values can provide valuable information to
assist log understanding and analysis. In this paper, we aim
to understand the characteristics of dynamic variables and
their importance in log analysis. We then seek to propose a
log abstraction approach that can selectively abstract dynamic
variables that belong to specific categories based on the needs.

We first empirically study the dynamic variables in logs. We
manually study a widely used log abstraction benchmark data
set [19] to uncover the characteristics of dynamic variables

in logs and uncover 10 categories of dynamic variables.
We then have a questionnaire survey with practitioners at
Microsoft to investigate how do practitioners in the industry
consider the usage and importance of dynamic variables in
logs. Through our empirical study and survey, we find that
different categories of dynamic variables record valuable infor-
mation that can be important for different tasks. In our survey
with industry practitioners, we also find that the practitioners
acknowledge the importance of dynamic variables in logs, and
a log abstraction technique that can preserve the categories of
dynamic variables as specified may further help log analysis.

Motivated by our findings and practitioners’ feedback,

we then propose VALB, which is a Variable-Aware Log
aBstraction approach that can identify the static and dynamic
parts in logs (as the prior log abstraction techniques do), and
also further identify the categories of dynamic variables. Prac-
titioners can specify the categories of dynamic variables
based on their needs, and the values of such dynamic
variables will be preserved along with the log templates.
Overall, VALB achieves an average accuracy of 96.1% for
general log abstraction, which is better than other state-of-the-
art log abstraction techniques (average accuracy ranges from
74.5% to 82.5%). VALB also achieves an average accuracy of
95.5% for variable-aware log abstraction that further considers
the correctness of identifying different categories of dynamic
variables. Moreover, we find that the models of VALB are still
efficient on a new system by re-using the models trained from
other systems and fine-tune the models with a small amount
of logs in the new system.

The contributions of this paper are as follows'

« We investigate the characteristics and importance of dy-
namic variables in logs, which are omitted by prior log
abstraction techniques. We find that different categories
of dynamic variables record valuable information that can
be important for different tasks, point out the need of a
variable-aware log abstraction technique.

o We propose a deep learning approach, VALB, which is
the first log abstraction approach that can further identify
the categories of dynamic variables in the process of log
abstraction. VALB achieves promising results in variable-
aware log abstraction and also outperforms prior state-of-
the-art techniques in general log abstraction.

« We explore the potential of variable-aware log abstraction
on assisting in log-based downstream tasks and find
that variable-aware log abstraction can be leveraged to
improve the performance of anomaly detection.

In short, our study uncovers the importance of dynamic vari-
ables and highlights future research opportunities on studying
the potential of leveraging dynamic variables in logs to further
assist in log analysis.

Paper Organization. Section II discusses the motivating

examples of our study. Section III presents our empirical
study on dynamic variables in logs. Section IV describes

'We share the data of this paper in the repository: https:/github.com/
ginolzh/Variable_Aware_Log_Abstraction.

Sequence of Raw Logs

1 2017-05-16_13:55:31 2931 INFO nova.compute.manager
[instance: 96abccce-8d1f | Took 19.96 seconds to spawn the instance on the hypervisor.

2 2017-05-16_13:55:31 2931 INFO nova.compute.manager
[instance: 96abccce-8d1f] VM Resumed (Lifecycle Event)

2017-05-16_13:55:31 2931 INFO nova.compute.manager
[instance: 96abccce-8d1f] Took 20.71 seconds to build instance.

Parsed Sequence of Log Templates

[instance: <*>] Took <*> seconds to spawn the instance on the hypervisor.

3

-

N

[instance: <*>] VM Resumed (Lifecycle Event)

w

[instance: <*>] Took <*> seconds to build instance.

Fig. 2. An example of log parsing before analyzing the sequences of logs.
The dynamic variables in the raw logs and abstracted variables in the parsed
log templates are marked in red.

the data preparation and the deep learning framework of
VALB. Section V evaluates VALB by proposing and answer-
ing three research questions. Section VI discusses the potential
of variable-aware log abstractions on assisting in log-based
downstream tasks. Section VII discusses the threats to the
validity of our study. Section VIII summarizes the related
works. Section IX concludes the paper.

II. MOTIVATING EXAMPLES

Log abstraction has shown to be a crucial first step towards
further log analysis [19], [14]. Prior log abstraction techniques
aim at abstracting all the dynamic variables and output a static
log template [19]. However, during our collaboration with in-
dustry, practitioners mention that such log abstraction process
will result in the loss of important information recorded by
dynamic variables. They consider that different categories of
dynamic variables record different information, which can be
important to specific tasks.

We take anomaly detection as an example. Anomaly detec-
tion tools [15], [16] analyze the sequences of log templates
generated from log abstraction techniques to detect system
anomalies. Since the dynamic variables have already been
abstracted, the input log templates only contain the information
of static words in logs. Figure 2 shows an example of the
process of log abstraction on a sequence of logs. We take
the example logs from OpenStack, an open-source anomaly
detection data set provided by the LogPAI project [30]. The
data sets provide sequences of logs that are generated from
normal and abnormal (e.g., system crash) system execution
behaviors. In the example shown in Figure 2, the raw logs
record a series of run-time information of an instance (i.e., a
node) “96abccce-8d1f”. The dynamic variables (i.e., instance
ID and seconds taken by an action) are then abstracted as
wildcards in the output sequences of log templates.

The anomaly detection approach then learns from the se-
quences of log templates in the training data, and predicts
whether a given log sequence indicates a normal or abnormal
run-time behavior. However, the dynamic variables may also
play an important role in distinguishing normal and abnormal
system behaviors. For example, in the log template “[instance:
*] Took * seconds to spawn the instance on the hypervisor”,
the average value of “seconds” in normal log sequences is

19.78, while the average value in abnormal sequences is 53.87.
For the other log template “[instance: *] Took * seconds to
build instance.”, the average values of “seconds” are 20.63
and 39.21 in normal and abnormal log sequences, respectively.
This indicates that this anomaly might be a performance issue
due to network latency.

Therefore, apart from the static parts in the logs sequences,
dynamic variables may also contain important information
for log analysis, yet such information is usually abstracted
by prior log abstraction techniques. An investigation of the
characteristics of dynamic variables and their importance in
practice may further help improve log abstraction techniques
and to better assist in log analysis.

III. STUDYING THE DYNAMIC VARIABLES IN LOGS

Motivated by practitioners’ awareness of the importance
of dynamic variables, in this section, we study the dynamic
variables in logs. We first conduct a manual study on a
widely used log data set [30] to study the characteristics of
the dynamic variables and categorize the information they
record. We then conduct a questionnaire survey [31], [32] at
Microsoft to investigate how do practitioners consider the role
that dynamic variables play in log analysis.

A. Manually Studying and Characterizing the Dynamic Vari-
ables in Logs

Studied Data Sets. We use the log data sets and bench-
marks provided by LogPAI [30] to study the characteristics
of dynamic variables in logs. LogPAI includes 16 data sets of
logs generated from both open-source and commercial systems
across various domains, and is widely used in prior log anal-
ysis studies [16], [15]. Each data set also provides a subset of
2,000 logs with manually derived log templates as the ground
truth for evaluating the accuracy of log abstraction techniques.
The manually derived log templates are commonly used in
prior log abstraction studies for evaluating log abstraction
accuracy [19], [20], [22]. We call this subset of data sets log
abstraction benchmark data sets in the rest of our paper.

In our manual analysis, we study the above mentioned
log abstraction benchmark data sets (i.e., 16 data sets in
total, 2000 logs per data set, each log is manually labeled
with its corresponding log template for the evaluation of log
abstraction). Table I presents the details of the log abstraction
benchmark data sets, including the number of log templates
(NOL), number of log templates that have abstracted dynamic
variables with the percentage among the total number of log
templates (TWV (%)), and the number of abstracted dynamic
variables (NOV). The number of log templates ranges from 6
(Apache) to 341 (Mac), and the number of abstracted dynamic
variables ranges from 8 (Apache) to 595 (Mac). We also find
that, in each data set, more than half of the log templates have
abstracted dynamic variables (i.e., not pure static messages).

Manual Investigation on Dynamic Variables. In order to in-
vestigate what kind of information do those dynamic variables
record and their potential importance, we manually study the
logs in the log abstraction benchmark data sets to uncover

TABLE I

AN OVERVIEW OF THE LOG ABSTRACTION BENCHMARK DATA SETS. NOL:
NUMBER OF LOG TEMPLATES, TWV (%): PERCENTAGE OF LOG
TEMPLATES WITH VARIABLES, NOV: NUMBER OF VARIABLES

Name NOL TWYV (%) NOV
Android 166 107 (64.5%) 320
Apache 6 6 (100.0%) 8
BGL 120 106 (88.3%) 269
Hadoop 114 90 (78.9%) 160
HDFS 14 14 (100.0%) 36
HealthAPP 75 44 (58.7%) 74
HPC 46 27 (58.7%) 52
Linux 118 67 (56.8%) 117
Mac 341 268 (78.6%) 595
OpenSSH 27 23 (85.2%) 56
OpenStack 43 42 (97.7%) 91
Proxifier 8 8 (100.0%) 23
Spark 36 24 (66.7%) 39
Thunderbird 149 97 (65.1%) 202
Windows 50 31 (62.0%) 66
Zookeeper 50 38 (76.0%) 80
Total 1363 992 (72.8%) 2188

the characteristics of dynamic variables in logs. Similar to the
process of manual study in prior studies [33], [34], [35], [36],
our study involves the following steps:

Step 1 : We go through all the log templates that have
abstracted dynamic variables in the data sets (992 log tem-
plates in total). For the abstracted dynamic variables in each
log template, the first author of this paper (i.e., Al) checks
its corresponding original logs and note down what kind of
information is recorded by each dynamic variable.

Step 2 : Two authors of this paper (i.e., Al and A2)
independently re-visit the notes in Step 1 and derive a list of
categories that can describe the characteristics of the dynamic
variables [37]. Al and A2 then discuss the derived results.
The categories are refined and revised during the discussion
in this step.

Step 3 : Al and A2 use the categories derived in Step 2 to
label every dynamic variable in the data sets (2,188 dynamic
variables in total) independently. The results between the two
authors have a Cohen’s Kappa of 0.79, which is a substantial
level of agreement [38]. We discuss the disagreements until a
consensus is reached. We then compute the number of dynamic
variables that belongs to each category.

Categories of Dynamic Variables. In our manual inves-
tigation, we uncover 10 categories of dynamic variables.
Table II presents each category with its abbreviation (Abbrev.),
description, example, and the number of variables that belong
to this category. The dynamic variables in the example are
marked in bold and underline.

Overall, we find that Object ID (OID), Location Indicator
(LOI), Object Amount (OBA), and Object Name (OBN) have
a relatively higher presence in our studied dynamic variables
(255 to 739, out of 2,188). Among them, Object ID (OID)
records the identification information of an object, such as a
session ID or user ID. Location Indicator (LOI) shows the
location information of an object. It can be path information,
a URI, or an IP address. Object Name (OBN) shows the name
of an object (e.g., domain name, task name, job name), and
Object Amount (OBA) records the amount of an object (e.g.,

TABLE 11
THE MANUALLY-DERIVED CATEGORIES OF DYNAMIC VARIABLES WITH THEIR CORRESPONDING ABBREVIATIONS (Abbrev.). DYNAMIC VARIABLE IN THE
EXAMPLE IS MARKED IN BOLD AND UNDERLINE

Name Abbrev. | Description Example Total Number
Object ID OID Identification information of an object. Added attempt 1445144423722 to list of failed maps. 739/2,188
Location Indicator LOI Location information of an object. Adding path spec: /mapreduce. 419/2,188
Object Name OBN Name of an object. ServerFileSystem domain rootl0-local is full. 255/2,188
Type Indicator TID Type information of an object or an action. Using configuration type 1. 27/2,188
Switch Indicator SID Status of a switch variable. Saw change in network reachability (isReachable= 2). 7/2,188
Time/Duration of an Action | TDA Time or duration of an action. Scheduled snapshot period at 10 second(s). 137/2,188
Computing Resources CRS Information of computing resource. Combo kernel: 126MB LOWMEM available. 143/2,188
Object Amount OBA Amount of an object. Total of 23 ddr error(s) detected and corrected. 340/2,188
Status Code STC Status code of an object or an action. mod-jk child workerEnv in error state 7. 93/2,188
Other Parameters OTP Other information does not belong to the above categories. | calvisitor kernel: payload Data 0700 to list of failed maps. 28/2,188

TABLE III
THE SURVEY RESULTS OF “OPINIONS ON THE CATEGORIES OF DYNAMIC
VARIABLES IN LOGS”. Ul: USUALLY IMPORTANT, CBI: CAN BE
IMPORTANT IN SOME SITUATIONS, UNI: USUALLY NOT IMPORTANT.

Name Ul CBI UNI
Object ID (OID) 45.5% 40.9% 13.6%
Location Indicator (LOI) 50.0% 40.9% 9.1%
Object Name (OBN) 59.1% 31.8% 9.1%
Type Indicator (TID) 63.6% 27.3% 9.1%
Switch Indicator (SID) 54.5% 27.3% 18.2%
Time/Duration of an Action (TDA) 31.8% 63.6% 4.6%
Computing Resources (CRS) 45.5% 36.4% 18.1%
Object Amount (OBA) 40.9% 40.9% 18.2%
Status Code (STC) 68.2% 31.8% 0.0%
Other Parameters (OTP) 9.1% 63.6 % 27.3%
Average 46.8% 40.5% 12.7%

number of errors, number of nodes).

Time or Duration of an Action (TDA) and Computing
Resources (CRS) also have over 100 dynamic variables in our
studied data sets. TDA shows the time that an action happens
or the duration of an action, and CRS shows how many
computing resources are in use or left (e.g., memory or disk
space). For the remaining four categories (i.e., Type Indicator
(TID), Switch Indicator (SID), Status Code (STC), and Other
Parameters (OTP)), they have relatively fewer numbers among
the studied dynamic variables. However, they can also be
important in some situations. For example, Status Code (STC)
can show the code for some crucial events (e.g., an error code),
which is usually important for error diagnosis.

B. A Survey on Log Analysis and Dynamic Variables

In our manual study, we find that different categories of
dynamic variables in logs record various system run-time
behaviors and uncover 10 categories of dynamic variables.
In order to investigate how do developers in the industry
consider the usage of dynamic variables in logs when doing
log analysis, we conduct a questionnaire survey in Microsoft.
Specifically, we conduct the survey in several production teams
in Microsoft with more than one hundred full-time engineers
in total. We first have a pilot survey with three engineers to
collect their feedback. We make minor modifications to revise
the overall presentation of the survey based on the received
feedback. The final version of the survey has 17 questions,
divided into four parts. We then distribute the survey link to
the group chat of those teams. We receive 22 responses in total,
the participants are engineers from various production teams

such as cloud computing and social network services. The
roles of our survey participants include development, quality
assurance, and product management. Based on their survey
responses, we find that the participants are involved in various
tasks related to log analysis such as root cause analysis and
incident monitoring. Below, we discuss each part of survey
questions in detail.

Experience of the Participants (Q1). We ask the participants
how many years of experience do they have in software
development and maintenance. On average, the participants
have 6 years of experience.

Opinions on the Categories of Dynamic Variables in Logs
(Q2-Q11). We provide the participants all the 10 categories
of dynamic variables that we uncovered with a corresponding
example and ask the participants to consider the importance
of each category in practice. Table III present the results
of the participants’ opinions on the categories of dynamic
variables. For each category, participants can select if the
category is “Usually important (UI)”, “Can be important in
some situations (CBI)”, or “Usually not important (UNI)”. The
highest number for each category is marked in bold.

Overall, most of the participants consider the dynamic
variables are usually important, or can be important in some
situations. For all the 10 categories, from 27.3% to 63.6% of
the participants consider that they can be important in some
situations. For 5 out of the 10 categories (LOI, OBN, TID,
SID, and STC), more than half of the participants consider that
they are usually important. The results show that developers
acknowledge the importance of dynamic variables in logs,
while some variables are usually important and some are
important depending on the situations.

Follow-up Questions on Dynamic Variables and Log Anal-
ysis (Q12-Q16). In this part, we ask the participants five
multiple-choice questions related to the dynamic variables in
logs and log analysis. For each question, participants can
choose one score from 1 to 5, where 1 represents for “Very
low extent”, and 5 represents for ’Very high extent”. Table IV
presents the survey questions and results. The column of Avg.
and Med. shows the average and median score, respectively.
Overall, the average and median scores for Q12 - Q16 are
all above 4.0. The results of Q12 (an average of 4.5 and a
median of 5.0) show that the participants acknowledge the
importance of dynamic variables in log analysis. The results

TABLE IV
LIST OF QUESTIONS AND RESULTS FOR “FOLLOW-UP QUESTIONS ON
DYNAMIC VARIABLES AND LOG ANALYSIS”, THE ANSWERS ARE IN A
SCALE FROM 1 (VERY LOW EXTENT) TO 5 (VERY HIGH EXTENT).

Question Avg.Med.
Q12|To what extent do you think the dynamic variables are[4.5 [5.0
important for log analysis?
Q13|For the 10 categories of dynamic variables, to what extent|4.0 (4.0
do you think they can represent the dynamic variables in
practice? (The larger the number, the higher the represen-
tativeness of the categories)

Q14|To what extent do you think that distinguishing the|4.2 [4.0
dynamic variables into categories can further help log
analysis?

Q15|To what extent do you think that, for different specific|4.5 (5.0
tasks/requirements, different categories of dynamic vari-
ables may have different importance?

Q16|Existing log abstraction technique is used to abstract the[4.5 [5.0
dynamic variables of logs and assist in automatic log
analysis. If there is an alternative log abstraction tool that
can further keep certain categories of dynamic variables
(as specified by the user) and abstract the rest, to what
extent do you think this alternative tool can be helpful in
log analysis?

of Q14 (an average of 4.2 and a median of 4.0) then show
that developers believe further distinguishing the categories
of dynamic variables may further help log analysis. Based
on the results of Q13 (an average and a median of 4.0), the
participants consider that our derived categories can represent
the dynamic variables to a high extent. Combining the results
of Q15 and the percentage of CBI in Table III, participants
consider that different categories of dynamic variables may
play different roles in log analysis, depending on the spe-
cific tasks or requirements. In Q16, most of the participants
consider that it will be more helpful if the log abstraction
technique can further identify and keep some certain categories
of dynamic variables during the log abstraction process.

Additional Comments from the Participants (Q17). We
provide an open-ended question to ask the participants if they
would like to share some experience or leave some comments
related to log analysis.

Some participants provide comments indicating the im-
portance of dynamic variables in logs. For example, two
participants commented that:

“In practice, we would like to pay attention to the specific
parameter in a log, while sometimes we can just use the log
template to pinpoint the issue. So this may be related to the
specific issue. It should be interesting to study the relationship
between issues and parameters or templates.”

“Determining whether a variable is important or not really
depends on the task. For example, if we want to find something
related to a detected failure, the error code or the identifiable
information will be very important.”

There are also some participants who provide examples
related to how can dynamic variables help log analysis. More
details will be discussed in Section VI. Overall, developers
consider that dynamic variables are important, and their im-
portance is related to what information they record and the
specific tasks.

Example of Data Annotation

Starting executor ID 5 on host meso-07

oo OC

Fig. 3. An example of our log annotation process. Static words are annotated
with O, object ID is annotated with B-OID, and object name is annotated with
B-OBN.

We find that different categories of dynamic variables
record valuable information that can be important depend-
ing on the tasks. We also find that practitioners in our
survey consider the distinction of dynamic variables in the
process of log abstraction can further help log analysis.

IV. AN AUTOMATED APPROACH FOR VARIABLE-AWARE
LOG ABSTRACTION

Motivated by our empirical findings and practitioners’ feed-
back, in this section, we propose a deep learning based
log abstraction approach, called VALB, which is a Variable-
Aware Log aBstraction technique. Given a set of logs, VALB
can identify the static words (i.e., log templates), dynamic
variables, and the categories of dynamic variables. Hence,
VALB can be used as a general log parser when developers
decide to abstract all the categories of dynamic variables.
Moreover, as we found in the result of our survey, practitioners
consider that different categories of dynamic variables can
have different importance depending on the tasks. Therefore,
VALB also allows developers to decide which categories of
variables they want to keep and preserve the values of such
dynamic variables.

We formulate our variable-aware log abstraction process
as a sequence tagging problem, which is widely studied in
the natural language processing area [39], [40]. A typical
usage of sequence tagging in NLP is named entity recognition
(e.g., given a sentence, to recognize which word is a person,
which word is an organization, etc.). In our study, for a given
log message, VALB aims to identify which words are static
words, which words are dynamic variables and what are their
corresponding categories. Below, we discuss how we annotate
the dynamic variables and static words in logs, and the deep
learning framework and implementation of VALB.

A. Data Annotation

VALB is based on supervised deep learning. In order to
train the model that can identify the dynamic variables, their
corresponding category, and static words in logs, we need to
prepare the annotated training data. The training data consists
of a specific amount of logs, and each word in the log is
annotated with its category. For each word in the log, we use
the IOB (inside-outside-beginning) annotation format [41] to
annotate it with the categories that we found in Section III.
This format uses “B-" as the prefix of the beginning word of
a named entity and uses “I-” as the prefix for the following

Example Result: Starting executor ID <OID-1> on host <OBN-1>

CRF Layer
Char Embedding

(0=0=0=0~=0) !

Bi-LSTM Layer _ Convolution
: S TEE booeoeoa- == —
[O OQQ}'H[E E E E EJ : Max Pooling
! 1
Word Embedding I_C_harfc_te_r-leye_l I}e_pfefe_“t_at_i“_" : '
1

Clrrrrc i

Input Log

@) ‘
1 Char Representation .
1

Example Input: Starting executor ID 5 on host meso-07 ‘

Fig. 4. Overall diagram of our framework. Areas surrounded by dashed
lines on the right illustrate the detailed structure for the character-level
representation.

word (if the following word exists). For the outside word of
a named entity, it uses “O” as the annotation. In our study,
for each dynamic variable, we use the aforementioned prefix
as well as the abbreviation illustrated in Table II to annotate
the category of each dynamic variable. For each static word,
we annotate it as “0”.

Figure 3 shows the annotation process of a simplified log
from the Spark data set. In the example, the log message
is “Starting executor ID 5 on host meso-07”. The words
“Starting”, “executor”, “ID”, “on”, and “host” are static
words, so we annotate them as “O”. For the word “5”, it
belongs to the category of Object ID, so we annotate it as
“B-OID”. Similarly, we annotate the word “meso-07" as “B-
OBN” (i.e., Object Name).

B. Deep Learning Framework and Implementation

Overall Architecture. Figure 4 shows the overall architecture
of our deep learning framework. We first feed the log vectors
into an embedding layer. Due to the variety of words in
logs (e.g., numbers, normal words, and compound words),
we use a combination of word embedding and character-level
representation as our embedding layer. The embedding layer
learns the relationship among the words and characters in logs
and transfers the log vectors into probabilistic representations.
We then use a Bi-LSTM (Bidirectional Long Short-Term
Memory) layer to model the dependencies among the words in
logs. Finally, we use a CRF (Conditional Random Fields) layer
to model the relationships among the annotations of categories
(e.g., which annotations are likely to appear together) and
output the annotation of each word. We then analyze the
annotation results and input logs to output the variable-aware
log templates as the final results.

Embedding Layer. In the embedding layer, we use the con-
catenation of word embedding and character-level representa-
tion to transfer the log vector into probabilistic representations.

Word Embedding. For each log in the data set, the word
embedding layer captures the relationship among the words in
the log and transfers the log into probabilistic representations
(i.e., probabilistic vector). Similar words tend to have a close
distance in the vector space [42], [43], [44]. In our study, we
use the GloVe embeddings [45] which are trained from six
billion words collected from Wikipedia and the web.
Character-level Representation. Unlike static words that are
always constant, the dynamic variables in logs can have
various values based on different system behaviors. Moreover,
many of the dynamic variables are numeric words (e.g., the
category Object Amount in Section III). The simple numbers
from 0 to 9 can almost have unlimited potential of creating
“new words” depending on various run-time information. This
may result in very large size of the vocabulary and the OOV
(out-of-vocabulary) problem while applying the models [46].
Hence, we also include character-level representation together
with the word embedding layer. The combined embedding
layer can catch the relationships among both the words as well
as the characters [47], [48]. We train the word embedding from
the words in logs and then use CNN (Convolutional Neural
Network) with max pooling to capture the relationship among
the characters in words and build the character-level represen-
tation [49], [50]. We then concatenate the word embedding
vector and character-level representation together and feed the
combined embedding vector into the next layer.

Bi-LSTM Layer. Recurrent Neural Network is powerful at
capturing the dependencies in sequential data [51], [52]. Log
is a series of words that have sequential dependencies among
the words. Similar to sentences in natural language, the words
in a log may also have dependencies on past (i.e., words on
the left) or future words (i.e., words on the right). Hence, we
use Bi-LSTM (Bidirectional Long Short-Term Memory) [40],
[53], a variant of RNN to capture the long term dependencies
in the words from both directions. We then feed the output
vectors in this layer that contains the dependency information
in logs to the next layer.

CRF Layer. In sequence tagging tasks, the CRF (Conditional
Random Fields) layer leverages the past and future tag in
a sentence to predict the current tag [54]. It can learn the
relationships and dependencies among the resulted annotations
(e.g., which annotations are likely to appear together, and
which annotations are not). In our deep learning framework,
the CRF layer uses the vectors from the Bi-LSTM layer and
leverages the category annotations of the past and the future
words to predict the annotation (i.e., variable category) of the
current word. For each line of log, the CRF layer outputs the
category of each word in the log as the final result. We then
analyze the results from CRF layer and output the static words
(i.e., annotated as “O”) and categories of dynamic variables
as the result of variable-aware log templates (as shown in
“Example Result” of Figure 4). The result also includes the
value of each dynamic variable, developers can specify the
categories and preserve their values.

Implementation and Hyper-parameters. We use Tensor-

flow [55] to implement our deep learning framework. To
mitigate the impact of overfitting, we apply the dropout
method for embedding layer and RNN layer, with a dropout
rate of 0.2 [56], [57], [58]. For the embedding layer, we set
the dimension as 300, filter size as 50, and kernel size as 3 for
character-level embedding and CNN, and set the dimension as
100 for word embedding [59], [40], [46]. For the RNN layer,
we set the hidden units as 128 [46]. For the training process,
we set the number of epoch as 30 and the batch size as 8 [60],
[57], [61].

V. EVALUATION OF VALB
In this section, we first discuss the experimental setup to
evaluate VALB. We then propose three research questions and
discuss the results.

A. Experimental Setup.

Data Preparation: We continue to use the log abstraction
benchmark data sets provided by the LogPAI project [30]
(as discussed in Section III), which is widely used by prior
log abstraction studies as the evaluation benchmarks [19],
[20], [22], to train and evaluate the models. Specifically, we
annotate all the 2,000 logs in each of the 16 data sets following
the process discussed in Section IV. For each data set, we
randomly split the 2,000 logs into training (20%), validation
(20%), and testing data sets (60%). The intention of choosing
a small size of training and validation data set is that, we want
to investigate if training on a small data set can also achieve
promising results. If so, the effort of preparing the training
data sets can then be mitigated.

Alternative Approach: Since there is no prior work on
abstracting specific categories of dynamic variables in logs,
we use the framework of VALB that excludes the char-level
representations (i.e., only using regular word embedding) as
the baseline approach to compare with. The purpose is to
examine how character-level representation can help to model
the diverse lexical usage of dynamic variables.

B. Research Questions

We discuss the results by answering three research ques-
tions. In RQ1, we use VALB as a general log parser that
abstracts all the dynamic variables and compare the accuracy
with other state-of-the-art log parsers. In RQ2, we examine
the accuracy of VALB on variable-aware log abstraction that
further identifies the category of dynamic variables. In RQ3,
we investigate whether the trained models of VALB can be
easily adopted to a new project.

RQ1: What is the Accuracy of VALB on General Log
Abstraction?

Motivation. Prior log abstraction techniques aim at identi-
fying the dynamic parts in the logs and completely abstract
them [19]. Similar to prior works, VALB can also be used
for general log abstraction if we only identify the dynamic
variables and do not consider their categories. In this RQ, we
investigate the accuracy of VALB when we use it for general
log abstraction and compare it with other state-of-the-arts.

Approach. For each data set, we train and validate the model
using the training and validation data sets and evaluate the
accuracy on the testing data set. When we are training and
evaluating the models, we first transfer the annotations of all
the categories of dynamic variables to a single annotation that
indicates the word is a variable, regardless of their categories.
Given a log, VALB can thus identify which words are static
words and which words are dynamic variables, and output
log templates without dynamic variables as what prior log
abstraction works do.

For the accuracy of log abstraction, there are mainly two
definitions: 1) a log is considered as correctly parsed if
its event template corresponds to the same group of log
messages in the ground truth [19], [22]; 2) a log is considered
correctly parsed if and only if all of its static words and
dynamic variables are correctly identified [20] (the category
of dynamic variable is not considered). The first definition of
accuracy does not examine if each word is correctly parsed.
Therefore, we use the second definition of accuracy to examine
the performance of VALB and other works on general log
abstraction. The result of accuracy is computed as the ratio
of correctly parsed logs against all the parsed logs. We refer
to this accuracy as general accuracy in the rest of our paper.
We use VALB as a general log parser (i.e., abstracting all
the identified dynamic variables) and compare the accuracy
with the top-3 state-of-the-art log parsers that have the highest
accuracy reported in a prior study [20] (i.e., Logram [20],
Drain [22], and AEL [23]) as well as our baseline approach.

Results and Discussions. Table V presents the general
accuracy of our approach (VALB), the baseline (Base), and the
other state-of-the-art log parsers. Each number indicates the
ratio of the correctly parsed logs. The accuracy that is higher
than 90.0% is marked in bold, and the highest accuracy among
all the log parsers is marked with a star mark (*). Overall,
VALB achieves the best accuracy in 15 out of the 16 data sets
and the highest average accuracy across the data sets (96.1%).
For the data set that VALB does not achieve the best accuracy,
the accuracy of VALB is also close to the highest approach
(e.g., VALB achieves an accuracy of 97.0% in HDFS, which
is slightly lower than the highest accuracy of 99.9% achieved
by AEL and Drain).

VALB achieves a high accuracy in general log abstraction
that abstracts all the identified dynamic variables (96.1%
on average) , which outperforms other state-of-the-arts.

RQ2: What is the Accuracy of VALB on Variable-aware
Log Abstraction?

Motivation. In our empirical study and survey, we find that
practitioners acknowledge the importance of dynamic vari-
ables, and different categories of dynamic variables may have
different usages depending on the tasks or scenarios. The
findings point out the need of a variable-aware log abstraction
technique that can preserve the value of specific categories of
dynamic variables in the process of log abstraction. In this
RQ, we evaluate the accuracy of VALB on variable-aware log

TABLE V
ACCURACY (%) OF VALB ON GENERAL LOG ABSTRACTION COMPARED
WITH OTHER LOG PARSERS AND THE BASELINE (Base). BOLD NUMBERS:
HIGHER THAN 90, STAR MARK (*): HIGHEST ACCURACY IN EACH ROW.

Dataset AEL Drain Logram Base VALB
Android 86.7 933 84.8 79.8 93.5%
Apache 693 69.3 69.9 91.0 100.0%*
BGL 81.8 822 74.0 83.0 91.3*
Hadoop 539 545 96.5 92.6 97.7*
HDFS 99.9* 99.9*% 98.1 91.1 97.0
HealthAPP 61.5 60.9 96.9 75.8 99.3%*
HPC 99.0 929 95.9 90.8 99.2%
Linux 24.1 25.0 46.0 93.8 96.5%
Mac 579 515 66.6 67.2 86.6*
OpenSSH 247 507 54.5 95.8 98.2%
OpenStack 71.8 538 84.7 92.0 93.8%*
Proxifier 9.8 97.3 95.1 100.0* | 100.0%*
Spark 96.5 90.2 90.3 91.2 99.3*
Thunderbird | 78.2 80.3 76.1 83.4 88.1%*
Windows 983 983 95.7 91.3 99.2%
Zookeeper 922 96.2 95.5 92.1 98.3*
Average 745 748 82.5 88.2 96.1*
TABLE VI

VARIABLE-AWARE ACCURACY (%) OF VALB AND THE BASELINE (Base)
DISCUSSED IN RQ2, AND FINE-TUNING MODELS WITH 50 LOGS FROM
THE TARGET DATA SET (F-50) DISCUSSED IN RQ3.

RQ2 RQ3
Dataset Base VALB F-50
Android 76.0 91.6 82.3
Apache 90.5 99.3 97.0
BGL 82.0 89.6 86.7
Hadoop 91.8 96.8 90.1
HDFS 88.9 96.5 95.0
HealthAPP 75.1 98.8 92.9
HPC 86.6 99.0 95.8
Linux 91.6 95.9 91.0
Mac 63.8 86.2 78.0
OpenSSH 90.1 97.6 91.5
OpenStack 89.5 93.2 88.9
Proxifier 100.0 100.0 100.0
Spark 90.7 99.1 92.3
Thunderbird 80.6 87.8 82.3
Windows 90.4 99.0 96.7
Zookeeper 91.7 98.1 95.4
Average 86.2 95.5 91.0

abstraction, as well as the performance on identifying each
category of dynamic variables. We study two sub-RQs:
RQ2-A: What is the accuracy of VALB on variable-aware
log abstraction that can identify the static and dynamic parts
in logs, and also further identify the categories of dynamic
variables?

RQ2-B: What is the performance of VALB on identifying
different categories of dynamic variables in logs?

Approach. Below, we discuss the approach of each sub-RQ.
RQ2-A: Apart from identifying static and dynamic parts in
logs (i.e., general log abstraction), VALB can also identify
the categories of dynamic variables (i.e., variable-aware log
abstraction). To compute the accuracy of variable-aware log
abstraction, we consider a log is correctly parsed when: 1)
the static and dynamic parts are correctly identified and 2)

all the categories of dynamic variables in a log are also cor-
rectly identified. We refer to this accuracy as variable-aware
accuracy in the rest of our paper. For each data set, we train
and validate the model using the training and validation data
sets and evaluate the variable-aware accuracy on the testing
data set. Note that since prior log abstraction approaches
cannot distinguish the categories of dynamic variables, we
only compare the variable-aware accuracy of VALB with the
baseline approach.

RQ2-B: In this sub-RQ, we further investigate the performance
of VALB on identifying each category of dynamic variables.
Specifically, we combine the results of all the 16 data sets
in RQ2-A and compute an overall precision, recall, and F1
score for each of the 10 categories of the dynamic variables.
These metrics are widely used by prior studies on sequence
tagging [39], [40]. For each category, precision represents
the ability of correctly identifying this category of dynamic
variables (i.e., true positive divided by the sum of true positive
and false positive); recall represents the ability of how many
words in the log that belong to this category can be identified
(i.e., true positive divided by the sum of true positive and false
negative); and F1 score evaluates if the approach can both
accurately and sufficiently identify the words that belong to
this category. We also repeat the same process for the baseline
and compare the baseline’s performance with VALB.

Results and Discussions. We present and discuss the results
of the two sub-RQs, respectively.

RQ2-A: Table VI presents the variable-aware accuracy of
VALB and the baseline approach. Overall, VALB achieves
a high variable-aware accuracy ranging from 86.2% in Mac
to 100.0% in Proxifier, which is also close to the general
accuracy as discussed in RQ2-A. The average variable-aware
accuracy of VALB is 95.5%, which is higher than the baseline
(i.e., 86.2%). The results show that apart from general log
abstraction, VALB can also efficiently identify the categories
of dynamic variables in the logs to perform a variable-aware
log abstraction. Practitioners can specify the categories of
dynamic variables based on their needs, and the values of
such dynamic variables will be preserved along with the log
templates for further log analysis.

RQ2-B: Table VII shows the results of identifying different
categories of dynamic variables using our approach (VALB)
and the baseline (Base). We present the average results on
identifying each category of dynamic variables from all the
data sets to concisely show the overall performance. Each
number represents for the average number computed from
all the data sets. The Average line shows the arithmetic
mean value of the corresponding column. Overall, VALB
achieves over 90% in precision, recall, and F1 score for all
the categories of dynamic variables and performs better than
the baseline. VALB achieves an average precision of 96.2%,
an average recall of 96.5%, and an average F1 score of
96.3%:; while the baseline achieves 86.6%, 87.8%, and 87.1%,
respectively. VALB also has over 99% precision for Object
Name (99.8%) and Time or Duration of an Action (99.7%).

TABLE VII
THE RESULTS OF IDENTIFYING DIFFERENT CATEGORIES OF DYNAMIC
VARIABLES BY OUR APPROACH (VALB) AND THE BASELINE (Base).

Precision (%) Recall (%) F1 (%)
Category VALB Base | VALB Base | VALB Base
Object ID 96.5 89.2 95.9 93.1 96.2 91.1
Location Indicator 97.1 95.2 96.3 91.3 96.7 93.2
Object Name 99.8 95.5 98.3 95.8 99.0 95.6
Type Indicator 92.8 74.1 95.9 67.2 94.3 70.5
Switch Indicator 96.7 87.3 98.2 83.8 97.4 85.5
T. or D. of an Action 99.7 92.1 98.0 97.8 98.8 94.9
Computing Resources 98.7 91.2 97.3 91.7 98.0 91.4
Object Amount 92.5 71.5 96.9 87.8 94.6 82.3
Status Code 97.2 91.5 95.2 87.3 96.2 89.3
Other Parameters 91.1 72.9 93.0 82.2 92.0 77.2
Average 96.2 86.6 96.5 87.8 96.3 87.1

VALB can effectively identify the categories of dynamic
variables and achieves a high accuracy in variable-aware
accuracy (95.5% on average), which outperforms the base-
line approach without char-level representations (86.2% on
average).

RQ3: Can the models of VALB be easily leveraged in a
new project?

Motivation. Given that VALB is a supervised approach, the
effectiveness of the models may rely on the training data. In
this RQ, we would like to investigate how generalizable are
the models of VALB. Specifically, we study how effective is
VALB when the models are trained from other data and fine-
tuned with a small size of data in the target data set.
Approach. We apply fine-tuning on existing models to in-
vestigate if VALB can be easily adopted to a new project
with mitigated effort on data preparation. Specifically, for each
target data set in the 16 data sets, we combine the training
and validation data from the remaining 15 data sets and train
a model. We then use a small size of logs (5, 10, 30, 50, and
100) from the training and validation data sets, respectively,
from the target data set to fine-tune the model. We further use
the fine-tuned model on the target testing data set to examine
the variable-aware accuracy and compute an average number
by combining the results of all the 16 target data sets together
to show an overall trend for different size of fine-tuning logs.
Results and Discussions. Figure 5 shows the average variable-
aware accuracy of models fine-tuned with different number
of logs in the target data set (i.e., F-5, F-10, F-30, F-50,
and F-50), models without fine tuning (i.e., F-0), and the
original results discussed in RQ2-A (i.e., Original). Overall,
the average accuracy increases as the growth of the size of
fine-tuning logs in the target data set, from 51.1% without
fine-tuning logs to 92.2% with 100 fine-tuning logs. It is worth
noting that the average variable-aware accuracy is fairly high
when the models are fine-tuned with 50 logs in the target
data set (i.e., 91.0% for F-50) and comparable to the original
results discussed in RQ2-A.

In the last column of Table VI, we further present the
detailed variable-aware accuracy of F-50 for each data set. We
find that the fine-tuned models using 50 logs from the target
data set (F-50) also achieve a high variable-aware accuracy
with an average variable-aware accuracy of 91.0%, which

100

90

80

70

60

50

40

Accuracy on Average (%)

30

20

F0 F5

F-10 F-30 F-50 F-100 Original

Fig. 5. Average variable-aware accuracy of models fine-tuned with different
number of logs in the target data set comparing with the original results in
RQ2-A.

is close to the average accuracy of the original results (i.e.,
95.5%). Hence, after using the pre-trained models and a small
data set of the target project, the models of VALB can be
easily adopted to other projects.

VALB achieves a high variable-aware accuracy using the
models fine-tuned with a small amount of data in the target
system, and thus can be easily leveraged in a new project.

VI. DISCUSSION

Exploring the potential of variable-aware log abstraction
on assisting in log-based downstream tasks. As discussed
in Section II, dynamic variables may also contain important
information for log analysis tasks, and such information can
be preserved using variable-aware log abstraction of VALB.
Hence, we further explore how can variable-aware log abstrac-
tion help the downstream tasks in log analysis. We conduct our
exploration on the log-based anomaly detection benchmark
provided by LogPAI [24], [30], which is widely used by other
log-based anomaly detection studies [15], [16]. We use the
HDFS data set provided by the benchmark to examine the
performance of general log abstraction and variable-aware log
abstraction on anomaly detection. HDFS data set contains
over 11M log messages generated by running Hadoop-based
MapReduce jobs on more than 2,000 Amazon’s EC2 nodes
for 38.7 hours. After grouping the logs with their block ID,
there are 575,062 log sequences in total. Around 2.9% of the
log sequences indicate anomalies, which are manually labeled
by domain experts. We find that the logs in HDFS data set
has four categories of dynamic variables: Object ID (OID),
Location Indicator (LOI), Computing Resources (CRS), and
Object Amount (OBA).

We use the anomaly detection techniques provided by the
benchmark [24] with top-5 Fl-scores (i.e., Decision Tree,
SVM, LR, IM, and Clustering). For each technique, we use
log sequences without dynamic variables as what prior log
abstraction studies do (i.e., Original), with the value of each
category of dynamic variable (i.e., OID, LOI, CRS, and OBA),
and with all the values of dynamic variables (i.e., All) as
the input data, respectively, to examine their performance on
anomaly detection. Note that we further exclude the results
of Decision Tree since the Precision, Recall, and F1-score are

98

96 -

941

92

90 -

F1 Score

Original
(e]]]

LOI
CRS
OBA

All

88 1

86

Fedtts

84

T

Clustering IM LR SVM Average

Fig. 6. F1 score achieved by different anomaly detection techniques using

sequences of log templates without variables (Original), and using sequences
of log templates with corresponding category of variables.

already nearly perfect (99.8%) for Original, and the results
are very similar when using log sequences with each category
of dynamic variables (from 99.7% to 99.9%).

Figure 6 presents the F1 scores achieved by each anomaly
detection technique (excluding Decision Tree) using sequences
of log templates without variables (i.e., Original), and using
sequences of log templates with corresponding category of
variables. As we find that the overall trends of Precision and
Recall are similar to Fl-score, we only present the results
of Fl-score to have a more concise view. Overall, we find
that CRS (i.e., when using the log sequences with dynamic
variables of which the category is Computing Resources)
achieves the highest Fl-score for each of the anomaly de-
tection technique. For other category of variables, there is a
fluctuation on the results compared with Original. In short, we
find that log sequences with specific categories of dynamic
variables (e.g., CRS in this experiment) can improve the
performance of log-based anomaly detection.

Apart from anomaly detection, some participants in our sur-

vey (as discussed in Section III) also mention some scenarios
that dynamic variables in logs can assist in different tasks. For
example, one participant comments that:
“Dynamic variables in the log are very important for param-
eter tuning works. Especially when the number of parameters
is large, using dynamic variables in logs can help to track the
performance of each parameter and easy to repeat the best
performance.”

The participant mentions that dynamic variables that record

the hyper-parameters (e.g., the number of epochs can be rep-
resented by the category of Object Amount in Section III) can
assist in parameter tuning works. Moreover, one participant
also mentions that:
“Some types of variable can be very important for trouble
shooting, like the status code. However, it’s time-consuming
to design regular expressions to grep such variables in each
case. It will be helpful to identify such variables without ad-
hoc efforts every time. ”

Overall, practitioners acknowledge the importance of dy-
namic variables in practice, and such importance usually

depends on the specific tasks. Our study explores the potential
of variable-aware log abstraction on assisting in log analysis
and sheds light on better leveraging the information in dynamic
variables to improve log analysis for future studies.

VII. THREATS TO VALIDITY

Construct Validity. Our approach is based on supervised deep
learning, the process of annotation on training and validation
data may require extra effort in practice. However, as we
discussed in Section V, our approach can achieve promising
results when training on small data sets and test on large data
sets. Moreover, as we discussed in Section VI, our approach
can also achieve encouraging results on the model trained from
other projects and fine-tuned on a very small data set (e.g., 50
logs) of the target project. Hence, developers may not need
significant time on manually labeling the data.

Internal Validity. Regular expression may also be used to
extract the dynamic variables in logs, it can work when
the format of log messages is clear and easy to distinguish
each component in the logs (e.g., structured logs). However,
unstructured logs are still very common and may be diverse
in terms of their format. It can be difficult to design regular
expressions every time. For example, one participant in our
survey mentions “it’s time-consuming to design regular ex-
pressions to grep variables in each case. It will be helpful to
identify such variables without ad-hoc efforts every time.” Our
deep learning approach can identify the dynamic variables with
more flexibility and mitigate the effort of designing ad-hoc reg-
ular expressions. Practitioners can leverage both our approach
and regular expressions based on their situations and needs.
We conduct manual studies to investigate the characteristic of
dynamic variables in logs. To mitigate subjectivity, two of the
authors categorize the dynamic variables independently and
have a Cohen’s Kappa of 0.79, which indicates a substantial
level of agreement [38]. Involving third-party experts in log
analysis to participate in the manual process may further
mitigate this threat.

External Validity. We conduct our study on open source log
data sets provided by LogPAI [30] project. Conducting the
study on different log data sets may have different results. For
example, new categories of dynamic variables may be derived
from other data sets. However, the data sets in LogPAI are
across various domains and are widely studied by prior log-
related studies [20], [16], [22], [15]. Moreover, the categories
of dynamic variables are flexible to be updated by leveraging
developers’ data annotations.

VIII. RELATED WORKS

Research on Log Abstraction. There are many prior stud-
ies that propose log abstraction techniques to assist in log
analysis. Some prior studies use frequent pattern mining (e.g.,
SLCT [62], LFA [25], LogCluster [63], Logram [20]) to
identify the static words that occur frequently in logs. Some
studies leverage clustering algorithms to cluster similar logs
(e.g., LKE [64], LogSig [65], SHISO [26], LenMa [27], and
LogMine [66]), since logs in the same cluster then tend to

have the same log template. Some prior studies use heuristics
or combined approaches to identify the static and dynamic
parts of logs [22], [23], [28], [29]. For example, Drain [22]
uses a fixed-depth tree to maintain log groups with the same
log template. IPLoM [28] leverages an iterative partitioning
strategy to partition logs into different groups. ULP [29]
combines string matching and local frequency analysis to parse
large log files. In addition to prior log abstraction techniques
that aim to identify and abstract all the dynamic parts in
logs, our approach can also distinguish different categories
of dynamic variables. Developers can specify the categories
variables to keep their values based on needs.

Deep Learning in Log-related Studies. Recent studies apply
deep learning techniques to address log-related problems.
Specifically, those studies are related to logging (i.e., writing
logging statements) and log analysis (e.g., anomaly detection).
For logging, prior studies proposed deep learning approaches
on suggesting variables [46], messages, logging locations, ver-
bosity levels, and a complete logging statement. For logging,
deep learning based approaches are used by prior studies to
suggest messages [67], variables [46], verbosity levels [68],
[61], and the logging locations[69]. For log analysis, Zhang et
al. [16] proposed an attention-based Bi-LSTM framework to
detect log sequences that have anomalies. Yang et al. [15] used
probabilistic label estimation and proposed a semi-supervised
anomaly detection framework. Different from prior studies
working on logging or log analysis, our study uses deep
learning techniques in the process of log abstraction.

IX. CONCLUSION

Log abstraction is an important first step for automated
log analysis. Prior log abstraction studies aim to completely
abstract the dynamic variables in logs, without considering
the great values that dynamic variables may have. Through
an empirical study and a survey with industrial practitioners,
we find that different categories of the dynamic variables in
logs can be important for different tasks, and the distinction
of dynamic variables in the process of log abstraction may
further help log analysis. We then propose a deep learning
based approach, VALB, which can further identify the cate-
gory of dynamic variables in the process of log abstraction.
VALB outperforms state-of-the-art log abstraction techniques
on general log abstraction, and also achieves promising results
on variable-aware log abstraction. Future studies may investi-
gate the relationship between different categories of dynamic
variables and their role in different tasks, in order to better
leverage the information recorded in the dynamic variables
and further help log analysis.

ACKNOWLEDGEMENTS
Chuan Luo’s work is supported by the National Natural
Science Foundation of China under Grant 62202025.
REFERENCES

[1]1 D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, “Improving software
diagnosability via log enhancement,” in ASPLOS ’11: Proceedings of the
16th international conference on Architectural support for programming
languages and operating systems, 2011, pp. 3—14.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, D. Liu, Q. Xiang, and C. He, “La-
tent error prediction and fault localization for microservice applications
by learning from system trace logs,” in Proceedings of the ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019,
2019, pp. 683-694.

D. Schipper, M. F. Aniche, and A. van Deursen, “Tracing back log data
to its log statement: from research to practice,” in Proceedings of the
16th International Conference on Mining Software Repositories, MSR
2019, 2019, pp. 545-549.

T. Su, L. Fan, S. Chen, Y. Liu, L. Xu, G. Pu, and Z. Su, “Why my app
crashes understanding and benchmarking framework-specific exceptions
of android apps,” IEEE Transactions on Software Engineering, 2020.
X. Zhang, Y. Xu, S. Qin, S. He, B. Qiao, Z. Li, H. Zhang, X. Li,
Y. Dang, Q. Lin, M. Chintalapati, S. Rajmohan, and D. Zhang, “Onion:
identifying incident-indicating logs for cloud systems,” in ESEC/FSE
’21: 29th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, Athens, Greece,
August 23-28, 2021, pp. 1253-1263.

A.R. Chen, T.-H. Chen, and S. Wang, “Pathidea: Improving information
retrieval-based bug localization by re-constructing execution paths using
logs,” IEEE Transactions on Software Engineering, pp. 2905-2919,
2021.

S. Messaoudi, D. Shin, A. Panichella, D. Bianculli, and L. Briand,
“Log-based slicing for system-level test cases,” in 202/ ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA),
2021.

K. Nagaraj, C. E. Killian, and J. Neville, “Structured comparative anal-
ysis of systems logs to diagnose performance problems,” in Proceedings
of the 9th USENIX Symposium on Networked Systems Design and
Implementation, ser. NSDI *12, 2012, pp. 353-366.

M. Nagappan, K. Wu, and M. A. Vouk, “Efficiently extracting opera-
tional profiles from execution logs using suffix arrays,” in ISSRE’09:
Proceedings of the 20th IEEE International Conference on Software
Reliability Engineering. 1EEE Press, 2009, pp. 41-50.

S. K. Kuttal, A. Sarma, and G. Rothermel, “History repeats itself more
easily when you log it: Versioning for mashups,” in 2011 IEEE sym-
posium on visual languages and human-centric computing (VL/HCC),
2011, pp. 69-72.

J. Cito, P. Leitner, T. Fritz, and H. C. Gall, “The making of cloud
applications: An empirical study on software development for the cloud,”
in Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, 2015, pp. 393-403.

D. Gadler, M. Mairegger, A. Janes, and B. Russo, “Mining logs to model
the use of a system,” in 2017 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), 2017, pp.
334-343.

Z. Li, “Towards providing automated supports to developers on writing
logging statements,” in Proceedings of the 42nd International Confer-
ence on Software Engineering: Companion Proceedings, ICSE 2020,
2020.

D. Shin, Z. A. Khan, D. Bianculli, and L. Briand, “A theoretical
framework for understanding the relationship between log parsing and
anomaly detection,” in The 21st International Conference on Runtime
Verification.

L. Yang, J. Chen, Z. Wang, W. Wang, J. Jiang, X. Dong, and W. Zhang,
“Plelog: Semi-supervised log-based anomaly detection via probabilistic
label estimation,” in 43rd IEEE/ACM International Conference on
Software Engineering: Companion Proceedings, ICSE Companion 2021,
Madrid, Spain, May 25-28, 2021, 2021, pp. 230-231.

X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li, J. Chen, X. He, R. Yao, J.-G. Lou, M. Chintalapati,
F. Shen, and D. Zhang, “Robust log-based anomaly detection on unstable
log data,” in Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2019, 2019, p.
807-817.

N. Zhao, H. Wang, Z. Li, X. Peng, G. Wang, Z. Pan, Y. Wu, Z. Feng,
X. Wen, W. Zhang, K. Sui, and D. Pei, “An empirical investiga-
tion of practical log anomaly detection for online service systems,”
in ESEC/FSE °21: 29th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
Athens, Greece, August 23-28, 2021, 2021, pp. 1404-1415.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

(28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

[36]

(371

(38]

[39]

N. Yang, P. J. L. Cuijpers, R. R. H. Schiffelers, J. Lukkien, and
A. Serebrenik, “An interview study of how developers use execution logs
in embedded software engineering,” in 43rd IEEE/ACM International
Conference on Software Engineering: Software Engineering in Practice,
ICSE (SEIP) 2021, Madrid, Spain, May 25-28, 2021, 2021, pp. 61-70.
J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu,
“Tools and benchmarks for automated log parsing,” in Proceedings of
the 41st International Conference on Software Engineering: Software
Engineering in Practice, ICSE (SEIP) 2019, Montreal, QC, Canada,
May 25-31, 2019. 1EEE / ACM, 2019, pp. 121-130.

H. Dai, H. Li, C. S. Chen, W. Shang, and T.-H. Chen, “Logram: Efficient
log parsing using n-gram dictionaries,” IEEE Transactions on Software
Engineering, 2020.

S. Ma, J. Zhai, Y. Kwon, K. H. Lee, X. Zhang, G. F. Ciocarlie,
A. Gehani, V. Yegneswaran, D. Xu, and S. Jha, “Kernel-supported cost-
effective audit logging for causality tracking,” in 2018 USENIX Annual
Technical Conference, USENIX ATC 2018, Boston, MA, USA, July 11-
13, 2018, 2018, pp. 241-254.

P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in 2017 IEEE international conference
on web services (ICWS), 2017, pp. 33-40.

Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “An automated
approach for abstracting execution logs to execution events,” J. Softw.
Maintenance Res. Pract., vol. 20, no. 4, pp. 249-267, 2008.

S. He, J. Zhu, P. He, and M. R. Lyu, “Experience report: System
log analysis for anomaly detection,” in 2016 IEEE 27th international
symposium on software reliability engineering (ISSRE). 1EEE, 2016,
pp. 207-218.

M. Nagappan and M. A. Vouk, “Abstracting log lines to log event types
for mining software system logs,” in 2010 7th IEEE Working Conference
on Mining Software Repositories (MSR 2010), 2010, pp. 114-117.

M. Mizutani, “Incremental mining of system log format,” in 2013 IEEE
International Conference on Services Computing, 2013, pp. 595-602.
K. Shima, “Length matters: Clustering system log messages using length
of words,” arXiv preprint arXiv:1611.03213, 2016.

A. A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “Clustering
event logs using iterative partitioning,” in Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2009, pp. 1255-1264.

I. Sedki, A. Hamou-Lhadj, O. Ait-Mohamed, and M. A. Shehab, “An
effective approach for parsing large log files.”

S. He, J. Zhu, P. He, and M. R. Lyu, “Loghub: A large collection of
system log datasets towards automated log analytics,” CoRR, 2020.

E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining github,” in Proceedings
of the 11th working conference on mining software repositories, 2014,
pp. 92-101.

E. Kalliamvakou, C. Bird, T. Zimmermann, A. Begel, R. DeLine, and
D. M. German, “What makes a great manager of software engineers?”
IEEE Transactions on Software Engineering, pp. 87-106, 2017.
Z.Ding, J. Chen, and W. Shang, “Towards the use of the readily available
tests from the release pipeline as performance tests,” in Proceedings of
the 42nd International Conference on Software Engineering,, ser. ICSE
2020, 2020.

A. R. Chen, T.-H. Chen, and S. Wang, “Demystifying the challenges
and benefits of analyzing user-reported logs in bug reports,” Empirical
Software Engineering, pp. 1-30, 2021.

Z. Li, T. P. Chen, J. Yang, and W. Shang, “DLFinder: characterizing
and detecting duplicate logging code smells,” in Proceedings of the 41st
International Conference on Software Engineering, ICSE 2019, 2019,
pp. 152-163.

Z. Li, T.-H. Chen, J. Yang, and W. Shang, “Studying duplicate logging
statements and their relationships with code clones,” IEEE Transactions
on Software Engineering, pp. 2476-2494, 2021.

G. Bowker and S. L. Star, “Sorting things out,” Classification and its
consequences, vol. 4, 1999.

J. Sim and C. C. Wright, “The kappa statistic in reliability studies: Use,
interpretation, and sample size requirements,” Physical Therapy, vol. 85,
no. 3, pp. 257-268, March 2005.

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” Journal
of machine learning research, pp. 2493-2537, 2011.

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

Z. Huang, W. Xu, and K. Yu, “Bidirectional LSTM-CRF models for

sequence tagging,” CoRR, vol. abs/1508.01991, 2015.
L. A. Ramshaw and M. P. Marcus, “Text chunking using transformation-

based learning,” in Natural language processing using very large cor-
pora, 1999, pp. 157-176.

M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and D. Poshy-
vanyk, “Deep learning similarities from different representations of
source code,” in 2018 IEEE/ACM 15th International Conference on
Mining Software Repositories (MSR), 2018, pp. 542-553.

F. Liu, G. Li, Y. Zhao, and Z. Jin, “Multi-task learning based pre-
trained language model for code completion,” in Proceedings of the
35th IEEE/ACM International Conference on Automated Software En-
gineering, 2020, pp. 473-485.

H. Wang, X. Xia, D. Lo, Q. He, X. Wang, and J. Grundy, “Context-
aware retrieval-based deep commit message generation,” ACM Trans.
Softw. Eng. Methodol., vol. 30, no. 4, pp. 56:1-56:30, 2021.

J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2014,
October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL. ACL, 2014, pp. 1532-1543.

Z. Liu, X. Xia, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Which variables
should i log?” IEEE Transactions on Software Engineering, 2019, early
Access.

C. Dos Santos and B. Zadrozny, “Learning character-level represen-
tations for part-of-speech tagging,” in International Conference on
Machine Learning. PMLR, 2014, pp. 1818-1826.

J. P. Chiu and E. Nichols, “Named entity recognition with bidirectional
Istm-cnns,” Transactions of the Association for Computational Linguis-
tics, pp. 357-370, 2016.

J. Chen, S. Zhang, X. He, Q. Lin, H. Zhang, D. Hao, Y. Kang, F. Gao,
Z. Xu, Y. Dang et al., “How incidental are the incidents? characterizing
and prioritizing incidents for large-scale online service systems,” in Pro-
ceedings of the 35th IEEE/ACM International Conference on Automated
Software Engineering, 2020, pp. 373-384.

A. Nikanjam, H. B. Braiek, M. M. Morovati, and F. Khomh, “Automatic
fault detection for deep learning programs using graph transformations,”
TOSEM, 2021.

Y. Xu, L. Mou, G. Li, Y. Chen, H. Peng, and Z. Jin, “Classifying rela-
tions via long short term memory networks along shortest dependency
paths,” in Proceedings of the 2015 conference on empirical methods in
natural language processing, 2015, pp. 1785-1794.

A. Mazuera-Rozo, A. Mojica-Hanke, M. Linares-Vasquez, and
G. Bavota, “Shallow or deep? an empirical study on detecting vulnerabil-
ities using deep learning,” in 29th IEEE/ACM International Conference
on Program Comprehension, ICPC 2021, Madrid, Spain, May 20-21,
2021. 1IEEE, 2021, pp. 276-287.

B. D. Q. Nghi, Y. Yu, and L. Jiang, “Bilateral dependency neural
networks for cross-language algorithm classification,” in 26th IEEE
International Conference on Software Analysis, Evolution and Reengi-
neering, SANER 2019, 2019, pp. 422-433.

J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional random
fields: Probabilistic models for segmenting and labeling sequence data,”
in Proceedings of the Eighteenth International Conference on Machine
Learning (ICML 2001), Williams College, Williamstown, MA, USA, June
28 - July 1, 2001, 2001, pp. 282-289.

“Tensorflow: An end-to-end open source machine learning platform,”
https://www.tensorflow.org/, last checked Aug. 2021.

N. Srivastava, G. E. Hinton, A. Krizhevsky, 1. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958,
2014.

T. Hoang, H. K. Dam, Y. Kamei, D. Lo, and N. Ubayashi, “Deepjit: an
end-to-end deep learning framework for just-in-time defect prediction,”
in Proceedings of the 16th International Conference on Mining Software
Repositories, MSR 2019, 2019, pp. 34-45.

M. Wardat, W. Le, and H. Rajan, “Deeplocalize: Fault localization for
deep neural networks,” in 43rd IEEE/ACM International Conference on
Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021.
IEEE, 2021, pp. 251-262.

J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” in Pro-
ceedings of the 41st International Conference on Software Engineering,
ICSE 2019, 2019, pp. 783-794.

[60]

[61]

[62]

[63]

[64]

[65]

T. Zhang, C. Gao, L. Ma, M. R. Lyu, and M. Kim, “An empirical study
of common challenges in developing deep learning applications,” in 30th
IEEE International Symposium on Software Reliability Engineering,
ISSRE 2019, 2019, pp. 104-115.

Z. Li, H. Li, T.-H. P. Chen, and W. Shang, “Deeplv: Suggesting log
levels using ordinal based neural networks,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). 1EEE, 2021,
pp. 1461-1472.

R. Vaarandi, “A data clustering algorithm for mining patterns from event
logs,” in Proceedings of the 3rd IEEE Workshop on IP Operations &
Management (IPOM 2003)(IEEE Cat. No. 03EX764), 2003, pp. 119—
126.

R. Vaarandi and M. Pihelgas, “Logcluster-a data clustering and pattern
mining algorithm for event logs,” in 2015 11th International conference
on network and service management (CNSM), 2015, pp. 1-7.

Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly detection
in distributed systems through unstructured log analysis,” in 2009 ninth
IEEE international conference on data mining, 2009, pp. 149-158.

L. Tang, T. Li, and C.-S. Perng, “Logsig: Generating system events

[66]

[67]

[68]

[69]

from raw textual logs,” in Proceedings of the 20th ACM international
conference on Information and knowledge management, pp. 785-794.
H. Hamooni, B. Debnath, J. Xu, H. Zhang, G. Jiang, and A. Mueen,
“Logmine: Fast pattern recognition for log analytics,” in Proceedings
of the 25th ACM International on Conference on Information and
Knowledge Management, pp. 1573-1582.

Z. Ding, H. Li, and W. Shang, “Logentext: Automatically generating
logging texts using neural machine translation,” in 2022 IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 349-360.

J. Liu, J. Zeng, X. Wang, K. Ji, and Z. Liang, “Tell: log level suggestions
via modeling multi-level code block information,” in Proceedings of the
31st ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2022, pp. 27-38.

Z. Li, T. Chen, and W. Shang, “Where shall we log? studying and
suggesting logging locations in code blocks,” in 35th IEEE/ACM In-
ternational Conference on Automated Software Engineering, ASE 2020,
2020, pp. 361-372.

