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Abstract—In this paper, we consider relay selection for turbo
coded cooperative networks subject to Nakagami-m fading when
the channel state information (CSI) is known at the receiver but is
not necessarily ideal. This non-ideality may be due to a feedback
delay caused by the difference between the instantaneous CSI
during the transmission and the CSI at the time of relay selection,
resulting in outdated CSI phenomena. The impact of the outdated
CSI on the proposed scheme is well investigated. A closed-form
expression for the exact outage probability is derived as well
as its asymptotic expression in the high signal-to-noise (SNR)
regime. Moreover, upper bounds on the bit-error rate (BER) are
presented and a study of the diversity order reveals that for ideal
CSI, full diversity in the number of relays and fading parameters
m is achieved as opposed to outdated CSI where the achievable
diversity is equivalent to the diversity of a coded cooperative
network with a single relay.

Index Terms—Coded cooperation, diversity order, error rate,
selection relaying, turbo codes.

I. INTRODUCTION

SELECTION relaying is a solution to the inefficient uti-
lization of channel resources since it only requires two

orthogonal channels regardless of the number of relays. Relay
selection schemes in single-hop wireless relaying networks
have extensively been investigated (See [1] – [5] and the
references therein). Among these selection techniques, oppor-
tunistic relay selection (ORS) [1] is a viable strategy from
the implementation point of view, due to its low complexity.
In time-varying channels, implementing relay selection may
cause frequent relay switchings which can be detrimental to
the overall system performance. In [6], the authors used an
alternative to ORS to study the rate at which the switching
of a selected relay occurs in practice. Moreover, frequent
relay switchings may cause synchronization issues due to
the repeated initializations of the system each time a relay
is selected. Hence, this leads to an increase in implemen-
tation complexity and poor system performance. So far, the
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relay selection schemes presented, have dealt with uncoded
cooperative relaying networks. In coded cooperation [7], [8],
relay selection is seldom studied in the literature. For example
in [9], [10], Elfituri et al. studied an antenna/relay selection
in coded cooperation using convolutional codes. In general,
CSI is used to accomplish relay selection and is assumed to
be known at the receiver.

The aforementioned studies consider an ideal CSI for relay
selection which is impractical in real scenarios. From a
practical point of view, the CSI at the time of transmission
may be outdated due to a delayed feedback since the relay
selection and data transmission instants can differ due to
channel conditions. In recent works, the effect of outdated
CSI on relay selection has been investigated (for e.g., [11 –
[17]). In [11], the authors analyzed the behavior when CSI
is subject to delay in the feedback channel for a decode-and-
forward (DF)-based protocol over Rayleigh fading channels.
In [12], the authors investigated the impact of outdated CSI
for relay selection in AF cooperative relaying under both
partial and opportunistic relay selection schemes. Chen et
al. [13] proposed a novel multiple relay selection (MRS)
scheme to combat the severe diversity loss. Both amplify-
and-forward (AF) and DF are considered in which the N
best relays are opportunistically selected under outdated CSI.
In [14], partial relay selection (PRS) and best relay selection
with delayed CSI are studied for AF wireless relaying. The
work in [15] investigated the impact of channel estimation
errors and feedback delay in DF with relay selection and
Suraweera et al. [16] analyzed the effect of outdated CSI
on the performance of AF with the kth worst partial relay
selection. In [18], the authors considered an AF cooperative
system with direct transmission and analyzed the Shannon
capacity of the proposed scheme under outdated CSI. The
performance analysis of the fixed-gain AF relay systems with
interference and thermal noise at the relay and destination was
studied in [19]. However, in the above-mentioned works the
impact of outdated CSI on AF/DF cooperative networks has
been investigated for uncoded systems. So far, no work in the
literature considers the effects of outdated CSI on coded co-
operative relaying networks. Moreover, the impact of outdated
CSI for cooperative relaying systems have been investigated
in fewer works under more general fading scenarios such as
the Nakagami-m fading (See [20] – [22]). However, these
studies were undertaken for uncoded systems. In [20], the
authors considered an uncoded DF cooperative system and
derived the exact closed-form expression of the outage prob-
ability as a function of the correlation between the estimated
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and actual channel values. The work in [21] evaluated the
transmission quality of a channel under Nakagami-m fading
with both fading statistics and outdated CSI. Ferdinand et
al.[22] investigated the uncoded AF with PRS over Nakagami-
m fading channels with a feedback delay for both variable-
gain and fixed-gain relay. However, [20] and [21] only studied
the outage probability and no BER analysis was investigated.
In [23], Wang et al. considered a multi-hop system in order
to address the issue of multi-user interference and design
efficient transmission. In their work, they studied the sum
degrees of freedom (DoF) of a system in which a K-antenna
source intends to communicate with K destination nodes
through multiple layers each consisting of K full-duplex
single-antenna relays with delayed channel state information
at transmitters (CSIT). It was shown that by treating the
multi-hop multiple-input multiple-output (MIMO) broadcast
network as an entity, better maximum multiplexing gain could
be achieved over the cascade approach with individual single-
hop. However, outdated CSIT can be detrimental to the DoF
gain. In [24], it was shown that by properly designing an
interference alignment (IA) scheme, the maximum multi-
plexing gain achieving the sum DoF of a K-user MIMO
broadcast channel could be attained with outdated CSI. In [25],
the authors proposed a novel IA scheme at the relays that
combines perfect delayed CSIT and imperfect instantaneous
CSIT to achieve higher sum DoF for a two-hop multiple-
input single output (MISO) system. In [26], the authors
investigated the design of efficient network codes for multi-
user multi-relay wireless networks with slow fading channels.
A non-binary network code construction based on maximum
distance separable (MDS) codes was proposed in order to
achieve maximum diversity order for an arbitrary number of
sources and relays. Xiao and Skoglund [27] proposed a multi-
user cooperative wireless networking system based on linear
network codes. The use of diversity network codes (DNCs)
was also proposed in order to exploit in an efficient manner
the diversity available by time-varying fading and cooperation.
Eid et al. [28] studied a multi-relay coded cooperation for
asynchronous direct-sequence code-division multiple-access
(DS-CDMA) systems over slow fading channels. They showed
that by suppressing multi-user interference at the cooperative
end, the full benefits of coded cooperation can be achieved.

To the best of our knowledge, the study of relay selection
in coded cooperation taking into account outdated CSI over
Nakagami-m fading channels is not presently available in the
literature. To fill this void, we investigate the impact of out-
dated CSI for relay selection in turbo-coded cooperation over
Nakagami-m fading channels. We consider a turbo coded sys-
tem with a transmission scheme different from the traditional
turbo coded system. We derive a closed-form solution of the
outage probability for the scheme under study over Nakagami-
m fading channels with any fading figure. Furthermore, a high-
SNR approximation of the exact outage probability is derived
to evaluate the diversity order and is shown to be dependent
on the correlation factor ρ. The system performance of the
proposed system is also investigated through the pairwise
error probability (PEP) analysis. A closed-form expression
of the PEP for all values of the fading parameter m (integer
and non-integer) is provided and its asymptotic expression at
high SNR is examined to assess the diversity order of the

Fig. 1. Cooperative system model.

scheme for ideal and delayed CSI. We then provide a BER
performance analysis obtained by using the transfer function
bounds method and the limit-before-average-technique.

The remainder of the paper is organized as follows. In
Section II, we describe the system model. In Section III,
we analyze the outage probability of the proposed scheme
followed by the diversity analysis in Section IV. In Section
V, the BER analysis is presented. This includes the derivation
of the closed-form expression of the PEP and its bahaviour at
high SNR. In Section VI, the diversity-multiplexing tradeoff
(DMT) of the underlying scheme is discussed. Numerical
results are presented in Section VII. Finally conclusions are
drawn in Section VIII.

II. SYSTEM MODEL

We consider the cooperative relaying system illustrated in
Fig. 1, which consists of a single source node s communi-
cating with a single destination node d with the help of L
relay nodes denoted by ri, i = 1, · · · , L. The relays operate
in half-duplex mode, i.e., they cannot receive and transmit
simultaneously. All nodes are equipped with a single transmit
and/or receive antenna. It is also assumed that the fading co-
efficients in the source-to-relay (s–r) and relay-to-destination
(r–d) links are independent and identically distributed (i.i.d.),
hence the subscript i denoting the relay number can be left
out in the subsequent analysis.

The cooperative transmission takes place in two phases.
During the first phase, the source encodes a K-bit message by
a turbo code of rate Rc and broadcasts the generated codeword
of length N to the relays and destination. We assume that the
destination listens to the entire codeword whereas the relays
only listen to a fraction of the entire codeword 1.

We consider that the relays only listen to a noisy version
of the systematic bits before attempting to decode. The re-
ceived signals at the destination and the ith relay are given
respectively by

ysd(1 : N) =
√
Pshsdx(1 : N) + nsd(1 : N), (1)

ysri(1 : K) =
√
Pshsrix(1 : K) + nsri(1 : K), (2)

where ri represents the ith relay, the vector x(1 : N)={x(1),
· · · , x(K), x(K+1), · · · , x(N)} is binary phase shift keying

1In [29], an approach in which pre-defined phase durations for broadcast
and cooperation commonly presented in the literature is proposed. In this
approach, the time allocated for the relay to listen could vary depending on
the relay received channel. Hence, in practical scenarios, it is possible that
relays only listen to a fraction of the codeword whereas the destination listens
to the entire codeword.
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(BPSK) modulated, with x(1 : K) denoting the systematic bits
and x(K+1 : N) representing the parity bits, hsd and hsri are
the Nakagami-m fading coefficients for the source-destination
and source-relays links respectively, with unit variance, Ps is
the transmit power at the source for the s−d and s− ri links,
nsd(1 : N) and nsri(1 : K) represent the i.i.d. additive white
Gaussian noise (AWGN) modeled as CN (0, N0/2).

All the relays employ a turbo iterative decoder to estimate
the information sent by the source and a cyclic redundancy
check (CRC) code for error detection. In the second phase,
the relay with the highest relay-destination instantaneous SNR
belonging to the decoding set (the set of relays that have
successfully decoded the source message), is selected to
forward the parity bits to the destination. The received signal
at the destination is given by

yrkd(K+1 : N) =
√
Prhrkdx̂(K+1 : N)+nrkd(K+1 : N),

(3)
where the vector x̂(K + 1 : N) denotes the estimated parity
bits, hrkd is the fading coefficient for the best relay-destination
link and is subjected to a Nakagami-m distribution with unit
variance, Pr is the transmit power at the best relay node,
nrkd(K + 1 : N) ∼ CN (0, N0/2) and

k = arg max
j∈D(s)

{γ̂rjd}, (4)

where D(s) represents the decoding set and γ̂rjd is the
instantaneous SNR at the selection instant, which can be
different from the actual SNR γrjd (used for retransmission)
due to the time delay in the feedback channel. By definition,
γ̂rjd = |ĥrjd|2γ̄, where ĥrjd is an outdated version of hrd.

Both ĥrjd and hrjd are jointly Gaussian RV, and according
to [11], hrjd conditioned on ĥrjd follows a Gaussian distri-
bution given by

hrjd|ĥrjd ∼ CN
(
ρĥrjd,

√
1− ρ2

)
, (5)

where ρ is the correlation factor between ĥrjd and hrjd,
modeled according to Jakes’ autocorrelation given by [30]

ρ = J0
(
2πfd,rjdTd

)
, (6)

with J0 denoting the zeroth order Bessel function of the first
kind, fd,rjd is the maximum Doppler frequency on the rj − d
link, and Td is the time difference between the actual channel
value and its estimate.

III. OUTAGE PROBABILITY ANALYSIS

Outage probability represents an important performance
metric in wireless communications and is defined as the
probability that an instantaneous capacity C falls below a
target rate Rc. It can be mathematically formulated as

Pout = Pr{C(γ) < Rc} = Pr
{
log2(1 + γ) < Rc

}
=

∫ 2Rc−1

0

p(γ)dγ, (7)

where γ and Pr{x} denote the instantaneous SNR and the
probability of x respectively and p(x) denotes the probability
density function (PDF) of x.

In the proposed scheme, the destination listens to the entire
codeword transmitted by the source with a code Rc. The

relays listen only to the systematic bits sent by the source
with a code rate R1 = Rc

α and only the best relay forward
to the destination with a code rate R2 = Rc

1−α , where
α = K/N represents the cooperation ratio. The end-to-end
outage probability can be represented by

Pout = Pr
{
γsd < 2Rc − 1

}(
Pr
{
γsr < 2Rc/α − 1

})L

+

L∑
ϑ=1

(
L

ϑ

)(
Pr
{
γsr < 2Rc/α − 1

})L−ϑ

×
(

Pr
{
γsr > 2Rc/α − 1

})ϑ

× Pr
{(

1 + γsd
)(
1 + γrd

)1−α
< 2R

}
, (8)

where ϑ = |Θ| with Θ representing the set of indices of coop-
erating relays given by Θ = {j1, j2, · · · , jϑ} ⊂ {1, 2, · · · , L}
and |x| denotes the the cardinality of x. The first part of (8)
represents D(s) = ∅ (with ∅ denoting the empty set), i.e.,
all the relays in network are unreliable, whereas the second
expression of (8) represents the case where at least one relay
is reliable.

Following (7), the expression in (8) can be rewritten as

Pout =

(∫ 2Rc−1

0

p(γsd)dγsd

)(∫ 2Rc/α−1

0

p(γsr)dγsr

)L

+
L∑

ϑ=1

(
L

ϑ

)(∫ 2Rc/α−1

0

p(γsr)dγsr

)L−ϑ

×
{(

1−
∫ 2Rc/α−1

0

p(γsr)dγsr

)ϑ

×
∫ a

0

∫ b

0︸ ︷︷ ︸
A

p(γsd)p(γrd)dγrddγsd

}
,

(9)

where p(γsd) and p(γsr) denote the PDF of the RVs γsd and
γsr, respectively. For Nakagami-m fading channels, p(γij) =
m

mij
ij γmij−1

Γ(mij)γ̄
mij exp

(
−mijγij

γ̄ij

)
where {i, j} ∈ {s, (r, d)}, and A

corresponds to the region of integration given by

A
{
(γsd, γrd)|γsd ≥ 0, γrd ≥ 0, (1+γsd) (1 + γrd)

1−α
< Rc

}
.

(10)
Considering (10), we can rewrite the constraint A as γrkd =

f
(
γsd
)

given by

γrd <
2Rc/(1−α)(

1 + γsd
)1/(1−α)

− 1 � b. (11)

Since γrd > 0, we can easily obtain

γsd < 2Rc − 1 � a. (12)

However, the PDF of γrd, i.e., pγrkd
(γrd) is not straighforward

since it involves relay selection based on outdated CSI and
can be obtained using the cumulative density function (CDF)
derived in [20] by using the fact p(x) = ∂F(x)/∂x
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pγrkd(γrd) = ϑ

∞∑
n=0

ρnmmrd+n
rd γmrd+n−1

rd γ̄−(mrd+n)

n!(1− ρ)mrd+2nΓ(mrd)Γ(mrd + n)

× exp

(
− mrdγrd
(1− ρ)γ̄

) ϑ−1∑
j=0

(
ϑ− 1

j

)
(−1)j

× χ(mrd + n, ρ, j),

(13)

where

χ(mrd + n, ρ, j) =
Γ(j + 1)(

1
1−ρ

+ j
)mrd+n

×
∑

τ0=τ1=···=τmrd−1=0

τ0+τ1+···+τmrd−1=j

mrd−1∏
i=0

(
1

i!
(

1
1−ρ

+j
)i

)τi

Γ(τi + 1)

⎞
⎟⎟⎟⎟⎠

×
(
mrd + n− 1 +

mrd−1∑
i=0

iτi

)
!

(14)

Substituting (13) in (9), the resulting outage probability
expression Pout also contains a double integral as in (9), that
is not easy to evaluate. In what follows, we evaluate the double
integral expression (contained in the new outage probability
expression after substituting (13) in (9)) denoted by Id which
can be written as

Id = ϑ

(∫ a

0

∫ b

0

mmsd

sd γmsd−1

Γ(msd)γ̄msd
exp

(
−msdγsd

γ̄sd

)

×
∞∑

n=0

ρnmmrd+n
rd γmrd+n−1

rd

n!(1− ρ)mrd+2nΓ(mrd)Γ(mrd + n)γ̄mrd+n

× γmrd+n−1
rd exp

(
− mrdγrd
(1− ρ)γ̄rd

)
dγrddγsd

)

×
ϑ−1∑
j=0

(−1)jχ(mrd + n, ρ, j).

(15)

After some manipulations and evaluating the inner integral
using [31, Eq. 3.351.1], we obtain the following expression
shown at the top of the next page.

In order to evaluate the integral in (16), the alternative form
of the lower incomplete Gamma function given in [31, Eq.
8.352.4] by γ(a, x) = (a−1)!

(
1− exp(−x)

∑n−1
m=0

xm

m!

)
can

be used and the expression in equation (16) can be rewritten
as shown in equation (17) on the next page.

The expression in (17) can be expanded using the binomial
expansion (1 − y)m =

∑m
k=0

(
m
k

)
(−1)kyk, to give (in (18)

as shown on the next page) where we define ν = mrd

(1−ρ)γ̄rd

and β = 1
1−α . In (18), the inner integral can be evaluated

using [31, Eq. 3.351.1], whereas the outer integral can be
rearranged as shown in (19).
Examining the exponential function in (19), one can rewrite
it as shown in (20).
After substituting (20) in (19) and performing some manipu-
lations, (19) can further be expressed as in (21).
Finally, using [31, Eq. 3.194.1] in (21) and substituting in (18),
the outage probaility is given by (22), where 2F1 (w, x; y; z) is

the Gauss Hypergeometric function defined in [31, Eq. 9.111].
The derived outage probability in (22) includes a series form
(infinite series) that is not practical for numerical computation.
Through some numerical simulations, it is noted that the
derived expression converges after a finite number of terms.

IV. DIVERSITY ANALYSIS

In order to find useful insights into the diversity order do
of our scheme, an easy to analyze expression of the outage
probability provided in (22) is needed. In what follows, an
expression of the asymptotic approximation of the outage
probability is derived. We consider that γ̄sd = γ̄sr = γ̄rd =
γ̄ → ∞ and without loss of generality, we assume that
msrj = msr, mrjd = mrd since the fading in all the
respective links is i.i.d.

At high SNR, the outage probability in (8) can be reduced
to

Pout ≈
L∑

ϑ=1

Pr
{(

1 + γsd
)(
1 + γrd

)1−α
< 2R

}
. (23)

Corollary 1: The diversity gain of the coded cooperative
system with outdated CSI over Nakagami-m fading is given
by

do =

{
msd +mrd, if ρ < 1
msd + Lmrd, if ρ = 1

(24)

Proof: The proof is provided in the Appendix.

V. UPPER BOUNDS ON THE BIT ERROR PROBABILITY

In this section, we derive upper bounds on the BER for the
proposed scheme under outdated CSI. To this end, we first
evaluate an exact expression for the unconditional PEP used
to derive the BER expression of a coded system. It is worth
noting that it is possible to get some insight of the system
through the PEP analysis. In addition, we obtain asymptotic
an expression of the derived PEP at high SNR to determine
the diversity order of the scheme under consideration.

A. Pairwise Error Probability

Assuming slow fading channel and perfect knowledge of
the CSI at the receivers with the effects of delayed feedback,
the end-to-end conditional PEP is given by

P (dH |γsd, γsr, γrkd) = Q
(√

2dHγsd

)(
Q
(√

2d1γsr

))L
+

L∑
ϑ=1

(
L

ϑ

)(
Q
(√

2d1γsr

))L−ϑ(
1−Q

(√
2d1γsr

))ϑ

×Q
(√

2dHγsd + 2d2γrd

)
, (25)

where Q(•) denotes the Gaussian Q-function, dH = d1 + d2
is the Hamming distance between the transmitted codeword c
and the erroneous codeword c̃, d1 is the Hamming distance
corresponding to the frame in the s − r links and d2 is the
Hamming distance corresponding to the frame in the rk − d
link. Moreover, similar to (8), the first term in (25) represents
the case where all relays are unreliable, whereas the second
term indicates that at least one relay is reliable.
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Id =

∞∑
n=0

ϑρnmmrd+n
rd msd

n!(1− ρ)mrd+2nΓ(mrd)Γ(mrd + n)γ̄mrd+nΓ(msd)γ̄sd

(
mrd

(1− ρ)γ̄rd

)−mrd−n

×
(∫ 2Rc−1

0

γ

(
mrd + n,

2Rc/(1−α)mrd

(1− ρ)(1 + γsd)1/(1−α)γ̄rd

− mrd

(1− ρ)γ̄rd

)
γmsd−1
sd

× exp

(
−msdγsd

γ̄sd

)
dγsd

)
ϑ−1∑
j=0

(
ϑ− 1

j

)
(−1)jχ(mrd + n, ρ, j).

(16)

Id =

∞∑
n=0

ϑρnmmrd+n
rd msd

n!(1− ρ)mrd+2nΓ(mrd)Γ(mrd + n)γ̄mrd+nΓ(msd)γ̄sd

(
mrd

(1 − ρ)γ̄rd

)−mrd−n

×
(∫ 2Rc−1

0

(mrd + n− 1)!

[
1− exp

(
mrd

(1 − ρ)γ̄rd

(
1− 2Rc/(1−α)

(1 + γsd)1/(1−α)

))mrd+n−1∑
m=0

1

m!

×
(

mrd

(1− ρ)γ̄rd

)m(
2Rc/(1−α)

(1 + γsd)1/(1−α)

)m
]

dγsd

)
ϑ−1∑
j=0

(
ϑ− 1

j

)
(−1)jχ(mrd + n, ρ, j).

(17)

Id =
∞∑

n=0

ϑρnmmrd+n
rd msd

n!(1− ρ)mrd+2nΓ(mrd)Γ(mrd + n)γ̄mrd+nΓ(msd)γ̄sd

(
mrd

(1 − ρ)γ̄rd

)−mrd−n
[∫ 2Rc−1

0

Γ(mrd + n)

× γmsd−1
sd exp

(
−msdγsd

γ̄sd

)
dγsd −

∫ 2Rc−1

0

Γ(mrd + n)γmsd−1
sd exp

(
ν

(
1− 2Rcβ

(1 + γsd)
β

))

×
mrd+n−1∑

k=0

νk

k!

k∑
l=0

(
k

l

)
(−1)l−k 2Rclβ

(1 + γsd)
lβ

dγsd

]
ϑ−1∑
j=0

(
ϑ− 1

j

)
(−1)jχ(mrd + n, ρ, j),

(18)

Id =

∞∑
n=0

ϑρnmmrd+n
rd msd

n!(1− ρ)mrd+2nΓ(mrd)Γ(mrd + n)γ̄mrd+nΓ(msd)γ̄sd

(
mrd

(1− ρ)γ̄rd

)−mrd−n
[
Γ(mrd + n)

×
(
msd

γ̄sd

)−msd

γ

(
msd,

msd

γ̄sd

(
2Rc − 1

))− Γ(mrd + n) exp(ν)

mrd+n−1∑
k=0

k∑
l=0

νk

k!

(
k

l

)
(−1)l−k2Rclβ

×
∫ 2Rc−1

0

γmsd−1
sd

(1 + γsd)
lβ

exp

(
−msdγsd

γ̄sd

− 2Rcβ

(1 + γsd)
β

)
dγsd

]
ϑ−1∑
j=0

(
ϑ− 1

j

)
(−1)jχ(mrd + n, ρ, j),

(19)

exp

(
−msdγsd

γ̄sd

− 2Rcβ

(1 + γsd)
β

)
=

∞∑
r=0

(−1)r

r!

(
msdγsd
γ̄sd

+
2Rcβ

(1 + γsd)
β

)r

=

∞∑
r=0

r∑
s=0

2Rcβs(−1)r

r!

(
r

s

)(
msd

γ̄sd

)r−s
γr−s
sd

(1 + γsd)
βs

.

(20)

Using the alternative representation of the Gaussian Q-
function [32] in (25) and averaging over the fading distri-
bution, and after some manipulations with the aid of the
moment generating function (MGF) defined in [33], yields a
closed-form expression of the end-to-end unconditional PEP
for integer values of the fading figure m. To derive an exact
expression for the average PEP for both integer and non-

integer values of fading parameter m, we use an accurate
and simple approximate expression given by the sum of two
exponential functions, in which erfc(x) ≈ 1

6 exp
(−x2

)
+

1
2 exp

(− 4
3x

2
)

[34]. Therefore, the resulting Gaussian Q-
function is given by

Q(x) =
1

12
exp

(
−x2

2

)
+

1

4
exp

(
−2

3
x2

)
. (26)
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Id =

∞∑
n=0

ϑρnmmrd+n
rd msd

n!(1− ρ)mrd+2nΓ(mrd)Γ(mrd + n)γ̄mrd+nΓ(msd)γ̄sd

(
mrd

(1− ρ)γ̄rd

)−mrd−n
[
Γ(mrd + n)

×
(
msd

γ̄sd

)−msd

γ

(
msd,

msd

γ̄sd

(
2Rc − 1

))− Γ(mrd + n) exp(ν)

mrd+n−1∑
k=0

k∑
l=0

νk

k!

(
k

l

)
(−1)l−k2Rclβ

×
∞∑
r=0

r∑
s=0

2Rcβs(−1)r

r!

(
r

s

)(
msd

γ̄sd

)r−s ∫ 2Rc−1

0

γmsd+r−s−1
sd

(1 + γsd)
β(l+s)

dγsd

]
ϑ−1∑
j=0

(
ϑ− 1

j

)
(−1)j

× χ(mrd + n, ρ, j).

(21)

Pout =
1

Γ(msd)ΓL(msr)

[
γ

(
msd,

msd

γ̄sd

(
2Rc − 1

))][
γ

(
msr,

msr

γ̄sr

(
2Rc/α − 1

))]L

+

L∑
ϑ=1

(
L

ϑ

)
1

ΓL(msr)

[
γ

(
msr,

msr

γ̄sr

(
2Rc/α − 1

))]L−ϑ[
γ

(
msrj ,

msrj

γ̄srj

(
2Rc/α − 1

))]ϑ

×
∞∑

n=0

ϑρnmmrd+n
rd msd

n!(1 − ρ)mrd+2nΓ(mrd)Γ(msd)γ̄rdγ̄sd

(
mrd

(1− ρ)
γ̄rd

)−mrd−n

×
[(

msd

γ̄sd

)−msd

γ

(
msd,

msd

γ̄sd

(
2Rc − 1

))− exp

(
mrd

(1− ρ)γ̄rd

)

×
mrd+n−1∑

i=0

i∑
l=0

∞∑
r=0

r∑
s=0

M−1∑
j=0

1

i!

(
mrd

(1− ρ)γ̄rd

)i(
i

l

)
(−1)l2Rc/(1−α) (−1)r

r!

(
r

s

)(
msd

γ̄sd

)r−s

× 2
Rcs
1−α

(
2Rc − 1

)msd−r−s

msd − r − s
2F1

(
l + s

1− α
,msd − r − s;msd − r − s+ 1; 1− 2Rc

)]

×
(
ϑ− 1

j

)
(−1)jχ(mrd + n, ρ, j),

(22)

P (dH) =

(∫ ∞

0

[ 1

12
exp (−dHγsd) +

1

4
exp

(
−4

3
dHγsd

)]
p(γsd)dγsd

)(∫ ∞

0

[ 1

12
exp (−d1γsr)

+
1

4
exp

(
−4

3
d1γsr

)]
p(γsr)dγsr

)L

+

L∑
ϑ=1

(
L

ϑ

)(∫ ∞

0

[ 1

12
exp (−d1γsr)

+
1

4
exp

(
−4

3
d1γsr

)]
p(γsr)dγsr

)L−ϑ(
1−

∫ ∞

0

[ 1

12
exp (−d1γsr) +

1

4
exp

(
−4

3
d1γsr

)]

× p(γsr)dγsr

)ϑ ∫ ∞

0

∫ ∞

0

[ 1

12
exp (−dHγsd − d2γrd) +

1

4
exp

(
−4

3
(dHγsd + d2γrd)

)]
p(γsd)

× p(γrd)dγsddγrd.

(27)

Using (26) in (25) and averaging over the fading distribu-
tion, the average PEP is given by (27).

Substituting (13), p(γsd) and p(γsr) given in Section III,
in (27), and after performing some manipulations, the exact
expression of the average PEP is given by (28) where the
derived closed-form expression in (28) holds for all values
of msd, msr and mrd. Furthermore, the average PEP derived
in (28) contains some infinite series that are not suited for
numerical computation for practical SNRs. The convergence

of power series is noted through numerical simulations after
a finite number of terms.

In what follows, we derive the asymptotic expression of
the average PEP in the high SNR regime. For this analysis,
it is worth rewriting the average PEP expression using the
aforementioned Craig’s formula as (29).

Using the following assumption γ̄sd = γ̄sr = γ̄rd = γ̄ →
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P (dH) =
mmsd

sd mLmsr
sr

γmsd

sd γLmsr
sr

(
1

12

(
dH +

msd

γ̄sd

)−msd

+
1

4

(
4dH
3

+
msd

γ̄sd

)−msd
)(

1

12

(
d1 +

msr

γ̄sr

)−msr

+
1

4

(
4d1
3

+
msr

γ̄sr

)−msr
)L

+

L∑
ϑ=1

(
L

ϑ

)(
1

12

(
d1 +

msr

γ̄sr

)−msr

+
1

4

(
4d1
3

+
msr

γ̄sr

)−msr
)L−ϑ

×
(

1

12

(
d1 +

msr

γ̄sr

)−msr

+
1

4

(
4d1
3

+
msr

γ̄sr

)−msr
)ϑ ∞∑

n=0

ρnmmrd+n
rd

n! (1− ρ)
mrd+2n

γ̄mrd+n
rd

×
ϑ−1∑
j=0

(
ϑ− 1

j

)
(−1)jχ(mrd + n, ρ, j)

mmsd

sd

γ̄msd

sd

(
1

12

(
dH +

msd

γ̄sd

)−msd
(
d2 +

mrd

(1− ρ) γ̄rd

)−mrd−n

+
1

4

(
4dH
3

+
msd

γ̄sd

)−msr
(
4d2
3

+
mrd

(1− ρ) γ̄rd

)−mrd−n
)

(28)

P (dH) =

(
1

π

∫ π
2

0

∫ ∞

0

exp

(
−dHγsd

sin2 θ

)
p(γsd)dγsddθ

)(
1

π

∫ π
2

0

∫ ∞

0

exp

(
−d1γsr

sin2 θ

)
p(γsr)dγsrdθ

)L

+

L∑
ϑ=1

(
L

ϑ

)(
1

π

∫ π
2

0

∫ ∞

0

exp

(
−d1γsr

sin2 θ

)
p(γsr)dγsrdθ

)L−ϑ(
1− 1

π

∫ π
2

0

∫ ∞

0

exp

(
−d1γsr

sin2 θ

)

× p(γsr)dγsrdθ

)ϑ(
1

π

∫ π
2

0

∫ ∞

0

∫ ∞

0

exp

(
−dHγsd + d2γrd

sin2 θ

)
p(γsd)p(γrd)dγsddγrddθ

)
.

(29)

∞, the expression in (29) can be reduced to

P (dH)
γ̄→∞≈ 1

π

∫ π
2

0

∫ ∞

0

∫ ∞

0

exp

(
−dHγsd + d2γrd

sin2 θ

)
× p(γsd)p(γrd)dγsddγrddθ.

(30)

After some algebraic manipulations and using the approxima-

tions
(
1 +

dH γ̄ij

mij

)−mij ≈
(

dH γ̄ij

mij

)−mij

, it is easy to obtain

P (dH)
γ̄→∞≈ 2mrd

(1− ρ)
mrd Γ(mrd)γ̄msd+mrd

(
dH
msd

)−msd

×
(
d2 +

mrd

(1− ρ) γ̄

)−mrd ϑ−1∑
j=0

(
ϑ− 1

j

)
× (−1)jχ(mrd + n, ρ, j).

(31)

Case 1: 0 ≤ ρ < 1
In (31), the following approximation can be made(
d2 +

mrd

(1−ρ)γ̄

)−mrd ≈ d−mrd
2 . In what follows, the resulting

expression corresponds to the high-SNR PEP for ρ < 1 and
is given by

P (dH)
γ̄→∞≈ Gc1 γ̄

−(msd+mrd), (32)

where Gc1 is given by

Gc1 =
2mrdm

−msd

sd

(1− ρ)
rd

dmsd

H dmrd
2 Γ(mrd)

ϑ−1∑
j=0

(
ϑ− 1

j

)
× (−1)jχ(mrd + n, ρ, j)

(33)

Case 2: ρ = 1
Substituting ρ = 1 in (31) cannot hold since (1− ρ) γ̄
yields an indeterminate value. Using the alternative expression
for p(γrd) as expressed in (47) and after performing some
integrations, the expression in (30) can further be expressed
as

P (dH)
γ̄→∞≈ L

2

(
dH
msd

)−msd

γ̄−msd

∫ ∞

0

m2msd

rd

ξmrdΓ2(mrd)γ̄mrd

× γmrd−1
rd exp

(
−d2γrd − mrdγrd

ξ

) L−1∑
j=1

(
L− 1

j

)

×
( −1

Γ(mrd)

)j ∫ ∞

0

xmrd exp

(
−mrdx

ξ

)
× Γj

(
mrd,

mrdx

γ̄

)
dxdγrd,

(34)

where ξ = (1− ρ) γ̄. Following the steps similar to those in
the Appendix for the case ρ = 1, and with some additional
manipulations the asymptotic PEP is given by

P (dH)
γ̄→∞≈ mmsd

sd mmrd+L−1
rd L

2dmsd

H Γ(msd)︸ ︷︷ ︸
Gc2

γ̄−(msd+Lmrd), (35)

where Gc2 is also a constant.

B. Bit Error Probability

In the sequel, we evaluate the performance of the pro-
posed scheme in terms of BER using the limit-before-average
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method and the transfer bounds technique. The upper bound
on the average BER is given by [36]

P̄b ≤ 1

K

∞∑
dH=df

a(dH)P (dH), (36)

where df denotes the free Hamming distance and a(dH) is the
sum of bit errors for error event of distance dH and can be
obtained using the transfer function bounds method as in [37]

a (dH) =

K∑
i=1

K∑
d1=1

K∑
d2=1︸ ︷︷ ︸

dH=i+d1+d2

i

K

(
i

K

)
p (d1|i) p (d2|i) , (37)

where p
(
d1/2|i

)
= t(K, i, d1/2)/

(
K
i

)
, with t(K, i, d1/2) ob-

tained from the transfer function of the given turbo code
T (J, I,D) =

∑
j≥0

∑
i≥0

∑
d≥0 J

jIiDdt (j, i, d) by a recur-
sive method using MATLAB, JjIiDd is a monomial with j
equal to 1, i and d are input and output dependent and take
on the value 0 or 1. However, using (36) yields loose bounds
on the BER. A remedy is to use the limit-before-average
technique [38] that yields much tighter bounds. Hence, the
upper bounds on the BER can be expressed as

P̄b ≤
∫ ∞

0

∫ ∞

0

∫ ∞

0

min

(
1

2
,
1

K

∞∑
d=df

a(dH)P (dH |γsd, γsr, γrd)

× p(γsd)p(γsr)p(γrd)dγsddγsrdγrd

)
.

(38)

A closed-form expression of (38) is difficult to obtain, since
the summation and integration are not interchangeable due to
the minimization expression. Therefore, we resort to numerical
methods to find the solution to (38).

VI. DIVERSITY-MULTIPLEXING TRADEOFF

The diversity-multiplexing tradeoff (DMT) is a fundamental
tradeoff in the design of a diversity-achieving wireless com-
munication system. The diversity and multiplexing gains are
respectively defined as [35]

do
.
= lim

γ̄→∞− log (Pout(γ̄))

log (γ̄)
, (39)

r
.
= lim

γ̄→∞
C(γ̄)

log (γ̄)
, (40)

where C(γ̄) is the data rate a given scheme can support given
by C(γ̄) = 1− Pout(γ̄) and γ̄ is the average SNR.

In order to derive the DMT of the underlying scheme at
high SNR, it is essential to determine the behavior of the
multiplexing gain r = C(γ̄) log γ̄ at high SNR. It can be
noted that at high SNR, Pout(γ̄) tends to zero, hence r → 1.
Using corollary 1 and (40), it is easy to obtain the DMT.

Theorem 2: The diversity-multiplexing gain of the pro-
posed scheme is

do(r) =

{
(msd +mrd)(1 − r), if ρ < 1
(msd + Lmrd)(1− r), if ρ = 1

(41)

Fig. 2 depicts the DMT tradeoff of the proposed scheme
for perfect and outdated CSI. It can be seen that the DMT is
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Fig. 2. Diversity-multiplexing tradeoff of the turbo coded system scheme
for outdated and perfect CSI. msd = 0.65, mrid = 1.5, i = 1, · · · , L.

invariant regardless of the number of relays for outdated CSI,
whereas in the case of perfect CSI, the DMT is a function of
the number of relays. Furthermore, in both cases, the DMT is
a function of the fading parameters msd and mrd.

VII. NUMERICAL RESULTS

In this section, we present the numerical results for the
outage probability of the underlying transmission scheme. In
all simulations, the message length is K = 128 bits. We
consider a turbo code with code rate Rc = 1/3, generator
polynomial (1, 17/13) in octal form and without loss of
generality assume that all the average SNRs are equal and
msrj = msr, mrjd = mrd.

Fig. 3 shows a performance comparison of the simulated
and exact expression of the outage probability for ρ < 1
(ρ = {0.1, 0.5, 0.8, 0.99}). It is clear that the exact outage
probability derived is in good agreement with the simulated
one. As noted, the achievable diversity order for outdated CSI
is the same and independent of ρ and the number of available
relays as can be confirmed by the same slope. Moreover, this
diversity order is equal to the one of an adaptive turbo-coded
DF with a single relay. This can be intuitively explained by
noting that even for the most outdated CSI, the selected relay
is reliable (source-to-relay link is good) which translates to no
error propagation at the relay.

In Fig. 4, the performance of the outage probability for
L = 4 and ρ = 0.5 is presented for different fading figures m.
A comparison of the simulated and exact outage probability
can help verify the accuracy of the latter.

In Fig. 5, we show the outage probability versus the
correlation factor ρ for both γ̄ = 10–15dB. For L = 1, full
diversity is always achieved and the outage probability is not
a function of the correlation factor as the former does not vary
with the correlation factor ρ. However, for L > 1, it can be
seen that the outage probability is a function of ρ and slightly
varies for ρ < 1.

In Fig. 6, similar to Fig. 5 we present the outage probability
performance as a function of the correlation factor ρ. It can be
noted that for ρ �= 1, the performance improves slowly as ρ
increases. For ρ = 1, there is a sudden change in slope which
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Fig. 3. Simulated (symbols) versus exact (solid lines) outage probability for
ρ = 0.1, 0.5, 0.8, 0.99, 1 and L = 4. msd = 0.65 and mrd = 0.85.
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Fig. 4. Simulated (symbols) versus exact (solid lines) outage probability for
ρ = 0.5 and L = 4. msd = mrd = m.

can be attributed to the fact that full diversity is achieved at
that instance.

We also consider the effects of pathloss which represents
a practical scenario. For simplicity, a line topology is consid-
ered, i.e., the relay nodes are situated on the same line between
the source and the destination, with the distance between s and
d normalized to 1. Furthermore, the distance between s and
ri, and ri and d is denoted as dsr and drd respectively, where
dsr = d and drd = 1 − d. In this scenario, the variances
E〈h2

sd〉 = 1, E〈h2
sr〉 = 1/dη and E〈h2

rd〉 = 1/(1− d)η are as-
sumed where η is the pathloss coefficient. For our simulations,
without loss of generality, we consider d = 0.3 and η = 3 in
Fig. 7. For both cases, {msd = 0.65,msr = 1,mrd = 0.85}
and {msd = 0.85,msr = 1,mrd = 1.5}, it can be seen that
the diveristy order do = msd +mrd is achieved as predicted
from our analysis for outdated CSI.

In Figs. 8 and 9, various levels of imperfect CSI are
considered where one can note that full diversity in the number
of available relays L and fading figure m can be achieved
with ideal CSI. However, for non-ideal CSI, the achievable
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Fig. 5. Outage probability versus correlation factor ρ for various SNRs and
number of relays. msdi = msri = mrid = 1, i = 1 · · ·L.
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Fig. 6. Outage probability versus correlation factor ρ for different m values
and L = 5. msdi = msri = mrid, i = 1 · · ·L.

diversity order is identical to a single relay scenario. Moreover,
both Figs. 8 and 9 show a comparison between the union
bounds on the BER and the simulated BER. As seen, the
bounds on the BER are in good agreement with the simulations
for different values of ρ. This validates the accuracy of our
analytical framework presented in this work.

VIII. CONCLUSION

The effect of outdated CSI on turbo-coded cooperation with
relay selection subject to Nakagami-m fading was investigated.
A closed-form expression for the outage probability and its
asymptotic expression at high SNR are derived. It was noted
that the outage probability performance is dependent on the
level of CSI imperfection, with full diversity achieved for ideal
CSI only. In addition, a closed-form expression of the PEP is
derived and the diversity analysis of the PEP corroborates with
the conclusions extracted from the outage probability study.

APPENDIX

We derive the high-SNR expression of the outage probabil-
ity for turbo-coded cooperation with outdated CSI. Two cases
arise: ρ < 1 and ρ = 1.
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Fig. 8. BER of the proposed scheme versus average SNR for various
correlation values ρ. L = 3 and msd = 0.65, msr = 1, mrd = 0.85.
Solid lines: simulations, dashed lines: bounds.

Case 1: 0 ≤ ρ < 1
It is easy to rewrite (23) as in (15) and assuming that γ̄sd =
γ̄sr = γ̄rd = γ̄ → ∞,

Pout

γ̄→∞≈
L∑

ϑ=1

∞∑
n=0

ϑρnmmrd+n
rd γ̄−(mrd+n)

n! (1− ρ)
mrd+2n

Γ(mrd)Γ(mrd + n)

×
(∫ a

0

mmsd

sd γmsd−1

Γ(msd)γ̄msd
exp

(
−msdγsd

γ̄

)

×
∫ b

0

γmrd+n−1 exp

(
− mrdγrd
(1− ρ) γ̄

)
dγrddγsd

)

×
ϑ−1∑
j=0

(
ϑ− 1

j

)
(−1)jχ (mrd + n, ρ, j) .

(42)

To solve the inner integral, we can use [31, Eq. 3.351.1] and
after some manipulations,
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Fig. 9. BER of the proposed scheme versus average SNR for various
correlation values ρ. L = 3 and msd = 1.5, msr = 1, mrd = 0.85.
Solid lines: simulations, dashed lines: bounds.

Pout

γ̄→∞≈
L∑

ϑ=1

∞∑
n=0

ϑρnmmrd+n
rd mmsd

sd γ̄−(msd+mrd+n)

n! (1− ρ)mrd+2n Γ(msd)Γ(mrd)Γ(mrd + n)

×
(∫ a

0

γ
msd−1
sd exp

(
−msdγsd

γ̄

)(
mrd

(1− ρ) γ̄

)−mrd−n

× γ

(
mrd + n,

mrdb

(1− ρ) γ̄

)
dγsd

)
ϑ−1∑
j=0

(
ϑ− 1

j

)

× (−1)jχ (mrd + n, ρ, j) .
(43)

It can easily be noticed that at high SNR: (a) the maximum
of the outage probability in (43) occurs when ϑ = L. (b)
The dominant term in (43) is n = 0 of the infinite series.
Following these observations and using the identity γ(a, x) =
xa

1F1 (a, 1 + a;−x) in [31, Eq. 8.352.1],

Pout
γ̄→∞≈ Lmmsd

sd mmrd

rd

(1− ρ)
mrd Γ(msd)Γ2(mrd)γ̄msd+mrd

×
(∫ a

0

γmsd−1
sd exp

(
−msdγsd

γ̄

)

× 1F1

(
mrd, 1 +mrd;− mrdb

(1− ρ) γ̄

)
dγsd

)

×
L−1∑
j=0

(
L− 1

j

)
(−1)jχ (mrd, ρ, j) ,

(44)

where 1F1 (x, y; z) denotes the confluent Hypergeometric
function defined in [31, Eq. 9.210.1]. As γ̄ → ∞, the
hypergeometric function in (44) reduces to 1. Hence,

Pout

γ̄→∞≈ G
′
c1 γ̄

−(msd+mrd), (45)
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where G
′
c1 is a constant value and is given by

G
′
c1 =

L−1∑
j=0

(
L− 1

j

)
(−1)jχ (mrd, ρ, j)

×
∫ 2Rc−1

0

γmsd−1
sd

(
2Rc/(1−α)

(1 + γsd)
1/(1−α)

− 1

)mrd

dγsd,

(46)

where the integral part can be computed numerically yielding
a constant value.

Case 2: ρ = 1
In this case, the observations (a) and (b) made for ρ < 1
are still valid. Furthermore, a less simplified expression of
the CDF in [20] and p(x) = ∂F(x)/∂x are used, and the
asymptotic outage probability (i.e., γ̄sd = γ̄sr = γ̄rd = γ̄ →
∞ is assumed) can be given by

Pout
γ̄→∞≈ mmsd

sd m2mrd

rd

(1− ρ)
mrd Γ(msd)Γ2(mrd)γ̄msd+2mrd

×
(∫ a

0

γmsd−1
sd exp

(
−msdγsd

γ̄

)∫ b

0

γmrd−1
rd

× exp

(
− mrdγrd
(1− ρ) γ̄

)
dγrddγsd

)
L−1∑
j=0

(
L− 1

j

)

× (−1)j

Γj(mrd)

∫ ∞

0

xmrd−1 exp

(
− mrdx

(1− ρ) γ̄

)

× Γj

(
mrd,

mrdx

γ̄

)
dx.

(47)

The expression in (47) can further be simplified
using [31, Eq. 3.351.1]. Substituting Γj

(
m, mx

γ̄

)
≈

Γj(m) exp
(
−mjx

γ

)
[31, Eq. 3.352.7] for high values of γ̄,

and after some algebraic manipulations, the expression in
(47) can be rewritten as

Pout

γ̄→∞≈ mmsd

sd mmrd

rd

Γ(msd)Γ2(mrd)γ̄msd+2mrd

(∫ a

0

γmsd−1
sd

× exp

(
−msdγsd

γ̄

)
γ

(
mrd,

mrdb

(1− ρ) γ̄

)
dγsd

)

×
∫ ∞

0

xmrd−1 exp

(
− mrdx

(1− ρ) γ̄

) L−1∑
j=0

(
L− 1

j

)

× (−1)j exp

(
−mrdjx

γ̄

)
dx.

(48)

The Binomial expansion (1 − y)m =
∑m

j=0

(
m
j

)
(−1)jyj

can be identified in (48). Moreover, at high values of y,
exp

(
− 1

y

)
≈ 1− 1

ym . Hence (48) can be expressed as

Pout

γ̄→∞≈ mmsd

sd mL
rd

Γ(msd)Γ2(mrd)γmsd+Lmrd

(∫ a

0

γmsd−1
sd

× γ

(
mrd,

mrdb

γ̄

)
exp

(
−msdγsd

γ̄

)
dγsd

)

×
∫ ∞

0

xmrd+L−2 exp

(
− mrdx

(1− ρ) γ̄

)
dx.

(49)

From (49), at high γ̄, δ ≈ 0 and hence γ(m, 1δ ) ≈ Γ(m)
and exp

(− 1
δ

) ≈ 0. After some manipulations, the asymptotic
outage probability can be expressed as

Pout

γ̄→∞≈ G
′
c2 γ̄

msd+Lmrd , (50)

G
′
c2 =

Kmmsd

sd mL
rd

Γ(msd)Γ(mrd)

(
2Rc − 1

)msd
, (51)

with K =
∫∞
0

exp
(−mrdx

δ

)
dx being a constant.

By adopting the diversity order definition in [35], i.e.,
d

.
= limγ̄→∞ − log (Pout) / log (γ̄), the diversity order for

both cases (ρ < 1 and ρ = 1) can be obtained.
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