

Development of Advanced FDD and FTC Techniques with Applications to Unmanned Systems, Smart Grids and Manufacturing Processes

Prof. Youmin Zhang

Diagnosis, Flight Control, and Simulation (DFCS) Lab., Networked Autonomous Vehicles (NAV) Lab. Department of Mechanical and Industrial Engineering

Concordia University

Montreal, Quebec H3G 1M8, Canada

E-mail: youmin.zhang@concordia.ca, Web: users.encs.concordia.ca/~ymzhang/

Research Areas

- Guidance, Navigation, Control (GNC), Sense & Avoid (S&A) of manned and unmanned vehicles (aerial, space, ground, surface and underwater)
- Monitoring, Fault Detection and Diagnosis (FDD), prognosis and health management, Fault-Tolerant Guidance, Navigation, and Control (FT-GNC)
- Cooperative control of multiple vehicles/systems for various application missions under normal and fault conditions
- Systems modelling, estimation, identification, and simulation techniques under normal and fault conditions

Unmanned vehicles and remote sensing techniques applied to forest fires, pipelines, power lines, environment, natural resources and disasters monitoring, detection, and protection

- Development of remote sensing techniques with applications
- Development of GNC techniques using single/multiple vehicles
- Development of imagine processing techniques with applications

Sense and Avoid (S&A) of Unmanned Aerial Vehicles (UAVs)

The developed technologies for S&A

- Collision detection
- Path Planner for a single intruder - Differential Geometric Guidance
- Path Planner for multiple intruders - Markov Decision Process
- Make the path feasible for UAVs - Differential Flatness Approach

Cooperative and Fault-Tolerant Cooperative Control (FTCC) of multiple Unmanned Vehicles (UVs)

- GNC strategies and algorithms for single vehicle and a fleet of UVs
- Cooperative localization, deployment, and control strategies of a fleet of UVs
- Autonomous path planning and re-planning strategies of UVs under different missions
- Ground station development for safe and efficient operation of the UV systems

Condition monitoring, diagnosis, and self-healing control and management of wind turbines, renewable energy systems, and smart grids/microgrids

Machining tools and machining processes condition monitoring, diagnosis, and prognosis

- Tool faults may deteriorate product quality and surface finish and cause dimensional inaccuracy
- Machines and work pieces may be damaged/destroyed (unscheduled downtime) due to tool breakage
- Cutting tools should be maximally utilized to reduce tooling costs
- It is in high demand for manufacturing industries to continuously monitor the tool wear conditions

