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Project Objectives

Apply AFTCS to Q-Ball, so it can maintain a
certain attitude despite of partial loss in Actuator

Use two different approaches for
Reconfigurable Controller part

Post failure system can maintain stability and
performance

Hardware Implementation (Fault-free)




Equations of Motions:

The Quad-rotor has 6-DOYF, it is equipped just with
4 propellers

Four Basic Movements :

Throttle Ul (11 = Q2 = (3 =(4)

Roll U2 (031 & Q4))

Pitch U3 (011 & 02)

Yaw U4 (01 021& 03 Q4V)
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(Linear Quadratic Regulator) LOR
1. LOR-Regulation Problem

x=Ax1+Bu

u——Kx+t+v
x=(A-BK)x+Bv=Ayegx+Bv
The "cost function" is defined as a sum of the

deviations of key measurements from their
desired values.

Still needs to specify the weighting Q & R
factors and compare the results with the
specified design goals
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LOR - Regulator implies that brings all state variables to zero and
stabilizes the control system

K= Iqr (4, B, Q, R) in MATLAB
LOR controller is its limited applicability to just linear systems.

In our project it was required to obtain linearized equations of
motion of Q-Ball

MATLAB routine “linmod” has been employed
A “Trim” command used before linearization . Trim Point, also

known as an equilibrium point, is a point in the parameter space of
a dynamic system at which the system is in a steady state
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LQR Gain

LOR
Controller
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LOR - Tracking Problem

Imagine a control system expressed in state space format as follows:

The same as for non-tracking problem/regulator, here the control signal
is:

Let’s assume x = [X; X, X3 ... X, ], iIndicating n state variables.

Also, imagine that there are reference values for x, 4, X54, X34, ---» and X, 4
for which the controller is responsible:

A= [Il-' X, Xgpen sy XpsZ1dr 22852340 vav s E‘H‘lﬂ]

Zig — J X; — Xz dt



LOR

With this definition the new representation of the
system becomes:

[4] [0]

. D] [n]] o[

Or in a more compact form:

X =AX+ Bu+B,P,

Again, once the state space representation of the
control system is obtained, design of LOR Controller is

almost straight forward. . _ lgr (A _bar, B_bar, Q, R).



Application of Design Methodology to

QBall
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Time Response of the System



LOR - Real System Results (Fault-Free)




PID Controller

In this section some assumptions are made to make the equations
of motion of the plant (Q-Ball) simpler.

This simplification let us neglect some cross-couplings effects
among the equations of motion describing dynamics of the
system.

This way, the motion of the system is broken down into four
independent channels:

Vertical Motion along the Z Axis Forwards and

Backwards Motion along the X Axis Coupled with Pitching Motion
Side Motion along the Y Axis Coupled with Rolling Motion And
Pure Yawing Motion



PID Controller :
Decoupled, Simplified Equation of Motion

Vertical Motion along the Z Axis

MZ=(T1+T2+T3+T4)—Mg

It should be notified that this modeling is valid as
long as the Yaw Angle is automatically controlled to
be zero.



PID Controller

Forwards and Backwards Motion along the X
Axis Coupled with Pitching Motion

MX=(T14+T2+T3+T4)sind
J.w8 =(T1-T2)L

[(T1-AT) + (T2+AT) + T3 + T4] = [T1 + T2 + T3 + T4]



PID Controller

Side Motion along the Y Axis Coupled
with Rolling Motion

MY =(T1+T2+T3+T4)g
J..®=(T3-T4)L




PID Controller

Pure Yawing Motion

Joe@=(T1+T2-T3—-T4)C

A Remark on PID Tuning: Tuning of the inner

loop PID Controller prior to tuning of the outer loop PID

Controller is required for the sake of fine and effective
tuning.
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PID- Real System Results (Fault-Free)




AFTCS Concepts

AFTCS is combined by three parts:
FDD part
Reconfiguration Mechanism
Reconfigurable Controller.
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LOR-FDD

Estimated Cutput

Kalman Filter

To Residual Eveluation

System Cutput

General Frame of Residual Generation



Residual Generation

Residual (Fault-Free)



Residual Evaluation Part

From Residual Generation

hatrix

' Multiply
.. :I I: p -
Fy Enable Eveluation

Gz Delay

To Reconfigurable Controller

Residual Evaluation and Reconfigurable Mechanism



Residual of actuator 2 fault
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LOR AFTCS results

Output of actuator 2 fault (x, y, z)

Output of actuator 2 fault (¢, 0, V)
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120D = 12IDID,

General frame of
Analytical Redundancy

Fault Implementation
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PID-Reconfigurable Controller

X PID RC

X PID for fault

Embedded
MATLAB Functicn

Scope

Controller Output N
)




PID AFTCS results

Output of actuator 4 fault (x, y, z)

Output of actuator 4 fault (¢, 6, ¥)




Conclusion

Two AFTCS have been designed for the Q-
Ball to rectify performance of the system
and maintain stability in the presence of
actuator partial loss.

Only actuator faults have been considered,
however the system could be extended to
deal with sensor and system component
faults.

Implementation on the Real system.



Thank yow

Questions !



