Fault Tolerant Control of a Quad-rotor UAV Using Flatness Based Control

Fault Detection and Fault Tolerant Control Course

Group Members:

M. Mehdizade

H. Nayyeri

S. Bathaie

20 Dec 2010

Outline

- Quad-rotor Equations of Motions
- Introduction to Flatness Based Control
- Trajectory Planning
- Fault Diagnosis and Isolation
- Fault Scenarios
- Results

Quadrotor Equations of Motions

$$\begin{split} \ddot{x} &= u_1 \left(\cos\phi \, \sin\theta \, \cos\psi + \sin\phi \, \sin\psi \right) - \frac{k_1}{m} \dot{x} \\ \ddot{y} &= u_1 \left(\cos\phi \, \sin\theta \, \sin\psi - \sin\phi \, \cos\psi \right) - \frac{k_2}{m} \dot{y} \\ \ddot{z} &= -g + u_1 \left(\cos\phi \, \cos\theta \right) - \frac{k_3}{m} \dot{z} \end{split} \qquad \begin{aligned} \ddot{\theta} &= u_2 - l \frac{k_4}{J_1} \dot{\theta} \\ \ddot{\theta} &= u_3 - l \frac{k_5}{J_2} \dot{\phi} \\ \ddot{\psi} &= u_4 - \frac{k_6}{J_3} \dot{\psi} \end{aligned}$$

$$\begin{pmatrix} u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{m} & \frac{1}{m} & \frac{1}{m} & \frac{1}{m} & \frac{1}{m} \\ \frac{-l}{J_{1}} & \frac{-l}{J_{1}} & \frac{l}{J_{1}} & \frac{l}{J_{1}} \\ \frac{-l}{J_{2}} & \frac{l}{J_{2}} & \frac{l}{J_{2}} & \frac{-l}{J_{2}} \\ \frac{C}{J_{3}} & \frac{-C}{J_{3}} & \frac{C}{J_{3}} & \frac{-C}{J_{3}} \end{pmatrix} \begin{pmatrix} T_{1} \\ T_{2} \\ T_{3} \\ T_{4} \end{pmatrix}$$

$$\begin{aligned} \text{LEFT} & \bigcirc & \bigcap \\ \Omega_{H} + \Delta_{A} & \bigcirc & \bigcap \\ \Omega_{H} & \bigcirc & \Omega_{H} & \bigcirc \\ \Omega_{H} - \Delta_{B} & \bigcap \\ \Omega_{H} - \Delta_{B} & \bigcap \\ \Omega_{H} - \Delta_{B} & \bigcap \\ \Omega_{H} & \bigcirc & \Omega_{H} - \Delta_{B} & O \\ \Omega_{H} - \Delta_{B}$$

Flatness Based Control

- The flatness property is described as follows.
- A dynamical system: $\begin{cases} \dot{x} = f(x, u) \\ y = h(x) \end{cases}$

is flat if and only if there exist variables $F \in \mathbb{R}^m$

called the flat outputs such that:

$$x = \Xi_1(F, \dot{F}, \cdots, F^{(n-1)})$$
$$y = \Xi_2(F, \dot{F}, \cdots, F^{(n-1)})$$
$$u = \Xi_3(F, \dot{F}, \cdots, F^{(n)})$$

Flatness Based Control In Quadrotor

$$\begin{split} \overline{F_1} &= z \quad F_2 = x \quad F_3 = y \quad F_4 = \varphi \\\\ \theta &= atan \left\{ \frac{\cos F_4 \ddot{F}_2 + \sin F_4 \ddot{F}_3}{\ddot{F}_1 + g} \right\} ; \ \phi = atan \left\{ \frac{\cos \theta \left(\sin F_4 \ddot{F}_2 - \cos F_4 \ddot{F}_3 \right)}{\ddot{F}_1 + g} \right\} \\\\ u_1 &= \frac{\ddot{F}_1 + g}{\cos \phi \, \cos \theta} ; \ u_2 = \ddot{\theta} ; \ u_3 = \ddot{\phi} ; \ u_4 = \ddot{F}_4 \\\\ \hline{F_1} &= \bar{u}_1 ; \ F_2^{(4)} = \bar{u}_2 ; \ F_3^{(4)} = \bar{u}_3 ; \ \ddot{F}_4 = \bar{u}_4 , \\\\ \bar{u}_1 &= \ddot{F}_1^* + K_{11} (\dot{F}_1^* - \dot{F}_1) + K_{12} (F_1^* - F_1) \\\\ \bar{u}_2 &= F_2^{(4)*} + K_{21} (F_2^{(3)*} - F_2^{(3)}) + K_{22} (\ddot{F}_2^* - \ddot{F}_2) + K_{23} (\dot{F}_2^* - \dot{F}_2) + K_{24} (F_2^* - F_2) \\\\ \bar{u}_3 &= F_3^{(4)*} + K_{31} (F_3^{(3)*} - F_3^{(3)}) + K_{32} (\ddot{F}_3^* - \ddot{F}_3) + K_{33} (\dot{F}_3^* - \dot{F}_3) + K_{34} (F_3^* - F_3) \\\\ \bar{u}_4 &= \ddot{F}_4^* + K_{41} (\dot{F}_4^* - \dot{F}_4) + K_{42} (F_4^* - F_4) \\\\ u_1 &= \frac{\bar{u}_1 + g}{\cos \phi \, \cos \theta} ; u_2 &= \ddot{\theta} ; u_3 = \ddot{\phi} ; u_4 = \bar{u}_4 \end{split}$$

RTUAL REAL

Trajectory Planning

$$\begin{split} F_i^* &= a_5^i t^5 + a_4^i t^4 + a_3^i t^3 + a_2^i t^2 + a_1^i t + a_0^i \quad ; \quad (i = 1, 4) \\ F_i^* &= a_9^i t^9 + a_8^i t^8 + a_7^i t^7 + a_6^i t^6 + a_5^i t^5 + a_4^i t^4 + a_3^i t^3 + a_2^i t^2 + a_1^i t + a_0^i \quad ; \quad (i = 2, 3) \end{split}$$

- Initial Conditions F_{1i} \dot{F}_{1i} \ddot{F}_{1i}
- Final Conditions F_{1f} \dot{F}_{1f} \ddot{F}_{1f}
- Initial Conditions F_{2i} \dot{F}_{2i} \ddot{F}_{2i} \ddot{F}_{2i} $F_{2i}^{(4)}$
- Final Conditions $F_{2f} \dot{F}_{2f} \ddot{F}_{2f} \ddot{F}_{2f} F_{2f}^{(4)}$

Comparing Results with Paper

Simulation Model

Fault Detection & Isolation

$\ddot{x} = u_1 (\cos\phi \ \sin\theta \ \cos\psi + \sin\phi)$ $\ddot{y} = u_1 (\cos\phi \ \sin\theta \ \sin\psi - \sin\phi)$ $\ddot{z} = -g + u_1 (\cos\phi \ \cos\theta)$	$ \begin{array}{ll} \phi \ sin\psi) & \ddot{\theta} = u_2 \\ \phi \ cos\psi) & \ddot{\phi} = u_3 \\ & \ddot{\psi} = u_4 \end{array} \right \begin{pmatrix} u \\ u \\ u \\ u \end{pmatrix} $		$ \begin{array}{c} T_{1} \\ T_{2} \\ T_{3} \\ T_{4} \end{array} \right T_{f} = \begin{pmatrix} f_{1} & 0 & 0 & 0 \\ 0 & f_{2} & 0 & 0 \\ 0 & 0 & f_{3} & 0 \\ 0 & 0 & 0 & f_{4} \end{pmatrix} * T $
$\begin{pmatrix} u_{1f} \\ u_{2f} \\ u_{3f} \\ u_{4f} \end{pmatrix} = \begin{pmatrix} +\frac{1}{4} & +\frac{1}{4} & +\frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} & -\frac{1}{2} & -\frac{1}{2} & +\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & +\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & +\frac{1}{2} & -\frac{1}{2} & $	$ \begin{pmatrix} +\frac{1}{4} \\ +\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \begin{pmatrix} f1 & 0 & 0 \\ 0 & f2 & 0 \\ 0 & 0 & f3 \\ 0 & 0 & 0 \end{pmatrix} $	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ f4 \end{pmatrix} \begin{pmatrix} 1 & -0.5 \\ 1 & -0.5 \\ 1 & 0.5 \\ 1 & 0.5 \end{pmatrix}$	$ \begin{array}{ccc} -0.5 & 0.5 \\ 0.5 & -0.5 \\ 0.5 & 0.5 \\ -0.5 & -0.5 \end{array} \right) \left(\begin{array}{c} u_1 \\ u_2 \\ u_3 \\ u_4 \end{array} \right) $
$\begin{pmatrix} u_{1f} \\ u_{2f} \\ u_{3f} \\ u_{4f} \end{pmatrix} = \begin{pmatrix} \frac{8u_1 - 25u_2 - 25u_3 + 10u_4}{32} \\ \frac{-8u_1 + 25u_2 + 25u_3 - 10u_4}{100} \\ \frac{-8u_1 + 25u_2 + 25u_3 - 10u_4}{100} \\ \frac{+8u_1 - 25u_2 - 25u_3 + 10u_4}{10} \end{pmatrix}$	$\frac{\frac{8u_1 - 25u_2 + 25u_3 - 10u_4}{32}}{100} = \frac{8u_1}{25u_2 - 25u_3 + 10u_4}}{\frac{8u_1}{100}} = \frac{8u_2}{100}$	$\begin{array}{ccc} & \underline{8u_1} \\ \underline{32} \\ \underline{31} \\ \underline{32} \\ \underline{31} \\ \underline$	$\begin{array}{c} \begin{array}{c} +25u_2 - 25u_3 - 10u_4 \\ 32 \\ +25u_2 - 25u_3 - 10u_4 \\ 100 \\ 1 - 25u_2 + 25u_3 + 10u_4 \\ 100 \\ 1 - 25u_2 + 25u_3 + 10u_4 \\ 10 \end{array} \right) \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \end{pmatrix}$

Fault Recovery

We want to reconfigure our controller to produce an output command such that the Final Uf would be equal to the original controllers output without reconfiguration from previous section we have

$$U_{f1} = A^{-1} * F * A * U_1$$
$$U_{f2} = A^{-1} * F * A * U_2$$

• Our reconfigured controller will produce U2 instead of U1 but the overall U that take effect in system dynamic is U1

Fault Scenario 1

- Fault: 20% in Actuator 1
- Noise: Noise in Accelerations Measurements with Variance 0.00001
- Final time: 40
- Delay: 30 steps
- Time Steps:0.01
- Time of fault occurrence: 20
- Detection time: 20.33
- Isolation Time: 21.06

	Initial Con.	Final Con.	Recon Traj.
Х	0	5	5
Y	0	5	5
Z	0	2	0
ψ	0	.3	0

Fault Scenario 2

- Fault: unsymmetrical 20% in Actuator 1 & Actuator 2
- Noise: No noise
- Final time: 40
- Delay: 30 steps
- Time Steps:0.01
- Time of fault occurrence: 15
- Detection time: 15.32
- Isolation Time: 16.01

	Initial Con.	Final Con.	Recon Traj.
Х	0	1	2
Y	0	1	2
Z	0	10	0
ψ	0	0	0

Thanks For Your Attention