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Why CSTR?
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 Chemical reactors are one of the most important 

part of chemical, biochemical and petroleum 

processes since they transform raw materials 

into valuable chemical materials.

 Three classical chemical reactors

◦ Batch reactor

◦ Continuous stirred-tank reactor (CSTR)

◦ Plug flow tubular reactor (PFR)
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Reactors
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CSTR Model

• The CSTR reactor is usually used for liquid-phase or 

multiphase reactions that have high reaction rates. 

Reactant streams are continuously fed into the vessel.

• Perfect mixing of the liquid in the reactor is usually 

assumed, so the modeling of a CSTR involves ordinary 

differential equations. 
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• Main characteristics of a CSTR

• Constant temperature

• Constant concentration

• Reaction types:

• Exothermic (releasing energy)

• Endothermic (requiring energy)

• Reversible (balance of reactants and products)

• Irreversible (proceeding completely to products)

• Homogeneous (single-phase) 

• Heterogeneous (multiphase)

CSTR Model



CSTR Model

Exothermic and irreversible reactions 

Temperature control problems 

 Maintaining stable and safe temperature control

 Heat removal methods

◦ Jacket cooling

◦ Cooling coil
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CSTR Model

 Three-state CSTR model, exothermic-irreversible 

first-order reaction (A  B) 

 Dimensionless …
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CSTR Model

 System dimensionless equations*:

: dimensionless concentration            : dimensionless reactor temperature 

: dimensionless cooling jacket temperature            

: dimensionless cooling  jacket flow rate           : dimensionless feed flow
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* Russo L. P., Bequette B. W., “Impact of process design on the multiplicity behavior of a jacketed exothermic 

CSTR”, AIchE Journal, 41(1)135



CSTR Model

 System non-linearity

 Steady-State design and Multiplicity of CSTR 
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Controller Design

 Conventional controllers 
◦ (PID control, state-space methods, optimal control, robust control,…)

◦ Designing based on the Mathematical models

◦ Ignoring heuristic information, as they do not fit into proper mathematical form

Fuzzy controller
◦ An artificial decision maker that can operate in a closed-loop control system
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Controller Design

 Rule-base, holds the knowledge in the form of a set of rules of how 

best to control the system (a set of If-Then rules)

 Inference mechanism (inference engine)
evaluates which control rules are relevant at the current time and 

deciding what the input to the plant should be

 Fuzzification, modifying the inputs so that they can be interpreted to 

the rules in the rule-base

 Defuzzification, converting the conclusions of inference mechanism 

into the plant inputs.
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Controller Design
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 Adaptive fuzzy controller scheme 

(Fuzzy controller and conventional controller combination)

 Tracking and regulatory problem

◦ Some continuous process produce different grades of products at 

different times

Fuzzy Logic

PID Controller Process

Δe
d/dt

Kp KI Kd

r
Y
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Controller Design
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 Fuzzy adaptation module steps: 
1) Defining the input & output membership functions

2) Defining the fuzzification and defuzzification methods

3) Defining Inference mechanism 

4) Defining the Rules in the form of linguistic structure 

(one of fuzzy implementation challenges!)

If  e is X and e is Y, then KI=U, Kp=V, Kd=Z

e, Δe

a b

NH            NL       ZO       PL          PH   
MH               H            L              ZO

c   d   

Kp, KI, Kd



Controller Design
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 Fuzzy controller inputs: Error (e) and error changes (e)

 Fuzzy controller outputs: PID gains (Kp,Kc,Kd)

 Fuzzy Inference Strategy: Mamdani

 defuzzification method: Centriod



Controller Design

 AFTCS or PFTCS?!

 So where is the FDD part?
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Simulation results

 Fault free tracking response
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Simulation results

 Actuator faults scenarios

 System parameter fault scenarios

 Sensor Faults scenarios
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Simulation results
 Actuator faults scenarios

 System parameter fault scenarios

 Sensor Faults scenarios
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Control input signals and controller gains under 15% actuator failure
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Simulation results

 Actuator faults scenarios

 System parameter fault scenarios

 Sensor Faults scenarios
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System output response to 25% actuator failure
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Simulation results
 Actuator faults scenarios

 System parameter fault scenarios

 Sensor Faults scenarios

21

Control input signals under 25% actuator failure
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Simulation results

 Actuator faults scenarios

 System parameter fault scenarios

 Sensor Faults scenarios
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System output response to changing x2f from 0 to 0.08
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Simulation results

 Actuator faults scenarios

 System parameter fault scenarios

 Sensor Faults scenarios
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Control input signals and controller gains changing x2f from 0 to 0.08
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Simulation results

 Actuator faults scenarios

 System parameter fault scenarios

 Sensor Faults scenarios
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System output response to changing x2f from 0 to 0.1
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Simulation results

 Actuator faults scenarios

 System parameter fault scenarios

 Sensor Faults scenarios
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Control input signals to changing x2f from 0 to 0.1
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Simulation results

 Actuator faults scenarios

 System parameter fault scenarios

 Sensor Faults scenarios
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Output responses in the presence of 40% sensor fault
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Conclusions & Suggestions

 In this project the fault tolerant control of a CSTR model 

under different faults is accomplished.

 Defining the proper fuzzy rules was a very challenging 

and time-consuming task!

 In spite of the conventional definition for Active FTCS 

which obligated the system to have a FDD block; here in 

this project FDD block is inherent in the fuzzy 

controller.

 When the fault percentage exceeds specific values, the 

conventional PID fails to control the CSTR while the 

fuzzy PID can have the pre-fault performance after a 

short transient time.
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Conclusions & Suggestions

 Extending this controller to a MIMO system.

 Taking other parameters as input of fuzzy controller.
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Thank you for your attention!



Simulation results
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