

GPS Clock

MECH 6621 Final Project

by Siamak Arbatani Konstantin Kalayev

April 21st, 2011

INTRODUCTION

GPS OVERVIEW

Space segment

- 31 satellites
 - 24 at 6 orbital planes
 - 7 are orbited as spares
- Orbital radius is 26 600 km
 (20 200 km altitude)
- 2 complete orbits each 24 hours(the same ground track each day)
- from 5 to 8 satellites above horizon from any point on the Earth

Control segment

consists of:

- Master control station (Colorado Spring, USA)
- Alternate master control station
- Four dedicated ground antennas
- Six dedicated monitor stations

The main role is observing the ephemeris and clock of each satellite and correction of the orbit and clock errors

User segment

U.S. military users of the secure GPS PrecisePositioning Service

Civil, commercial andscientific users of theStandard Positioning Service

Principle of work

The GPS receiver receives the following information from each satellite:

- The almanac data about the approximate position of satellite
- The ephemeris data about the exact position of satellite
- Message containing the time of transmission

The receiver measures the time of arrival of the satellite signals

 $\Delta t = t_{Arrival} - t_{Transmission}$ Distance=Propagation Rate (speed of light) * Time

User position can be computed using satellite positions and the distance to them

GPS satellite clocks

GPS time is accurate to about 14ns.

To achieve such accuracy each satellite is equipped with 2 cesium and 2 rubidium clocks (\$100,000 - \$500,000 each).

Moreover these clocks are continually adjusted with atomic clock by Master Control Station

Hardware

- Microcontroller as the main processing and controlling unit
- GPS module as data provider
- An alphanumeric LCD as display
- RS232 standard peripherals for communication purpose

Hardware

PMB-648 GPS Module

Hardware

MAX232

PIC18F4431

Oscillator 8MHz

LCD Module LMB162ABC

Software

- High level programming language, Proton Basic employed
- Proton IDE used to develop and compile code

Software

 One-shot HSerIn instruction of Proton Basic used with necessary arguments to place each data in its own associated variable

Valid example of RMC data:

\$GPRMC,161250.487,A,3723.2475,N,15030.3416,W,0.13,309.62,120511

Modeling & Simulation

• Proteus ISIS Professional advanced simulation software employed for design verification of this system

Model Components:

- PIC18F4431 microcontroller
- Standard LM016L 2×16 LCD model
- Virtual terminal to illustrate data flow in serial data line
- HDL (Hardware description language) code to define a virtual model for the GPS module.

Practical Testing

Practical Testing

Conclusion and practical application

Thank you for your attention