

Bi-wheel Robot Control

An application of PIC18F4431 MCU

MICROCONTROLLERS FOR MECHATRONICS

Instructor: Youming Zhang

Mohamad Tayara (5798132) Suo Tan (6953077) Wilson Lee (6043593)

Introduction

Objective

 Design an autonomous balancing and remote controllable bi-wheel robot (like a Segway).

• PIC18 microcontroller and other devices.

The Bi-wheel Robot

Hardware for the application

Control Algorithm Design

Flowchart

Control Signal Flow

•IMU

- 3 axis accelerometer+
 2 axis gyro
- Accelerometer sensitivity :300mv/g
 1.5V 0 g bias
- Gyro senitivity
- 9.1mv °¹/_s, 1.35V 0
 bias

Pic 18 ADC : 10 bits.

- Vref- =GND Vref+=3.3mv -> 3.222 mv/ count of resolution.
- Accelerometer 0 bias ~465 counts, 1g ~93 counts.
- ♦ Gyro 0 bias ~435 counts.

Gyro data integration and gravity tilt are used in a complementary filter arrangement to approximate the tilt angle of the robot

GUI and Bluetooth communication

• GUI (PC)

- A USB Bluetooth tangle
- Add remote Bluetooth and paring

Port Configuration			Motion Control	
COM:	COM5	•		
Bau <mark>d</mark> Rate:	9600	•		
Parity Bit:	NONE	•		
Length:	8	•		
Stop Bit:	1	•		
Sending period (ms) 250		ns)	Key being pressed w Text from Bluetooth	
			Clear	

		1		
C	onnect			
C	onnect]		

• Bi-wheel robot

- Connect RX pin of Bluetooth model to TX pin of the MUC (Pin 26), TX pin of Bluetooth module to RX pin of MCU (Pin 25);
- Read control commands form Pin RX (getsUSART()), send to TX (putsUSART())
- Set high priority interrupt for command receiving event

Conclusion

- An application with PIC18 MCU, gyro sensor, servo motors, and Bluetooth module, by PI control.
- The bi-wheel robot is able to balance itself autonomously.
- Problems:
 - Hobby servo motor -- no speed control
 - $_{\odot}$ 16K program memory for PIC18F4431-I/P

Future work

- Use DC motor instead.
 - Position control, velocity control, PWM

• An MCU with larger memory size.

(Demonstration)

