Autopilot Design for an F16 Fighter Aircraft

SIVARAM WIJENDDRA MANUEL VERGARA GUNNEET SINGH

INSTRUCTOR: DR.YOUMIN ZHANG

Diagnosis, Flight Control and Simulation (DFCS) Lab Networked Autonomous Vehicles (NAV) Lab Department of Mechanical Engineering & Concordia Institute of Aerospace Design and Innovation (CIADI) Concordia University

Outline

- 1. F16 Equation of Motion
- 2. Linearization and Longitudinal Motion Analysis
- 3. Control Law Development
- 4. Autopilot Design and Simulation
- 5. Future Work and Conclusion

F16 Equation of Motion

Total velocity and angle of attack and side slip angle

$$\alpha = \arctan \frac{w}{u}$$
$$\beta = \arctan \frac{w}{v}$$
$$F_x = m(\dot{u} + qw - rv)$$
$$F_y = m(\dot{v} + ru - pw)$$
$$F_x = m(\dot{w} + pv - qu)$$

 $V_{\tau} = \sqrt{u^2 + v^2 + w^2}$

Force equations

Aerodynamic forces

$$\overline{X} = \overline{q}SC_{X_{T}}(\alpha, \beta, p, q, r, \delta, ...)$$
$$\overline{Y} = \overline{q}SC_{Y_{T}}(\alpha, \beta, p, q, r, \delta, ...)$$
$$\overline{Z} = \overline{q}SC_{Z_{T}}(\alpha, \beta, p, q, r, \delta, ...)$$

Moment $M_{y} = \dot{p}I_{y} - \dot{r}I_{y} + qr(I_{z} - I_{y}) - pqI_{zz}$ equations $M_{y} = \dot{q}I_{y} + pr(I_{x} - I_{z}) + (p^{2} - r^{2})I_{xz}$ $M_{z} = \dot{r}I_{z} - \dot{p}I_{z} + pq(I_{y} - I_{y}) + qrI_{z}$ $\overline{L} = \overline{q}S\overline{b}C_{l_{\tau}}(\alpha,\beta,p,q,r,\delta,...)$ Aerodynamic $\overline{M} = \overline{q} S \overline{c} C_{m_r}(\alpha, \beta, p, q, r, \delta, ...)$ moments $\overline{N} = \overline{q}S\overline{b}C_{n_x}(\alpha,\beta,p,q,r,\delta,...)$ $\dot{f} = p + \tan q(q \sin f + r \cos f)$ Navigation equations $\dot{q} = q\cos f - r\sin f$ $\dot{V} = \frac{q\sin f + r\cos f}{1 + r\cos f}$ $\cos \alpha$

 $\dot{x}_E = u\cos y\cos q + v(\cos y\sin q\sin f - \sin y\cos f) + w(\cos y\sin q\cos f + \sin y\sin f)$ $\dot{y}_E = u\sin y\cos q + v(\sin y\sin q\sin f + \cos y\cos f) + w(\sin y\sin q\cos f - \cos y\sin f)$ $\dot{z}_E = -u\sin q + v\cos q\sin f + w\cos q\cos f$

Linearization Around a Trim Point

System of equation	$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$ $\mathbf{y} = \mathbf{c}(\mathbf{x}, \mathbf{u})$	Jacobian δx	$\dot{\mathbf{x}} = \left[\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right]_{\mathbf{x}_0}, \mathbf{u}_0 \cdot \mathbf{\delta}\mathbf{x} + \left[\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right]_{\mathbf{x}_0}, \mathbf{u}_0 \cdot \mathbf{\delta}\mathbf{u}$
At trim point	$0 = f(x_e, u_e)$	δy	$V = \left[\frac{\partial \mathbf{c}}{\partial \mathbf{x}}\right]_{\mathbf{x}_{e},\mathbf{u}_{e}} \cdot \delta \mathbf{x} + \left[\frac{\partial \mathbf{c}}{\partial \mathbf{u}}\right]_{\mathbf{x}_{e},\mathbf{u}_{e}} \cdot \delta \mathbf{u}$
Taylor series expansion $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}_{e}, \mathbf{u}_{e}) + \left[\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right]_{\mathbf{x}_{e}, \mathbf{u}_{e}}$	$(\mathbf{x} - \mathbf{x}_{\mathbf{e}}) + \left[\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right]_{\mathbf{x}_{\mathbf{e}}}, \mathbf{u}_{\mathbf{e}} \cdot (\mathbf{u} - \mathbf{u}_{\mathbf{e}})$	Linear system	$\delta \dot{\mathbf{x}} = \mathbf{A} \cdot \delta \mathbf{x} + \mathbf{B} \cdot \delta \mathbf{u}$ $\delta \mathbf{y} = \mathbf{C} \cdot \delta \mathbf{x} + \mathbf{D} \cdot \delta \mathbf{u}$
$y = c(x_e, u_e) + \left[\frac{\partial c}{\partial x}\right]_{x_e}, u_e$ Perturbated variables	$ (\mathbf{x} - \mathbf{x}_{\mathbf{e}}) + \left[\frac{\partial \mathbf{c}}{\partial \mathbf{u}}\right]_{\mathbf{x}_{\mathbf{e}}} \cdot \mathbf{u}_{\mathbf{e}} \cdot (\mathbf{u} - \mathbf{u}_{\mathbf{e}}) $ $ \delta \mathbf{x} = \mathbf{x} - \mathbf{x}_{\mathbf{e}} $ $ \delta \mathbf{y} = \mathbf{y} - \mathbf{y}_{\mathbf{e}} $	State space format The controller $\delta \iota$	$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$ $\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$ $\mathbf{u} = \mathbf{u} - \mathbf{u}\mathbf{e} \Longrightarrow \mathbf{u} = \mathbf{u}\mathbf{e} + \mathbf{\delta}\mathbf{u}$
	$\delta \mathbf{u} = \mathbf{u} - \mathbf{u}_{\mathbf{e}}$		

Trimming the F16 Aircraft

State for the longitudinal dynam Trim point	ics $\mathbf{x} = [15000]$	$\mathbf{x} = \begin{bmatrix} h & \theta \end{bmatrix}$ 0.046492	ναq 500 0.04	[T] 46492 $0]^T$	Control derivative matrix	<i>B</i> =	0 0 0.0015683 -1.2161e-007 0	0 0 0.1448 -0.0016222 -0.16416
Stability derivative $\mathbf{A} = \begin{bmatrix} 0 \\ 0 \\ 0.00011042 \\ 1.7359e-006 \\ 2.8715e-020 \end{bmatrix}$	e matrix 600 0 -32.17 -1.1714e-013 0	2.9557e-013 0 -0.011313 -0.00017784 -2.942e-018	-600 0 3.8334 -0.76788 -2.251	0 1 -0.65696 0.9396 -1.0462	Eigen values		-0.90832+ -0.90832- -0.0043859 -0.0043859 8.1796e-01	1.4472i 1.4472i + 0.072077i - 0.072077i 4

Analyzing the Longitudinal Motion

Short period mode	Eigen Value - 0.90832 + 1.4472i - 0.90832 - 1.4472i	Damping ratio 0.5325 0.5325	Natural freq 1.70863 1.70863
Phugoid mode	Eigen Value -0.0043859 + 0.072077	Damping ratio	Natural freq

0.0043037	0.0720771	0.070 002	1.220 002
-0.0043859 +	0.072077i	6.07e - 002	7.22e - 002

Altitude Characterization

Altitude Characterization Contd: Impulse Response

Pitch Characterization

Controller Design Techniques: Pole Placement

Controller

 $\mathbf{u} = -\mathbf{K}\mathbf{x}$

Altitude tracking

Pole Placement Contd.

State Feedback with Input Gain

Gain

$$\mathbf{G} = -\left[\mathbf{C}(\mathbf{A} - \mathbf{B}\mathbf{K})^{-1}\mathbf{B}\right]^{-1}$$

UNIVERSITY

State Feedback with Integral Action

Controller

$$\mathbf{u} = -\mathbf{K}\mathbf{x}(t) + k_I \xi(t)$$

System

Time(s)

State Feedback with Integral Action Contd.

LQR Controller Design with Integral Action

System

Augmented state

$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$$

 $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$

 $\hat{\mathbf{x}} = [\mathbf{x}(\mathbf{t}) \quad \boldsymbol{\omega}(t)]^T$

. .

Augmented system

$$\dot{\hat{\mathbf{x}}}(\mathbf{t}) = \begin{bmatrix} \mathbf{A} & 0 \\ -\mathbf{C} & 0 \end{bmatrix} \hat{\mathbf{x}} + \begin{bmatrix} \mathbf{B} \\ 0 \\ \hat{\mathbf{B}} \end{bmatrix} \mathbf{u} + \begin{bmatrix} 0 \\ r \end{bmatrix}$$
$$\mathbf{y} = \begin{bmatrix} \mathbf{C} & 0 \\ \hat{\mathbf{C}} \end{bmatrix} \hat{\mathbf{x}}$$

Cost function

$$J = \frac{1}{2} (\mathbf{y}(\mathbf{t}_{f}) - \mathbf{r}(\mathbf{t}_{f}))^{\mathrm{T}} \mathbf{P} \mathbf{y}(\mathbf{y}(\mathbf{t}_{f}) - \mathbf{r}(\mathbf{t}_{f})) + \frac{1}{2} \mathbf{w}(\mathbf{t}_{f})^{\mathrm{T}} \mathbf{P}_{\mathbf{w}} \mathbf{w}(\mathbf{t}_{f}) + \frac{1}{2} \int_{0}^{t_{f}} \left[(\mathbf{y} - \mathbf{r})^{\mathrm{T}} \mathbf{Q}_{\mathbf{y}} (\mathbf{y} - \mathbf{r}) + \mathbf{w}^{\mathrm{T}} \mathbf{Q}_{\mathbf{w}} \mathbf{w} + \mathbf{u}^{\mathrm{T}} \mathbf{R} \mathbf{u} \right] dt$$

Control input

$$\mathbf{u}(\mathbf{t}) = -\hat{\mathbf{K}}(\mathbf{t})\hat{\mathbf{x}}(\mathbf{t}) + \mathbf{K}_{r}r$$
Ricatti equation

$$0 = \hat{\mathbf{Q}} + \mathbf{A}^{T}\hat{\mathbf{S}} + \hat{\mathbf{S}}\hat{\mathbf{A}} - \hat{\mathbf{S}}\hat{\mathbf{B}}\hat{\mathbf{R}}^{-1}\mathbf{B}^{T}\hat{\mathbf{S}}$$
All the parameters are defined as

$$\hat{\mathbf{K}}(\mathbf{t}) = \mathbf{R}^{-1}\hat{\mathbf{B}}^{T}\hat{\mathbf{S}}(t)$$

$$\hat{\mathbf{Q}} = \begin{bmatrix} \mathbf{C}^{T}\mathbf{Q}_{y}\mathbf{C} & 0\\ 0 & \mathbf{Q}_{w} \end{bmatrix}$$

$$\mathbf{K}_{r} = \begin{bmatrix} \mathbf{G}^{2} & -\mathbf{W}^{(1)}\mathbf{C}^{T}\mathbf{Q}_{y} \end{bmatrix}$$

$$\mathbf{W} = \mathbf{R}^{-1}\hat{\mathbf{B}}^{T}[(\hat{\mathbf{A}} - \hat{\mathbf{B}}\hat{\mathbf{K}})^{T}]^{-1}$$

$$= \begin{bmatrix} \mathbf{W}^{(1)}_{(n_{u} \times n_{x})} \mathbf{W}^{(2)}_{(n_{u} \times n_{x})} \end{bmatrix} n_{u} \times (n_{x} + n_{y})$$

$$\hat{\mathbf{G}} = \mathbf{R}^{-1}\hat{\mathbf{B}}^{T}[(\hat{\mathbf{A}} - \hat{\mathbf{B}}\hat{\mathbf{K}})^{T}]^{-1}\hat{\mathbf{S}}$$

$$= \begin{bmatrix} \mathbf{G}^{(1)}_{(n_{u} \times n_{y})} & \mathbf{G}^{(2)}_{(n_{u} \times n_{y})} \end{bmatrix} n_{u} \times (n_{x} + n_{y})$$

$$\hat{\mathbf{K}} = [\mathbf{K}_{x} \quad \mathbf{K}_{w}]$$
Control input
$$\mathbf{u} = -[\mathbf{K} \quad \mathbf{K}_{x}]^{\begin{bmatrix} \mathbf{x} \end{bmatrix}} + \mathbf{K} r$$

--r

W

LQR with Integral Action Contd.

LQR with Integral Action Contd.

Theta(rad)

-100 ^L

Time(s)

Pitch tracking

PID Controller

PID Controller

Input Output Linearization

System	$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) + \widetilde{\mathbf{g}}(\mathbf{x})\mathbf{u}$ $\mathbf{y} = \mathbf{h}(\mathbf{x})$	Control input	$\mathbf{u} = \left\{ \left(\mathbf{E}^{\mathrm{T}} \mathbf{E} \right)^{-1} \mathbf{E}^{\mathrm{T}} \right\} \left(\mathbf{\tilde{v}} - \mathbf{P}(\mathbf{x}) \right)$
		Linearized equation	$\mathbf{y}^{(r)} = \widetilde{\mathbf{v}}$
First integration	$\dot{y}_{i} = \frac{\partial h_{i}(\mathbf{x})}{\partial \mathbf{x}} \dot{\mathbf{x}} = \frac{\partial h_{i}(\mathbf{x})}{\partial \mathbf{x}} \{\mathbf{f}(\mathbf{x}) + \mathbf{\tilde{g}}(\mathbf{x})\mathbf{u}\}$ $= \frac{\partial h_{i}(\mathbf{x})}{\partial \mathbf{x}} \mathbf{f}(\mathbf{x}) + \frac{\partial h_{i}(\mathbf{x})}{\partial \mathbf{x}} \mathbf{\tilde{g}}(\mathbf{x})\mathbf{u}$ $= L_{\mathbf{f}}h_{i}(\mathbf{x}) + \sum_{i=1}^{m} L_{\mathbf{\tilde{g}}_{i}}h_{i}(\mathbf{x})u_{j}$	Tracking error	$\mathbf{e} = \mathbf{y}_r - \mathbf{y}$
Final output	<i>j</i> =1	Control law	$\widetilde{\mathbf{v}} = \mathbf{y}_r^{(r)} + \mathbf{K}_1 \mathbf{e}^{(r-1)} + \dots + \mathbf{K}_{r-1} \dot{\mathbf{e}} + \mathbf{K}_r \mathbf{e}$
$\begin{bmatrix} y_1^{r_1} \\ \cdot \\ \cdot \\ y_p^{r_p} \end{bmatrix} = \begin{bmatrix} L_{\mathbf{f}}^{r_1} \\ L_{\mathbf{f}}^{r_p} \end{bmatrix}$	$ \begin{split} h_{1}(\mathbf{x}) \\ \cdot \\ \cdot \\ h_{p}(\mathbf{x}) \end{bmatrix} + \begin{bmatrix} \sum_{j=1}^{m} L_{\widetilde{\mathbf{g}}_{j}} L_{\mathbf{f}}^{r_{i}-1} h_{1}(\mathbf{x}) \\ \cdot \\ \cdot \\ \sum_{j=1}^{m} L_{\widetilde{\mathbf{g}}_{j}} L_{\mathbf{f}}^{r_{p}-1} h_{p}(\mathbf{x}) \end{bmatrix}_{p \times m} \begin{bmatrix} u_{1} \\ \cdot \\ u_{m} \end{bmatrix}_{m \times 1} \end{split} $	Error dynamics	$\mathbf{e}^{(r)} + \mathbf{K}_{1}\mathbf{e}^{(r-1)} + \dots + \mathbf{K}_{r-1}\dot{\mathbf{e}} + \mathbf{K}_{r}\mathbf{e} = 0$
$\mathbf{y}^{(r)} = \mathbf{P}(\mathbf{x}) +$	$\mathbf{E}(\mathbf{x})\mathbf{u}$		

Input Output Linearization Contd.

Pitch tracking

Auto Pilot Design: Altitude Tracking

Results: Altitude Tracking

υ

N . v

F

RSI

TY

Auto Pilot Design: Pitch Tracking

Results: Pitch Tracking

Conclusion

- Altitude tracking and pitch tracking is achieved with elevator input
- Six different controllers were tried to find the best controller that achieves the desired result when applied to the nonlinear F16 dynamics
- Altitude tracking is achieved with state feedback with input gain controller that eliminates steady state error
- Pitch hold is achieved with pole placement controller

Future Work

- Trim the system at various trim points and find various gains to increase the operating region (Gain Scheduling)
- Analyzing the motion in lateral direction
- Analyzing and develop controllers for the nonlinear system instead of linearizing the system at a trim point

Ex: Dynamic feedback linearization(input- state feedback), Sliding mode controller, back stepping controller or adaptive robust controller

Experimental verification and implementation of the F16 aircraft

Gunneet Singh100%Manuel Vergara100%

Sivaram Wijenddra 100%

Thank you

