MECH 6091 – Flight Control System

Javier Ortiz Tarek Gouda

VANUATU

CEANIA

Contents

Introduction

Building the Height Model

 $M\ddot{Z} = 4F\cos(r)\cos(p) - Mg$

$$\ddot{Z} = \frac{4F}{M}\cos(r)\cos(p) - g$$
$$Z = \iint \frac{4F}{M}\cos(r)\cos(p) - g$$

Building X and Pitch Model

$$M\ddot{X} = 4F\sin(p)$$

•The motion along X is caused by changing pitch angle.

•The command to change Pitch is increasing or decreasing the rear propeller speed and decreasing or increasing the front propeller.

Building Y and Roll Model

 $M\ddot{Y} = -4F\sin(r)$

•The motion along is caused by changing Roll angle.

•The command to change Roll is increasing or decreasing the left propeller speed and decreasing or increasing the right propeller.

X & PICH Y & ROLL

Control Mechanisms

PID

Term	Math Function	Effect on Control System	
P Proportional	KP x Verror	Typically the main drive in a control loop, KP reduces a large part of the overall error.	
l Integral	KI x ∫ Verror dt	Reduces the final error in a system. Summing even a small error over time produces a drive signal large enough to move the system toward a smaller error.	
D Derivative	KD x dVerror / dt	Counteracts the KP and KI terms when the output changes quickly. This helps reduce overshoot and ringing. It has no effect on final error.	

PID – Height Model

Z Response

enter expression P+I/s+Ds	ions for proportional, integral, and derivative terms.
Parameters	
Proportional:	
85	
Integral:	
20	
Derivative:	
45	

Trial

PID – Height Model

Desired Z=5			
	Term	1 st Trial	Final Trial
	Ρ	85	20
	I	20	5
	D	45	10

PID Height Model

Desired Z=10			
Term	1 st Trial	Final Trial	New Gain
Ρ	85	20	10
I	20	5	2
D	45	10	7

PID – Gain Scheduling

1	function out = GAIN(Zd)
2	
3	
4 -	if Zd==1
5 -	Kp <mark>=</mark> 85
6 -	Ki <mark>=</mark> 20
7 -	Kd <mark>=</mark> 45
8	
9 -	elseif (Zd>=2 & Zd<=5)
10 -	Kp <mark>=</mark> 20
11 -	Ki <mark>=</mark> 5
12 -	Kd <mark>=</mark> 10
13	
14 -	elseif (Zd>=6 & Zd<=10)
15 -	Kp <mark>=</mark> 10
16 -	Ki <mark>=</mark> 2
17 -	Kd <mark>=</mark> 7
18 -	end
19 -	out(1) <mark>=</mark> Kp
20 -	out(2) <mark>=</mark> Ki
21 -	out (3) =Kd

PID Other Elements

Parameter	Proportional	Integral	Derivative
X position	0.5	0	0.5
Y position	0.5	0	0.5
Pitch angle	10	0	2
Roll angle	10	0	2
Yaw angle	0.2	0	0.1

✤ A system can be defined in state space form as:

 $\dot{X} = Ax + Bu$ Y = Cx

The feedback control law is to determine the gain K to stabilize and improve the performance of the system with the state-variable feedback

U = -Kx

The new controlled dynamics of the system becomes

 $\dot{X} = (A - BK)x$

The selection of the feedback gains K is made by LQR (Linear Quadratic Regulator). This method is based in the minimized of the cost function J

$$J = \int_0^\infty (x^T Q x + u^T R u) dt$$

- The Matlab Function 'K=lqr(A,B,Q,R)' is used to find the values for K.
- Where Q is a positive-define matrix and R is positive-define matrix, both are symmetric.
- LQR methodology attempts to balance between a faster response and a low control effort.

TRACKING A REFERENCE INPUT

For tracking a reference input we implement a LQR + INTEGRAL FORWARD CONSTANT (Ki).

LQR MATLAB

Controllable and Observable. Matlab function '*ctrb*' and '*obsv*'

MODEL	CTR_RANK	OBSV_RANK
Z	4	4
X & Y	3	3
Θ&φ	3	3
Yaw	2	2

Height Model
$$\begin{bmatrix} \ddot{Z} \\ \ddot{Z} \\ \dot{v} \\ \dot{s} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{4K}{M} & 0 \\ 0 & 0 & -w & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ w \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ -g \\ 0 \\ 0 \end{bmatrix}$$

The last row is a forth state to facilitate the use of an integrator for tracking input controller. The values for K, M and w is taken from Lab manual (K= 120N, M=1.4Kg & w=15 rad/sec)

$$\begin{bmatrix} \dot{Z} \\ \ddot{Z} \\ \dot{v} \\ \dot{s} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 342.8571 & 0 \\ 0 & 0 & -15 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 15 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ -9.8 \\ 0 \\ 0 \end{bmatrix}$$

$$Az = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 342.8571 & 0 \\ 0 & 0 & -15 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \quad Bz = \begin{bmatrix} 0 \\ 0 \\ 15 \\ 0 \end{bmatrix} \quad Cz = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad Dz = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

We use the LQR matlab function to calculate K. We selected Q as a diagonal matrix of 1 (4x4) and R is 1.

The first 3 terms are the LQR feedback controller and the last term is the Ki (forward integral constant).

HEIGHT SIMULINK MODEL

X & Y POSITION

 $M\ddot{X} = 4Fsin(p)$ $M\ddot{Y} = 4Fsin(r)$

These equations were implemented on simulink. We use the '*linmod*' matlab function to get the matrix A,B,C and D for X & Y.

[Axlin,Bxlin,Cxlin,Dxlin]=linmod('NONLIN_X1')

$$Axlin = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \quad Bxlin = \begin{bmatrix} 0 \\ 9.2857 \end{bmatrix} \quad Cxlin = \begin{bmatrix} 1 & 0 \end{bmatrix} \quad Dxlin = 0$$

The lineal and non lineal were compared.

The K gain matrix is calculated with 'lqr' matlab function and the Q matrix is a diagonal matrix of 1 (3X3) and R is 1.

✤ K=lqr(Axlin1,Bxlin,Q,1)
K =[1.8336 1.1811 1.0000]

ROLL & PITCH MODEL

$$\begin{bmatrix} \dot{\theta} \\ \ddot{\theta} \\ \dot{v} \\ \dot{s} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{KL}{J} & 0 \\ 0 & 0 & -w & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ w \\ 0 \end{bmatrix}$$

The values for K, L, w & J are taken form lab manual (K=120N, L=0.2m, J=.03Kgm² & w=15 rad/sec)

$$\begin{bmatrix} \dot{\theta} \\ \ddot{\theta} \\ \dot{v} \\ \dot{s} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 800 & 0 \\ 0 & 0 & -15 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 15 \\ 0 \end{bmatrix}$$

The A,B,C and D matrix are:

$$Ap = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 800 & 0 \\ 0 & 0 & -15 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \quad Bp = \begin{bmatrix} 0 \\ 0 \\ 15 \\ 0 \end{bmatrix} \quad Cp = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad Dp = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

• The first design was with an identity matrix 4x4 and R=1.

The response in pitch is not stable. We need to play with matrix Q and R to improve the response. The final values for Q and R :

$$Q = \begin{bmatrix} 10 & 0 & 0 & 0 \\ 0 & .05 & 0 & 0 \\ 0 & 0 & .05 & 0 \\ 0 & 0 & 0 & 20000 \end{bmatrix}$$

R = .05

The final response on pith and simulink model :

$$\begin{bmatrix} \dot{\varphi} \\ \ddot{\varphi} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{Ky}{Jyaw} \end{bmatrix}$$

Ky and Jyaw is taken from Lab manual (Ky=4Nm & Jyaw=0,4 Kg m²)

$$\begin{bmatrix} \dot{\varphi} \\ \ddot{\varphi} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 100 \end{bmatrix}$$

$$Ayaw = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \quad Byaw = \begin{bmatrix} 0 \\ 100 \end{bmatrix} \quad Cyaw = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad Dyaw = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

- The K gain matrix is calculated with 'lqr' matlab function and the Q matrix is a diagonal matrix of 1 (2X2) and R is 1.
- ✤ K=lqr(Ayaw,Byaw,Q,1)
 K =[1.0000 1.0100]

LQR OUTPUTS RESULTS

Compare Control Methods

PID

Start with Guess

Range Limit

Controllability not known

LQR

Modeled to System Dynamics

No Range Limit

Controllability Known

Trajectory Tracking

Trajectory Tracking

Disturbance

Disturbance

3D Build

Conclusion

Questions?

www.themegallery.c

Non Mas

VANUATU

Caledonia Mounta

Printen OCEANIA

Lang Creations

Birtis

usensland sautampton