
Modeling and Simulation of a Three Degree of 
Freedom Longitudinal Aero plane System 

Figure 1: Boeing 777 and example of a two engine business jet 





Nonlinear dynamic equations of motion for the 
longitudinal direction of aircraft 



Nonlinear dynamic equations of motion for the 
longitudinal direction of aircraft 

• The longitudinal equations of motions are considered for the 
aircraft model with the following assumptions 

• V=0

• Y=0

• p=0

• r=0

• Ø=0

• Ψ=0

• Ixx=0

• Izz=0

• Ixz=0



Nonlinear dynamic equations of motion for the 
longitudinal direction of aircraft 

The equations after assumptions become: 



The state vector can be shown as:



The control input can be shown as: 



Methods used to stabilize our model 

 The Linear Quadratic Regulator (LQR)controller.

The Proportional Integral Deferential (PID) 
controller. 



Gain Calculations
(Ziegler and Nichols Method)



P control kp  0.5kpu

PI control
kp  0.45kpu

ki  0.45kpu /(0.83Tu )







PID control

kp  0.6kpu

ki  0.6kpu /(0.5Tu )

kd  0.6kpu /(0.125Tu )











Gain Calculations
(Transfer Functions)



X

e


-7.501e - 006 s4  +  2757 s3 +  4246 s2  +  281.7 s +  0.002549

s6  +  3.531 s5 +  17.14 s4  +  2.067 s3 +  0.1181 s2  +  1.071e - 006 s

Z

e


-27.83 s3 -  83.67 s2  +  3947 s +  67.91

s5 +  3.531 s4  +  17.14 s3 +  2.067 s2  +  0.1181 s +  1.071e - 006



e


 -18.81 s3 -  29.05 s2  -  0.6134 s -  1.455e - 006

s5 +  3.531 s4  +  17.14 s3 +  2.067 s2  +  0.1181 s +  1.071e - 006

X

T


 4.674 s4  +  16.42 s3 +  78.44 s2  -  0.09065 s +  6.172e - 017

 s6  +  3.531 s5 +  17.14 s4  +  2.067 s3 +  0.1181 s2  +  1.071e - 006 s

Z

T


     - 0.1001 s3 -  0.7965 s2  -  2.517 s -  8.463

   s5 +  3.531 s4  +  17.14 s3 +  2.067 s2  +  0.1181 s +  1.071e - 006



T


0.009251 s2  +  0.05644 s +  5.875e - 019

s5 +  3.531 s4  +  17.14 s3 +  2.067 s2  +  0.1181 s +  1.071e - 006

X

S


 -1.393e - 005 s4  +  4629 s3 +  7058 s2  +  468.3 s +  0.004237

 s6  +  3.531 s5 +  17.14 s4  +  2.067 s3 +  0.1181 s2  +  1.071e - 006 s

Z

S


 - 52.06 s3  -  150.4 s2  +  6553 s +  112.8

s5 +  3.531 s4  +  17.14 s3 +  2.067 s2  +  0.1181 s +  1.071e - 006



S


 - 31.58 s3 -  48.29 s2  -  1.022 s -  2.444e - 006

s5 +  3.531 s4  +  17.14 s3 +  2.067 s2  +  0.1181 s +  1.071e - 006



Root Locus Plots



Root Locus Plots



Root Locus Plots



Cost Function Theory 

J is the energy spent by the actuators in 
order to regulate the system towards 
equilibrium 

The error vector (e) is defined as the 
difference between the actual state 
vector, and the commanded value 

λ is a Lagrange multiplier 



Cost Function Theory 

If a different value of weighting is required on each of the elements of the error vector 
and input u:

A square matrices, denoted here as Q, R (identity matrices), are used to ensure that J is 
non-negative for all values of e, and u, but is zero when X and Xcomm (no inputs) are 
equal .
For each choice of Q, and R, minimization of J corresponds to a unique choice of x, 
using specific inputs.
Essentially, the ratio between Q and R matrices represents the effort on actuators .



Cost Function Theory 

Q >> R 
The error is penalized, therefore the performances are maximized at the cost of an 
important effort on the actuators                               

Q << R   

The control effort is penalized, therefore the energy used to compensate is reduced at the 
cost of lower performances. 



Cost Function Theory 



RESULTS
Cost Function Results 

Highest performance, lowest cost, all state variables, and no inputs were used



RESULTS

Lower performance, higher cost, all state variables, no inputs, but integration 
without dt



RESULTS

Lower performance, higher cost, not all state variables, no inputs, and specific state 
variables were used for compromise between cost and performance 



RESULTS

High performance, higher cost, all state variables, and no inputs were used 
for compromise between cost and performance



RESULTS

High performance, higher cost, all state variables, and elevator input 
is used only for reducing cost



RESULTS

High performance, higher cost, all state variables, and throttle input is used 
only for reducing cost



RESULTS

High performance, higher cost, all state variables, and stabilator input is used 
only for reducing cost



RESULTS

High performance, highest cost, all state variables, and all inputs 
were used (which is our real case) 



Cost Function Conclusion

No much difference in results due to ρ that is very small.
- From J1 to J8 (cost is getting higher), and from J1 to
J3 (performance is getting better), but from J4 to J8 (no change in 
performance).

-J8 is our choice for controlling all the inputs with all state variables of the 
system with high performance and high cost.

- For future work, we can compromise between J 3and J 4 to have J9 
with specific state variables (not all state variables) and also specific 
inputs for compromising between performance and cost.



OVERALL SYSTEM LAYOUT 

LQR Layout: 

Feedback linearization of the model for LQR layout 



OVERALL SYSTEM LAYOUT 

Dynamic model of longitudinal aircraft for LQR layout 



OVERALL SYSTEM LAYOUT 

PID Layout: 

Dynamic model of longitudinal aircraft for PID layout 



OVERALL SYSTEM LAYOUT 

PID layout for the longitudinal aircraft model 



RESULTS



RESULTS



RESULTS



RESULTS



RESULTS



RESULTS 

LQR Feedback Results :

Altitude stabilization Range stabilization 



RESULTS 

Pitch angle stabilization 



RESULTS 

Range stabilization 
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