

Model Reference Adaptive Control Simulation & Implementation to Quadrotor UAV

Iman Sadeghzadeh

MECH 6091

Flight Control Systems Dr. Youmin Zhang,

Dept. of Mechanical and Industrial Engineering Concordia University, Montreal, Quebec, Canada

□ Introduction

□ Modeling the Quad-Rotor UAV

□ Model Reference Adaptive Control (MRAC)

- > Methods
- ≻ MIT rule an structure
- Simulation and Implementation Results
 - > MRAC
 - > LQR
 - Combination

Conclusions

Introduction

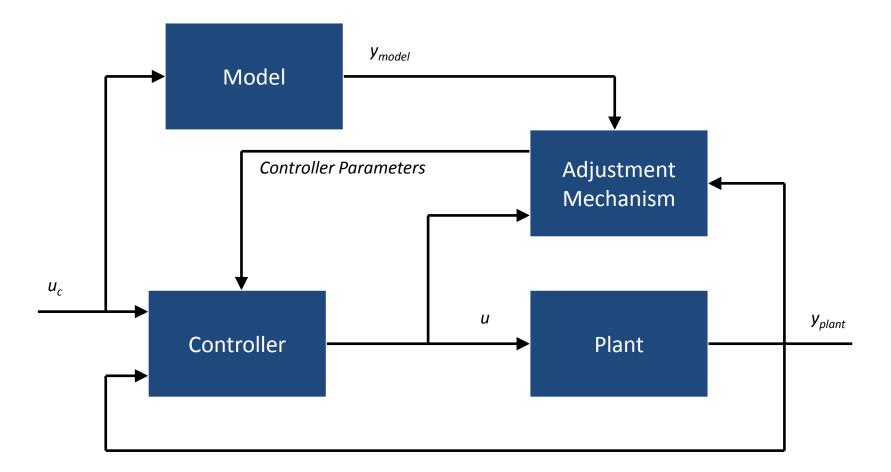
- > The advantages of the quad-rotor UAV:
 - VTOL
 - Omni-directional flying

- Does not require mechanical linkages to vary rotor angle of attack.
- Can be protected by enclosing within a frame (Qball)
- > MRAC controller advantages
 - Robustness: Insensitive to changes to plant parameters and disturbance
 - Variety of applications: Aerospace, Chemical, Petrochemical, etc...
 - The MRAC or MRAS is an important adaptive control methodology

Model-Reference Adaptive Systems

- The MIT rule
- Lyapunov stability theory
- Design of MRAS based on Lyapunov stability theory
- Hyperstability and passivity theory
- The error model
- Augmented error
- A model-following MRAS

MRAC Structure



Design controller to drive plant response to mimic ideal response (error = y_{plant} - $y_{model} => 0$) Designer chooses: reference model, controller structure, and tuning gains for adjustment mechanism

The MIT rule

- Original approach to MRAC developed around 1960 at MIT for aerospace applications
- With $e = y y_m$, adjust the parameters θ to minimize

$$J(\theta) = \frac{1}{2}e^2$$

• It is reasonable to adjust the parameters in the direction of the negative gradient of *J*:

$$\frac{d\theta}{dt} = -\gamma \frac{\partial J}{\partial \theta} = -\gamma e \frac{\partial e}{\partial \theta}$$

• $\partial e/\partial \theta$ is called the sensitivity derivative of the system and is evaluated under the assumption that θ varies slowly

The MIT rule

• The derivative of J is then described by

$$\frac{dJ}{dt} = e\frac{\partial e}{\partial t} = -\gamma e^2 \left(\frac{\partial e}{\partial \theta}\right)^2$$

• Alternatively, one may consider J(e) = |e| in which case

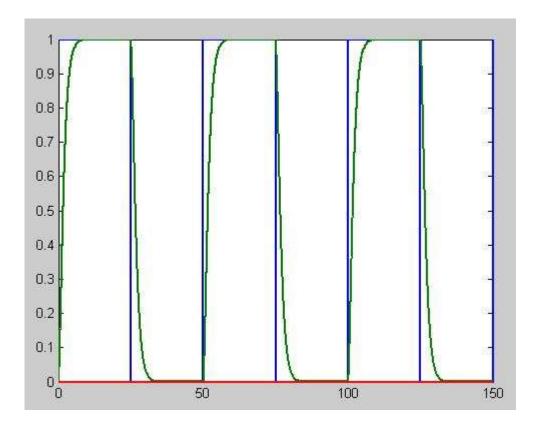
$$\frac{d\theta}{dt} = -\gamma \frac{\partial J}{\partial \theta} = -\gamma \frac{\partial e}{\partial \theta} \operatorname{sign}(e)$$

 The sign-sign algorithm used in telecommunications where simple implementation and fast computations are required, is

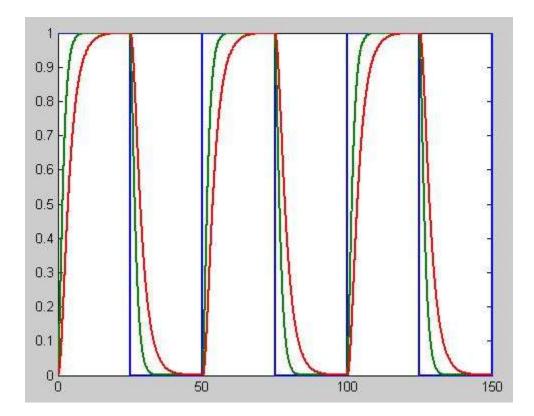
$$\frac{d\theta}{dt} = -\gamma \frac{\partial J}{\partial \theta} = -\gamma \operatorname{sign}\left(\frac{\partial e}{\partial \theta}\right) \operatorname{sign}(e)$$

Simulation Results

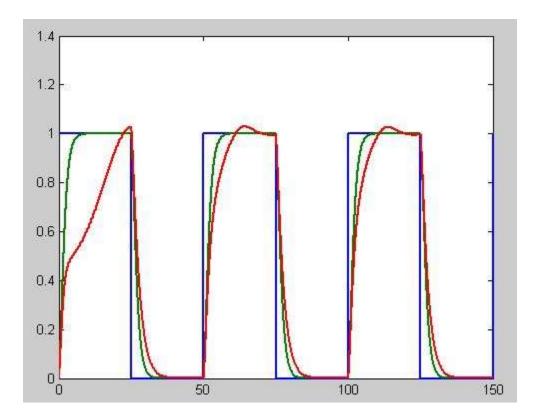
MRAC and LQR both are set to zero



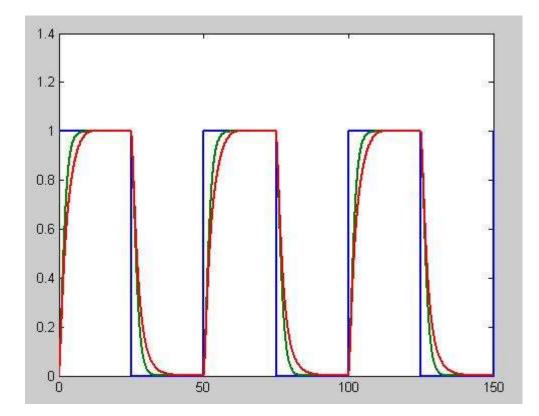
MRAC is set to zero



LQR is set to zero

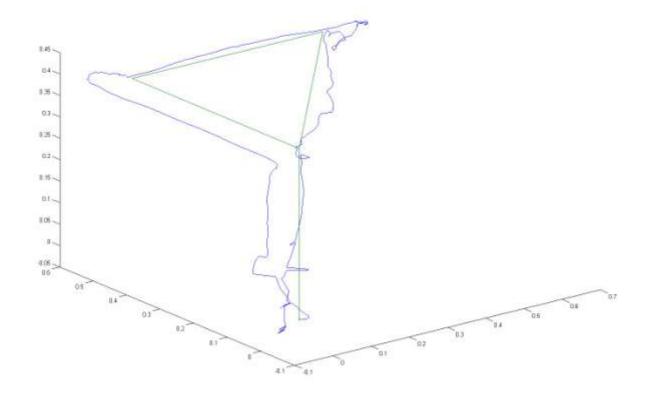


MRAC+LQR



Implementation

Triangle trajectory tracking



Conclusions

- 1. Model Reference Adaptive Control forces the dynamic response of the controlled plant to approach asymptotically to that of reference model
- 2. MRAC and LQR give the best performance to the system.
- 3. The MIT rule is the only method applied on Qball for this project and the result is satisfactory.
- 4. Model Reference Adaptive Control is very robust to disturbance

